IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 7, JULY 2020

1685

Hiding Images within Images

Shumeet Baluja™, Member, IEEE

Abstract—We present a system to hide a full color image inside another of the same size with minimal quality loss to either image.
Deep neural networks are simultaneously trained to create the hiding and revealing processes and are designed to specifically work as
a pair. The system is trained on images drawn randomly from the ImageNet database, and works well on natural images from a wide
variety of sources. Beyond demonstrating the successful application of deep learning to hiding images, we examine how the result is
achieved and apply numerous transformations to analyze if image quality in the host and hidden image can be maintained. These
transformation range from simple image manipulations to sophisticated machine learning-based adversaries. Two extensions to the
basic system are presented that mitigate the possibility of discovering the content of the hidden image. With these extensions, not only
can the hidden information be kept secure, but the system can be used to hide even more than a single image. Applications for this
technology include image authentication, digital watermarks, finding exact regions of image manipulation, and storing meta-information

about image rendering and content.

Index Terms—Information hiding, image verification, image trust

1 INTRODUCTION

NFORMATION hiding is most commonly associated with

well publicized nefarious endeavors, such as secretly
planning and coordinating criminal activities through hid-
den messages in images posted on public sites [1], [2], [3].
Beyond the multitude of misuses, however, hiding informa-
tion can be used for practical positive applications as well.
For example, hidden images used as watermarks embed
authorship and copyright information without visually dis-
torting the image [4]. Other meta-information, such as
motion vectors, bounding boxes, extended-color and depth
information for each pixel can be hidden without noticeably
changing the appearance of the image. Perhaps even more
timely, we provide a way to handle the rapidly growing
problem of fake and partially altered images on popular
social media and news sites. By hiding invisible markers
throughout an image, even subtle alterations can be easily
detected by analyzing the reconstruction of the markers —
all without compromising the visual integrity of the viewed
image [5].

The challenge of good information hiding arises because
embedding a message can alter the appearance and under-
lying statistics of the carrier (the host image). The amount of
alteration depends on two factors: first, the amount of infor-
mation that is to be hidden. The most common form of
information hiding has been hiding a relatively small num-
ber of bits - for example for text messages [6], [7], [8]. The
longer the message, the more the potential distortion. Sec-
ond, the amount of visible alteration depends on the carrier
image itself. Hiding information in the noisy, high-

e S. Baluja is with Google-Al, Google, Inc., San Diego, CA 92121.
E-mail: shumeet@google.com.

Manuscript received 29 June 2018; revised 18 Dec. 2018; accepted 20 Feb.
2019. Date of publication 28 Feb. 2019; date of current version 3 June 2020.
(Corresponding author: Shumeet Baluja.)

Recommended for acceptance by D. Crandall.

Digital Object Identifier no. 10.1109/TPAMI.2019.2901877

frequency, regions of an image yields less humanly detect-
able perturbations than hiding in the flat regions. Work on
estimating hiding capacity can be found in [9].

The most common hiding techniques manipulate the
least significant bits (LSB) of images - whether done uni-
formly or adaptively [10], [11]. Though often not visually
observable, statistical analysis of the images can reveal
whether the resultant files have been altered. Other meth-
ods of hiding attempt to preserve the host images’ statistics
by creating and matching models either explicitly [12] or
through deep learning [13].

Though similar conceptually to steganography [1], [14], [15],
[16], [17], [18], [19], five key differences set this work apart:

e The hidden information need not be encoded per-
fectly; small errors in the hidden image are accept-
able. It is possible to explicitly balance the
reconstruction quality of the visible and hidden
images, see Fig. 1.

e The visible information need not be transmitted per-
fectly. In steganographic systems, the hidden infor-
mation is “fragile” [8], such that small modifications
to the visible image may yield large errors in the hid-
den message. In our system, local changes to the visi-
ble image yield local changes to the hidden image.

e The orders of magnitude of the amount of informa-
tion to be hidden — there is a 1:1 ratio of hidden to
host information. In terms of bits per pixel, we are
attempting to encode 24bpp.

o We implicitly model the distribution of the statistics of
natural images rather than creating explicit models.
This is achieved through using a deep neural network
trained with a large set of host and hidden images.

e Given the amount of information that we hide, we
do not attempt to conceal the existence of a hidden
message. We do, however, present methods to obfus-
cate the content of the hidden message.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8696-8711
https://orcid.org/0000-0002-8696-8711
https://orcid.org/0000-0002-8696-8711
https://orcid.org/0000-0002-8696-8711
https://orcid.org/0000-0002-8696-8711
mailto:

1686

Originals Container Recovered Errors (mag. x 5)

Hidden Host

Host + Hidden

Host Hidden Hidden

Fig. 1. Samples from the full-image hiding system. From the left: host
image, hidden image, the container image (the container holds/hides the
hidden image within it while looking like the host), and the recovered hid-
den image — this is extracted from only the container. The last two col-
umns are the errors for the container versus host and reconstructed
versus hidden images (enhanced 5 x). The bottom two rows show exam-
ples of larger reconstruction errors, likely due to the highly saturated col-
ors that were not well represented in the training set.

These distinctions between our work and steganography
are important. Due to the amount of information hidden,
we cannot assume that the fact that there is hidden informa-
tion in the image can remain undetected. Nonetheless, we
will often refer to tools and techniques often used with steg-
anography to help understand and analyze our approach.

Aside from steganography, good examples of information
hiding in images have been explored in [20], [21], [22]. Nota-
bly, in these studies, the authors have encoded extra informa-
tion about the visible image within the transmitted image, for
example color information in a gray-scale version of the same
image. By extracting the hidden information, the receiver is
able to convincingly reproduce the image’s colors. In our
experiments, we explore a generalization of this; we will hide
an entirely independent image into another.

Despite recent impressive results achieved by incorporat-
ing deep neural networks into finding the existence of hid-
den messages (steganalysis) [13], [23], [24], [25], there have
been relatively fewer attempts to incorporate neural net-
works into the hiding process itself [26], [27], [28], [29], [30].
Of these studies, some have used deep neural networks
(DNNSs) to select which LSBs to replace in an image with
the binary representation of a text message. Others have
used DNNs to determine which bits to extract from the con-
tainer images. Recently, [31], proposed a technique that
uses a novel learning approach with shallow neural net-
works to create a system to hide short messages in images.
Based on DCT coefficients, their method initializes net-
works trained to embed messages in images that are quite
tolerant to common transformations, such as rotation, inver-
sion, and color transformations. Perhaps the most advanced
use of neural networks was done concurrently to the work

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 7, JULY 2020

presented here [32], [33], [34], [35]. These systems created
DNN s trained with adversaries for hiding messages; Gener-
ative-Adversarial-Networks (GANs) [36] were used to pro-
vides an error signal based upon the discoverability of the
hidden message. These studies encoded relatively small
messages, more typical of standard steganographic studies,
and showed good resistance to existence discovery.

In this work, the neural network determines where to
place the hidden information, as well as how to compress
and represent it. As will be shown, the hidden image is dis-
persed throughout the bits in surrounding pixels and across
all the color channels. A decoder network, that has been
simultaneously trained with the encoder, is used to reveal
the hidden image. The networks are trained only once and
are independent of the host and hidden images. They also
only work with each other, as they are trained as a pair.

