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Abstract—Accurate and efficient methods for large-scale urban reconstruction are of significant importance to the computer vision and

computer graphics communities. Although rapid acquisition techniques such as airborne LiDAR have been around for many years,

creating a useful and functional virtual environment from such data remains difficult and labor intensive. This is due largely to the

necessity in present solutions for data dependent user defined parameters. In this paper we present a new solution for automatically

converting large LiDAR data pointcloud into simplified polygonal 3D models. The data is first divided into smaller components which are

processed independently and concurrently to extract various metrics about the points. Next, the extracted information is converted into

tensors. A robust agglomerate clustering algorithm is proposed to segment the tensors into clusters representing geospatial objects

e.g., roads, buildings, etc. Unlike previous methods, the proposed tensor clustering process has no data dependencies and does not

require any user-defined parameter. The required parameters are adaptively computed assuming a Weibull distribution for similarity

distances. Lastly, to extract boundaries from the clusters a new multi-stage boundary refinement process is developed by reformulating

this extraction as a global optimization problem. We have extensively tested our methods on several pointcloud datasets of different

resolutions which exhibit significant variability in geospatial characteristics e.g., ground surface inclination, building density, etc and the

results are reported. The source code for both tensor clustering and global boundary refinement will be made publicly available with the

publication on the author’s website.

Index Terms—Tensor clustering, pointcloud segmentation, pointcloud tensor field, parameter-free clustering, LiDAR reconstruction,

boundary refinement
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1 INTRODUCTION

LARGE-SCALE urban reconstruction has long been of great
interest and significant importance to the computer

vision and computer graphics communities. Specifically, fol-
lowing the recent advances in virtual and augmented reality
technologies there has been an increasing demand for robust
and efficient methods for generating these virtual environ-
ments. Rapid acquisition techniques such as airborne LiDAR
have been around for many years and are indeed capable of
capturing very large areas in a single deployment however
the difficulties arisingwith processing the captured data con-
siderably limit their uses. For one, as with every scanning,
noise is introduced in the measurements due to possible sys-
tem error or sensor miscalibration. In addition, the zig-zag
nature of the scanning almost always produces spurious
measurements at object boundaries which manifest them-
selves as jagged edges in the data. Another significant limit-
ing factor is the resolution or sampling density of the
captured data which depends on the sampling rate of the
LiDAR sensor as well as the flying altitude of the aircraft as
explained in [1].

Even with the tremendous advances in remote sensing
technologies given the above mentioned capture characteris-
tics, processes in current practice still require trained person-
nel with extensive experience in order to produce models
useful in the end application, i.e., lightweight, polygonal 3D
models. The process is expensive since it requires manual or
at best semi-automatic work, and is human effort intensive
and slow. A primary cause for this is the fact that existing
state-of-the-art systems for large-scale urban reconstruction
require a plethora of parameters [e.g., number of user-
defined non-adaptive parameters in ([2] ’ 15, [3] ’ 12)
which have to be carefully tweaked by the user since these
often depend on the input data characteristics. This sensitiv-
ity to the input data and the large choice of multiple parame-
ters are always major concerns in the application of these
methods in practice. Their optimal values are not known and
cannot be easily computed either. This makes it necessary for
the user/operator to experimentally search in this large
parameter space for values that yield the desired quality of
3D models, resulting in making this process so difficult and
time consuming. Another serious limitation with existing
solutions is scalability; primarily in terms of the size of area
which can be successfully processed and second, in terms of
performance i.e., how long it takes to generate the results.

To summarize, there still exists a wide gap between the
current state-of-the-art and the desired goal of automated
large-scale urban reconstruction of real-world areas, for
applications requiring digital 3D environments.

In this paper we address the difficult problem of large-
scale urban reconstruction andpropose a novel and automatic
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solution for generating simplified, polygonal 3Dmodels. The
proposed technique takes as input the raw, unstructured,
incomplete, and noisy pointcloud captured by an airborne
LiDAR scanner during multiple sweeps, and first separates
it into a set of smaller components. Each component is a
resampled XYZmap containing a different part of the data as
in [1] which is then processed independently and concur-
rently to extract variousmetrics about the points in themaps.
This technique adaptively calculates the number of XYZ
maps according to the user-suggested map resolution. Next,
information extracted directly from this data is encoded
using a tensorial representation. This representation allows
multiple types of information about each point to be encoded
at the same time. A robust tensor clustering algorithm is pro-
posed for segmenting the tensors into clusters representing
geospatial objects such as buildings, cars, trees, etc. Most sig-
nificantly, our clustering method has no input data depen-
dencies and does not require any user defined parameter
making it distinct from earlier solutions for this problem. It is
based on adaptive computation of the statistical parameters
of the underlying distribution for points belonging to a clus-
ter. The result of the clustering is a set of contiguous clusters
of points which are further processed in order to extract the
boundaries. This is achieved with a new multi-stage bound-
ary extraction and refinement process which reformulates
the boundary extraction as a global optimization problem.
Unlike existing work, our proposed technique requires no
user interaction, makes no assumptions on the input data,
such as requiring Manhattan-style building orientations, and
is able to process the entire data without any user inputs, i.e.,
does not require like in earlier work that the user accurately
marks the boundaries of every single building before recon-
structing it. Our technique has been extensively tested on five
different datasets of different resolutions/densities which
have significant variability in the ground surface elevation/
inclination, building density, type, etc.

The rest of the paper is organized as follows: Section 2 pro-
vides a brief overview of the state-of-the-art in the area of
large-scale reconstruction. In Section 3we provide a technical
overview of the proposed solution. The extraction of the
information from the pointcloud data and its encoding to ten-
sors is presented in Section 4. In Section 5 we present Tensor
Clustering and in Section 6 the global boundary refinement.
Section 7 reports on experimental results and evaluation, and
lastly, Section 8 has the conclusion and future work.

2 RELATED WORK

Many algorithms and systems have already been proposed
for the problem of urban reconstruction by researchers in
computer vision and graphics communities. A comprehn-
sive summary can be found in [4]. The most relevant to the
proposed work are categorized according to the line of
approach they followed and summarized below.

First, there are techniques which use geometric primitives.
In [5] the authors proposed a system which included a mini-
mal set of three parameterized-primitives which the operator
could use tomodel any type of linear and non-linear surfaces.
Fast forward to the current state-of-the-art, there are techni-
ques [6] and [7] which given a set of points automatically pro-
duce a set of primitives describing the site. However, these

approaches require that the input points correspond only to a
single building. In fact, one of themost difficult tasks of recon-
structing large urban areas is the automatic detection of build-
ings and other components. Which is why, these approaches
combine manual detection with automatic extraction.

