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Persistence paths and signature features
in topological data analysis

Ilya Chevyrev, Vidit Nanda, and Harald Oberhauser

ABSTRACT. We introduce a new feature map for barcodes that arise in persistent homol-
ogy computation. The main idea is to first realize each barcode as a path in a convenient
vector space, and to then compute its path signature which takes values in the tensor alge-
bra of that vector space. The composition of these two operations — barcode to path, path
to tensor series — results in a feature map that has several desirable properties for sta-
tistical learning, such as universality and characteristicness, and achieves state-of-the-art
results on common classification benchmarks.

1. Introduction

Algebraic topology provides a promising framework for extracting nonlinear features
from finite metric spaces via the theory of persistent homology [17, 26, 28]. Persistent ho-
mology has solved a host of data-driven problems in disparate fields of science and en-
gineering — examples include signal processing [30], proteomics [16], cosmology [32],
sensor networks [13], molecular chemistry [34] and computer vision [23]. The typical
output of persistent homology computation is called a barcode, and it constitutes a finite
topological invariant of the coarse geometry which governs the shape of a given point
cloud.

For the purposes of this introduction, it suffices to think of a barcode as a (multi)set
of intervals [b•,d•), each identifying those values of a scale parameter ε ≥ 0 at which
some topological feature — such as a connected component, a tunnel, or a cavity — is
present when the input metric space is thickened by ε. A central advantage of persistent
homology is its remarkable stability theorem [9, Ch. 5.6]. This result asserts that the map
Met→ Bar which assigns barcodes to finite metric spaces is 1-Lipschitz when its source
and target are equipped with certain natural metrics.

Persistence paths and signature features. Notwithstanding their usefulness for cer-
tain tasks, barcodes are notoriously unsuitable for standard statistical inference because
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2 ILYA CHEVYREV, VIDIT NANDA, AND HARALD OBERHAUSER

Bar itself is a nonlinear metric space, and most scalable learning algorithms rely on linear
methods. In this work, we construct a feature map of the form

Φ• : Bar→ T,

where T = T(V) denotes the tensor algebra of a linear space V. The feature map Φ• is
defined as composite, Φ• = S◦ι•, of a persistence path embedding ι• and the path signature
S,

Bar ι•−→ BV(V)
S−→ T(V),

where the intermediate space BV(V) contains all continuous maps [0,1]→V of bounded
variation.
Persistence path embedding ι•: The maps ι• : Bar→BV(V) disambiguate our Φ•’s. There

are many such embeddings, and they differ significantly in terms of stability,
computability, and discriminative power.

Signature features S: The map S represents a path as its T-valued signature. This map is
injective (modulo natural equivalence classes of paths), provides a hierarchical
description of a path, and has a rich algebraic structure that captures natural
operations on paths, such as concatenation and time reversal.

The concept of a persistence path embedding ι• reflects the interpretation of persis-
tent homology as a dynamic description of the topological features which appear and
disappear as a metric space is thickened across various scales. There is precedent for
such constructions; e.g. Bubenik’s landscapes [5] can be reformulated to give an impor-
tant example of such an ι•, which we denote with ιiL. Despite their intuitive appeal, these
approaches rely ultimately on a choice of feature map for paths, on which the resulting
statistical learning guarantees depend.1 We show here that the composition with the sig-
nature map resolves such issues. For example, one of our results is that the feature map
ΦiL = S◦ιiL is
universal:: non-linear functions of the data are approximated by linear functionals in

feature space: for every (sufficiently regular) function f : Bar→ R there exists `
in the dual of T, such that f (B) ≈ 〈`,ΦiL(B)〉 uniformly over barcodes B.

characteristic:: the expected value of the feature map characterizes the law of the random
variable: the map which sends a probability measure µ on Bar to its expectation
µ 7→ EB∼µ[ΦiL(B)] in T is injective.

stable:: the map ΦiL : Bar→ T has explicit continuity properties, as recorded in Theo-
rems 2 and 5 below.

Perhaps the biggest advantage of our approach is that it is not limited to ιiL. Besides ιiL,
we will also discuss the following unstable path embeddings:
the naive embedding ιN: sorts all intervals decreasing in length (with intervals of equal

length ordered by increasing birth times), enumerates them {1, . . . ,n}, and forms
an n-dimensional path by running in the i-th coordinate with unit speed if the
i-th bar is active (otherwise remaining constant).

Euler embedding ιχ: reduces a barcode to a single Euler characteristic curve (see [33,
Sec. 3.2]). The resulting feature map Φχ is not stable, but is extremely fast to
compute.

Betti embedding ιβ: records only the Betti numbers as a function of the scale, and ignores
information (contained in the barcode) which connects homology across different
scale values.

1For example, [5] chooses a functional on the Banach space of paths, but how to choose such functionals
in a non-parametric fashion and evaluate them efficiently remains unclear (unless something special is
known a priori about the probability distribution of the observed barcodes).
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envelope embedding ιE: constructed by sorting the intervals [b•,d•) of a barcode in de-
scending order by length, and then assembling the ordered sequence of b•’s and
d•’s into two separate paths. This appears to be a completely new embedding.

Analogous statements for universality and characteristicness hold for the other Φ•’s.
Each of these embeddings ι• leads to different properties in terms of stability, computabil-
ity, and discriminative power, for the associated feature maps Φ•. For example, ΦE has
neither the stability of ΦiL nor the computability of Φχ, but it gives state-of-the-art perfor-
mance on supervised classification tasks. The emergence of a single feature map which
is optimal along all three axes (stability, computability, discriminative power) appears
unlikely, since these requirements tend to contravene each other. For example, stability
requires the feature map to depend mostly on the longer intervals in a barcode, while in
various problems (such as [16]), the signal of interest also resides in intervals of interme-
diate and short length.