In the next section, we will describe how the system of
neural networks is simultaneously trained to hide and
recover images. The basic system was originally presented
in [37]. An analysis of where the information is stored, and a
presentation of various methods for discovering the hidden
information is presented in Section 3. The presence of hidden
information can be discovered by training learning-based
detectors. To address this, in Section 4, we present two meth-
ods to obscure the hidden information even when the origi-
nal, unaltered, cover image is publicly available. Beyond
making the hidden information more difficult to identify, we
also demonstrate how to embed more than a single image.

2 LEARNING TO HIDE FULL-SIZE IMAGES

Though information hiding is often conflated with cryptog-
raphy, in our approach, the closest analogue is image com-
pression through auto-encoding networks [38], [39], [40],
[41], [42], [43], [44], [45], [46]. The trained system, shown in
Fig. 2, learns to compress and place the hidden image into
the least noticeable portions of the host image.

The full system is a series of three networks that are
trained as a single, large, network (Fig. 2). The first compo-
nent, the Preparation-Network, prepares the image to be
hidden. The main function of this network is to transform
the RGB-pixels of the hidden image into features that can be
used by the Hiding-Network."' These features are not a priori
specified; they are learned. An analysis of the transforma-
tions done by the preparation network revealed ones that
are commonly useful for compressing images, such as edges
and orthogonal components [47]. See Fig. 3.

The actual embedding of the hidden image into the host
image is done by the Hiding-Network. The Hiding-Network
receives the output of the Preparation-Network and the host
image as input. The input is formatted as an N x NN pixel field
(for our studies, N = 200), with depth concatenated RGB
channels of the host image and the transformed channels of
the hidden image. The output of this network is the Container
image (N x N, RGB pixels). The container image should
appear as similar to the host as possible, while also containing
enough information to recreate the hidden image.

1. The function of the preparation network and the hiding network
can be combined into a single network. However, training with this
division resulted in a faster training and easier analysis.

BALUJA: HIDING IMAGES WITHIN IMAGES

Sender Embeds Hidden Message in the Host image.

1687

' Receiver gets Container Image.

Host :
Image(H)
v e - > -
¥ e
Network 2: Container Network 3: Revealed
. Hiding Network Image Reveal Image (S’)
Hidden Network 1: Prep (H) Network
Image (S) Network

Fig. 2. The three components of the full system. Left: Hidden-Image preparation. Center: Hiding the image in the host image. Right: Uncovering the
hidden image with the Reveal-Network; this is trained simultaneously, but is used by the receiver.

The third component, the Reveal-Network, is responsible
for extracting the hidden image from the container. Though
this network is used only by the receiver, all three compo-
nents are trained as a single network. This pairs the sender
and receiver sides of the communication to work exclu-
sively with each other.

The basis of this approach borrows heavily from auto-
encoding networks [38] in which a network internally cre-
ates a compressed representation of the image [39]. In this
system, instead of simply encoding a single image through
a bottleneck for compression, two images are combined
such that the intermediate representation (the container
image) appears similar to the host image. The system is
trained by reducing the following error: (H and S are the
host and hidden images respectively, 8 is their weighting):

L(H,H',S,S)=|H-H|+8|S-9. (1)

The form of error propagation is vital (see Fig. 4). Notice
that the error ||H — H'|| does not change the weights of the
Reveal-Network. The Reveal-Network does not need to be
able to reconstruct the host image; it needs to only recover
the hidden image from the container. In contrast, all of the
networks are trained with the signal from g||S — S§'|| since
each portion of the network is responsible for holding and
forwarding information about the hidden image. By propa-
gating this error signal to both the Preparation and Hiding
networks, the representations formed early in the system
encode information about the hidden image.

Fig. 3. Transformations made by the preparation network (3 examples
shown). Left: Original Color Images. Middle: three channels of informa-
tion extracted by the preparation network that are input into the hiding
network (other channels not shown). Right: zoom of the edge-detectors.
In the most easily recognizable example, the 2nd channel activates for
high frequency regions, e.g., textures and edges (shown enlarged

(right)).

30 neural architectures and training hyper-parameter
were used to find the best network for the task. The final net-
work employed is given in Table 1. Similar architectures
revealed approximately the same performance with visually
indiscernible differences. All images, both input and output,
are 200 x 200 pixels, with 3-channel depth (RGB). Networks
were trained with ADAM [48] and weights were initialized
with variance scaling (0.1). Batch-Normalization was not
used. All experiments were implemented using Tensor-
Flow [49] with default parameters, except as specified above.

Results from the best of the 30 networks are shown in
Fig. 1. Unless reported otherwise, 8 = 0.75 (the other two set-
tings of B tried, 1.0 and 1.25, revealed nearly visually identical
reconstruction performance. The network trained with 0.75
gave a small quantitative benefit in the networks we trained).
Quantitatively, the average color error, per RGB channel, for
the host image was 2.4 (out of a possible 256) and 3.4 (/256)
on the hidden. This was measured on two test sets: those
from the ImageNet challenge (‘validation” images) and the
second composed of 200 cell-phone and DSLR photos. None
of the test images were used in training.

3 WHERE Is THE HIDDEN IMAGE ENCODED?

The primary focus of this paper is to concretely demonstrate
that it is possible to encode a large amount of information in
an image with limited visually noticeable artifacts. However,
no explicit attempt has been made to actively hide the exis-
tence of that information from machine detection. Though we

BB

Reveal Network

Rk

Prep Network

Error term2

Error term1 y
IIS-s’ll

[IH-H||

Target
S

Fig. 4. The three component networks are trained as a single network,
thereby pairing the encoding and decoding portions to work exclusively
with each other. The first error term 1 affects the Preparation and Hiding
component networks. Error term 2 affects all 3 components. S is the hid-
denimage, H is the host image.

1688

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 7, JULY 2020

TABLE 1
Network Architectures
Network Input Hidden (size, stride, depth, activation) Output Notes
— 2D-Conv (4 x 4,1 x 1, 50, relu) /3 variety of output |
imensions were trie
- X X — .
. 200 x 200 x 3 — —2D-Conv (4 x4, 1 x 1,50, relu) T X 200%{ 4 (5-12). Most yielded
Preparation (Image to Hide) — 2D-Conv (4 x 4,1 x 1, 50, relu) ; rans) ormed Hide similar performance to
— 2D-Conv (2 x 2,1 x 1, 30, relu) mage the 7 channel version
— 2D-Conv (2 x 2,1 x 1,7, tanh) — shown here.
— 2D-Conv (4 x 4,1 x 1,50, relu)
200 x 200 x 3 + — 2D-Conv (4 x 4,1 x 1, 50, relu) ™ Hould
200 x 200 x 7 — . — 200 x 200%3 e output should appear
Hiding (Host Image & — 2D-Conv (4 x 4,1x1, 50’ relu) (Container Image) similar to the original host
Transformed — 2D-Conv (4 x 4,1 x 1, 50, relu) image.
Hide Image) — 2D-Conv (2 x 2,1 x 1, 30, relu)
— 2D-Conv (2 x 2,1 x 1, 3, tanh) —
— 2D-Conv (4 x 4,1 x 1,100, relu) T}l:is network r}efid;s wcilthd
200 x 200 x 3 — — 200 x 2003 the receiver. This decode
Reveal (Container — 2D-Conv (4 x 4, 1 x 1,100, relu) (Reconstructed output should appear
Image) — 2D-Conv (4 x 4,1 x 1, 50, relu) Hidden Image) similar to the hidden

— 2D-Conv (2 x 2,1 x 1, 3, tanh) —

image.

cannot expect to completely hide the fact that !/ of the infor-
mation is part of a hidden message, measures can be taken to
make it more difficult to discover. First, we must determine
where the information of the hidden image resides.