A different line of approach uses symmetries and regu-
larities. Extensive work using this approach has already
been done and has shown to yield impressive results, but
mostly for small scale objects [8]. In [9] this same approach
is used to propose a system for urban reconstruction. How-
ever, again, solutions based on this approach require that
the detection is performed manually.

Finally, a rather different approach by [10] used inverse
constructive solid geometry techniques. Rather than using
boolean operations on simple primitives to generate a com-
plex structure, they start off with a point cloud representing
the indoor area of a structure and decompose that into layers
which are then grouped into higher-order elements.

Perhaps the closest work related to the proposed tensor
clustering is the work of [11] on multi-type feature extractor
and classifier. Information extracted from color satellite
images is represented using tensors. Next, the tensors are
decomposed and pixels are classified as junctions, curves or
surfaces via graph-cut optimization. In our work, we employ
3D data and propose a different way to encode extracted
information into tensors. Furthermore, there is no classifica-
tion but instead all comparisons are performed in terms of
the tensorial representation of each point.

In summary, previous solutions require extensive user
input, in the form of manual identification of components in
the urban area and/or in the form many threshold values to
be tweaked on a case by case basis. As a result, these solu-
tions do not scale well to large urban areas. In contrast to the
above work, in this paper, we present an automatic urban
reconstruction system which requires no user interaction,
and yet efficiently generates accurate urban reconstructions.
Our technical contributions are:

� An elegant representation of all the multiple informa-
tion at each point in a LiDAR depth map encoded in
the form of a single-second order symmetric tensor.
The tensor encapsulates into it the property of a point
belonging to the surface, curve and junction catego-
ries without the need for various user specified
thresholds. This formulation which fuses per point
information into a single entity leads to considerable
simplification of the similarity comparison between
points.

� A robust clustering technique for depth maps cap-
tured by LiDAR scanners which retains important
details without the need for user defined thresholds
and yields better results than earlier solutions.

� An innovative method of computing the parameters
needed for region growing to group points into clus-
ters based on adaptive computation of per-point and
per-cluster statistical parameters. The Weibull proba-
bility distribution function (pdf) is assumed for
points within a cluster. The Weibull pdf parameters
are dynamically updated as new points get added to
the cluster. The clustering results achieved are supe-
rior to previous results.
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� A new multi-stage method of boundary extraction
and refinement which reformulates this as a solution
to a global optimization problem.

3 TECHNICAL OVERVIEW

Our solution involves the clustering first, followed by the
boundary extraction. An overview of the proposed clustering
technique is shown in Fig. 1. The LiDAR data is essentially an
XYZ map consisting of 3D points. A crucial step in the 3D
reconstruction using this data is to segment these points into
surface patches and boundary curve segments. For this, first,
a set of per-point metrics are computed from the input XYZ
map and these are encoded into tensors. The per-pointmetrics
include, the normal, height, local height variation and local
normal variation. In addition, edge saliency is computed for
multiple directions using multi-scale, multi-frequency filter-
ing with Gabor jets. The encoding into the tensorial represen-
tation is based on the following reasoning. Surfaces should
have low/constant height variation and low/constant normal
variation and low curve response, while curves should have
high height variation and high normal variation and high
curve response. This formulation is presented in Section 4.
The tensors are then clustered together based on their similar-
ity. This clustering is presented in Section 5. The method for
adaptive computation of per-point and per-cluster statistics
used in region growing for cluster formation is discussed in
Section 5.3 using a Weibull distribution of the points. Lastly,
given a set of observations/samples, the estimation of the

shape a and scale b parameters of the Weibull distribution
is performed using Maximum-Likelihood Estimation and
described in detail in the Appendix, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2019.2893671.

The clusters are then further processed to extract region
boundaries. The pipeline for the boundary extraction and
refinement process is shown in Fig. 2. First, the clusters’
boundaries are extracted and grouped into neighbourhoods
as described in Section 6.2. Next, the dominant orientations
of each cluster are computed using Principal Component
Analysis (PCA) and are used to compute the globally
dominant orientations for the entire scene. To avoid assump-
tions on the number and type of orientations we employ
Gaussian Mixture Models (GMMs) and use a Minimum
Description Length (MDL) criterion to specify the number of
Gaussian components. The boundaries are then refined based
on the globally dominant orientations and a global optimiza-
tion step which ensures that the boundary positions are
optimal as described in Section 6.3.

Finally, simplified, polygonal 3D models are created
from the boundaries.

4 ENCODING USING THE TENSORIAL

REPRESENTATION

The XYZ map contains points in 3D euclidean space. The
objective of this phase is the clustering of similar neighbour-
ing points. As has been current practice, this has involved
computing of various metrics at each point in order to deter-
mine the similarity between them. Typically, these metrics
can be derived directly from the XYZ map containing the
points and many have already been reported: height h, nor-
mal ~N , surface fitness error, height variation, normal varia-
tion, etc. Once the metrics have been computed the decision
whether two points P1 and P2 are similar or not is expressed
as either a combination Dcomponent�wise of the results of the
per-metric comparisons:

Dcomponent�wise ¼ dhðHP1 ; HP2Þ < tH
^

dNðNP1 ; NP2Þ < tN
^

:::;
(1)

or asDcombined the result of a single comparison between two
N-dimensional feature descriptors fP1 ¼< HP1 ; NP1 ; ::: >
and fP2 ¼< HP2 ; NP2 ; ::: > containing the N metrics at
each point:

Dcombined ¼ dfðfP1 ; fP2Þ < ðtH; tN; :::Þ; (2)

where dh; dN; df are distance functions for the height, nor-
mal, and feature descriptors respectively.

In either case, there is an explicit requirement that a set
of thresholds tH; tN; . . . is specified which renders most

Fig. 1. An overview of the proposed clustering technique.

Fig. 2. An overview of the proposed boundary refinement technique.
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proposed techniques dependent both on the dataset and also
on the user to provide the right values for each of the thresh-
olds. Further, this requirement implies the inherent assump-
tion that the linear hyper-plane defined by the specified
thresholds divides the N-dimensional feature space into two
parts where all points lying above the hyper-plane are simi-
lar and all below are not similar. Although for low dimen-
sional feature spaces this may often be true, when dealing
with higher dimensions this does not hold and can nega-
tively impact the accuracy of the results.

