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Abstract—The combination of spiking neural networks and event-based vision sensors holds the potential of highly efficient and
high-bandwidth optical flow estimation. This paper presents the first hierarchical spiking architecture in which motion (direction and
speed) selectivity emerges in an unsupervised fashion from the raw stimuli generated with an event-based camera. A novel adaptive
neuron model and stable spike-timing-dependent plasticity formulation are at the core of this neural network governing its spike-based
processing and learning, respectively. After convergence, the neural architecture exhibits the main properties of biological visual motion
systems, namely feature extraction and local and global motion perception. Convolutional layers with input synapses characterized by
single and multiple transmission delays are employed for feature and local motion perception, respectively; while global motion
selectivity emerges in a final fully-connected layer. The proposed solution is validated using synthetic and real event sequences. Along
with this paper, we provide the cuSNN library, a framework that enables GPU-accelerated simulations of large-scale spiking neural
networks. Source code and samples are available at https://github.com/tudelft/cuSNN.

Index Terms—Event-based vision, feature extraction, motion detection, neural nets, neuromorphic computing, unsupervised learning

1 INTRODUCTION

HENEVER an animal endowed with a visual system
Wnavigates through an environment, turns its gaze, or
simply observes a moving object from a resting state, motion
patterns are perceivable at the retina level as spatiotemporal
variations of brightness [1]. These patterns of apparent
motion, formally referred to as optical flow [2], are a crucial
source of information for these animals to estimate their
ego-motion and to have a better understanding of the visual
scene. A great example of the efficacy of these cues in nature
is in flying insects [1], [3], which are believed to heavily rely
on these visual cues to perform high-speed maneuvers such
as horizontal translation or landing [4].

Considering their size and weight limitations, insects are
a clear indicator of the efficiency, robustness, and low la-
tency of the optical flow estimation conducted by biological
systems. The ability to reliably mimic this procedure would
have a significant impact on the field of micro-robotics due
to the limited computational capacity of their onboard pro-
cessors. As an example, Micro Air Vehicles (MAVs), such as
the DelFly Explorer [5] or the DelFly Nimble [6], could ben-
efit from a bio-inspired visual motion estimation for high-
speed autonomous navigation in cluttered environments.

Biological visual systems receive their input from pho-
toreceptors in the retina. These light-sensitive neurons ab-
sorb and convert incoming light into electrical signals which
serve as input to the so-called ganglion cells. The activity
of these neurons consists of temporal sequences of discrete
spikes (voltage pulses) that are sent to large networks of
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interconnected cells for motion estimation, among other
tasks. Since it is spike-driven, these biological architectures
are characterized by a sparse, asynchronous, and massively
parallelized computation. Further, they are seen to adapt
their topology, i.e. connectivity pattern, in response to visual
experience [7], [8]. This adaptation, or learning mechanism,
allows them to operate robustly in different environments
under a wide range of lighting conditions.

In contrast, the working principle of the majority of
cameras used for artificial visual perception is categorized
as frame-based: data is obtained by measuring the brightness
levels of a pixel array at fixed time intervals. Although
convenient for some computer vision applications, these
sensors are inefficient for the task of motion estimation as
the frame rate is independent of the dynamics of the visual
scene. Additionally, due to the limited temporal resolution
of these sensors, rapidly moving objects may introduce
motion blur, limiting the accuracy of optical flow estimation.

However, not all artificial systems rely on conventional
frame-based cameras for visual motion estimation. Inspired
by biological retinas, several event-based vision sensors have
recently been presented [9], [10], [11], [12]. Similar to gan-
glion cells, each of the elements of the pixel array reacts
asynchronously to brightness changes in its corresponding
receptive field by generating events. A microsecond tempo-
ral resolution, latencies in this order of magnitude, a wide
dynamic range, and a low power consumption make these
sensors an ideal choice for visual perception.

Regardless of the vision sensor, the estimation of optical
flow by artificial systems is normally performed algorithmi-
cally, with solutions that are built on simplifying assump-
tions that make this problem tractable [13], [14]. In spite of
this, the recent progress in parallel computing hardware has
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Fig. 1: Comparison of the output of frame- and event-based vision
sensors under the stimulus of a black horizontal bar moving upward
over a homogeneous white background. While frames are basically two-
dimensional snapshots of the visual scene, events are spatiotemporal
sparse points tracking the leading and trailing edges of the bar.

enabled artificial motion perception to be addressed from
a more bio-inspired perspective: Artificial Neural Networks
(ANNSs). Similar to biological architectures, ANNSs consist of
large sets of artificial neurons whose interconnections can be
optimized for the task at hand. However, despite the high
accuracy reported with both frame- [15] and event-based
sensors [16], [17], there is still a fundamental difference: the
underlying communication protocol in ANNSs relies on syn-
chronous packages of floating-point numbers, rather than
on trains of asynchronous discrete spikes. As a consequence,
these architectures are often computationally expensive.

Taking further inspiration from nature, Spiking Neural
Networks (SNNs) have been proposed as a new generation
of ANNSs [18]. As the name suggests, the computation car-
ried out by these bio-realistic neural models is asynchronous
and spike-based, which makes them a suitable processing
framework for the sparse data generated by event-based
sensors [19]. Moreover, SNNs can benefit from an efficient
real-time implementation in neuromorphic hardware, such as
IBM’s TrueNorth chip [20] or Intel’s Loihi processor [21].
Despite these promising characteristics, the spiking nature
of these networks limits the application of the successful
gradient-based optimization algorithms normally employed
in ANNS. Instead, learning in SNNs is dominated by Spike-
Timing-Dependent Plasticity (STDP) [22], a biologically
plausible protocol that adapts the strength of a connection
between two neurons based on their correlated activity.
STDP has been successfully applied to relatively simple
image classification tasks [23], [24], [25], [26], [27]. However,
until now, no study has discussed the use of this learning
rule for the estimation of event-based optical flow.

This paper contains three main contributions. First, a novel
adaptive mechanism for the Leaky Integrate-and-Fire (LIF)
spiking neuron model [28] is introduced. This adaptation
extends the applicability of this model to the rapidly vary-
ing input statistics of a moving event-based vision sensor.
Second, a novel, inherently-stable STDP implementation is
proposed. With this learning rule, the strength of neural
connections naturally converges to an equilibrium distri-
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bution without the need for the ad-hoc mechanisms used
by most of the existing formulations. Third, the proposed
neuron model and STDP rule are combined in a hierarchical
SNN architecture that, after learning, resembles the main
functionalities of biological visual systems: feature extrac-
tion and local and global motion perception. To the best of
the authors” knowledge, this paper shows, for the first time,
that neural selectivity to the local and global motion of input
stimuli can emerge from visual experience in a biologically
plausible unsupervised fashion.

The rest of the paper is structured as follows. Section
2 provides background information concerning event-based
vision, SNNs, and optical flow estimation. The foundations
of the spike-based processing and learning of the proposed
SNN are detailed in Sections 3 and 4, respectively. There-
after, the network architecture is described in Section 5, and
empirically evaluated in Section 6.