Is the network simply hiding the information about the
hidden image in the least significant bits of the host image?
Tools exist to find hidden information in the LSBs; a pub-
licly available steganalysis toolkit, StegExpose, was used to
test the reliance on LSBs for our hidden images [50], [51],
[52]. Per the description of the tool: “StegExpose rating algo-
rithm is derived from an intelligent and thoroughly tested combi-
nation of pre-existing pixel based steganalysis methods including
Sample Pairs by Dumitrescu (2003), RS Analysis by Fridrich
(2001), Chi Square Attack by Westfeld (2000) and Primary Sets
by Dumitrescu (2002)” [50]. In addition to the default settings
(threshold=0.2), the threshold was varied throughout a
large range. The ROC curve is shown in Fig. 5. Note the little
variation beyond random guessing (green line).

StegExpose would have been able to find the information
if it were simply placed in the LSB bits. We turn to a second
method to find where the information is stored. The images
used in the study are composed, at each pixel, of 24 bits
(8 x (R, G, B)). If we flip the first bit of the R channel of all

0.8 T T T T T T T

07 | o]
06 i L
05 | 1
04 | i 1

03 y J

True Positive Rate
L J

o L@ |
0 01

i i
02 03 04 05 06 07 08

False Positive Rate

Fig. 5. ROC curves: True Positive Rate versus False Positive Rate for
StegExpose when detecting images embedded via DNNs.

the pixels in the container image (H'), we can measure its
effects on the reconstructions on the container image itself
and also, by propagating the modified image through reveal
network, on the reconstruction of the hidden image. See
Fig. 6. The top half of the figure (container image) should be
considered the “control”; the upper left bar-chart shows
that the effects of changing a bit in the Red channel of the
container only has an effect on the red-channel in the con-
tainer, and that the magnitude is proportional to the signifi-
cance of the bit. This is exactly as expected and holds true
for the Green and Blue channels as well (the diagonal).

Next, lets examine the effects that changing a bit in the
container image has on the reconstructed hidden image. See
Fig. 6 (bottom half, “Reconstructed Hidden Image”). Here,
we see that a bit flip in any bit position in any color channel
of the container image, has an effect across all color channels in
the hidden image’s reconstruction. Moreover, the error does
not follow the standard significance ordering of the bit posi-
tions. In other words, the information for the hidden image
is spread across the color channels — the reason it was not
detected by simply looking at the LSB.

In addition to distributing the hidden image information
across the color-bits, the information is also spread in the
spatial dimension. To measure this, we employ a similar
procedure as before. As the baseline, we first place the hid-
den image, S, in a host image, H, which creates the con-
tainer image C. C' is passed through the Reveal network,
revealing S’. Then, to examine the spatial distribution, we
modify a single pixel in C, giving C,,. C,, is passed through
the Reveal network, yielding 5/ . For each pixel, we mea-
sure ||S" — S/ ||, This is reported in Fig. 7 as a function of
pixel-distance from the perturbed pixel.

Two observations should be noted. First, the representa-
tion for the hidden image is distributed — both in surround-
ing pixels and in color bits. On average, the encoding for
each pixel of the hidden image is distributed in pixels that
are up to a distance of 7 away from the corresponding pixel
in the container image. Second, the amount of spatial distri-
bution is directly related to the neural network architecture
and the size of the convolutions. Had we wanted to

BALUJA: HIDING IMAGES WITHIN IMAGES

Effecton R Effecton G Effecton B
PerturbR I - o B = o T =
p I | 9 ———] e
Perturb G -
PerturbB ~ frimr = -
S R
Contalner Image (H)
Effecton R Effecton G Effecton B
PerturbR . e - i mmm—
llll-___ lllll-__
Perturb G - ’ "
‘IIIII--_ IIIII-'-
Perturb B