In this work, we eliminate the above requirement and
instead propose a third option: combine the metrics com-
puted at each point into a single entity: a second-order sym-
metric tensor. This choice was based on the fact that a
second-order symmetric tensor can encode information
about multiple geometric types passing through each point
and therefore can encode all the information extracted by the
metrics. More importantly, it enables us to present a solution
which does not require the user to guess even a single thresh-
old value for it to function.

In the following section we describe the steps required
to extract and encode the information into tensors. First,
we begin by computing several per-point metrics from
the input XYZ map required for subsequent processing.
This is described in Section 4.1. Next, the metrics are
encoded into tensors and a tensor field representing the
3D scene is computed. This is explained in Section 4.2.
Finally, the information encoded in the tensors is used for
clustering the points into surface patches and boundary
lines.

4.1 Per-Point Metrics

In order to proceed with the classification, the following
per-point metrics are first computed using the XYZ map
containing the points in raster form:

� Normal computation. By taking into account the local
8-neighbourhood at each point P , a normal ~NP is
defined as the mean of the eight neighbouring nor-
mals. In our experiments the neighbourhood is
defined as the 3� 3 neighbouring points around
point P since it provides the fastest and best results.
The neighbouring normals are computed as the cross
product of two vectors formed by connecting conse-
cutive neighbouring points Pi; Pðiþ1Þmod 8, where

0 � i � 8, to point P and is given by, ~NPi;ðiþ1Þmod8
¼

~ðPi � P Þ � ~ðPðiþ1Þmod8 � P Þ. Hence, the normal at

point P is defined as ~NP ¼ 1
8

P8
i¼0ðNPði;ðiþ1Þmod 8Þ Þ

� Height variation. The height variation is defined as
the local neighbourhood height variation of point P
and is given by,

HP
var ¼

jjhP � hminjj
ðhmax � hminÞ ; (3)

where hP is the height at point P , and hmin; hmax are
the minimum and maximum heights in the neigh-
bourhood, respectively. In our experiments the
neighbourhood is defined as the 7� 7 neighbouring
points around point P .

� Normal variation. Similar to the height variation, the
normal variation is defined as the local neighbourhood
normal variation of point P and is given by,

NP
var ¼ jjndmax � ndminjj; (4)

where ndmax ¼ 1� dmax and ndmin ¼ 1� dmin. dmax

and dmin are the maximum and minimum dot prod-
ucts respectively, between vectors formed by connect-
ing consecutive neighbouring points to point P . For
example, the NP

var at point P located in a neighbour-
hood where all points have similar(or equal) normal
orientation will have a value closer (or equal) to zero.

� Gabor response. A bank of Gabor jets is applied on the
input XYZ map at different frequencies (i.e., @f ¼ 5)
and orientations (i.e., @Q ¼ 16). Since the XYZ maps
are essentially depth maps (with X,Y coordinates) the
Gabor jets respond to oriented depth discontinuities.
The resulting response ruP at each point P correspond-
ing to the same orientation u but different frequencies
are added together to form a per-orientation response
image. The combination of themultiple-scales per ori-
entation accounts for features appearing at different
scales.

The metrics HP
var;N

P
var and ruP are normalized and range

between [0, 1].

4.2 Tensor Field Computation

The per-point metrics described in Section 4.1 are encoded
into a second-order symmetric tensor TP for each point P . A
second-order symmetric tensor T is defined as T ¼ �1~e1~e

T
1þ

�2~e2~e
T
2 þ �3~e3~e

T
3 where �1 � �2 � �3 � 0 are eigenvalues,

and ~e1; ~e2; ~e3 are the eigenvectors corresponding to
�1; �2; �3 respectively. Using the Spectral theorem, the ten-
sor T can be decomposed into a linear combination of three
basis tensors(ball, plate and stick) as in

T ¼ ð�1 � �2Þ~e1~eT1 þ ð�2 � �3Þð~e1~eT1 þ~e2~e
T
2 Þ

þ �3ð~e1~eT1 þ~e2~e
T
2 þ~e3~e

T
3 Þ:

(5)

In Eq. (5), ð~e1~eT1 Þ describes a stick(surface) with associated
saliency ð�1 � �2Þ and normal orientation ~e1, ð~e1~eT1 þ~e2~e

T
2 Þ

describes a plate(curve) with associated saliency ð�2 � �3Þ
and tangent orientation~e3, and ð~e1~eT1 þ~e2~e

T
2 þ~e3~e

T
3 Þ describes

a ball(junction) with associated saliency �3 and no orientation
preference.

A tensor TP is computed for each point P as the weighted
sum of @Q tensors corresponding to the orientations of the
Gabor jets and is defined as,

TP ¼ 1

@Q

X@Q
u¼1

Tu; (6)

where Tu is the tensor corresponding to the Gabor filter ori-
entation u and is calculated as described in the next section.

4.2.1 Eigenvectors

The eigenvectors~e1;~e2;~e3 of the tensor Tu form an orthonor-
mal basis system in which the normal orientation ~e1 is
aligned with the normal ~NP at point P , and the tangent ori-
entation~e3 is aligned with the orientation 2p

u
of the Gabor jet.
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~e2 is computed as the cross product of~e1 and~e3 and finally,
~e3 is recalculated as the cross product of~e1 and~e2. The recal-
culation of ~e3 is essential to ensure a proper orthonormal
basis system, since the initial orientation u is possible to be a
projection of the actual vector. Hence, the eigenvectors are
given by,

~e1 ¼ ~NP (7)

~e3 ¼ hcosðuÞ; sinðuÞ; 0i (8)

~e2 ¼~e1 �~e3 (9)

~e3 ¼~e1 �~e2: (10)

4.2.2 Eigenvalues

In what follows, let Mc be defined as the magnitude of the
vector ~c ¼ hriP ;HP

var; N
P
vari. In order to determine the eigen-

values we define three equations as follows.
The tensor as defined in Eq. (6) is modelled after Gabor

responses (the response is high only for a tensor belonging
to an edge in a specific orientation), its “junction-ness” or
junction-saliency should be 0 and hence we set �3 ¼ 0. This
provides us our first equation. The other two equations are
derived based on the following observations:

� Points lying on a curve produced by a depth disconti-
nuity—which is the always the case for XYZ maps—
have high response to the Gabor filters and high nor-
mal and height variation. Thus, a point on a curve
will have a maximal Mc. The vector ~c measures
the “curve-ness” or curve-saliency of a point and the
range of its magnitude is 0 � Mc �

ffiffiffi
3

p �.
� On the other hand, points lying on a surface have no

(or low) response to the Gabor filters and low normal
and height variation. Thus, a point on a surface will
have a minimalMc. Specifically, the “surface-ness” or
surface-saliency of a point on a surface is defined as

Ms ¼
ffiffi
3

p �Mc
@Q where @Q is the number of Gabor filter

orientations. Note that the division by the number of
Gabor filter orientations is imperative because points
on curves have a high response to only one filter ori-
entation; whichever is aligned to the curve. Although

the resulting tensor at each point is the sum of @Q ten-
sors, @Q � 1 of thosewill not have high curve-saliency
but will instead have high surface-saliency. Hence,
the normalization ensures that there is no unjustified
increase in surface-saliency.

From Eq. (5), we note that the surface-saliency of a point is
given by �1 � �2 and the curve-saliency of a point is given by
�2 � �3. Hence, following the above observations we get the
other two equations with the unknown eigenvalues: �1�
�2 ¼ Ms and �2 � �3 ¼ Mc.

Solving the three equations for the three unknown eigen-
values we get

h�1; �2; �3i ¼
* ffiffiffi

3
p �Mc þMc � @Q

@Q
;Mc; 0

+
; (11)

where @Q is the number of Gabor filter orientations. Fig. 3
shows the relation between the eigenvalue differences �1 � �2

and �2 � �3 with respect to the magnitude Mc, used to com-
pute the eigenvalues. The � values have been scaled by a fac-

tor of ð1= ffiffiffi
3

p Þ to get them in the 0-1 range. As it can be seen, a

point lying on a curve will have a high Mc. Therefore the

eigenvalue corresponding to the curve-saliencywill be higher

i.e., �2 � �3.
Fig. 4 shows the results of the above tensor encoding for

a synthetic image. The geometric interpretation of the tensor
is an ellipsoid in 3D space. There are three basis cases which
define the possible variations of the ellipsoid:

1) Tensors corresponding to points on a curve appear
as ellipsoids with a plate-like shape where the nor-
mal to the plate is the tangent to the curve. This tan-
gent corresponds to the eigenvector corresponding
to the smallest eigenvalue i.e., ~e3 of the tensor.

2) Tensors corresponding to points lying on a surface
appear as ellipsoids with a stick-like shape where
the orientation of the stick is the normal to the sur-
face. This normal corresponds to the eigenvector
with the largest eigenvalue i.e., ~e1 of the tensor.

Fig. 3. Relation between the eigenvalue differences �1 � �2 and �2 � �3

with respect to the magnitude Mc which is used to calculate the
eigenvalues.

Fig. 4. Visual interpretation of the encoded tensors for the synthetic
depth map shown. Tensors corresponding to points on a curve appear
as ellipsoids with a plate-like shape where the normal to the plate is the
tangent of the curve; one such case is shown with a straight red line.
Tensors corresponding to points on a surface appear as ellipsoids
having a stick-like shape where the direction of the stick is the normal to
the surface; one such case is shown with a red plane.
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3) Tensors corresponding to points where there is
no curve nor surface appear as perfect spheres/balls
since there is no preference towards a particular
orientation at those locations.

Examples are shown in Fig. 4 for the first two cases; the
red straight line drawn shows a sequence of neighbouring
tensors corresponding to points on the same straight line
and the red planar surface drawn shows neighbouring ten-
sors corresponding to points lying on the same surface.

An alternative validation procedure would be to apply
the Spectral theorem to decompose the tensors into the three
basis tensors i.e., stick - Fig. 5a, plate - Fig. 5b, and ball—
Fig. 5c. The eigenvalue differences can then be used to clas-
sify each point into a surface, curve or junction as described
in [12] and is shown in Fig. 5.

5 CLUSTERING

Clustering is performed on the tensor field using a region
growing approach. Tensors in the same region are grouped
together based on their similarity. To achieve this, we first
define a similarity measure between two tensors, then intro-
duce a comparison condition for decidingwhen a new tensor
should be added to an existing cluster, and finally use this
condition to grow the cluster by applying it to all neighbour
tensors of that cluster. A unique feature of this method is
that even though we have all the different per point metrics
as input, unlike all other methods, we do not need to ask the
user to define a large number of threshold values. All the
terms in the comparison are adaptively computed for each
new tensor.

5.1 Similarity Measure

We define the similarity measure between two tensors Ti

and Tj as,

dðTi;TjÞ ¼ 1� traceðTi:TjÞ
jjTijj:jjTjjj ; (12)

where jj:jj is the Frobenius norm. The range of this similarity
measure is 0 � dðTi;TjÞ � 1 and dðTi;TjÞ ¼ 0 iff the two tensors
being compared are identical. Although several other simi-
larity measures have been reported (e.g., [13], [14], [15]), this
measure, which was first introduced by [16], is preferred
because it does not require the eigen-value/-vector decom-
position of the two tensors, and hence is faster to calculate.
Fig. 6b shows the similarity variation measured as the maxi-
mum minus the minimum similarity between the tensors in
the 8-neighbourhood of each point in the depth map shown
in Fig. 6a.

5.2 Deciding Whether Two Tensors Are Similar

In the region growing method for clustering, typically at
this point various thresholds need to be defined to deter-
mine whether two tensors are similar or not. As mentioned
before, in contrast to existing techniques, we do not require
user-defined thresholds at all. Instead we propose a new
technique for adaptively computing a comparison condition
using the per-candidate and per-cluster statistics as its basis.
This is described next.

5.2.1 Per-Cluster Statistics

Assume that a cluster C contains N tensors TC
i , 1 � i � N at

iteration/time t. First, we compute the cluster’s average ten-
sor �Tt ¼ 1

N

PN
i¼1 T

C
i at iteration/time t. Second, we calculate

the probability distribution function (pdf) fC
W of the similar-

ity distances between the tensors TC
i contained in the cluster

and the average tensor �Tti at the time ti that the tensor TC
i

was added to the cluster C. Thus the pdf gets continuously
updated as new tensors get added to the cluster and in turn
influences which new tensors can be added to the cluster in
an adaptivemanner.