Complexity. The dimension of V varies significantly between the different persis-
tence path embeddings. If a barcode contains ≈ 103 intervals, ιN would map it to a
path that evolves in a ≈ 103-dimensional space, whereas ιE always yields a path in 2
dimensions. Each of the above feature maps Φ• gives a kernel for barcodes k•(B, B′) :=
〈Φ•(B),Φ•(B′)〉, and following [22], this kernel can be very efficiently computed regard-
less of dim(V) as long as V carries an inner product. However, for low-dimensional em-
beddings, Φ• can be computed directly and performs very well (e.g. ΦE for the envelope
embedding ιE).

Benchmarks and related work. Statistical learning from barcodes has received a lot
of attention, see the background section in [1] for a recent survey. The most common
theme is to construct a kernel [7] or polynomial coordinates [3, 14] that serve as features
for barcodes. We believe one strength of our approach is the access to both, the kernel
and its feature map (at least for the Betti, Euler, and envelope embeddings; in practice
the naive embedding is only accessible via kernelization due the high-dimensionality of
the persistence paths); the former gives access to well-developed tools from the kernel
and Gaussian processes learning literature, while the latter allows us to use any learning
method such as random forests or neural networks. A second advantage is that differ-
ent choices of persistence path embeddings facilitates emphasis on different topological
properties (so in a supervised learning task, the optimal ι• can be determined by cross-
validation).

Acknowledgments. IC is funded by a Junior Research Fellowship of St John’s Col-
lege, Oxford. VN’s work is supported by The Alan Turing Institute under the EPSRC
grant number EP/N510129/1, and by the Friends of the Institute for Advanced Study.
HO is supported by the Oxford-Man Institute of Quantitative Finance. We are grateful to
Steve Oudot and Mathieu Carrière for generously sharing their data [7] with us.

2. Background

As mentioned in the introduction, we construct maps of the form

Bar→ BV(V)→ T(V),

from the space of persistence barcodes Bar to the tensor algebra T(V) of V via the space
of bounded variation paths BV. In this section we define these three spaces and recall
important properties; see [28, 9] resp. [24] for more details about Bar resp. BV.
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2.1. Persistence, barcodes and stability. The Vietoris–Rips filtration [26, Sec. 3.1] as-
sociates a one-parameter nested family of finite simplicial complexes {K(t)}t≥0 to each
finite metric space (X,∆) via the following rule. A subset {x0, . . . , xk} of X spans a k-
dimensional simplex in K(t) if and only if all the pairwise distances satisfy ∆(xi, xj) ≤ t.
Thus, one has the inclusion K(t) ⊆ K(s) whenever t ≤ s. Computing the homology of
this family [20, Ch. 2] with coefficients in a field F produces, in each dimension, a corre-
sponding family of F-vector spaces U• as follows:

U•(t) = H•(K(t);F),

and inclusions of simplicial complexes induce linear maps U•(t)→ U•(s) for t ≤ s. This
data consisting of vector spaces and linear maps indexed by real numbers is called a
persistence module.

The following result from [36] uses the fact that the polynomial ring F[x] in one vari-
able x acts on sufficiently tame persistence modules. Since this ring is a principal ideal
domain, F[x]-modules have a particularly simple representation theory.

THEOREM 1 (Structure). Under mild assumptions (always satisfied by Vietoris-Rips homol-
ogy of finite metric spaces), each persistence module U is completely characterized up to isomor-
phism by a finite collection of (not necessarily distinct) intervals B = B(U) = {[b•,d•)}, called
its barcode.

Thus, a barcode is simply a multi-set containing some subintervals of [0,∞]. When the
persistence module in question comes from the Vietoris-Rips construction as described
above, its barcode provides a complete summary of all the intermediate homology of
K(t) across t ∈ [0,∞). In particular, the i-th Betti number of K(t), written

βt
i = dim Hi(K(t);F), (1)

equals the number of intervals in the i-dimensional barcode Bi = Bar(Ui) that contain t.
Similarly, for t ≤ s, the rank of the induced map on homology

βt,s
i = rank

(
Hi(K(t);F)→ Hi(K(s);F)

)
(2)

equals the number of intervals in Bi that contain [t, s].
There are several efficient algorithms which take as input finite metric spaces and pro-

duce as outputs the barcodes of their Vietoris-Rips filtrations [25, 18]. Concurrently, the
theory has also developed at a rapid pace, and the following result [12, 9] is an exemplar
of its progress. (Note that Met is the collection of all finite metric spaces while Bar is the
collection of all barcodes containing finitely many intervals.)

THEOREM 2 (Stability). The map PHi : Met → Bar which assigns to each finite metric
space its i-dimensional Vietoris-Rips persistent homology barcode is 1-Lipschitz for every i ≥ 0.
Here Met is endowed with the Gromov-Hausdorff distance [19] while Bar is endowed with the
bottleneck distance (as defined in [12, Sec. 3.1]).

Roughly, two barcodes lie within bottleneck distance ε of each other if it is possible to
deform one to the other by moving the endpoints of all its intervals by at most ε (and vice-
versa). Thus, the longer intervals are more stable to perturbation of the originating metric
space (in particular, intervals of length smaller than 2ε might be created or destroyed
during such a deformation).

2.2. Paths of bounded variation. Let V be a normed real vector space. Given a con-
tinuous path x : [0, T]→ V (for some T ≥ 0) and a finite partition of [0, T]

p = (0 = p0 ≤ p1 ≤ · · · ≤ p`−1 ≤ p` = T),
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the 1-variation of x along p is given by

var1(x; p) =
`−1

∑
i=0
‖x(pi+1)− x(pi)‖V .