:
lllll-__ ‘DIIIII-__

~~~~~~~~~~~~~~~~

.
IIII-___

Reconstructed Hidden Image (S’)

Fig. 6. Sensitivity to Bits in the Container Image. (Left:) Control case, the
container image. Changing a bit in the container image obviously has no
effect on other bits. (Right): However, that same bit flip in the container
image has effects across all color bands in the recovered hidden image.
For example, if we want to measure the effect of flipping the 2nd bit in
the Blue channel, we would look at the marked entries (marked with *).

encourage a wider distribution, more or larger convolutions
could have been employed, as well as Atrous convolution
layers [53].

Moving beyond LSB analysis, multiple studies have shown
that deep networks are competitive and often better than the
more established methods of steganalysis that use hand
selected image features [23], [24]. We trained detection net-
works as binary classifiers using unperturbed ImageNet
images as negative samples and our container images as
positive examples. After an empirical examination of input
representations and architectures, we discovered that the
detection networks performed well representing an image
with 24 x (N x N) stacked binary input layers. Each of the 24
layers represented a bit in the pixel representation of the input
image. The networks were trained in an analogous manner to
others in this study.

The detection networks obtained between 90-95 percent
combined classification rates. For comparison, the same net-
works were retrained to find Least-Significant-Bit substitu-
tion (where the L least significant bits of each color channel
in the host image are replaced with the L most significant
bits from the hidden image). The networks were trained
and tested with L =1,2,3,4; all achieved over 99 percent
combined rates. An additional set of tests revealed that
even when a single bit was randomly placed in one of the 4
bit positions, the detection rate remained above 99 percent.

1689
Effect of Single-Pixel Perturbation in Continainer Image on

Reconstructing the Secret Image. Shown vs. Pixel Distance.

2 ® Secret Image

0.5

Effect (L2-norm on RGB)

Pixel Distance

Fig. 7. How far does the effect of changing a pixel in the container image
reach when decoding the hidden image? This figure shows the average
effect that perturbing a pixel in the container image has on the hidden
image reconstruction, as a function of distance from the perturbed pixel.
After approximately a distance of 7 pixels, the effect is negligible.

Given these detection rates on even a single bit position, the
high detection rates with a full image are not surprising.

The rates of discoverability makes this technique unsuit-
able for applications requiring the undetectability of hidden
information; however, its use for data-hiding, data augmen-
tation, and image-content alteration detection remain intact.
We now turn our attention to the discoverability of the con-
tent of the hidden image, rather than just the existence of a
hidden image.

3.1 Hidden Content Discovery

In our first examination, let us assume that the sender of the
message has (unwisely) chosen to use a publicly available
image as the host image. Under this assumption, we must
assume that the adversary is also able to find other copies of
the publicly available image (that were not transformed to
contain the hidden image). By dramatically magnifying the
pixel-wise differences between the container and the unal-
tered, found, host image, portions of the hidden image are
revealed. See Fig. 8 for examples. As the hidden image is
not cryptographically secured, visually recognizable fea-
tures of the hidden image are visible.

The hidden image is most readily seen in host images
that contain large uniform patches of color (Fig. 8 -A,B,C
and G). What if the sender had been careful to only use
higher-entropy images? Would the hidden information still
be discernible? To answer this from the perspective of an
attacker, we assume that the adversary does not have access
to the exact network that the sender employs. However, the
attackers can train their own deep-image-hiding networks
successfully. With that ability, can they create an adversary
for our network? Recall that the representations developed
by the adversary’s hiding-network will be different than
ours (as mentioned earlier, each network’s encoder and
decoder are paired to work exclusively only together).
Instead of attempting to mimic our system, the adversary
can instead turn to gathering large-scale statistics about the
hiding process by training many, randomly initialized, var-
iants of the hiding system. We simulate this as follows.

Our goal is to create a Discriminiation Network that can
determine whether an image (the container) contains
another image (the hidden). Recall that for obtaining a sys-
tem of encoding-decoding networks that worked well, we



1690

host hidden result

diff _ diff10 diff20

. 5

Fig. 8. The hidden image is embedded within the host image; the resuilt,
the container image, is shown in the column ‘result’. In the hypothetical
case of an adversary gaining access to the original, unaltered, host
image, the adversary can magnify the difference between the original
host and the container, see column ‘diff’, ‘diff*10’, ‘diff*20’. When
magnified 10x and 20x, traces of the hiddenimage are visible, particularly
rows A,B,C,G.

trained 30 different networks with varying architectures
and backpropagation hyper-parameters. From these 30, we
had selected the best and discarded the rest.”

We return to these previously-discarded networks and
gather samples from each of the discarded, but fully trained,
networks in the form of triplets: {cover-image, hidden-
image, container-image}. Each of these triplets was added
to the “positive” group. A “negative” set of examples was
created in which, for each of these triplets, the hidden image
was replaced with a randomly selected image. The task for
these new Discrimination Networks is then to correctly
identify that the hidden images in the negative set are not
embedded in the container images and that the hidden
images in the positive set are embedded within the contain-
ers. This process is shown in Fig. 9. Why do we do this? If it
is possible to accurately train this discrimination network,
then it confirms that there is enough discoverable informa-
tion in the container image for an external attacker to gain
information about the hidden image.

Given the set of positive and negative examples, we
trained multiple deep Discrimination Networks to distinguish
whether a specific hidden image was embedded in the con-
tainer. In these experiments, the discrimination network
was also given as input the original, unperturbed, host

2. There was a significant variation in performance of the discarded
networks, ranging from error rates 1.02 — 3x of the best network. Each
network encodes the hidden image in a potentially unique way as there
were no hints given specifying in which bit positions or in which pixels
and pixel-neighbors to encode the hidden image.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 7, JULY 2020

Positive Example Generation
for The Detection Networks

Positive and Negative Test Sets for Detection

[l [52] _, [rvana (] [s.] [+ ] (&1
4 === | Network? |==» ' L L
(][5, ] [Hetrg e |0 []

Positive
The generated triplets
(Host,Hidden,Container)

Random Images
for Host
and Hidden

Container Image: g
Hidden image Randomly selected
hidden image

placed into triplet

embedded
within host.

Fig. 9. Creating training examples for the discrimination network by
generating triplets {cover,hidden,container} from the discarded networks.

image. Recall that the training samples were gathered from
many, separately trained, networks. Thus, the detector
solved this task for multiple hiding networks, not just a sin-
gle one (in Fig. 9, this is denoted by HidingNetwork® —
HidingNetwork?). Nearly perfect accuracy was achieved for
all of the networks that contributed samples to the training.
Moreover, 95-99 percent accuracy was obtained on triplets
generated by our hiding network — a network that it was
not trained on.

This implies that if the hidden image is known, the evi-
dence to verify its presence is reliably extractable from the
container without access to the specific decoding network.
This attack assumes that the adversary has access to the