2 BACKGROUND INFORMATION
2.1 Event-Based Vision Sensors

Inspired by biological retinas, each of the pixels of an event-
based vision sensor reacts asynchronously to local changes
in brightness by generating discrete temporal events. Specif-
ically, the generation of an event is triggered whenever the
logarithmic change of the image intensity I(z, y,t) exceeds
a predefined threshold C such that |A log(I(z,y,t))| > C
[9]. This variation is computed with respect to a reference
brightness level set by the last occurring event at that pixel.

Each event encodes information about its timestamp
t, its corresponding (z,y) location in the pixel array, and
the polarity P € {—1, 1} of the intensity change. This com-
munication protocol is referred to as Address-Event Rep-
resentation (AER), and any camera that makes use of it
is categorized as Dynamic Vision Sensor (DVS). A visual
comparison of the output of frame- and event-based sensors
under the same stimulus is illustrated in Fig. 1.

2.2 Spiking Neural Networks

Models of spiking neurons: In biological networks,
neural communication consists in the exchange of voltage
pulses [18]. For the reproduction of this asynchronous and
spike-based mechanism in SNNs, multiple models of spik-
ing neurons have been presented at various levels of abstrac-
tion. Biophysical formulations lead to accurate representa-
tions of neural dynamics [29], however, their complexity
limits their use in large-scale networks. Alternatively, phe-
nomenological formulations offer a compromise between
computational load and biological realism. The most used
models are the aforementioned LIF [28], the Izhikevich [30],
and the Spike Response Model [31].

From a conceptual perspective, the majority of these
models share some fundamental principles and definitions.
The junction of two neurons is called synapse; and relative to
these cells, the transmitting neuron is labeled as presynaptic,
while the receiving as postsynaptic. Each spiking neuron, as
processing unit, is characterized by an internal state vari-
able, known as membrane potential v;(t), which temporally
integrates presynaptic spikes over time. If the arrival of
a spike leads to an increase (decrease) in v;(t), then the
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Fig. 2: A model of a LIF neuron. The graphic (right) shows the temporal
course of the membrane potential v;(f) of the ith neuron (left), driven by
a sample presynaptic spike train s;(t) from three input synapses. Spikes
are depicted as vertical bars at the time at which they are received
(if presynaptic) or emitted (if postsynaptic). Here, the reset vieset and
resting Viest potentials are equal in magnitude.

spike is said to have an excitatory (inhibitory) effect on the
neuron. v;(t) decays to a resting potential vyest in case no
input is received. Lastly, a postsynaptic spike is triggered
whenever v;(t) crosses the firing threshold vy,. Afterwards,
the neuron resets its membrane potential to vreset, and enters
in a refractory period At during which new incoming
spikes have negligible effect on v;(t). Fig. 2 illustrates these
concepts for the case of a LIF neuron [28].

Synaptic plasticity: Defined as the ability to modify
the efficacy (weight) of neural connections, synaptic plasticity
is the basic mechanism underlying learning in biological
networks [32]. These architectures are seen to rely on dif-
ferent learning paradigms depending on their duty [33]. For
instance, information encoding in biological visual systems
is established in an unsupervised fashion, while reinforce-
ment and supervised learning are employed for tasks such
as decision making and motor control. Accordingly, various
forms of synaptic plasticity have been proposed for SNNs.

In the context of SNNs, unsupervised learning is gen-
erally referred to as Hebbian learning, since plasticity rules
from this paradigm are based on Hebb’s postulate: “cells that
fire together, wire together” [34]. In essence, these methods
adapt the efficacy of a connection based on the correlated
activity of pre- and postsynaptic cells. Among others, the
biologically plausible STDP protocol is, by far, the most
popular Hebbian rule for SNNs [22]. With STDP, the re-
peated arrival of presynaptic spikes to a neuron shortly
before it fires leads to synaptic strengthening, also known
as Long-Term Potentiation (LTP); whereas if the arrival
occurs shortly after the postsynaptic spike, synapses are
weakened through Long-Term Depression (LTD). Therefore,
the change of efficacy AW is normally expressed as a func-
tion of the relative timing between these two events. STDP
formulations exclusively dependent on this parameter are
referred to as additive rules [35], are inherently unstable, and
require the use of constraints for the weights, thus resulting
in bimodal distributions [22]. On the other hand, multi-
plicative STDP rules incorporate the current efficacy value
in the computation of AW. The formulations proposed in
[23], [24], [25] incorporate the weights in a proportional
fashion, and represent the current sate-of-the-art in pattern
recognition with SNNs. However, they still lead to bimodal
distributions. Contrarily, [26], [27] claim that, by incorpo-
rating the weight dependency in an inversely proportional
manner, stable unimodal distributions are obtained. Never-
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theless, their stability results from a complex temporal LTP-
LTD balance, and it is not theoretically guaranteed.

Several lines of research can be distinguished regarding
the use of supervised learning in SNNs, with the most
promising based on the well-known error backpropagation
algorithm [36]. Firstly, numerous adaptations to the discon-
tinuous dynamics of SNNs have recently been proposed for
learning temporally precise spike patterns [37], [38], [39],
[40]. Alternatively, due to the popularity of this method in
ANNs, SNNs commonly rely on transferring optimization
results from their non-spiking counterparts [41], [42], [43].
In both cases, high accuracy levels are reported in image
classification tasks, but still far below those obtained with
conventional ANNS.

With respect to reinforcement learning in SNNs, various
models have been presented, the majority of which consist
in the modulation of STDP with a reward function [44],
[45]. However, applications of this paradigm are mainly
focused on neuroscience research [46], [47], besides several
goal-directed navigation problems [48], [49] and the digit-
recognition application from [50].

2.3 Event-based Optical Flow Estimation

The recent introduction of the DVS and other retinomorphic
vision sensors has lead to the development of several novel
approaches to event-based optical flow estimation. Depend-
ing on their working principle, these solutions are divided
into algorithmic and neural methods.

Gradient-, plane-fitting-, frequency-, and correlation-
based approaches set the basis of the algorithmic state-
of-the-art. These techniques compute sparse optical flow
estimates for each newly detected event (or group of events)
based on its spatiotemporal polarity-specific neighborhood.
Firstly, adaptations of the gradient-based Lucas-Kanade al-
gorithm [51] were presented in [52], [53]. Secondly, the
methods proposed in [13], [54], [55] extract optical flow
by computing the gradients of a local plane fitted to a
spatiotemporal surface of events. Thirdly, multiple adap-
tations of the bio-inspired frequency-based methods have
been introduced [53], [56], [57], which allow the implemen-
tation in neuromorphic hardware [58]. Lastly, the recent
correlation-based approaches presented in [59], [60], [61],
[62] employ convex optimization algorithms to associate
groups of events over time, and report the highest algorith-
mic accuracy to date. Part of this category is also the block-
matching method recently proposed in [63], which employs
conventional search techniques to find the best matching
group of events in previous temporal slices of the input.

The estimation of event-based optical flow with neural
models is dominated by SNNs. However, there are a couple
of ANN-based approaches worth remarking. In [16], a self-
supervised learning scheme was employed to train a convo-
lutional ANN to estimate dense image flow. The input to the
network consists of the per-pixel last timestamp and count
of events over a specific time window. Using the average
timestamp instead, in [17], the authors presented the first
neural model to approach the full structure-from-motion
problem using event-based input. In [17], two ANNs are
employed for depth and dense optical flow estimation. Re-
garding the latter task, accuracy levels considerably higher
than those from [16] are reported.
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Though the main goal of [64] is for predicting future
input activations, this work presented the first neural ar-
chitecture capable of learning spatiotemporal features from
raw event data. For this purpose, multiple recurrent ANNs
were employed in combination with a single layer of spiking
neurons. A self-supervised learning scheme, based on a
recursive least-squares algorithm, was proposed for training
the ANNSs to capture the spatiotemporal information. Note
that, for compatibility reasons, this approach requires the
conversion of the event data into analog signals.