DEFINITION 2.1. The total 1-variation of a continuous path x : [0, T]→ V is defined as

‖x‖1-var = ‖x(0)‖+ sup
p
{var1(x; p)},

where the supremum is taken over all finite partitions of [0, T]. The normed real vector
space BV(V) consists of all continuous paths x that satisfy ‖x‖1-var < ∞, with addition
and scalar multiplication being defined pointwise. The induced metric on BV(V) is given
as usual by ‖x− y‖1-var.

Functions of bounded variation lie strictly between Lipschitz-continuous functions
and almost everywhere differentiable functions, and in particular every Lipschitz-continuous
function [0, T]→ V lies within BV(V).

2.3. The tensor algebra. Given a real vector space V and an integer m≥ 0, let V⊗m =
V ⊗V ⊗ · · · ⊗V denote the m-fold tensor product of V with itself. By convention, V⊗0 =
R. The tensor algebra T(V) of V is the direct product

T(V) = ∏
m≥0

V⊗m.

Thus, each element of T(V) is a sequence (v0,v1, . . .) where vm ∈ V⊗m. We equip T(V)
with the structure of a (graded) algebra under the tensor product operation, for which
V⊗k ⊗ V⊗` takes values in V⊗(k+`). Finally, let us emphasize that T(V) is a linear space
which makes it a suitable feature space.

EXAMPLE 2.2. For V = Rd, T(V) is the feature space for one of the arguably most
important feature maps for data in Rd: the polynomial feature map

x 7→ (1, x, x⊗2, . . .). (3)

As we show in Section 3, the signature map for paths in V can be seen as a generalisation
of the polynomial feature map (3).

3. From barcodes to paths

In this section we introduce several persistence path embeddings

ι• : Bar→ BV(V).

To avoid technicalities, we make the following assumption (which is always met if B
arises from the persistent homology of a finite metric space):2

ASSUMPTION 3.1. Assume that every barcode B encountered in this section is tame in two
senses: first, it has only finitely many intervals, and second, each interval is contained within
[0, TB] for some sufficiently large TB.

3.1. The (integrated) landscape embedding. We first present an embedding with de-
sirable stability properties. The persistence landscape of a barcode B is a single function
Λ : N×R→R, but it is often convenient to denote each Λ(k,−) : R→R by λk. The best
introduction to landscapes is visual:

2The assumption can be sufficiently mollified, but since the underlying motivation for this work is
computational and finitary, we do not lose any structure of interest by restricting to tame barcodes.
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To the left is a barcode containing only three intervals, where each [b,d) is shown as a
point in the plane with coordinates (b,d). The construction of three associated landscape
functions λ1 ≥ λ2 ≥ λ3 ≥ 0, which are shown to the right, proceeds by first projecting
these points onto the diagonal, and then extracting successive maximal envelopes of the
resulting arrangement of line segments. The higher λk for this illustrated barcode are all
identically zero.

DEFINITION 3.2. [5, Def. 3] The landscape Λ = ΛB of the barcode B is the (continuous)
function N×R→R∪ {∞} given by

ΛB(k, t) = λB
k (t) = sup{s ≥ 0 | βt−s,t+s ≥ k}.

Here, βt−s,t+s equals the number of intervals in B which contain [t− s, t + s] (see (2) for
the case of barcodes arising from persistent homology). Moreover, we adopt the usual
convention that ΛB(k, t) = 0 whenever the supremum is being taken over the empty set.

For tame barcodes B, one can safely exclude ∞ from the codomain of ΛB. Moreover,
each λB

k becomes bounded and compactly supported (in addition to continuous), so we
may view the assignment of landscapes to barcodes as a function

Λ• : Bar→ Lp(N×R)

for every p ∈ [1,∞].

DEFINITION 3.3. The landscape embedding ιL : Bar→ BV(`∞) assigns to each land-
scape B a path ιL (B) in BV(`∞) whose k-th component is the k-th landscape function for
each k ∈N:

[ιL(B)]k(t) = λk(t).
Similarly, the integrated landscape embedding ιiL : Bar→ BV(`∞) is defined as

[ιiL(B)]k(t) =
∫ t

−∞
λk(s)ds.

The choice of BV(`∞) for the target space above is somewhat arbitrary: we may as
well have mapped to BV(`p) for any p ∈ [1,∞] or to BV(Rn) via truncation. We now
show that ιiL inherits stability (in the sense of Theorem 2) from barcodes via their land-
scapes. The two spaces defined below will appear in the proof.

DEFINITION 3.4. For p,q ∈ [1,∞], define
(1) the Banach space Lp,q(N×R) consisting of all functions y : N×R→R for which

the following (p,q)-norm is finite: ‖y‖Lp,q = [
∫

R
(∑∞

k=1 |y(k, t)|p)q/pdt]1/q, and
(2) the Sobolev path space W1,q(R,`p) consisting of all functions x : R→ `p for which

there exists some ẋ ∈ Lq(R,`p) such that x(t) =
∫ t
−∞ ẋ(s)ds. The seminorm of x

in this case is defined by ‖x‖W1,q = ‖ẋ‖Lq .