The pdf fC
W for a cluster C is modeled as a Weibull distri-

bution. It has already been shown [17] that Extreme Value
distributions and in particular the Weibull distribution sig-
nificantly outperforms other distributions such as Gaussian,
Student-t, etc, in cases where the observations represent simi-
larities and therefore are closer (or equal) to zero, leading to
zero-mean and/or zero-variance. This is clearly brought out
in Fig. 7, which shows three distributions being applied on
the same set of tensors corresponding to the surface points of

Fig. 5. Application of the Spectral theorem: each tensor is decomposed into three basis tensors. Figures (a), (b) and (c) depict the points classified
as surfaces, curves or junctions respectively, according to their eigenvalue differences as explained in Eq. (5). Figure (d) shows the orientation
corresponding to each type i.e., for surfaces it represents the normal to the surface, for curves it represents the tangent to the curve, and for junctions
it appears black.

Fig. 6. (b) Similarity variation measured as the maximum minus the
minimum similarity between the tensors in the 8-neighbourhood of each
point in the depth map shown in (a). Note that the color curve for (b) has
been adjusted for easier readability.
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the area shown in Fig. 8a; two extreme value distributions
Gumbel andWeibull, and the Gaussian distribution.

Thus, the pdf fC
W for a cluster C is given by,

fC
W ¼ a

b

� �
x

b

� �a�1

e
�ðxbÞa ; (13)

where a > 0 is the shape parameter, b > 0 is the scale
parameter, and x is the observation i.e., the similarity mea-
sure defined in Eq. (12). In practice, because of the many log-
arithm calculations involved when fitting the Weibull
distribution, and the fact that some similarity measures are
close to zero [and the logarithm of zero is undefined], x rep-
resents the shifted similarity measure given by 1þ dðTi;TjÞ
such that theminimumvalue of the range of the observations
is 1, rather than 0.

The mean of fC
W is defined as mf ¼ bGð1þ 1

aÞ and the var-

iance as s2
f ¼ b2½Gð1þ 2

a
Þ � G2ð1þ 1

a
Þ�, where Gð:Þ is the

gamma function given by GðnÞ ¼ R1
0 e�xxn�1dx.

Given a set of observations/samples, the estimation of
the shape a and scale b parameters of the Weibull distribu-
tion is done using Maximum-Likelihood Estimation as
described in detail in the Appendix, available in the online
supplemental material.

5.3 Cluster Formation

Region growing proceeds as follows. A candidate tensor Tnew

considered for inclusion in cluster C is first compared with
the average tensor TC of the cluster and added to the cluster
iff the probability of the similarity measure fW

C ðdðTnew;TC ÞÞ is
higher than the probability of the mean mC perturbed by the
standard deviation s. Thus if the following comparison condi-
tion is true,

fW
C ðmC þ sCÞ � fW

C ðdðTnew;TC ÞÞ � fW
C ðmCÞ; (14)

the candidate tensor Tnew is added to the cluster. The choice
for this is based on the empirical rule for probability models
which states that about 67 percent of the values are contained
within one standard deviation of the mean. This has also
been verified in practice and has proven to be stable over dif-
ferent datasets.

A clusterC0 is initializedwith the first tensor T0 in the ten-
sor field. All tensors in the 8-neighbourhood of T0 are consid-
ered for inclusion. A candidate tensor for which the
comparison in Eq. (14) is true is added to the cluster C0 and
the statistics are updated. Moreover, the neighbours of the
newly added tensor are also considered for inclusion in C0.
This process is repeated until all neighbouring tensors
[neighbours of all tensors contained in the cluster] are con-
sidered for inclusion into the cluster C0. A new cluster C1 is
then initialized with a neighbouring tensor for which the
comparison was false, or had not been yet considered. This
process is repeated until all tensors are considered and
belong to some cluster.1

Typically region growing algorithms are very sensitive to
the initialization however in this case changing the initial
starting point will primarily affect the sequence in which the
clusters are being formed and not somuch the final outcome.
It is exactly for this reason (i.e., to address the problem of sen-
sitivity/robustness) that a distribution of the tensor similari-
ties is calculated for each cluster rather than a distribution of
the per-cluster metrics e.g., height, normal, etc. The samples
used to calculate the distribution have very small values and
are close to zero e.g., < 0:03, hence the decision for using an

Fig. 7. Comparison between two extreme value distributions (Gumbel,
Weibull) and the Gaussian distribution for the set of tensors corresponding
to the surface points of the marked area shown in Fig. 8a. As it can also be
visually confirmed, the Weibull distribution can provide a more accurate
representation.

Fig. 8. (a) The normalized XYZ depth map of a building. The three
distributions were tested on the tensors corresponding to the surface
points in the marked area. (b) The mesh corresponding to the depth
map in (a). (c) Color-coded clusters. (d) The complete sparse boundary
map corresponding to the clustered regions in (c). (e) The boundary
positions after snapping and adjustment are shown in red. The optimized
boundary positions are shown in green. A closeup is shown in (f).

1. An animation of the clustering algorithm is shown https://youtu.
be/E5Xuj5k7vr4here
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Extreme Value Distribution to model these; and in particular
the Weibull distribution which can be calculated with a
much smaller sample size than other distributions. These
(Weibull distribution and small sample size) are what make
the region growing algorithm more robust to changes in
the initialization, since a good fit for the distribution will be
available even after the first few points.

Eq. (14) formulates the comparison in such away that after
each addition to a cluster the comparison also is updated
according to the latest cluster’s statistics. Thus every compar-
ison test is potentially different from the previous. In practice,
during the initial stages of the clustering there are moderate
changes in themean mC and variance sC which leads tomod-
erately different comparison tests; once a cluster contains
enough tensors these deviations are diminished since fitting
the distribution converges to the same/similar set of parame-
ters. Fig. 9 shows an example of a cluster’s statistics during
the initial iterations i.e., 5th containing 5 samples, and the
final i.e., 1925th containing 1925 samples.2

As previously mentioned, fitting a Weibull distribution
involvesmany logarithm calculationswhich as a result signif-
icantly increase the computation time. To address this, we
re-fit the Weibull distribution at every new insertion until it
reaches a stable level. Our experiments have shown that
the changes occurring to the mean and variance of a cluster’s
distribution dramatically reduce after the first 50 samples.
Thus, after the first 50 iterations, we opt out of recalculating
the mean and variance unless (i) the ratio between the
last two mean estimations and the ratios between the last two
variance estimations is less than 95 percent or, (ii) an
additional 50 samples have been added to the cluster without

recalculating the mean and variance. This results in signifi-
cant improvement in computation speed.