unaltered host image. Let us now make the attack even
broader: what happens when the unaltered host is not avail-
able? We attempted to retrain the Discrimination Networks
without being given the unaltered host. Surprisingly, the
detection accuracy remains high, 94.5 percent.

The high accuracy rates without the original host images
means that there is a discoverable transformation of the con-
tainer image that yields information about the embedded
image. As our final attack, we verify this through the sim-
plest attack: We transform only the container image through
a series of blur operations, yielding containery,,. We then
compute the difference between this and the container
image (in each R,G,B, channel) and intensify the results,
yielding Revealed, where Revealed = min(255, |container—
containery,| x V) and 5 <V <20. As can be seen in
Fig. 10, this simple transformation also yields smaller, but
nonetheless present, hints to the contents of the embedded
image — without access to the original host or the original
hidden image.

Visually, it is sometimes difficult to discern the objects in
the hidden image when simply removing the blurred con-
tainer image. Nonetheless, even this simple analysis reveals
components of the hidden image, most clearly in those that
are embedded in the lower-entropy regions of the host
image. Earlier we had stated that merely knowing the exis-
tence of a hidden image did not necessarily reduce the effec-
tiveness of this technique for watermarking or image-
content-alteration detection. However, if the actual content
of the hidden image is known, this can pose a greater prob-
lem as it makes removing the hidden image or replicating
portions of the hidden image easier after an image modifica-
tion has been made. Next we explore methods to make the
hidden information less discernible.



BALUJA: HIDING IMAGES WITHIN IMAGES

blurred
n result result

\|

diff  diff*10 diff*20

” i
5 iy g ¢
.6
"h‘
. |

1!

Fig. 10. What can we see without the unmodified host image? If we blur
the ‘result’ image and subtract that from the ‘result’ image, we see rem-
nants of the hidden image (rows A,B,C in particular). Color-constant
regions in the host image are most susceptible to this. This is a potential
vulnerability even without access to the original host image.

4 OBFUSCATING THE HIDDEN IMAGE

In the previous section, we demonstrated that it was possi-
ble to discover remnants of the hidden image in the con-
tainer image. This was done with and without access to the
unaltered host image, and with simple and more sophisti-
cated DNN based attacks. In this section, we present two
method to obfuscate the hidden image. Desiderata for the
obfuscation techniques are (1) Even if an unperturbed host
image is obtained, the content of the hidden image is diffi-
cult to ascertain. (2) The obfuscation technique must have
the property that errors remain local, e.g., errors are not
additive/multiplicative and do not propagate. Because of
the large amount of hidden information, neither the host
nor the hidden image may be encoded perfectly. Errors in
the reconstruction should impact as few pixels in the recov-
ered hidden image as possible. Ideally, a single error only
affects a single pixel.

A simple method for obfuscating the hidden image is to
permute the pixels before they are passed to the hiding net-
work [54]. The receiver of the image passes the container
image through the decode-network, which reveals a scram-
bled hidden image that is then “un-permuted.” This proce-
dure has the important property that the error in each
pixel’s reconstruction is strictly local (affects no other pixel)
and that the permuted image is unrecognizable even when
viewed without any reconstruction error.

It is tempting to use the networks trained in the previous
section with the permutation and un-permutation steps
“wrapped” around the hiding system. However, this does
not work: images are not “stored” as pixels in neural

1691

networks [38], [55]. A neural network concisely represents
the information in an image by exploiting spatial coherency.
For example, encoding natural images that exhibit spatial
structure is far more successful than encoding noise. Unfortu-
nately, like noise, the permuted images lack spatial structure,
thereby requiring the network to memorize pixel intensities.
(The permuted images do, however, maintain the intensity
distributions of natural images.) A system trained with only
natural images is not able to perform well on pixel-permuted
images. Rather, we need to repeat the entire training process;
the system is retrained to hide images without the spatial
coherence of natural images. As before, 30 networks were
retrained with the same architectures used previously, sup-
plemented with the permutation steps.

The results from the best network, evaluated on an inde-
pendent test set, are shown in Fig. 11. The intermediate per-
muted images are also shown. Note the lack of spatial
structure in the permutation while the color distribution of
the underlying hidden is discernible (column 3, labeled
“Shuffled-1”). Most importantly, even when the errors are
magnified in the reconstruction of the host image, there is
no recognizable trace of the hidden image (Fig. 11, Column
7). Table 2 gives the average error, per channel, of this sys-
tem (Row #1) compared to one that does not use permuta-
tions (Row #4). Row #3 shows the results of using
permutations with the networks trained previously (with-
out permutations).

Training the networks to encode permuted images pro-
ceeds significantly slower than training the baseline hiding
networks described in Section 2. Using a single, modest,
GPU, training for permutation-hiding networks took over 2
weeks. The baseline networks reached peak performance in
approximately 5 days of continuous training. Encoding per-
muted images is a significantly harder problem.

Finally, it is important to discuss whether the underlying
permutation can be discovered? With enough permuted
samples, such as encoding each frame in a video with this
method, the statistics of natural images and spatial coher-
ency constraints may yield clues on the real position of the
pixels [56]. However, even this can be mitigated if we allow
the permutation mappings to themselves be algorithmically
chosen from a large number of known, or derivable, order-
ings, e.g., [57]. Experiments simulating this using randomly
selected permutations are shown in Row #2 of Table 2.

4.1 Hiding Multiple Images

Currently, the system successfully embeds a full color
N x N image in another of the same size (Fig. 1) - the hid-
den image can either be permuted or un-permuted. In com-
parison to encoding non-pixel-permuted images, for a
neural network to encode a permuted image, it must create
a much more detailed representation of the pixels that does
not rely on the spatial structure present in natural images.
We present a second method of obfuscation: hiding multi-
ple images. Instead of using the network’s extra capacity for
representing the permuted pixels more accurately, can the
capacity be used to encode more than a single image? If we
can hide multiple images, it is likely that any single image
will be harder to reconstruct even when encoded without
any perturbations. Beyond secrecy, the ability to hide more
than a single image also enables us to hide multiple,



1692 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 7, JULY 2020
Originals Container Recovered Errors (mag. x 5)
Host Results Shuffled-1 Hidden-1 Host Hidden-1

Hidden-1 Shuffled-1

: &) ‘:’&‘ §
i e £y
T i Py

4

Fig. 11. Results with encoding and decoding permuted images. In the sender’s column: from the left: host image, hidden image, the hidden image
after pixels permutations and the result image. In the right half, the receiver’'s column: the decoded permuted-hidden image, and the un-permuted
image. The residual error images are given for both the host and the recovered images in the last two columns. Most importantly, in comparison to
Figs. 8 and 10, note that there is no evidence of the hidden image in the errors for the host (second to last column).

independent, pixel-wise sources of supplementary informa-
tion, such as depth, color or motion.

Concretely, we attempt to hide two full size N x N images
— we are hiding 2x the amount of information that is in the
host, see Fig. 12. The training proceeds in a manner similar to