We remark that one usually defines the Sobolev norm on W1,q as ‖x‖Lq + ‖ẋ‖Lq , while
our definition drops the term ‖x‖Lq . For paths x defined on a compact interval [0, T] with
x(0) = 0, we note that these norms are equivalent (but on unbounded domains, this is no
longer the case). Our choice of norm is motivated by the upcoming Lemma 3.5.
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At special values of p and q, the two spaces defined above become more familiar. For
instance, Lp,p(N×R) is the Lp space obtained by equipping N×R with the product of
the counting and Lebesgue measures, as considered in [5, Sec. 2.4]. Similarly, W1,∞(R,`p)
is the space of 1-Hölder paths in `p, while W1,1(R,`p) is the subspace of absolutely con-
tinuous paths in BV(`p). See [15, Sec. 1.4] for further details. In any case, landscapes in
the image of Λ• lie in Lp,q(N×R) for every possible p,q ∈ [1,∞].

LEMMA 3.5. For all p,q ∈ [1,∞], the map I : Λ(?,•) 7→
∫ •
−∞ Λ(?, s)ds is an isometry

Lp,q(N×R)
'−→W1,q(R,`p).

PROOF. The map ϕ : Lp,q(N × R)→ Lq(R,`p), ϕ(y)(t) =
(
y(1, t), (y(2, t), . . .

)
, is an

isometry:

‖y‖q
Lp,q =

∫
R

(
∞

∑
k=1
|y(k, t)|p

)q/p

dt =
∫

R
‖ϕ(y)(t)‖q

`pdt = ‖ϕ(y)‖q
Lq .

By definition of W1,q(R,`p), the map
∫

: Lq(R,`p)→W1,q(R,`p), x 7→
∫ •
−∞ x(s)ds, is also

an isometry. The conclusion follows by observing that I=
∫
◦ϕ. �

We now obtain a desirable stability property for the integrated landscape embedding.

THEOREM 3. The map Met→ BV(`∞) obtained by composing the i-dimensional Vietoris-
Rips persistent homology of Theorem 2 with the integrated landscape embedding of Definition 3.3,
i.e.,

Met
PHi−→ Bar Λ•−→ L∞(N×R)

I−→ BV(`∞),
is 1-Lipschitz for every i≥ 0. Here Met has the Gromov-Hausdorff metric while BV(`∞) has the
1-Hölder norm

‖x‖1-Höl := ‖x(0)‖`∞ + sup
s 6=t
‖x(t)− x(s)‖`∞ |t− s|−1 .

PROOF. It holds that PHi is 1-Lipschitz by Theorem 2 and Λ• is 1-Lipschitz by [5,
Thm. 13]. Taking p = q = ∞ in Lemma 3.5 and noting that ΛB(k, t) = 0 for all t≤ 0, k ∈N,
and barcodes B, it follows that I is also 1-Lipschitz. �

3.2. The envelope embedding. Consider B ∈ Bar. Order the intervals {[bi,di)}m
i=1 of

B in descending order by their lengths (di − bi) (with intervals of equal length ordered
by increasing birth times), and embed them into R2 as the (disjoint) union

U(B) =
m⋃

i=1

{i} × [bi,di].

The upper envelope uB : R→ R of B is the piecewise linear curve obtained by linearly
interpolating between the highest points (i,di) of U(B) across i ∈ {0, . . . ,m}, with d0 = 0
by convention. Similarly, the lower envelope `B is obtained by interpolating between
the lowest points (i,bi), again with b0 = 0. Both curves are uniquely extended to have
domain R by keeping them constant on the intervals (−∞,0] and [m,∞). We illustrate
both envelopes in the accompanying figure.

DEFINITION 3.6. The envelope embedding is a map ιE : Bar→ BV(R2) defined as
follows. To each barcode B, it associates the path ιE(B) : R→R2, given by

[ιE(B)](t) = (`B(t),uB(t)) .

Here uB and `B are the upper and lower envelopes of B as described above.
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For values of t near zero, the upper and lower envelopes, `B(t),uB(t) capture only
the longest, most stable intervals of B. As t ≥ 0 increases, more of the smaller intervals
get included, and the output ιE(B) becomes more volatile to small perturbations of B (in
the bottleneck metric). This motivates us to truncate after a given time: pick an integer
N ≥ 1 and let ιN

E : Bar→ BV(R2) be the restricted envelope embedding obtained by setting
ιN
E (B)(t) equal to {

ιE(B)(t) if t ≤ N,
ιE(B)(N) if t > N,

If the feature map associated to this truncated envelope embedding performs well for
small values of N and poorly for large ones, then one obtains evidence in favor of the
hypothesis that the signal of interest genuinely resides in the larger, more stable intervals.

3.3. The Betti and Euler embeddings. In contrast to the previous two subsections,
we now consider embeddings which depend on all homological dimensions.

DEFINITION 3.7. Denote B =
⋃

i≥0 Bi where Bi contains all intervals of homological
dimension i. Choose an integer n≥ 1 and numbers ak

i ∈R for i≥ 0 and 1≤ k≤ n. Setting
a = {ak

i }, the generalised Betti embedding β(B; a) ∈ BV(Rn) is defined as follows. Let
{tj}m

j=1 be the (ordered set of) all endpoints of intervals in B (which lie in [0, T]) together
with t1 = 0 and tm = T. For each j ∈ {1, . . . ,m}, set

β(B; a)(tj) =

(
∑
i≥0

a1
i β

tj
i , . . . , ∑

i≥0
an

i β
tj
i

)
,

where β
tj
i is the Betti number of B as in (1). We extend the definition to points t ∈ (tj, tj+1)

in a piecewise linear fashion

β(B; a)(t) = β(B; a)(tj) +
t− tj

tj+1 − tj

(
β(B; a)(tj+1)− β(B; a)(tj)

)
.

The Betti embedding ιβ(B) ∈ BV(Rn) is defined by setting ak
i = 1 if k − 1 = i and

ak
i = 0 otherwise:

ιβ(B)(tj) = (β
tj
0 , . . . , β

tj
n−1).