5.4 Cluster Refinement

Clusters resulting from actual geospatial features with less
or no significance such as bumps on the ground, shingles,
grass, etc., or from noise during the acquisition process are
removed by merging as described next.

First, an adjacency graph is built based on the result of
the tensor clustering. In addition to keeping track of neigh-
bouring clusters, the graph also stores point-level informa-
tion i.e., how many and which points are neighbouring.

The cluster refinement is an iterative process which
merges every clusterC� containing a small number of points
i.e., �5 to a cluster C

0
if and only if the following conditions

hold true,

� the cluster C
0
is a neighbour of C� in the adjacency

graph
� the cluster C

0
has the highest number of neighbour-

ing points from all neighbours of C�

� the cluster C
0
contains at least twice the points of C�

If the above conditions are true, then the cluster C� is
absorbed by C

0
and all the information in the clusters and

the adjacency map are updated to reflect the change.
As mentioned above, this is an iterative process which is

repeated until no merge has occurred. During our experi-
ments the maximum number of iterations has been six with
an average number of four iterations, and the maximum
reduction in the number of clusters of around 90 percent with
an average reduction in the number of clusters of around
75 percent. Further to this, an additional average reduction of
35 percent occurs after the removal of vertical surfaces i.e.,
surfaces for which the angle between their orientation and
the nadir direction is greater than 45	.

Fig. 9. The shape and scale parameters of the distribution [and therefore the mean and variance] converge to the same values as the number of
iterations [and therefore samples] increases. The results shown correspond to the surface shown in Figs. 8a and 8b.

2. An animation of the Weibull distribution parameter esti-
mation with Maximum Likelihood is shown https://youtu.be/
Ray99d6H35where
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We tested our clustering method on several pointcloud
datasets of different resolutions which exhibit significant
variability in geospatial characteristics e.g., ground surface
inclination, building density, etc.

6 BOUNDARY EXTRACTION AND REFINEMENT

The result of the clustering is the formation of a set of contigu-
ous regions. Perhaps one of the most difficult tasks in urban
reconstruction fromLiDARdata is extracting boundaries cor-
responding to depth discontinuities. Due to the zig-zag scan-
ning fashion of the LiDAR scanner, depth discontinuities
appear jagged in the captured data. Several approaches have
already been proposed [1], [3], [9] for refining the boundaries
however they all treat each cluster of points individually. In
this work we propose a different technique for refining
boundaries which unlike the existing work reformulates this
boundary refinement as a global optimization problem based
on the following two observations; (i) all cluster boundaries
[not on the captured image boundary] between adjacent clus-
ters are complementary to each other and (ii) object bound-
ariesmust align to dominant directions. The boundary points
of each cluster are extracted, adjusted, refined and finally
extruded to produce 3D lightweight polygonal models. The
following subsections further describe the boundary extrac-
tion process, the subsequent refinement and optimization
steps, and the final extrusion to 3D models.

6.1 Boundary Extraction

The boundaries of each cluster Ci; 0 � i � M whereM is the
number of clusters produced by the tensor clustering, are
extracted as follows.

A 2D map is created for Ci marking all the points con-
tained in the cluster. The cluster’s boundary points BCi are
then retrieved from the map using the algorithm of Suzuki
et al. in [18]. The result is the dense set of the 2D image loca-
tions corresponding to the 3D exterior boundary points sur-
rounding all points within the cluster. These are further
reduced to a minimal set of the 2D image locations of the 3D
boundary points after applying the iterative-end-point fit
algorithm of Douglas-Peucker in [19] as shown in Fig. 8d.
During the simplification only colinear points are removed
from the set i.e., the threshold is very small and set to
t ¼ 0:01. This process is repeated until boundaries for all
clusters have been extracted and simplified.

An example of the boundary extraction process is shown in
Fig. 10a. The points contained in a cluster representing part of

a roof are shown with red in the normalized depth map. The
dense boundary points are shown with a bright red color,
which upon further reduction result in the simplified bound-
ary points shown as blue pixels in the close-up in Fig. 10b.

6.2 Snapping and Adjustment

Two adjacent clusters have complementary boundary com-
ponents i.e., some of the boundary points in one cluster will
correspond and complement some of the neighbouring
cluster’s boundary points. Refining the boundary points sep-
arately almost always leads to undesirable effects such as
misalignment between the initially complementary bound-
aries; this problem often appears as holes in the resulting 3D
models. In order to ensure that there is no misalignment
between the final model’s neighbouring boundaries, we
group neighbouring boundary points together prior to the
refinement. This helps in avoiding holes andmaking the gen-
erated geometrywater-tight.

Boundary points Bi;Bj from any cluster which are within
a user-defined radius i.e., tr ¼ 2px from each other are
grouped into a neighbourhood @ such that 8Bi;Bj 2 @ )
jjBi �Bjjj � tr. For all subsequent processing each boundary
point is represented in terms of its handle:

� the neighbourhood’s location in the image ð �u@x ; �v@yÞ
computed as the average of the image locations [2D]
of all points contained within the neighbourhood.

� the neighbourhood’s X, Y components of its 3D posi-
tion computed as the average X, Y components of all
points within the neighbourhood.

The 3D position for each point Bi contained in a neigh-
bourhood group is then snapped to the group’s handle’s X,Y
components but retaining the Z component of the original
3D point ð �X@; �Y@y ; ZBi

Þ. This allows the representation of
boundary points with the same X,Y but different vertical val-
ues in the same neighbourhood, e.g., two points on a vertical
wall may have the same X, Y components but different Z
components between the ground and roof points.

After the snapping process, all boundary points are
expressed in terms of a set of handles. Fig. 11 shows the
neighbourhood handles resulting from the sparse boundary
points in Fig. 8d. Each large color-coded sphere represents
the handle of a neighbourhood and the small spheres with
the same color [visible in the closeup] represent the actual
boundary points containedwithin the neighbourhood.

6.3 Refinement and Global Optimization

The position of each neighbourhood’s handle is further
adjusted through a process which iterates between a

Fig. 10. An example of the boundary extraction process being applied to a
cluster containing points representing part of a roof. The points are shown
in red and the dense boundary points extracted are shown in bright red in
(a). (b) shows a close up of the simplified boundary points in blue.