Section 2. For our experiments, the L, loss on each image was
weighted equally. As before, this system requires retraining
all three components. Sample results are given in Fig. 13 and
the quantitative error comparisons from the test set are pro-
vided in Table 3. As expected, the error increases but the
reconstructions remain, visually, good.

Recall that in Section 3, we trained Discrimination Net-
works to determine whether a specific hidden image was
embedded in a container image. We tested those same net-
works with this two-image hiding system. In the single
image hiding task, the Detection networks had an accuracy
of ~ 94 percent. When encoding multiple images with the
networks described in this section, the accuracy drops to
~ 73 percent. As hoped, the process of hiding more infor-
mation further obfuscates the hidden image.

Finally, for completeness, we applied the perturbation
and the multiple-image hiding in the same system. Two

TABLE 2
Average Error in R,G,B Channels (Out of 256)
host Hidden
1 Permuted with a Single Permutation 5.1 7.5
2 Permuted With Multiple Permutations 6.2 7.5
3 Permuted w/Nets from Sect. 2 (no retrain) 4.6 14.4
4 Baseline: No Permutation (from Section 2) 2.4 34

images are each permuted and hidden within a single host
image. The reconstruction errors increase substantially over
using only a single hidden image and also over the non-
permuted two-hidden image systems. The increase in error
was seen despite the much longer training times allowed
for these networks: 30 days on a single GPU. Table 3 pro-
vides the quantitative results. Examples of the hidden and
reconstructed images are shown in Fig. 14. Despite the
increase in noise and reconstruction errors, the content of
the images, including the edges and gradients, remains
largely intact and easily recognizable.

4.2 Effects of Image Degradation on Retrieval
Throughout the presentation of the experimental results, we
have asserted that the container image appeared very similar
to the host image, and the reconstructed images were easily
recognizable as the hidden images. We presented the images
for visual inspection as well as quantitatively measured the
reconstruction errors of both the host image versus the con-
tainer image, and the reconstruction of the hidden image
from the container image. As a final test, to quantitatively
determine the recognizability of the resulting images, we
measure how well this approach performs in conjunction
with an image retrieval system [58], [59], [60], [61]. Based on a
query image, these systems are designed to retrieve similar
appearing images from a large repository of images. The
image-similarity system in [60], based on Min-Hash [62] and
LSH [63], was used here without any modification.

The retrieval task was as follows: we used the container
image, the reconstructed hidden image, and the second
reconstructed image (for systems which hid 2 images) as
the query images. The goal was to retrieve the original host,



BALUJA: HIDING IMAGES WITHIN IMAGES

Sender Embeds Hidden Messages in the Host image.

2

1693

Receiver gets
Container Image.

Host y ‘
Image(H) r
¥ Aw - y > K
[ Aes
Network 2: Container Network 3:

i Hiding Network Image Reveal ]
Hidden Network 1: Prep g I?l Hatwork Revealed
Images Network (H) etwor Images
(S,&S8,) (S, &S,)

Fig. 12. System to hide two full N x N images within a host image of the same size. Compare this to Fig. 2.

hidden-1 and hidden-2 images as the most similar match,
respectively. The full database of images in the system
included the ImageNet images, randomly selected images
from photography sites on the web, and publicly available
images from the Corel Database [64]. In total, there were
approximately 2,650,000 images in the system. We mea-
sured the accuracy @1: e.g., is the correct image retrieved as
the single top match (out of the 2,650,000) images. 1000
look-ups were conducted per experiment. As shown in
Table 4, the scores were perfect for the majority of the
experiments. For the single non-perfect experiment, only 1
out of 1000 retrievals did not work. This occurred on the
most aggressive of the hiding procedures described in this
paper: 2 images were hidden in a single network that were
first obfuscated with non-stationary permutations. Finally,
Table 5 shows the Peak Signal to Noise Ratio (PSNR) and

Originals Container

the Structural Similarity Index (SSIM)[65], a perceptual met-
ric to quantify image quality degradation between the origi-
nal and reconstructed images.

5 DiscussiON AND FUTURE WORK

We created a system composed of three deep neural net-
works to hide images within images. Embedding a full color
image in another image of the same size necessitates devot-
ing a large percentage of bits to the hidden image. However,
through the compression performed by the deep-neural net-
works, the decoded results of the hidden image, as well as
the appearance of the host image that contains the hidden
image, closely approximate the original hidden and host
images, respectively. In the majority of examined cases, no
visually discernible artifacts are seen.

Recovered Errors (magnified x 5)

Host Hidden-1 Hidden-2 Results

Hidden-1 Hidden-2

Host Hidden-1 Hidden-2

Fig. 13. 6 Results showing typical reconstructions when hiding 2 images within a single host image. Note that the colors appear far less saturated and

there is modest noise in the flat regions of the host image.



1694
TABLE 3
Average Error in R,G,B Channels (Out of 256) — When Hiding
Two Images
host Hidden, Hiddens

Hiding 2 Images 6.6 5.0 6.0
Hiding 2 Images Single-Permut. 9.2 10.2 114
Hiding 2 Images Multiple-Permut. 9.5 10.7 12.0
Baseline: Single Image (Section 2) 24 3.4 n/a

Nonetheless, when hiding this much information (1:1 ratio
of hidden to cover information), the detection of hidden infor-
mation is likely unavoidable. The more problematic issue
was, as demonstrated in Section 3, even without access to the
unaltered host image, traces of the content of the hidden
image could be discerned. Moreover, this could be accom-
plished through a variety of techniques, ranging from simple
image transformations of the container image to more sophis-
ticated machine learning based adversaries that use the statis-
tics gathered from many similar (though not necessarily the
same) deep neural network embedding systems. For the
purposes of watermarking and image-alteration detection
and authentication, knowing the content of the hidden infor-
mation makes it easier to remove and/or reproduce it when
alterations are made.

To address this shortcoming, we extended the hiding
system in two directions. First, we demonstrated the ability
for the system to encode scrambled images (with both sta-
tionary and non-stationary permutations). Because the neu-
ral networks no longer can exploit spatial coherency, this
necessitated retraining all of the components of the hiding
system. Encoding the hidden image without taking advan-
tage of the spatial coherency of natural images required the
network to devote more representational capacity to the
hidden image. Therefore, the reconstruction errors for both
the hidden and host image increased. Qualitatively, the
reconstructed host and hidden remained good. Importantly,

Originals Container

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 7, JULY 2020

without the permutation key, no visible traces of the hidden
image could be ascertained.

Second, we extended the system to hide multiple (two)
images. This required the neural network to hide twice as
much information as the host media itself. As before, this
required the network to devote more of its capacity to repre-
senting information from the hidden images than to the
host image. The system showed a graceful degradation of
performance with the increased difficulty of the task,
and the host and both hidden images were easily identifi-
able with similar error rates to when hiding a permuted
image. As a final test, both techniques were combined and
multiple permuted images were hidden with non-stationary
permutations. Though the errors increased dramatically
over encoding a single non-permuted image, the resulting
images remained readily identifiable, albeit with less fidel-
ity to the colors, in particular saturation levels. To quantify
the quality of images, image retrieval experiments were