The Euler embedding ιχ(B) ∈ BV(R) is defined by setting a1
i = (−1)i:

ιχ(B)(tj) =
n

∑
i=0

(−1)iβ
tj
i .

REMARK 3.8. When B arises from the persistent homology of a finite metric space,
it is computationally convenient to recall that ιχB(tj) is the Euler characteristic of the
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associated Vietoris-Rips simplicial complex K(tj), and is thus also given by an alternating
count of simplices across dimension:

ιχ(B)(tj) = ∑
i≥0

(−1)i · #{i-simplices in K(tj)}.

Hence, ιχ(B) can be computed without knowing the actual homology of K. In fact, one
could further consider generalised simplex embeddings

σk(B; a)(tj) = ∑
i≥0

ak
i · #{i-simplices in K(tj)},

which can all be computed without knowing the homology of K (albeit do not in general
capture homological invariants).

REMARK 3.9. Since ιβ and particularly ιχ are massive numerical reductions of B, it is
apparent that metric spaces with very different persistence barcodes might have identical
Betti and Euler embeddings. On the other hand, for barcodes arising from certain pop-
ular models of random metric spaces, the expected value of |ιχ(B)(t)| is a remarkably
good predictor of the Betti number βt

i for each t≥ 0 — see [21, Sec. 5.3] and the references
therein for details.

3.4. Stability and injectivity. As mentioned in the introduction, the emergence of a
single feature map which is optimal in terms of stability, discriminative power and com-
putability is unlikely since these three properties tend to contravene each other. Indeed,
our persistence path embeddings vary drastically in terms of stability, discriminative
power, and computability. In terms of discriminative power, the (integrated) landscape
and envelope embeddings are injective maps from the space of barcodes to spaces of
bounded variation paths, but neither Betti or Euler are injective, see Remark 3.9. In terms
of stability, the only embedding that is stable is the (integrated) landscape embedding;
for the other embeddings simple counterexamples can be constructed.3

4. From paths to tensors

We introduce the second component S for our feature map Φ• = S◦ι•.

DEFINITION 4.1. For a Banach space V, the signature map is defined as

S : BV(V)→ T(V) x 7→ (S0(x),S1(x), . . .)

where S0(x) = 1 and

Sm(x) :=
∫

0<t1<···<tm<T
dx(t1)⊗ dx(t2)⊗ · · · ⊗ dx(tm) ∈ V⊗m

is defined as a Riemann–Stieltjes integral over the m− 1 simplex of length T.

EXAMPLE 4.2 (The case V = Rn). For a path x ∈ BV(Rn), it holds that

Sm(x) = ∑
i1,...,im

Si1,...,im(x)ei1 ⊗ · · · ⊗ eim ∈ (Rn)⊗m,

where the sum is taken over all multi-indexes (i1, . . . , im) ∈ {1, . . . ,n}m, (ei)
n
i=1 is a basis of

Rn, and

Si1,...,im(x) =
∫

0<t1<···<tm<T
dxi1(t1)dxi2(t2) · · ·dxim(tm).

Hence the term Sm(x) can simply be interpreted as a collection of nm real numbers.

3Consider adding small bars [bn,dn) where [bn,dn) = [0,n−1) if n is even, [bn,dn) = [c− n−1, c) if n odd
for a fixed sufficiently large c > 0.
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The mapping S is essentially injective up to a natural equivalence class of paths, called
tree-like equivalence.4

THEOREM 4. [4] Let x,y ∈ BV(V). Then S(x) = S(y) iff x and y are tree-like equivalent.

Tree-like equivalence can be a useful equivalence relation, e.g. it identifies paths that
differ only by time-parametrization.5 For our applications, it is instructive to think of
Sm(x) as the natural generalisation of the monomial of order m of a vector v ∈ V to
pathspace.

EXAMPLE 4.3. Let v ∈ Rn and consider the path x(t) = tv where t ∈ [0,1]. The com-
ponents of its signature are given by

Sm(x) =
∫

d(vt1)⊗ · · ·d(vtm) =
∫

v⊗mdt1 · · ·dtm =

(
v⊗m

m!

)
,

Thus S(x) indeed recovers the moment map v 7→ (1,v, v⊗2

2! , . . .).

A further useful similarity between the signature map and monomials is that the
space of linear functions of the signature is closed under multiplication, which is com-
monly known as the shuffle identity.

LEMMA 4.4 (Shuffle identity). Suppose `i ∈ (V′)⊗mi for i = 1,2 (where V′ is the continuous
dual space of V). Then there exists `3 ∈ (V′)⊗(m1+m2) such that for all x ∈ BV(V)

〈S(x),`1〉〈S(x),`2〉 = 〈S(x),`3〉
PROOF. See [24, Thm. 2.5] for an elementary proof when V is finite dimensional,

and [8, Cor. 3.9] for the general case. �

REMARK 4.5. The linear functional `3 is known as the shuffle product of `1 and `2.

In light of Lemma 4.4, one can ask whether linear combinations of such “monomials”
Sm(x) are dense in a space of functions, and, whether the sequence of expected “mo-
ments” characterizes the law of the random path. For compact subsets of BV(V), the
answer to both questions is yes, as we shall see in Theorem 5, and follows by a standard
Stone–Weierstrass argument; the general, non-compact case is more subtle (cf. classical
moment problem) but is known to be true under suitable integrability conditions [10].

5. Statistical learning

In this section we discuss the problem of statistical learning on the space of barcodes
Bar. The space Met has traditionally been of more interest; however, since the persistent
homology map PH : Met→ Bar from Section 2.1 is well-understood, we focus here on
Bar. Results for Bar-valued random variables pull back along PH to results for Met-
valued random variables.