With respect to pure SNN-based approaches, in [65], [66],
the authors propose an architecture in which motion selec-
tivity results from the synaptic connections of a bursting
neuron to two neighboring photoreceptors, one excitatory
and the other inhibitory. If the edge is detected first by the
excitatory cell, spikes are emitted at a fixed rate until the
inhibitory pulse is received. Otherwise, the neuron remains
inactive. Optical flow is consequently encoded in the burst
length and in the relative orientation of the photoreceptors.

In contrast, the SNNs presented in [67], [68] extract
motion information through synaptic delays and spiking
neurons acting as coincidence detectors. A simple spike-
based adaptation of the Reichardt model [69] is introduced
in [67] to show the potential of this approach. This idea
is explored in more detail in [68], in which the authors
propose the convolution of event sequences with a bank
of spatiotemporally-oriented filters, each of which is com-
prised of non-plastic synapses with equal efficacies, but with
delays tuned to capture a particular direction and speed.
Similarly to frequency-based methods [70], these filters com-
pute a confidence measure, encoded in the neural activity,
rather than the optical flow components. Additionally, this
solution employs a second spike-based pooling layer for
mitigating the effect of the aperture problem [71].

Whether, and how, direction and speed selectivity
emerge in biological networks from visual experience still
remains an open question. Some initial work by [72], [73],
[74] shows that robust local direction selectivity arises in
neural maps through STDP if, apart from presynaptic feed-
forward connections, neurons receive spikes from cells in
their spatial neighborhood through plastic synapses with
distance-dependent transmission delays. However, no study
has assessed the speed selectivity of these cells, which is
crucial for optical flow estimation.

3 ADAPTIVE SPIKING NEURON MODEL

Let j =1,2,...,n!"! denote a group of presynaptic neu-
rons, from layer [ — 1, fully connected in a feedforward
fashion to a set of postsynaptic cells i = 1,2,...,n!, from
layer [. As depicted in Fig. 3, these neural connections can
be considered as multisynaptic, i.e. the link between two cells
is not restricted to a single synapse, but several can coexist.
In this work, the number of multisynaptic connections m
is layer-specific, and each synapse has its own transmission
delay as given by 7 € R™. In addition to this delay vector,
layer connectivity is also characterized by a weight matrix
W e R* ™ X™ which determines the synaptic efficacy
of the connectlons.

Apart from W and 7, each synapse keeps track of an
additional parameter that captures the recent history of
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Fig. 3: Schematic of the feedforward connectivity between neurons from
two adjacent layers (left). These connections can be considered as be-
ing multisynaptic (right), each one having its own efficacy, transmission
delay, and trace.

spikes transmitted. Referred to as the presynaptic trace [75],
and defined as X € R" X" ™, its dynamics is given by:

dX; ;.a(t
igal) —r) @

where Ay is the time constant of the system, « is a scaling
factor, and s'(t) € R™ denotes the (binary) record of neu-
ral activity, or spike train, of cells from layer /. Note that
d=1,2,...,m serves to refer both to connections within a
multisynaptic group and their corresponding delays.

From Eq. (1), whenever a spike arrives at a postsynaptic
neuron ¢ via a synapse with transmission delay 74, the
corresponding presynaptic trace X; ;q(t) increases by a
factor of a. In case no spike is received, the trace decays
exponentially towards zero according to A x.

The LIF model [28] is the most widely used spiking
neuron model in literature. This is due to its assumption that
in SNNs, information is not encoded in the spike amplitude,
but rather in the firing time. Consequently, neural activity
is reduced to discrete and binary temporal events, thus
ensuring computational tractability. The neuron model used
in this paper is a modified LIF formulation, defined as:

d’Ui (t)
Yodt

)\X = —Xi7j’d(lf) + OZS§»7

= - (Ui (t) - Urest) +1; (t) @)

ZZ Wi jas H(t —7a) = Xija(t)) ()

where A\, denotes the time constant of the membrane poten-
tial, and 4(t) is the so-called forcing function of the system.
From Egs. (2) and (3), the membrane potential v;(¢) of a
neuron evolves over time by integrating scaled presynaptic
spikes from its input synapses, similarly to the conventional
LIF model [28]. Whenever v;(t) reaches (or surpasses) the
firing threshold vy, a postsynaptic spike is generated, i.e.
st(t) = 1, and v;(t) is reset tO Vreger- In addition, the neuron
enters in a refractory period At,.s during which presynaptic
spikes have no effect on v;(t) to ensure the temporal separa-
tion of postsynaptic pulses. In case no spike is fired at time
t, this is reflected in the neuron’s spike train as st(¢) = 0.
Unlike traditional LIF [28], the forcing function 4(t)
of our neuron model includes an additional term, further
referred to as the homeostasis parameter, which is inspired by
the internal regulatory mechanisms of biological organisms
[76]. This is used to adapt the neural response to the varying
input statistics—in particular, to the per-pixel firing rate—
using the presynaptic trace X as an excitability indicator.
Inferring from Eq. (3), this parameter acts, in essence, as an
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Fig. 4: lllustration of the novel multiplicative STDP rule proposed in this work. The weight update (right) results from the linear combination of the
non-exclusive LTP and LTD processes. These, in turn, are characterized by symmetrical dependencies on the synaptic weights (left) and normalized
presynaptic traces (center). Note that, in the schematic of the weight update (right), the weight axis is limited to the [—1, 1] range only for the purpose

of a better visualization of the equilibrium weights for a = 0.

inhibitory penalty in the update rule of v(t). A postsynaptic
neuron connected to a group of highly-active presynaptic
cells is said to have low excitability due to its relatively high
X. For this neuron to fire, it needs to receive a large number
of presynaptic spikes shortly separated in time. Conversely,
the same cell connected to poorly-active neurons is highly
excitable; and thus, the firing threshold vy can still be
reached despite the considerably larger time difference be-
tween input spikes. Note that, to get the desired neural
adaptation, the scaling factor «, from Eq. (1), needs to be
selected in accordance with the neural parameters, mainly
vy, and the range of possible W values. The effect of this
parameter on the neural response is explored in [77]. When
dealing with an event-based camera as source of input
spikes, the firing rate of the sensor is not only correlated to
the appearance of features from the visual scene, but also to
their optical flow and the sensitivity settings of the camera.
Slow apparent motion leads to successive events being more
distant in time than those captured from fast motion. Con-
sequently, if these events are to be processed with a network
of spiking neurons, a homeostasis mechanism is required to
ensure that similar features are detected regardless of the
encoding spike rate.

Other approaches to homeostasis have been presented,
such as threshold balancing [78] or weight scaling [79].
However, these methods use postsynaptic spikes to adjust
the homeostatic inhibition through an adaptive mechanism.
With such neural feedback, there is a delay in adjusting the
excitability of the neurons. These approaches are therefore
less suitable for the rapidly varying statistics of the data
generated by a moving event-based vision sensor.