Fig. 11. Each large color-coded sphere represents the handle of a
neighbourhood and the small spheres with the same color [visible in the
closeup] represent the actual boundary points contained within it.
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refinement step and a global optimization step. The follow-
ing sections describe these steps in detail.

6.3.1 Detection of Dominant Orientations and

Refinement

Refinement involves (a) the detection of per-scene dominant
orientations and (b) the handle position refinement for each
neighborhood group based on the scene’s detected domi-
nant orientations

The dominant orientations present in the entire scene are
extracted. First, for each group, a set of vectors representing
boundary orientations is computed by subtracting each pair
of consecutive boundary points BXY

prev and BXY
next. The vectors

are kept unnormalized in order to account for different
weights i.e., vectors resulting from the subtraction of pairs of
boundary points whose distance is high will have a higher
weight. The vectors are 2D and only contain the X,Y compo-
nents of each 3D boundary point. Boundary points close to
the image boundaries are excluded so as not to introduce spu-
rious orientations corresponding to the image boundaries.

Next, we perform Principal Component Analysis (PCA)
on the entire set of vectors derived from all the neighborhood
boundary groups in the scene and reduce it into a smaller
representative set which accounts for most of the variance in
the original variables. In our experiments, the maximum
number of principal components (PCs) is set to 5 although it
has been observed that metropolitan areas following the
Manhattan-style design contain primarily clusters corre-
sponding to axes-aligned building structures and usually
result in only 2-3 PCs.

Finally, a Gaussian Mixture Model G2Dð~vÞ is applied on
the set of PCs. In order to avoid having to fix the number Ng

of Gaussian distributions gið~vÞ; 1 � i � Ng contained in the
G2Dð~vÞwe opt for usingminimum-description length (MDL)
[20] to adaptively determine this number. The result is the
minimal set of the dominant orientations of all the neigh-
bourhood boundary groups in the scene represented by the
normalizedmeans of each gið~vÞ contained in theG2Dð~vÞ.

6.3.2 Refinement based on Dominant Orientations

The dominant orientations are used to refine the position of
each neighbourhood’s handle. First, for each vector ~vB ¼
BXY

next �BXY
current resulting from subtracting two consecutive

boundary points BXY
current and BXY

next, we determine the gmax

contained in the GMM G2Dð~vÞ in which~vB is maximal,

gmaxð~vBÞ ¼ argmaxðgið~vBÞÞÞ; (15)

where 1 � i � Ng and gi 2 G2D.

Once the gmax is determined, the vector ~vB is projected
onto the vector representing the means mgmax

. This results in
a refined position for one of the boundary points, i.e., BXY

next.
This process is repeated until the X and Y components of all
the boundary points have been refined.

6.4 Global Optimization Formulation

The refinement based on the dominant orientations consi-
derably improves i.e., linearizes, the appearance of the
boundaries. A final refinement using global optimization is
performed to ensure that the displacement introduced by the

previous steps also matches the observed data. For this
global optimization we define an error function Ef which
when maximized results in a mapping f for which the
boundary points are in their optimal positions. A boundary
locationB is optimal when all the points along the boundary
lines connecting the previous point Bprev, B, and the next
pointBnext havemaximal Gabor response.

The error function Ef is defined as a Gibbs potential,

EðfÞ ¼ Dð �BXY
currentÞ � e�

d
r; (16)

where d ¼ jjBXY
current � �BXY

currentjj is the distance between the
optimized position �BXY

current and the initial position BXY
current, r

is the optimization search radius, andDð �BXY
currentÞ is given by,

Dð �BXY
currentÞ ¼

XRðBXY
prev;

�BXY
currentÞ

P¼BXY
prev

rP þ
XRð �BXY

current;B
XY
nextÞ

P¼ �BXY
current

rP ; (17)

where Rð:; :Þ is a function that rasterizes the line between
the two input points using Bresenham’s algorithm and, rP
is the Gabor response at location P . Intuitively, Eq. (17)
gives a measure of how appropriate the optimized bound-
ary position is by evaluating the Gabor responses along the
lines beginning and ending at that position.

Fig. 8e shows the boundary points after snapping and
adjustment as red. The optimized points are shown as green
overlaid on the Gabor response image.

6.5 Reconstruction

After the adjustment, refinement, and optimization, the
boundaries are extruded to the ground [ground elevation is
set to the minimum height in the scene], to form 3D models.
The refined boundaries of each cluster can have arbitrary
[but not self-intersecting] shapes. In order to handle these
complex shapes we employ a variant of the line-sweep trian-
gulation algorithm which can handle complex and concave
geometry robustly. Normal information about the boundary
points is taken into account during the triangulation in order
to ensure smooth transitions between the planar surfaces of
the reconstructed model. Furthermore, texture coordinates
are computed for easier assignment of texturemaps.

7 EXPERIMENTAL RESULTS & EVALUATION

We have extensively tested our methods on real data of city-
scale size. Several point clouds captured with airborne-
LiDAR scanners have been used, those of which exhibiting
different characteristics are shown in this paper. Namely,
Baltimore, MD which covers an area of 16 km2, Denver, CO
which covers an area of 14 km2 and Oakland, ONwhich cov-
ers an area of 17 km2. Within each dataset there is significant
variability in terms of the geospatial object density, sampling
density, and area type i.e., rural, suburban, urban.

Figs. 12 and 13 clearly show that our techniques scale up
to large datasets.3 The city of Baltimore, MD consists of
36 components (each represented as an XYZ map of size
1024x1024) generated using the structuring algorithm in [1].

3. An animation of the reconstructed models is shown https://
youtu.be/puo5prNtbQUhere
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Fig. 12. The final clusters after tensor clustering. Baltimore, MD has a size of 16 km2, the most complex part of which is shown here.