conducted with an externally built system. In all but one of
the retrieval experiments, the encoded and reconstructed
images remained intact enough to perform perfectly. In the
single non-perfect experiment, a single mistake was made
(out of 1000 look-ups).

In this work, all of the container images were losslessly
encoded. For the current system, that is a requirement as,
intuitively, the best place to encode the hidden is in the bits
that would otherwise be freed in compression. Future work
should include training the neural networks directly in the
frequency domain; this may allow the use of these techni-
ques with image compression standards, such as JPEG [66].

Future studies should also explore full cryptographic
schemes for the hidden image. Though the images after
scrambling appear noisy, structure still exists with respect
to the underlying distribution of pixel colors. However, full
encryption schemes will likely obfuscate the color distribu-
tions as well, thereby making the procedure nearly equiva-
lent to representing and encoding uniform noise. The more

Recovered

Errors (magnified x 5)

Host Results

Hidden-1 Shuff-1

.

Hidden-2 Shuff-2
e i

Shuff-1 Hidden-1 Shuff-2 Hidden-2

Host

Hidden-1 Hidden-2

Fig. 14. Typical reconstructions when hiding 2 images within a single host image and perturbing the inputs to remove spatial coherency. The results
show significant degradation both in the amount of noise and lack of saturation. The content of the images, including edges and gradients, remain

easily recognizable and intact.



BALUJA: HIDING IMAGES WITHIN IMAGES

1695

TABLE 4
Retrieval Results for All Reported Experiments from a Database of 2,650,000 Images

Container— host

Reconstructed Hidden1—Hidden1

Reconstructed Hidden2—Hidden2

Hiding 1 Image (no permutation) 100% 100% n/a
Hiding 1 Image using Single-Permutation 100% 100% n/a
Hiding 1 Image using Multiple-Permutations 100% 100% n/a
Hiding 2 Images (no permutation) 100% 100% 100%
Hiding 2 Images using Single-Permutation 100% 100% 100%
Hiding 2 Image using Multiple-Permutations 99.9% 100% 100%

Accuracy @1 reported. 1000 trials per experiment.

TABLE 5
PSNR and SSIM Scores

Container vs. Host

Reconstructed Hidden1 vs. Hidden1

Reconstructed Hidden2 vs. Hidden2

(PSNR,SSIM) (PSNR,SSIM) (PSNR,SSIM)
Hiding 1 Image (no permutation) 41.2,0.98 37.6,0.97 n/a
Hiding 1 Image using Single-Permutation 38.2,0.97 37.9,0.97 n/a
Hiding 1 Image using Multiple-Permutations 37.6,0.97 37.3,0.96 n/a
Hiding 2 Images (no permutation) 36.7,0.96 35.9,0.96 35.6,0.95
Hiding 2 Images using Single-Permutation 32.8,0.92 33.2,0.92 32.0,0.91
Hiding 2 Image using Multiple-Permutations 33.6,0.92 34.1,0.92 33.1,0.92

1000 images evaluated for each measurement.

random the hidden image, the more representational capac-
ity and training time will be required.

In this study, the detection networks were trained after
the complete encoding system was created. However,
using pre-trained and/or simultaneously trained detection
networks in an adversarial learning framework, for exam-
ple by extending the work of [32], [33] to significantly
larger hidden messages, may better conceal the hidden
image. The adversary can be used to provide a supplemen-
tal error signal based upon the discoverability of the hid-
den message that is to be minimized in addition to the
reconstruction errors.

Finally, in terms of applications, in this paper, we have con-
centrated on hiding information to defeat adversaries with
malicious intent, such as stealing or altering images. How-
ever, embedding images within images has other areas of
application as well. For example, when storing motion

Fig. 15. This image will be revealed if the author’s photograph (at the end
of this article) is run through the decoder network. The text reads: “many
thanks to: susanna ricco, michele covell, rahul sukthankar and henry
rowley for their helpful comments and discussions throughout this
study”.

thumbnails for videos, we have extended our networks to
hide motion vectors instead of hidden images. This results in
the static content (the host image) being viewable on all stan-
dard platforms and web-browsers. However, when the same
image is displayed by users who have installed the neural net-
work-decoder, they see the extra content - the hidden motion.

ACKNOWLEDGMENTS

The image shown in Fig. 15 is hidden in the author photo-
graph at the end of this paper.

REFERENCES

[1] J. Fridrich and M. Goljan, “Practical steganalysis of digital images:
State of the art,” in Proc. Electron. Imaging, 2002, pp. 1-13.

[2] D. McCullagh, “Bin Laden: Steganography master?” Wired, 2001,
https:/ /www.wired.com/2001/02/bin-laden-steganography-
master/

[3] G. Goth, “Steganalysis gets past the hype,” IEEE Distrib. Syst.
Online, vol. 6, no. 4, Apr. 2005, Art. no. 2.

[4] I Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital Water-
marking and Steganography. San Mateo, CA, USA: Morgan Kauf-
mann, 2007.

[5] A. K. Jain and U. Uludag, “Hiding biometric data,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 25, no. 11, pp. 1494-1498,
Nov. 2003.

[6] W. F. Friedman, An Introduction to Methods for the Solution of
Ciphers. Geneva, IL, USA: Riverbank Laboratories, 1918.

[71 ~A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, “Digital
image steganography: Survey and analysis of current methods,”
Signal Process., vol. 90, no. 3, pp. 727-752, 2010.

[8] N. Provos and P. Honeyman, “Hide and seek: An introduction to
steganography,” IEEE Secur. Privacy, vol. 99, no. 3, pp. 32-44,
May /Jun. 2003.

[9] F.Yaghmaee and M. Jamzad, “Estimating watermarking capacity

in gray scale images based on image complexity,” EURASIP ].

Adv. Signal Process., vol. 2010, no. 1, 2010, Art. no. 851920.

J. Fridrich, M. Goljan, and R. Du, “Detecting Isb steganography in

color, and gray-scale images,” IEEE Multimedia, vol. 8, no. 4,

pp- 22-28, Oct-Dec. 2001.

[10]


https://www.wired.com/2001/02/bin-laden-steganography-master/
https://www.wired.com/2001/02/bin-laden-steganography-master/

1696

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 7, JULY 2020

A. A. Tamimi, A. M. Abdalla, and O. Al-Allaf, “Hiding an image
inside another image using variable-rate steganography,” Int. |.
Adv. Comput. Sci. Appl., vol. 4, no. 10, pp. 18-21, 2013.

T. Pevny, T. Filler, and P. Bas, “Using high-dimensional image
models to perform highly undetectable steganography,” in Proc.
Int. Workshop Inf. Hiding, 2010, pp. 161-177.

M. Yedroudj, F. Comby, and M. Chaumont, “Yedrouj-net: An effi-
cient cnn for spatial steganalysis,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., ICASSP’2018, 2018, pp. 2092-2096.

H. Ozer, I. Avcibas, B. Sankur, and N. D. Memon, “Steganalysis of
audio based on audio quality metrics,” in Proc. Electron. Imaging,
2003, pp. 55-66.

G. C. Kessler and C. Hosmer, “An overview of steganography,”
Adv. Comput., vol. 83, no. 1, pp. 51-107, 2011.

G. C. Kessler, “An overview of steganography for the computer
forensics examiner,” 2015, http://www.garykessler.net/library /
fsc_stego.html

G. C. Kessler, “An overview of steganography for the computer
forensics examiner (web),” 2015. [Online]. Available: http://
www.garykessler.net/library/fsc_stego.html

J. Parikka, “Hidden in plain sight: The stagnographic image,” 2017.
[Online].  Available: https:/ /unthinking.photography /themes/
fauxtography /hidden-in-plain-sight-the-steganographic-image

F. Jessica, ]. Kodovsky, V. Holub, and M. Goljan, “Breaking hugo-the
process discovery,” in Proc. Int. Workshop Inf. Hiding, 2011, pp. 85-101.
M. Chaumont and W. Puech, “Protecting the color information by
hiding it,” Recent Adv. Signal Process., 2009, doi: 10.5772/7453.

K. Hayat, W. Puech, G. Gesquiére, and M. Chaumont, “Wavelet-
based data hiding of dem in the context of real-time 3d visual-
ization,” in Proc. Vis. Data Anal., vol. 6495, 2007.

M. Chaumont, W. Puech, and C. Lahanier, “Securing color infor-
mation of an image by concealing the color palette,” ]. Syst. Softw.,
vol. 86, no. 3, pp. 809-825, 2013.

Y. Qian, J. Dong, W. Wang, and T. Tan, “Deep learning for stega-
nalysis via convolutional neural networks,” in Proc. SPIE/IS&T
Electron. Imaging, 2015, pp. 94 090]-94 090].

L. Pibre, J. Pasquet, D. Ienco, and M. Chaumont, “Deep learning is
a good steganalysis tool when embedding key is reused for differ-
ent images, even if there is a cover sourcemismatch,” Electron.