4 STABLE STDP LEARNING RULE

In this work, we propose a novel multiplicative STDP imple-
mentation that, contrary to the state-of-the-art of this learn-
ing protocol, is inherently stable by combining the weight-
dependent exponential rule from [27] with presynaptic trace
information. Hereafter, we will simply refer to it as STDP.

Whenever a neuron ¢ fires a spike, the efficacy of its
presynaptic connections is updated as follows:

AW; ;.4 = n(LTP + LTD) 4)

LTP = LTPyy - LTPy,
LTPy = e~ (Wig.a—tin)

LTP; = eXiid® g

LTD = LTDy - LTD
LTDy = — (Wi j.a—wini) )
LTDy = (- Xisa(®) _ g

where 7 is the learning rate of the rule, wiy;: refers to the
initialization weight of all synapses at the beginning of the
learning process, and X, e [0,1] denotes the presynaptic
traces of neuron ¢ normalized to the current maximum at
the moment of firing. Further, for stability, 7 > 0 and a < 1
regardless of the value of winit (see Appendix A).

From Egs. (4) and (5), the weight update AW, results
from the linear combination of the output of two non-
mutually exclusive processes: LTP, for strengthening, and
LTD, for weakening synaptic connections. Both of these
processes are dependent on the weights (LTPy,, LTDy/)
and normalized traces (LTP 3, LTD ;) of the synapses under
analysis. On the one hand, the weight dependency of our
learning rule takes inspiration from the STDP formulation
presented in [27]. LTPy and LTDy are inversely propor-
tional to W; in an exponential fashion, and are centered
around winit (see Fig. 4, left). Consequently, the effect of
LTPw decreases (increases) the larger (smaller) a synaptic
weight is in comparison to winit. The opposite relation holds
true for LTDy . On the other hand, rather than relying on
the precise spike timing [27], our rule employs normalized
presynaptic trace information as a measure of the relevance
of a particular connection to the postsynaptic spike trigger-
ing the update. The higher (lower) the value of X; ; 4(t), the
larger (smaller) the effect of LTP ¢, and vice versa for LTD ¢
(see Fig. 4, center).

With this formulation, a weight is established for each
value of X; j 4(t) through a stable equilibrium of LTP-LTD
contributions on AW, (see Fig. 4, right). The parameter
a has control over this non-linear mapping through the
steepness of LTP¢ and LTD in X; € [0,1]. The higher
(lower) the value of a—below the stability limit—, the wider
(narrower) the distribution of synaptic weights after con-
vergence. As such, no additional mechanism is required for
preventing weights from vanishing or exploding. Synapses
characterized by weights that are higher (lower) than their
corresponding equilibrium state are consistently depressed
(potentiated) until synapse-specific stability is achieved.
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To track the convergence of the learning process, we
propose the use of the following mean square error criterion,
where W; € [0,1] denotes the presynaptic weights of neu-
ron ¢ after an update, normalized to the current maximum:

Li= - 1m Z Z iga(t) = Wija)® (6)

j=1 d=1

As the learning progresses, the moving average of L;
converges to a (close-to-zero) equilibrium state. In this work,
we stop synaptic plasticity using a fixed threshold on this
parameter, denoted by L.

4.1 Local inter-lateral competition

For neurons to learn distinct features from the input data
through STDP, this learning rule needs to be combined with
what is known as a Winner-Take-All (WTA) mechanism [80].
This form of competition implies that, when a neuron fires
a spike and updates its presynaptic weights according to
Egs. (4) and (5), the rest of postsynaptic cells (from the
same layer) locally connected to the same input neurons
get inhibited. As a result, these cells are prevented from
triggering STDP while the neuron that fired first, i.e. the
winner, remains in the refractory period.

Instead of relying on non-plastic synapses transmitting
inhibitory spikes with a certain delay, our implementation
assumes that the internal dynamics of these neurons are
intercorrelated. Whenever the winner resets its membrane
potential and enters in the refractory period, neurons af-
fected by the WTA mechanism do the same immediately
afterwards. In case multiple neurons fire simultaneously,
the cell with the highest membrane potential has preference
for triggering the weight update. Further, the postsynaptic
spikes from the other firing neurons are not considered. To
ensure coherence between the training and inference phases
of our proposed SNN, layers trained with STDP maintain
the WTA mechanism after the learning process.

5 SPIKING NEURAL NETWORK ARCHITECTURE
FOR MOTION PERCEPTION

To extract a robust measure of motion from the raw camera
input, we propose the multi-layer SNN illustrated in Fig. 5.
This section highlights the unique goal of each of the layers
comprising this architecture, together with the variations
of the proposed neuron model and learning rule that are
required depending on their connectivity scheme.

5.1 Input Layer

Being the first stage of the network, the Input layer encodes
the event-based sensor data in a compatible format for the
rest of the architecture. This layer can be understood as to
be comprised of spiking neurons with no internal dynam-
ics, whose neural activity is determined by event arrival.
Neurons are arranged in two-dimensional neural maps, one
per polarity, resembling the grid-like topology of the vision
sensor. Depending on the spatial resolution of these maps,
each neuron is assigned with the polarity-specific events of
one or multiple pixels with no overlap.

6
Input
SS-Conv Merge Dense
\ MS-Conv
\ Pooling .=~
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f(]) f(Z) =1
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Fig. 5: Overview of the feedforward SNN architecture.

5.2 SS-Conv Layer: Feature Extraction

The goal of the single-synaptic convolutional layer, or SS-
Conv, is to extract visual features from the input, and by
doing so, to filter out the input events that may otherwise
corrupt the learning process, and hence the performance, of
subsequent layers in the architecture.

Neurons in this layer are retinotopically arranged in
k=1,2,..., f" two-dimensional maps. Each of these neu-
rons receives spikes from presynaptic cells within a specific
spatial receptive field, of size , in all maps of the previous
layer. This sparse connectivity is characterized by a set of
excitatory synaptic welghts, formally referred to as a convo-
lutional kernel W, € R™</ that is equal for all neurons
belonging to the same map. This form of weight sharing
ensures that, within a map, neurons are selective to the same
feature but at different spatial locations.

Let the input connectivity of neuron 7 from the map % be
characterized by the aforementloned convolutional kernel
W, the presynaptic trace X, € R ¢ ), and the spike train
sio,l (t). Further, let IV; ;. refer to the map-specific direct neu-
ral neighborhood of the cell, including itself. Then, consider-
ing neural connections as single-synaptic with transmission
delay T, the forcing function driving the internal dynamics
of neurons in this layer is defined as follows:

r f(O)

ii,k (t) = Z Z W”,ch,ks_(j?)ch (t - T)

j=1ch=1 (7)

r f(O)

S MY x
VbEN: 1 b]ch

j=1ch=1

Apart from the sparse connectivity, the only difference
between this expression and the fully-connected formula-
tion, i.e. Eq. (3), is in the homeostasis parameter. When
arranged retinotopically, the neurons” dynamics do not only
depend on their own presynaptic trace X;, but also on
the synaptic traces characterizing their direct spatial neural
neighborhood N ;.. By using the maximum trace, neurons
are prevented from specializing to the leading edge of mov-
ing visual features, rather than to the features themselves
(see Appendix D.1).