We are interested in two standard learning problems: given independent random
samples B1, . . . , Bk ∼ B of a Bar-valued random variable B, our aim is to

(i) learn a function f (B) of the data f : Bar→R, and

4x,y are tree-like equivalent iff there exists some R-tree (i.e., a metric space in which any two points
are connected by a unique arc which is isometric to a real interval) T so that x ∗←−y , the concatenation of x
with the time-reversal of y, decomposes as

[0, T]
φ−→ T

ψ−→ V

where φ and ψ are continuous maps with φ(0) = φ(T). We call a set of continuous paths in BV(V) reduced
if none of its distinct elements are tree-like equivalent.

5x and x′ = (x(ϕ(t))) are tree-like equivalent for any time-change ϕ.
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(ii) characterize the law µ of the data B ∼ µ.

As mentioned in the introduction, the standard approach to both problems is to find a
feature map Φ : Bar→ T(V) which is universal and characteristic (addressing points (i)
and (ii) respectively). Let us establish these properties for our feature map

Φ = S◦ι : Bar→ T(V),

where V is a Banach space, ι is any persistence path embedding (e.g., one of the maps
from Section 3) and S is the signature map of Section 4. Due to the injectivity of S (up
to tree-like equivalence), Φ preserves essentially all the information captured by ι. In
particular, if ι maps some domain D⊂ Bar injectively into the space of tree-reduced paths
(as is the case for any embedding once time is added as a coordinate), then Φ is also
injective on D. To make this precise, we use suitable quotient spaces.

DEFINITION 5.1. For ι : Bar→ BV(V), define the equivalence relation B ∼ι B′ iff ι(B)
and ι(B′) are tree-like equivalent. Let Bar/ι denote the quotient of Bar under ∼ι, and
equip Bar/ι with the initial topology with respect to the map

Bar/ι→ BV(V)/∼t, [B] 7→ [ι(B)],

where ∼t denotes tree-like equivalence and BV(V)/∼t is equipped with the quotient
topology (recall that BV(V) bears the 1-variation topology).

THEOREM 5. Define

Φ : Bar/ι→ T(V), B 7→ S◦ι(B).

On each compact subset K ⊂ Bar/ι, the map Φ has the following properties.
(1) (Universal) Let f : K→R be continuous. For each ε> 0, there exists ` in

⊕
m≥0(V′)⊗m

(the dual space of the tensor algebra) such that

sup
B∈K
| f (B)− 〈Φ(B),`〉| < ε.

(2) (Characteristic) Denoting by M the set of Borel probability measures on K, the map

M→ T(V), µ 7→ EB∼µ [Φ(B)]

is injective.
(3) (Kernelized) Suppose further that V is a Hilbert space. Then the map

k : K× K→R, k(B, B′) = 〈Φ(B),Φ(B′)〉

defines a bounded, continuous kernel6 which is universal for the space of continuous
functions C(K,R) and characteristic for Borel probability measures on K.

PROOF. By Theorem 4, the continuity of the signature map in the 1-variation topol-
ogy [24, Thm. 3.10], and the definition of Bar/ι, it follows that the map Φ is continuous
and separates the points of Bar/ι. Combining these properties with Lemma 4.4 shows
that the set of fuctions {B 7→ 〈Φ(B),`〉 : ` ∈⊕m≥0 (V′)

⊗m} is a point-separating subalge-
bra of C(K,R), hence Point (1) follows from the Stone–Weierstrass theorem.

6A kernel on a set X is a positive definite map X× X→ R. The completion H of H0 := {k(x, ·) : x ∈
X} ⊂ RX with respect to the inner product 〈k(x, ·),k(y, ·)〉 := k(x,y) forms a so-called reproducing kernel
Hilbert space. A kernel is called universal for a topological vector space F⊂RX if H0 embeds continuously
into a dense subspace of F and called universal if the transpose map F′→H is injective, see [31] for details.
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Point (2) follows by duality: the dual of C(K,R) are the Radon measures on K (these
include the Borel probability measures) and universality implies that the map ` 7→ (B 7→
〈Φ(B),`〉) is dense in this dual; hence, every Radon measure is characterized by

{∫
K
〈Φ(B),`〉dµ(B) : ` ∈

∞⊕
m=0

(
V′
)⊗m

}
=
{〈∫

K
Φ(B)dµ(B),`

〉
: ` ∈

∞⊕
m=0

(
V′
)⊗m

}
.

In Point (3) the boundedness follows from continuity of Φ and compactness of K.
Finally, every inner product kernel k(B, B′) = 〈Φ(B),Φ(B′)〉 is universal [resp. charac-
teristic] if and only if the feature map Φ is universal [resp. characteristic]; this follows
from a general argument about reproducing kernels, see for example [11, Prop. E.3] for
details. �

The computational bottleneck for Φ is typically the calculation of the signature, since
an element of T(V) truncated at level M needs O(l dim(V)M) real numbers if ι(B) is
assumed piecewise linear with at most l time points. This gets prohibitively large for
moderate dimensions. By contrast, the kernel on Bar, k(B, B′) = 〈Φ(B),Φ(B′)〉, is de-
fined via the canonical inner product on T(V). Using [22], the level-M approximation
to k(B, B′) can be computed in O(l2c2M) time7 and O(l2) memory, where c is the cost of
evaluating one inner product in V.