Imaging, vol. 2016, no. 8, pp. 1-11, 2016.

R. Zhang, F. Zhu, ]. Liu, and G. Liu, “Efficient feature learning and
multi-size image steganalysis based on CNN,” CoRR, vol. abs/
1807.11428, 2018, http:/ /arxiv.org/abs/1807.11428

S. Husien and H. Badi, “Artificial neural network for steg-
anography,” Neural Comput. Appl., vol. 26, no. 1, pp. 111-116, 2015.
I. Khan, B. Verma, V. K. Chaudhari, and I. Khan, “Neural network
based steganography algorithm for still images,” in Emerging
Trends Robot. Commun. Tech., 2010, pp. 46-51.

V. Kavitha and K. Easwarakumar, “Neural based steganography,”
in Proc. 8th Pacific Rim Int. Conf. Trends Artif. Intell., 2004, pp. 429-435.
A. S. Brandao and D. C. Jorge, “Artificial neural networks applied
to image steganography,” IEEE Latin Amer. Trans., vol. 14, no. 3,
pp. 1361-1366, Mar. 2016.

R. Jarusek, E. Volna, and M. Kotyrba, “Neural network approach
to image steganography techniques,” in Proc. Int. Conf. Soft Com-
put. - Mendel, 2015, pp. 317-327.

R. Jarusek, E. Volna, and M. Kotyrba, “Robust steganographic
method based on unconventional approach of neural networks,”
Appl. Soft Comput., vol. 67, pp. 505-518, 2018.

J. Hayes and G. Danezis, “Generating steganographic images via
adversarial training,” in Proc. Neural Inf. Process. Syst. 30, 2017,
pp- 1951-1960.

D. Volkhonskiy, I. Nazarov, B. Borisenko, and E. Burnaev,
“Steganographic generative adversarial networks,” CoRR,
vol. abs/1703.05502, 2017. [Online]. Available: http://arxiv.org/
abs/1703.05502

H. Shi, J. Dong, W. Wang, Y. Qian, and X. Zhang, “Ssgan: Secure
steganography based on generative adversarial networks,” in
Proc. Pacific Rim Conf. Multimedia, 2017, pp. 534-544.

D. Hu, L. Wang, W. Jiang, S. Zheng, and B. Li, “A novel image
steganography method via deep convolutional generative adver-
sarial networks,” IEEE Access, vol. 6, pp. 38303-38314, Jul. 2018.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” in Proc. Neural Inf. Process. Syst., 2014, pp. 2672-2680.

S. Baluja, “Hiding images in plain sight: Deep steganography,” in
Proc. Neural Inf. Process. Syst. 30,2017, pp. 2066-2076.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimension-
ality of data with neural networks,” Sci., vol. 313, no. 5786,
pp. 504-507, 2006.

P. Baldi and K. Hornik, “Neural networks and principal compo-
nent analysis,” Neural Netw., vol. 2, no. 1, pp. 53-58, 1989.

G. W. Cottrell and P. Munro, “Principal components analysis of
images via back propagation,” in Proc. Visual Commun. Image Pro-
cess.: Third Series, 1988, pp. 1070-1078.

M. A. Kramer, “Nonlinear principal component analysis using
autoassociative neural networks,” AIChE ]., vol. 37, no. 2,
pp- 233243, 1991.

J. Jiang, “Image compression with neural networks-a survey,”
Signal Proc.: Image Commun., vol. 14, no. 9, pp. 737-760, 1999.

J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston,
“Variational image compression with a scale hyperprior,” arXiv:
1802.01436, 2018.

O.Rippel and L. Bourdev, “Real-time adaptive image compression,”
in Proc. Int. Conf. Mach. Learn., 2017, pp. 2922-2930.

L. Theis, W. Shi, A. Cunningham, and F. Huszar, “Lossy image
compression with compressive autoencoders,” in Proc. Int. Conf.
Learn. Representations, 2017.

J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized
image compression,” in Proc. Int. Conf. Learn. Representations,
Apr. 2017. [Online]. Available: https:/ /arxiv.org/abs/1611.01704

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol,
“Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion,” J. Mach. Learn.
Res., vol. 11, no. Dec, pp. 3371-3408, 2010.

D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. 3rd Int. Conf. Learn. Representations, 2015.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: a system for
large-scale machine learning,” in Proc. 12th USENIX Conf. Operating
Syst. Des. Implementation, 2016, vol. 16, pp. 265-283.

B. Boehm, “Stegexpose - A tool for detecting LSB steganography,”
CoRR, vol. abs/1410.6656, 2014. [Online]. Available: http://arxiv.
org/abs/1410.6656

Stegexpose - github. (2015). [Online]. Available: https://github.
com/b3dk7/StegExpose

darknet.org.uk, “Stegexpose — steganalysis tool for detecting steg-
anography in images,” 2014. [Online]. Available: https://www.
darknet.org.uk/2014/09/stegexpose-steganalysis-tool-detecting-

steganography-images/

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 40, no. 4, pp. 834848, Apr. 2018.

D. Van De Ville, W. Philips, R. Van de Walle, and I. Lema-
hieu, “Image scrambling without bandwidth expansion,” IEEE
Trans. Circuits Syst. Video Technol., vol. 14, no. 6, pp. 892-897,
Jun. 2004.

A. B. L. Larsen, S. K. Senderby, and O. Winther, “Autoencoding
beyond pixels using a learned similarity metric,” CoRR, vol. abs/
1512.09300, 2015, http:/ /arxiv.org/abs/1512.09300

S. Li, C. Li, K.-T. Lo, and G. Chen, “Cryptanalysis of an image
scrambling scheme without bandwidth expansion,” IEEE
Trans. Circuits Syst. Video Technol., vol. 18, no. 3, pp. 338-349,
Mar. 2008.

J. Fridrich, M. Goljan, and D. Soukal, “Searching for the stego-
key,” in Proc. SPIE, 2004, vol. 5306, pp. 70-82.

A. Qamra, Y. Meng, and E. Y. Chang, “Enhanced perceptual dis-
tance functions and indexing for image replica recognition,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 27, no. 3, pp. 379-391,
Mar. 2005.

G. Wang, D. Hoiem, and D. Forsyth, “Learning image similarity
from flickr groups using fast kernel machines,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 34, no. 11, pp. 2177-2188, Nov. 2012.

S. Baluja and M. Covell, “Waveprint: Efficient wavelet-based audio
fingerprinting,” Pattern Recognit., vol. 41, no. 11, pp. 3467-3480, 2008.
Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quan-
tization: A procrustean approach to learning binary codes for
large-scale image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 12, pp. 2916-2929, Dec. 2013.

E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani,
J. D. Ullman, and C. Yang, “Finding interesting associations with-
out support pruning,” IEEE Trans. Knowl. Data Eng., vol. 13, no. 1,
pp. 64-78, Jan./Feb. 2001.


http://www.garykessler.net/library/fsc_stego.html
http://www.garykessler.net/library/fsc_stego.html
http://www.garykessler.net/library/fsc_stego.html
http://www.garykessler.net/library/fsc_stego.html
https://unthinking.photography/themes/fauxtography/hidden-in-plain-sight-the-steganographic-image
https://unthinking.photography/themes/fauxtography/hidden-in-plain-sight-the-steganographic-image
http://dx.doi.org/10.5772/7453
http://arxiv.org/abs/1807.11428
http://arxiv.org/abs/1703.05502
http://arxiv.org/abs/1703.05502
https://arxiv.org/abs/1611.01704
http://arxiv.org/abs/1410.6656
http://arxiv.org/abs/1410.6656
https://github.com/b3dk7/StegExpose
https://github.com/b3dk7/StegExpose
https://www.darknet.org.uk/2014/09/stegexpose-steganalysis-tool-detecting-steganography-images/
https://www.darknet.org.uk/2014/09/stegexpose-steganalysis-tool-detecting-steganography-images/
https://www.darknet.org.uk/2014/09/stegexpose-steganalysis-tool-detecting-steganography-images/
http://arxiv.org/abs/1512.09300

BALUJA: HIDING IMAGES WITHIN IMAGES

[63] A. Gionis, P. Indyk, R. Motwani, et al., “Similarity search in high
dimensions via hashing,” in Proc. 25th Int. Conf. Very Large Data
Bases, 1999, pp. 518-529.

[64] D. Tao, X. Tang, X. Li, and X. Wu, “Asymmetric bagging and ran-
dom subspace for support vector machines-based relevance feed-
back in image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 28, no. 7, pp. 1088-1099, Jul. 2006.

[65] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,”
IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

[66] ]. Fridrich, T. Pevny, and J. Kodovsky, “Statistically undetectable
jpeg steganography: Dead ends challenges, and opportunities,” in
Proc. 9th Workshop Multimedia Secur., 2007, pp. 3-14.

1697

Shumeet Baluja received the PhD degree in
computer science from Carnegie Mellon, in 1996.
He is with Google, Inc., currently working on
machine learning and computer vision. Previ-
ously, he was chief scientist with Lycos Inc., CTO
of Jamdat Mobile, and SVP of R&D at eCompa-
nies. He has published in numerous fields includ-
ing computer vision and facial image processing,
advertisement optimization, autonomous driving,
machine learning, and high-dimensional optimi-
zation. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