An augmentation of the proposed STDP rule is also
required to handle the fact that multiple updates can be
generated simultaneously in different spatial locations of the
same map. Since these neurons share convolutional kernel,
AW, is computed through synapse-specific averages of the
local contributions. Additionally, due to the high overlap of
presynaptic receptive fields, the WTA inhibitory mechanism
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described in Section 4.1 is expanded to cells within a small
neighborhood of the firing neurons, regardless of the neural
map. Note that, after learning, only the neuron-specific
competition is maintained.

5.3 Merge Layer: Feature Aggregation

Due to the aperture problem [71], the different types of local
motion that can be perceived at this stage of the architecture
are exclusively dependent on the spatial configuration of in-
put features, i.e. their appearance, and not on their polarity.
Consequently, the f(*) neural maps of the SS-Conv layer can
be merged into a single combined map without losing useful
information for motion perception. The Merge layer is used
for this purpose. Compared to when local motion is to be
perceived directly from the SS-Conv output, this operation
results in a decrease of both the number of convolutional
kernels required in the subsequent layer, and the amount of
per-kernel trainable parameters.

Similarly to SS-Conv, the Merge layer is convolutional
and single-synaptic. The internal dynamics of its neurons is
driven by Eq. (7) (with [ = 2 in this case), but without the
need for IN; ; since presynaptic connections are not plastic.
Because of the latter, the application of the WTA mechanism
is also neglected. Instead, this layer is characterized by a
single 1 x 1 convolutional kernel with unitary connections
to each of the neural maps of the previous layer.

5.4 MS-Conv Layer: Local Motion Perception

MS-Conv is presented as a variation of the S5-Conv layer
whose role is to provide local motion estimates of the fea-
tures extracted in the previous layers, by means of velocity-
selective neurons. Similarly to feature identification, this
selectivity emerges from visual experience through STDP.

For the purpose of local motion perception, we propose
an augmentation of Eq. (7) based on the foundations of
frequency-based optical flow methods [70] and bio-inspired
motion detectors [69], [81]. Firstly, motion is to be extracted
as orientation in the spatiotemporal domain. Therefore,
neural connections in the MS-Conv layer are considered
multisynaptic with different constant transmission delays
as given by 7 € R™. Secondly, since these delays (and the
rest of neural parameters) are equal for all (spatiotemporal)
convolutional kernels, inhibitory synapses are required to
prevent the firing of erroneous postsynaptic spikes when
the input trace only fits part of the excitatory component
of the kernels. To account for this, each MS-Conv kernel is
defined by a pair of excitatory and inhibitory nlElaStiC weight
matrices, denoted by W € R"™*™ and W} € R™*"™, re-
spectively. According to these additions, the forcing function
of cells in this layer is expressed as:

() =33

exck +BW1 ) (2)(t _ Td)
j=1d=1 (8)
— X

where € [0,1] scales the impact of inhibitory synapses,
and the presynaptic trace is defined as X; € R™*"™.

Due to the neural spatial disposition, the implementation
of STDP in this layer is, in essence, identical to the one
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employed for SS-Conv. The only difference comes from the
fact that, for inhibitory synapses, the weights are initialized
at 0, and witl! is set to —wSE. This discrepancy between with
and the initialization weight enables neurons in this layer to

be reactive to different input features until specialization.

5.5 Pooling Layer: From Local to Global

As an intermediate stage between the MS-Conv and Dense
layers, the Pooling layer is employed in the SNN architec-
ture as a means to reduce the spatial dimensionality of the
former, and hence to facilitate the learning process of the
latter. The intuition of this layer is that, by pooling local
motion estimates over large portions of the visual scene, a
more accurate measure of the global motion in each of these
regions can be obtained, thus mitigating the effect of the
aperture problem [71].

Similarly to the Merge layer, the Pooling layer is convo-
lutional and single-synaptic, and its presynaptic connections
are not plastic. This layer is characterized by the same
number of neural maps as the MS-Conv, each one assigned
with an excitatory kernel W, that has unitary weights
with its presynaptic counterpart and null with the rest. In
addition, there is no overlap between receptive fields.

5.6 Dense Layer: Global Motion Perception

The Dense layer, as the final stage of the SNN architecture,
is comprised of individual neurons fully connected to cells
in the Pooling layer via single-synaptic plastic connections.
Similarly to final regions of biological visual motion systems
[1], [3], neurons in this layer develop selectivity to the global
motion of the scene from visual experience through STDP.

With respect to implementation details, synaptic plastic-
ity is conducted as described in Section 4, and the forcing
function of Dense neurons resembles Eq. (3), but referring
to the convolutional presynaptic layer to which these cells
are connected. This expression is then defined as:

n® f(4)

=2 > (W

j=1ch=1

77>Chsj DRt =T) = Xija(t) )

where the weights and trace of mput(c)onnections are de-
fined as W; € R" and X; € RV xr , respectively.

6 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our SNN
on synthetic and real event sequences. Appendix B includes
illustrations of the textures and natural scenes employed for
generating these sequences, together with other implemen-
tation details, such as network parameters, sensor character-
istics, training settings, and data augmentation mechanisms.

6.1 Synthetic Data Experiment

Firstly, we assess our motion-selective architecture on sev-
eral noise-free sequences restricted to the pure vertical and
horizontal image motion of a checkerboard pattern. This
very structured texture and motion facilitate the under-
standing of the behavior and main properties of the net-
work. Visual stimuli and ground truth were generated with
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the DVS simulator [82], and this analysis is based on the
planar optical flow formulation from [55] (see Appendix C).

Starting with the SS-Conv layer, Fig. 6 shows the four
convolutional kernels learned from these sequences. With
this kernel scale, our learning rule leads to the successful
identification of edges at the different spatial orientations
present in the input data, and with the two combinations
of event polarity. Using these kernels for feature extraction,
and aggregating their spiking activity in the Merge layer,
an MS-Conv layer consisting of sixteen spatiotemporal ker-
nels was trained thereafter. Fig. 7 shows the appearance of
these kernels after convergence, and the response of their
corresponding neural maps as a function of the ventral flow
components (W, wy).

This figure confirms that, with the connectivity pattern
of the MS-Conv layer, STDP leads to the successful iden-
tification of the spatiotemporally-oriented traces of input
features, and hence their local motion. Out of the sixteen
kernels trained, seven specialized to pure horizontal motion,
and the remaining nine to pure vertical. Each direction of
motion (up, down, left, right) was captured by at least
four kernels, which, in turn, were selective to a particular
stimulus speed. For instance, upward motion was identified

Fig. 6: SS-Conv kernels learned from the checkerboard texture. Synap-
tic strength is encoded in color brightness: green for input neurons with

positive (event) polarity, and red for negative.
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(c) Pure horizontal motion
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by kernels k = {13,14,15,16}, from slow to fast tuning
speed. Therefore, kernels in this layer can be understood
as local velocity-tuned filters that resemble those employed
in frequency-based optical flow methods [53], [56], [68], [70].
However, instead of being manually designed, these filters
emerge from visual experience in an unsupervised fashion.
A three-dimensional illustration of two MS-Conv kernels
can be found in Appendix D.2.