5.1. Hyperparameters. Each of the feature maps Φ• naturally generalises to a parametrised
feature map Φπ

• where π denotes a set of parameters (which will be typically chosen by
the learning algorithm). The set of parameters π = {M,τ,∆,φ} are

• M ∈ N is the truncation level of S, meaning that we only consider the first M
components (S0(x),S1(x), . . . ,SM(x)) of every signature S(x).
• τ ∈ {0,1} is the time-augmentation parameter. If it is non-zero, then we replace

each path x(t) ∈ BV(V) by the path (t, x(t)) ∈ BV(R× V) before computing its
signature.
• ∆ ∈ V l, for some l ≥ 0, is a lag vector containing non-negative real numbers. We

replace x(t) ∈ BV(V) by(
x(t), x(max(t− ∆1,0)), . . . , x(max(t− ∆l,0))

)
in BV(V l+1) before computing its signature.
• a non-linearity ϕ : V → W. Since ι• composed with a sufficiently regular map

ϕ : V →W to another vector space W, lifts barcodes to BV(W). If ϕ is injective
and non-linear, one expects to obtain more efficient learning from signatures of
paths in BV(W) since more non-linearities are provided by S◦ϕ ◦ ι•(B) ∈ T(W)
than by S◦ι• ∈ T(V).8

For the choice M = ∞, τ = 0, ∆ = 0 (with l = 0) and ϕ = id : V→V, the corresponding Φπ

recovers Φ, and kπ(B, B′) = 〈Φπ(B),Φπ(B′)〉 recovers k. With slight abuse of notation, we
write Φ for Φπ and k for kπ for the remainder of the article.

7The low-rank approximation algorithm in [22] reduces this cost further to O(lcM) time and O(M)
memory.

8Generically W will be very high- or infinite-dimensional which prevents the direct calculation of S◦ϕ ◦
ι•. But if ϕ is the feature map of a kernel on V, (i.e. (W,κ) is a reproducing kernel Hilbert space over V
with kernel κ(u,v) := 〈ϕ(u), ϕ(v)〉), then the signature kernelization [22] still allows to compute the kernel
kπ(B, B′) = 〈Φπ(B),Φπ(B′)〉. Typically we choose V = Rn and use a classic kernel on Rn for κ such as the
RBF kernel.
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6. Experiments

We evaluate our feature map on three supervised classification tasks: orbits, textures,
and shapes. These are common benchmarks, taken from recent papers9 and are described
in Figures 1, 2, and 3. For kernel methods k• we used a support vector classifier and for
feature maps Φ• we used a random forest classifier. For kernel methods we used the
same Nyström approximation to deal with the quadratic growth of the Gram matrix.

6.1. Computational complexity. For a persistence path ι•(B) ∈ BV(Rn), truncation
of the feature map Φ•(B) at tensors at level less than or equal to M gives O(nM) coordi-
nates (again, akin to classic polynomial features in machine learning). This combinatorial
explosion limits the choice of ι ∈ {ιE, ιχ, ιβ} for Φι in practice: the integrated landscape
embedding ιiL produces paths in BV(Rn) for large n, which rules out ΦiL. However, the
kernelization k• needs constant memory and computation time O(Mn); in practice this
allows us to evaluate up to n ≈ 103 on standard laptops [22]; thus k• can be efficiently
computed for all ι•’s as long as the persistence paths are not too long (long persistence
paths are in principle possible by using the low-rank algorithm from [22] which we did
not implement). On the other hand ΦE(B), Φχ(B), and Φβ(B) are fast to compute directly
since their ι’s produce low-dimensional paths.

6.2. Implementation. We implement our feature map Φ• and the kernel k• in Python’s
sci-kit learn package [29]. As part of this, we use for the signature kernel computation
k• the legacy code from [22, Alg. 3], but we did not implement the low-rank algorithm
(which limits k• to paths with ≤ 300 time ticks on laptops, which is the reason why we
do not report results for kχ and kβ on the Orbits dataset); for Φ•|M = S |M ◦ ι• we make
use of Terry Lyons’ ESIG package to compute the truncated signature S |M.

To allow for a fair comparison, we also implemented the sliced Wasserstein kernel
kSW [7] and the persistence image feature map [2] combined with a random forest. This
allows for a reasonable benchmarking since [7, 2] compares performance of kSW and ΦPI
against a number of other methods — see [7, Sec. 4.2 and 4.3] and [2, Sec. 6].

6.3. Hyperparameter tuning. We use a grid search and 5-fold cross-validation for pa-
rameter tuning. The hyperparameter grid for Φπ

• consists of parameters π that are: the
truncation level M in the tensor algebra and time-augmentation parameter τ; addition-
ally the parameters of the classifiers were used, and if the kernelized version is used, then
additionally the parameters of the kernel on V (we used throughout the Gauss kernel so
this is just the length scale σ > 0). For the envelope embedding E a further grid search
was performed over the restriction parameter N described in Section 3.2. Adding lags
described in Section 5.1 is possible but was not tested here.

6.4. Performance. Table 1 reports the mean accuracy of repeating each experiment
20 times together with the standard deviation. As benchmark we report performance of
the sliced Wasserstein kernel kSW and the persistence image features ΦPI. For kSW, we
used the approximation given in [7, Alg. 1] with six directions. For ΦPI, we used the
persim package10 with the Gauss kernel, linear weight function, and a grid search over
the number of pixels and variance σ > 0.

Table 1 shows that our approach performs very competitively, achieving state-of-the
art in two common benchmarks. To the best of our knowledge, the Betti embedding ιβ

9 It can be hard to replicate reported results in the literature, since the preprocessing is often not fully
specified; e.g. on OUTEX various downsampling methods combined with CBLP are possible before bar-
codes are computed. We used the same data set of barcodes and train-test split for all experiments to allow
for a fair comparison.

10https://github.com/sauln/persim

https://github.com/sauln/persim
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TABLE 1. Mean accuracy (± standard deviation).