Fig. 13. (a), (b), (c), (e): Renderings of the reconstructed models for Baltimore, MD. (d), (f): Rendering of the reconstructed models in (c) and
(e) respectively textured with the clustering results. Baltimore, MD has a size of 16 km2.
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Each component is processed independently and in-parallel
using a Microsoft Azure Virtual Machine (Standard DS15
v2) with 20 cores and 140 GB memory. The processing time
for the clustering is determined by the time required to pro-
cess the slowest component, and for Baltimore that was
22.75 hours. The city of Denver, CO consists of 20 compo-
nents (each represented as an XYZ map of size 991x991) and
the processing time was 16.2 hours. Table 1 summarizes
these information and provides a comparison with the state-
of-the-art large-scale modeling techniques in [21] and [1].
As can be seen, our method does require more processing
time. This is primarily due to the computations involved in
recalculating the Weibull distribution (as explained in detail
in the Appendix, available in the online supplemental
material). However, the clustering results obtained using
our approach outperform the other techniques in terms of
geometric accuracy, while not requirng any parameter
tweaking whatsoever. The geometric accuracy is the equiva-
lent to the surface fitting error and is defined as the RMS dis-
tance of the fitted surface points from their original position.

Fig. 15 shows all intermediate results of our technique for
four test sites exhibiting variability in terms of building/trees/
cars/roads size and density. The depth map is shown in the
first column and the sum of the gabor responses for all ie. 16
orientations is shown in the second column. The third col-
umn shows the height and normal variation map. The last
two columns show the resulting clusters after the application
of tensor clustering (fifth column) and the refined clusters
generated by the global boundary refinement (sixth column)
after merging insignificant clusters i.e., <4 points and,
removing clusters corresponding to vertical surfaces <45	.

An additional comparison was performed with the
approach presented in [9] and later extended by [3] which
employs dual contouring on 2.5D pointcloud data. It
should be noted that their approach requires a total of 12
user-defined thresholds. After extensive experimentation
we found the optimal values for these thresholds and used
them to generate the result in Fig. 14. The original captured
data is assumed to be the ground truth. Each reconstruction
is compared against the ground truth by computing the
Hausdorff distance [22] for a fixed number of sample points
for both (i.e., 300K). A visualization is shown in Fig. 14a
where the distances are shown with RGB colors. The RMS
error, theHausdorff distances’ range, and themean error for
our reconstruction are 0.174456, [0,0.559475], 0.103138,
respectively. For dual contouring these values are 0.212459,
[0,0.562199], and 0.141765. As it is evident, our method
results in improved reconstructions. Much of the errors
occurring [note that the maximum error is 0.559475] are due
to noise in original datawhichwhen comparedwith the pla-
nar surfacesmay result in a high error.

Fig. 14 shows a visual comparison between our recon-
struction (left), the original captured data (middle), and the
dual contouring reconstruction (right). While, from such
visual qualitative assessment, it may seem as though the
results are quite similar, more careful visual inspection
shows that for certain thin structures dual contouring seems
to fail by creating vertical “ridges” in the reconstruction.
Scaling to larger areas seems to be another problem with the
dual contouring implementation. Despite the fact that we
used the provided source code (without modifications other
than experimenting to determine the optimal values of the
12 thresholds required), when running it on the same
machine as the one we used for our method, the dual con-
touring program was unable to generate a 3D model for
larger areas than this.

Our experiments have shown that the approach in [3] per-
forms best for small building-scale reconstructions i.e., the
input pointcloud represents a single building (or sequence
of attached buildings) and is cropped at the buildings
boundaries in a preprocessing step before being processed.
In cases of multiple disjoint buildings (such as the own in
Fig. 14) dual contouring produces building boundaries
which may be visually pleasing but significantly deviate
from the original data; hence the high error at the roofs/ver-

TABLE 1
Comparison Table between Our Approach and State-of-the-Art in [21] and [1]

Dataset Area (km2) # Comp. Comp. Resolution Processing time (hr) Geometric Accuracym2

Our approach [21] [1] Our approach [21] [1]

Baltimore 16 36 1024� 1024 22.75 9 1.3 6:96� 10�03 9:72� 10�01 0:48� 10�01

Denver 14 19 991� 991 16.2 3.7 1 4:826� 10�03 4:915� 10�01 0:311� 10�01

Our approach requires more processing time for the same number of components primarily due to the recalculation of the Weibull distribution. However it is
completely automatic, does not require any parameter value to be specified by the user and it produces superior results in terms of geometric accuracy.

Fig. 14. (a) Visualization of the Hausdorff Distance between the original
captured data and the result of our approach (left), and between the orig-
inal captured data and the result of the approach in [3]. (b) 3D visualiza-
tion of the reconstructions. For dual contouring, optimal values were
determined via experimentation for the 12 required user-defined thresh-
olds. (left) The result of our approach. (middle) Triangulation of the origi-
nal captured data. (right) The result of dual contouring.
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tical walls. This can be attributed primarily to the quadtree
simplification. The proposed approach makes no assump-
tions about the data and therefore all clusters are processed
the same regardless of the type of object they represent e.g.,
building, tree, car, boats, etc. Furthermore, [3] use triangula-
tion based on the curvature to model the clusters which, at
the cost of increasing the geometry, produce models which
are closer to the original data even in the presence of noise
i.e., the noise is carried over the the reconstructed models. In
the proposed approach, each cluster is modeled as a linear
surface which drastically reduces the geometry but may lead
to higher deviations from the original data; hence the higher
error at the non-flat ground area in Fig. 14.

8 CONCLUSION

We have presented a new method for automatic 3D recon-
struction of large scale urban areas from raw lidar (point
cloud) data. Our most significant contribution, the elegant
second-order symmetric tensor representation for encoding
all metric information about points, does not require any user
defined parameter for the entire region construction process,
making our method automatic, effective and distinctly diff-
erent from previous methods. All earlier methods are at
best semi-automatic typically requiring the user to carefully
specify a plethora of parameter values which are input data
dependent and needed to produce usable reconstructions,
making the process human effort intensive, difficult and

inefficient. In contrast, we show that our solution works for
any of the highly varied data setswe used to test and evaluate
our reconstruction process. Our process includes a number of
innovative techniques, a robust agglomerative tensor cluster-
ing technique for region finding, adaptive computation of
per-point and per-cluster statistical parameters for the Wei-
bull probability distribution function (pdf), whose parame-
ters are dynamically updated as new points get added to the
cluster, and a more accurate multi-stage region boundary
extraction techniquewhich reformulates it as a global optimi-
zation problem. We have tested and evaluated our method
extensively on large scale urban areas from the United States
with varying characteristics. To the best of our knowledge no
existing method can generate this quality of reconstructions
automatically for such large scale data. We plan to extend
this work by using colour image data along with 3D lidar
data, possibly using deep learning techniques to do the classi-
fication prior to 3D reconstruction. We will also investigate
new methods for automating texture mapping to produce
realistic 3D digital worlds.
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