In addition, remarkable is the fact that two of the
(generally) four kernels that specialized to each of the
aforementioned motion directions have overlapping neural
responses despite the WTA mechanism described in Section
4.1. This is indicative of the relatively weak speed selectivity
of MS-Conv neurons in comparison to their strong direction
selectivity. Appendix D.3 confirms these results through an
evaluation of both selectivities as a function of 5.

Lastly, selectivity to global motion emerges in neurons
from a Dense layer trained as the final stage of the SNN,
using the low-dimensional activity of the Pooling layer.
Fig. 8 shows the neural response (after convergence) of the
sixteen cells in this layer as a function of (w, wy). From this
figure, it can be seen that neurons are successful at capturing
the dominant global motion pattern from the spatial distri-
bution of local motion estimates from previous layers. Out
of the neurons trained, groups of four specialized to each
motion direction, with different tuning speeds. Note that the
velocity-selective properties of these neurons are exclusively
dependent on those of the MS-Conv kernels. Appendix D.4
includes an evaluation of the temporal activity of these
neurons in response to speed profiles that differ from the

constant-speed sequences employed for learning.
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Fig. 7: Appearance (top) and neural response (bottom) of the sixteen spatiotemporal kernels learned from the checkerboard texture in the MS-Conv
layer. Response plots are normalized by the maximum kernel response on the stimuli evaluated: 8.2763 spikes/ms by k = 11 for wx = 4.0 s~
Synaptic strength is encoded with brightness using the kernel formulation from Eq. (8), i.e. W& 4+ gWinh,
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Fig. 8: Neural response of the sixteen individual neurons from the Dense layer trained in the checkerboard texture. Response plots are normalized
by the maximum neural response on the stimuli evaluated: 0.3 spikes/ms by i = 4 for wy = —3.8 s~'

6.2 Real Data Experiments

For the experiments with real data, we use samples from dif-
ferent sources. In a first evaluation, we employ the rotating-
disk sequence from [83], which provides input events corre-
sponding to a disk slowly turning at a constant speed. Fur-
thermore, several unconstrained recordings of a roadmap
pattern are used in a second experiment characterized by
more unstructured and noisy visual stimuli. For this, we
also use natural scene sequences from the Event Camera
Dataset [82] for validation. The DAVIS [11] and SEES1 [12]
are the DVS sensors with which this data was generated.

6.2.1 Rotating-Disk Sequence

Fig. 9a shows the appearance of the SS-Conv kernels trained
on the rotating-disk sequence. Similarly to the checkerboard
case, neurons in this layer become selective to the most
frequent input features, which are edges at different spatial
orientations, and of different event polarity.

With respect to the MS-Conv layer of this architecture,
Fig. 10a shows its 64 kernels in the (normalized) optical flow
space, according to the method explained in Appendices
D.5 and D.6. From this figure, we observe that, through our
STDP rule, these MS-Conv kernels learn to identify a wide

a) Rotating disk

b) Roadmap

Fig. 9: SS-Conv kernels learned from real sequences. Synaptic strength
is encoded in color brightness.

variety of optical flow vectors, including diagonal motion at
different speeds. The performance of this layer in local mo-
tion perception can be assessed from the qualitative results
in Fig. 12 (first two rows). Here, we compare the response of
the network at this stage to the output of EV-FlowNet [16],
which represents the state-of-the-art of conventional ANNs
in event-based optical flow estimation. From these results, in
both the clockwise and counterclockwise sequences, the re-
sponse of the MS-Conv layer resembles that of EV-FlowNet,
thus confirming the validity of our SNN in local motion
perception. Additional qualitative results are provided in
the supplementary video (see Appendix D.9).

(a) Rotating disk

(b) Roadmap

Fig. 10: MS-Conv kernels learned from real sequences in the (normal-
ized) optical flow space, as in Appendices D.5 and D.6. Motion direction
is encoded in color hue, and speed in color brightness. Each kernel is
depicted as a cross.
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Fig. 11: Neural activity of the Dense layer trained in the rotating-disk se-
quence, in response to the two global motion patterns in this recording.
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Fig. 12: Qualitative results from the evaluation on real event sequences. From left to right, the first column corresponds to the input events, the
following three to the spiking response of the SS-Conv, Merge, and MS-Conv layers, respectively; and the last column to the optical flow estimation
of EV-FlowNet [16]. A color is assigned to each of the kernels comprising the SS-Conv, Merge, and MS-Conv layers. MS-Conv color reference
shown in Fig. 10, and computed as in Appendices D.5 and D.6. SS-Conv and Merge color references not shown in this paper.

Lastly, a Dense layer comprised of sixteen neurons was clockwise rotation, and the rest to counterclockwise. Besides
trained, and the response of its cells is shown in Fig. 11. competition, the different response levels are due to distinct
As expected, the two global motion patterns present in the distributions of local motion estimates in the Pooling layer
data are successfully captured: half of the neurons react to leading to the same global motion pattern.
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6.2.2 Roadmap Texture and Natural Scenes

Fig. 9b shows the appearance of the SS-Conv kernels from
the SNN trained on roadmap recordings. Similarly to those
obtained with the rotating disk, these kernels learned edges
(and combinations thereof) at several orientations, and of
different polarities. However, note that kernel appearance is
significantly less smooth due to the unstructured and low-
contrast features of this texture, besides the sensor noise.
Regarding the MS-Conv layer, Fig. 10b shows its 64 spa-
tiotemporal kernels in the (normalized) optical flow space
(according to Appendices D.5 and D.6). In this figure, we
observe that despite the wide variety of vectors learned,
these are not as uniformly distributed as for the rotating-
disk case. One can see that, first, horizontal motion is the
most frequent local image motion type in the roadmap
recordings; and second, the unsupervised nature of STDP
prioritizes frequent features over others, less frequent, that
may be more distant in this two-dimensional space.
Qualitative results of the network performance up to
this layer are shown in Fig. 12 for roadmap and natural
scene recordings (last five rows). We draw several conclu-
sions from these results. Firstly, the SS-Conv layer is a key
component of the architecture, since it successfully filters
out inconsistent local events sequences, which benefits the
learning and performance of subsequent layers. Secondly,
the optical flow estimation of EV-FlowNet [16] validates our
MS-Conv layer, since it estimates highly similar optical flow
vectors. However, there is a significant difference between
the estimates of these two approaches, besides resolution
(i.e. detail level). EV-FlowNet [16] performs best in high
texture regions, providing a semi-dense estimate of the local
motion. On the other hand, our network only provides
local motion estimates whenever and wherever it discerns
features whose spatiotemporal trace fits one of the MS-Conv
kernels. Due to trace overlap, no estimation is provided
for image regions with high feature density. This limitation
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comes from the working principle of this layer, which takes
inspiration from frequency-based optical flow methods [70]
and bio-inspired motion detectors [69], [81], and for which
these regions are also problematic. Additional qualitative
results are provided in the supplementary video (see Ap-
pendix D.9).

Lastly, Fig. 13 shows the temporal activity of some of the
32 neurons comprising the Dense layer of this architecture,
in response to several global planar motion patterns. These
results confirm the validity of this layer, and hence of the en-
tire SNN, in becoming selective to this motion information
through STDP. Moreover, similarly to the rotating-disk case,
these results reinforce that, since notably different distribu-
tions of local motion estimates may correspond to the same
global motion type, multiple Dense neurons can specialize
to the same motion pattern without overlapping responses.
This is further explained and illustrated in Appendix D.7 for
neurons ¢ = {4,...,8} from Fig. 13a.