Method Textures Orbits Shapes

kSW 96.8± 1.0 94.6± 1.3 95.8± 1.6
ΦPI 93.7± 1.0 99.86± 0.21 90.3± 2.3

kE 90.4± 1.5 96.6± 0.9 92.7± 1.5
kχ 94.9± 0.6 NA 92.4± 3.0
kβ 97.8± 0.2 NA 93.0± 3.0
ΦE 88.1± 0.8 98.1± 1.0 95.0± 0.9
Φχ 92.9± 0.7 98.8± 0.6 98.0± 1.1
Φβ 96.6± 0.6 97.7± 0.8 98.1± 0.7

beats the state-of-the-art for shapes in feature form and achieves close to state-of-the-art
for textures in kernelized form. This is encouraging since both kSW and ΦPI provide very
competitive benchmarks.

REMARK 6.1. Our implementation of kSW achieves better accuracy, particularly for
Orbits, than reported in the original papers [7], where it is 96.1 ± 0.4 for Textures and
83.7± 0.5 for Orbits. We believe this is due to a different Gram matrix approximation (we
use Nyström for all kernel methods). Similarly ΦPI drastically outperformed the results
for the same orbits experiment in [2]; we believe this is due to our choice of classifier,
namely a random forest (vs. discriminant subspace ensemble).

The best results for kSW, ΦPI, and E were achieved by looking at the 0th homology
for texture and orbits, and 1st homology for shapes (we did not combine homologies of
different dimensions for these methods).

The values M for the optimal truncation level in the tensor algebra (as chosen by
cross-validated gridsearch) is given in Table 2; we ran all tests for 1≤M≤ 8. The features
Φ• performed best at higher levels, while k• performed best at lower levels. We suspect
that the reason is that the Gaussian kernel non-linearity that lifts barcodes to paths in
infinite-dimensional spaces, allows to capture the needed information already on level 2
or 3. We also ran the same experiments for the landscape11 and the naive embedding, ιL
and ιN, but the results were not competitive on either dataset.

TABLE 2. Best truncation level M.

M Textures Orbits Shapes

kE 2 2 2
kχ 3 NA 2
kβ 3 NA 2
ΦE 5 8 4
Φχ 8 7 7
Φβ 6 8 5

11We employed [6, Alg. 1] to compute persistence landscapes
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FIGURE 1. Orbits. The dataset consists of 500 orbits. Each orbit is a
set of 1001 points in R2, {(xn,yn) : n = 0, . . . ,1000} ⊂ R2, generated by
one out of five discrete dynamical systems with a random initial value
(x0,y0). The five dynamical systems are given by taking the parameter
r ∈ {2.5,3.5,4,4.1,4.3}, which thus acts as label, and update rule xn+1 =
xn + ryn(1− yn) mod 1, and yn+1 = yn + rxn(1− xn) mod 1 where (x0,y0)
is chosen uniformly at random in (0,1)2. For each of the labels r we gener-
ated 100 orbits and used 50% to 50% as train-test split for the resulting 500
orbits. Above shows one orbit for each value of r = 2.5,3.5,4,4.1,4.3 (left to
right and top to bottom).

FIGURE 2. Textures. The Outex TC 00000 dataset of surface textures [27].
The data set consists of 240 images for training, 240 for testing, as prescribed
by the test suite. Each sample carries one out of 24 labels. Above shows
texture of four different labels.

7. Conclusion

We have presented a two-step methodology to build a feature map for barcodes: the
first step identifies a barcode as a persistence path; the second step computes the sig-
nature of this path. The motivation for the first step is that it captures the dynamic,
time-indexed nature of topological persistence. In other words, just as important as the
appearance and disappearance of topological features across various scales is the order in
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FIGURE 3. Shapes. The synthetic shapes dataset [2, 35] consists of point
cloud data with six labels: random, circle, sphere, clusters, clusters-of-
clusters and torus. Within each label, there are 50 point clouds containing
500 points each. The Gaussian noise model used in each case has standard
deviation 0.1. We use a 50% to 50% test-train split and the persistence di-
agrams provided by [35] https://github.com/bziiuj/pcodebooks. Note
that our learning method is different to that of [2, 35] where K-medoids
clustering is used.

which these events occur. The motivation for the second step is that the signature pro-
vides an extremely well-studied feature map for paths. The four central advantages of
this approach are:
Theory: Barcodes are represented as elements in the tensor algebra given as iterated in-

tegrals. The tensor algebra has a rich and well-understood algebraic structure
that makes it easy to establish both universality and characteristicness. More-
over, this allows tools from stochastic analysis and non-commutative algebra to
interpret barcodes produced by topological data analysis.

Performance: We benchmarked our feature maps on standard datasets against two re-
cent, very competitive methods (one kernelized, one unkernelized) and achieved
state-of-the art performance on two out of the three benchmarks.

Flexibility: Persistence path embeddings differ in stability, computability, and discrimi-
native power. This flexibility to emphasize one aspect over the other can prove
decisive for a given dataset. For example, the Betti and Euler embeddings pro-
vide a large dimensionality reduction, with the Euler embedding yielding further
computational advantages since the whole barcode never has to be computed. In
this case, the price is a reduced discriminative power, which was not relevant to
the benchmark datasets considered here.

(Un)kernelized learning: We provide both kernelized and unkernelized versions of our
feature maps. The former allows us to use the well-developed modular kernel
learning approach that provides statistical learning guarantees. The latter allows
to use far more general classifiers (e.g., those which use regularization beyond
Tikhonov to avoid overfitting), and hence potentially deal with large scale prob-
lems that are beyond the current reach of kernel-based methods.
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