6.3 STDP Evaluation

The final experiment of this work consists in an evaluation
of several STDP formulations in the task of learning the ker-
nels of an S5-Conv layer from the recordings of the roadmap
texture. Specifically, we compare our rule, as in Section 4, to
those proposed by Kheradpisheh et al. [25], and Shrestha et
al. [27]; two of the most recent multiplicative formulations
that have successfully been used for image classification
with SNNs. Fig. 14 shows the weight distribution evolution
of the SS5-Conv kernels throughout the learning process,
using each of the aforementioned formulations. Kernel ap-
pearance after learning is shown in Appendix D.8.

The working principle of all STDP formulations is es-
sentially the same. Whenever a neuron fires, the presynap-
tic connections that transferred the input spikes causing
the firing are potentiated, while those that did not are

—_
T
|
—_
T

|
—

I

|
—

T

1
i=9

)
|
|
|
>
}

=15
E
L
b
-

=2 i

i=3 i

i=10 i
=13 1

e
=11 i
E

3 =2 =13 i=1!

-
=2 1

< Il ah ki, T, M A R Y R Y PN
i ! . ..u‘“ . NTELA_,_M M " ‘ﬁi Y R Mo
j .A..... T TR LE B ; ™ ™ n R T T‘ K ; M L “ W ..AILA_,1
I M M ; |l.’h‘ 1 5 E Lhu i A ol ik L.-,, ‘tl d. 1 .'\.. Ah.. L “‘_H
¥ .. A, ‘:i P by 4 a T, ik hat N W
0 1 2 3 4 5 6 7 0 1 2 4 5 6 7 0 1 2 3 4 5 6 7
t [s] t [s] t [s]

(a) Horizontal global motion

(b) Vertical global motion

(c) Diagonal global motion

Fig. 13: Temporal course of the postsynaptic trace (as in Appendix D.4) of the eight most-active neurons (for each case) from the Dense layer
learned from the roadmap texture (bottom), in response to different global planar motion patterns (top). Plots are normalized by the maximum trace
on the stimuli evaluated: 1.0 by i = 3 at t = 3.0 s for the horizontal motion case. Optical flow visual observables (wx, wy, D) computed from the event
sequences with the planar optical flow formulation from [55] (see Appendix C).
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Fig. 14: Evolution of the weight distribution of sixteen SS-Conv kernels throughout the learning process, using Kheradpisheh'’s [25], Shrestha’s [27],
and our STDP formulation. Results obtained with the roadmap texture, the same learning rate, and the same budget of training sequences. Each
distribution is normalized by its maximum value in the learning process: 534 synapses with W = 0.025 for (a), 130 with W ~ —0.871 for (b), and

219 with W = 0.077 for (c); all from the 100% learning segment.

depressed. The differences are in how the relevance of
a connection is determined, and in how it is taken into
account to compute the weight update AW. Both Kherad-
pisheh’s [25] and Shrestha’s [27] formulations use temporal
windows of fixed length to determine whether an input
spike, and so its corresponding synapse, had an influence
on the postsynaptic firing. However, this information is only
employed to determine whether a synapse is potentiated or
depressed, and not in the computation of AW. On the one
hand, Kheradpisheh’s weight update is proportional to the
current weight: AW o< W; ; 4(1 — W; ; ). Results show that
this rule leads to the learning of ambiguous features that
fail to capture the spatiotemporal properties of the input,
since all the weights become either null or unitary (see Fig.
14a). On the other hand, Shrestha’s rule incorporates the
weight dependency in an inversely proportional manner:
AW o e~ "#i.¢ for potentiation, and AW —eWiia for de-
pression. As shown, even though the AW for potentiation
(depression) diminishes as the weights increase (decrease),
weights keep increasing (decreasing) throughout the learn-
ing process (see Fig. 14b), and hence constraints to prevent
them from exploding (vanishing) are required. The use of
these constraints would, in turn, result in a bimodal weight
distribution similar to that of Kheradpisheh'’s rule, with the
aforementioned drawbacks.

As explained in Section 4, and to the best of the authors’
knowledge, our STDP implementation is the first multiplica-
tive formulation in incorporating synaptic relevance in the
computation of AW, resulting in an update rule whose LTP
and LTD processes are not mutually exclusive. We combine
(normalized) presynaptic trace information as a measure of
synaptic relevance, with the inversely proportional weight
dependency from [27]. Results, and the stability proof in-
cluded in Appendix A, confirm that with our novel STDP
formulation, an equilibrium weight is established for each
synapse, towards which the weights converge throughout
the learning process (see Fig. 14c). Since the equilibrium
state depends on synaptic relevance, the features learned
are successful at capturing the spatiotemporal properties of
the input.

7 CONCLUSION

In this paper, we have presented the first SNN in which
selectivity to the local and global motion of the visual scene
emerges through STDP from event-based stimuli. The suc-
cess of this emergence depends on three contributions. First,
an adaptive spiking neuron model is necessary to handle
the rapidly varying input statistics of event-based sensors,
and we present a novel suitable formulation for this pur-
pose. Second, we introduce a novel STDP implementation
that, contrary to the current state-of-the-art of this learning
protocol, is inherently stable. Third, we propose an SNN
architecture that learns to perform a hierarchical feature
extraction, effectively capturing geometric features, iden-
tifying the local motion of these features, and integrating
this information into a global ego-motion estimate. We hope
that this work, and the framework published alongside it,
will provide the first step of many towards highly efficient
artificial motion perception.
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APPENDIX A

PROOF OF STABILITY OF PROPOSED STDP

We use Lyapunov theorem to investigate the global stability
of the STDP implementation that we propose in this work.
To simplify the proof, we assume that neural connectivity is
single-synaptic with no transmission delay. The STDP rule
defined in Egs. (4) and (5) can then be rewritten as:

AW’L,] — ( (W1 j_wlmt)( i,j __ a)

N (10)
— (Wi j —winit) (e(l—Xw) _ a))

Equilibrium weights W; ; are given by AW, ; = 0:

= 1 eXii —q

Wi = 5 In <(1_Xw) ~ a) + Winit (11)
Ifweletz=W,; - W; .- Eq. (10) becomes:
AWm‘ :77( Xij _ a) ( (1-Xi;) _ )i(e—z _ ez) 12)
AWZ‘J‘ :A(e_ — € )

where A(Xi’j, a) is a convenience function containing all
components that are not a function of z.
Then we define the positive definite energy function

V(z) = 2% Assuch, V (2) can be solved as follows:
V(z) = 22 = 2(AW; j — AW, ;) (13)

where AVfVi, j can be computed from the time derivate of Eq.
(11) as:

AW, =A% e el %0) 14
e T A o + 0-%)) —a (14)
and A)A(i,j can be determined using Eq. (1):
~ « 1— ~ _
AXig= 15— ~Xusu)as)

where, here, the subscript m denotes the index of the neuron
with the maximum presynaptic trace.
Combining Eqgs. (14) and (15) we are left with:

1 a eXi e(1=Xi )
AW, =
J ( + 0% 4

2)\)(le Xij —a (16)
’ ( ] Xﬂs?rnl)
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where B(X; jra)isa Convemence expressmn containing all
elements not a function of s~ ; and st
Now the energy derivative can be expressed simply as:

V(z) = Az(e™® —¢*) — Bz(s — Xi st 17)

,J°m
Using the Taylor expansion of e and e~
with:

% we are left

V(z) = —2A(z* +—+ )

i fBz(sé_l f)A(i vslfl)

»Jom
(18)
Now if we look at the case where there is no external
input to the neurons (1 e. the normalized presynaptic trace is
constant, si! = = 0), we have that global asymptotic
stability is guaranteed for A > 0, which can be ensured by

settingn > 0and a < 1.

When considering the input, we can define bounded
error z with input-state stablhty inequality for a bounded
V. ol—1 .

input u = X s, sé

121 < BU=@, ¢ = to) + <Sup lu(r )||> Vit >t (19)

T>to

where 7 is the so-called Lyapunov gain, which will lead to
input-state stability if positive definite.

Now, using the first order approximation for the Taylor
expansion from Eq. (18), we can show:

B (X Jsﬁnl sé_l)
2A

(20)

V(z) < A2 V2| >

with Lyapunov gain v = £

As A must be positive for global asymptotic stability,
for «y to be positive definite, B must also be positive. As
such, Ax and a must have the same sign. Additionally, the
values of the constants in A and B can be used to control
the bounds of the error z.

To give some physical meaning to these parameters
we can see that adjusting a will change the sensitivity of
the STDP update to the presynaptic trace. The larger the
difference |1 — al, the less sensitive the update will be to the
input. The time constant Ax will adjust the rate at whrch
the presynaptic trace is updated from the inputs 5 ! and

sl—1. The larger the time constant the slower the presynaptrc
trace will change and the more bounded the error will
become. The scaling factor a changes the magnitude of the
presynaptic trace and therefore the magnitude of the rate of
change of the presynaptic trace.

One thing to note here is the discontinuity as X; ,,, — 0.
This shows that the bound of the error can become large
if the maximum presynaptic trace is small and the current
neuron being updated is not the neuron with the maximum
presynaptic trace. Physically, this would mean that the net-
work cannot accurately learn when the input is infinitely
sparse. For the case where the input is measurably sparse,
the learning can be improved by compensating with a larger
time constant A x.

APPENDIX B
IMPLEMENTATION DETAILS

In Table 1, the parameters of each layer comprising the
SNNs employed in this work are specified. All the exper-
iments are conducted using our open-source CUDA-based
cuSNN'! library, with a simulation timestep of Aty = 1 ms.

Concerning learning, these architectures are trained in
a layer-by-layer fashion using the unsupervised STDP rule
presented in Section 4. Regardless of the layer type, the
parameter a from Eq. (5) is set to 0, the initialization weight
to Winit = 0.5, the learning rate 1 to 1 x 104, and the
convergence threshold to Ly = 5 x 10~2. As shown in Figs.
4 (right) and 14c, these parameters lead to weight distribu-
tions that, after convergence, are naturally constrained in the
range W € [0, 1] for excitatory synapses, and W € [—1,0]
for inhibitory. Throughout the learning phase, short event
sequences are presented sequentially at random following a
uniform distribution.

1Source code available at https:// github.com/tudelft/cuSNN
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TABLE 1
SNNSs Architectures and Parameters

(a) Checkerboard Texture

Layer r[-] s[] f[[] m[] 7[ms] vnl[] Alms] ol
SS-Conv 7 1 4 1 1 0.5 5 0.4
Merge 1 1 1 1 1 0.001 5 -
MS-Conv 7 2 16 10 [1,50] 0.5 5 0.25
Pooling 8 8 16 1 1 0.001 5 -
Dense — - 16 1 1 0.5 5 0.25

(b) Rotating-Disk [83]
Layer r[-] s[-] f[[1 m[] 7[ms] wvw[] Alms] «af]
SS-Conv 5 2 16 1 1 0.3 5 0.1
Merge 1 1 1 1 1 0.001 5 —
MS-Conv 5 2 64 10 [1,200] 0.3 30 0.1
Pooling 6 6 64 1 1 0.001 5 -
Dense — - 16 1 1 0.3 30 0.1
(c) Roadmap Texture and Natural Scenes [82]

Layer r[-] s[] f[[] m[] 7v[ms] vn[] Alms] ol
SS-Conv 5 2 16 1 1 0.4 5 0.25
Merge 1 1 1 1 1 0.001 5 -
MS-Conv 5 2 64 10 [1,25] 0.4 15 0.25
Pooling 8 8 64 1 1 0.001 5 —

Dense — — 32 1 1 0.4 15 0.25

The resting potential vyest is considered null, the refractory period Ay is set
to 3 ms for (a), and to 1 ms for (b) and (c). For MS-Conv, j3 is set to 0.5, and
the temporal delays are linearly spaced within the specified range. Note that s
denotes the convolutional stride of each layer.

We evaluate the performance of our learning rule and
hierarchical SNN architecture on several synthetic and real
event sequences. For the generation of the former, we em-
ploy the DVS simulator [82] (128 x 128 pixel array) and
the checkerboard pattern shown in Fig. 15a. This simulator
renders intensity images from a three-dimensional virtual
scene at a high rate (1000 Hz), and estimates events by
linearly interpolating logarithmic brightness levels between
frames, thus leading to noise-free event sequences. The
motion of the simulated DVS was restricted to straight tra-
jectories at different constant speeds, and at a fixed distance
with respect to the (virtual) textured planar surface. This,
together with the fact that the checkerboard provides high
contrast and clear edges, facilitates the understanding of the
behavior and main properties of the proposed network.

On the other hand, the real event sequences come from
different sources. Firstly, we conduct experiments on the
rotating-disk event sequence from [83], which corresponds
to a circular disk with eight compartments of varying gray-
levels turning at a constant speed in front of a DAVIS DVS
sensor [11] (240 x 180 pixel array). The disk is shown in Fig.
15¢c. Secondly, we generated several recordings by moving
the SEES1 DVS sensor [12] (320 x 264 pixel array) by hand in
front of the roadmap pattern shown in Fig. 15b. This texture
is largely characterized by unstructured and low-contrast
visual features, thus leading to noisy event sequences. Note
that, in this case, the degrees of freedom of the sensor are not
constrained, and rotations and depth variations are present
in the data along with translational motion at different

(a) Checkerboard (b) Roadmap (c) Rotating disk [83]

(d) Boxes [82]

(e) Dynamic [82]

Fig. 15: Texture patterns and scenes employed for generating the syn-
thetic (a) and real (b—e) event sequences employed in this work.

speeds. Lastly, we also employ several of the recordings
comprising the Event Camera Dataset [82] for validation;
more specifically, the boxes and dynamic sequences shown
in Figs. 15d and 15e, respectively. Similarly to the roadmap
sequences, these recordings of natural scenes contain motion
in all six degrees of freedom.

Throughout the learning phase, and regardless of the
data type and sensor employed, we perform random (with
50% chance) spatial (i.e. horizontal and vertical) and polar-
ity flips to the event sequences as data augmentation mecha-
nisms. Moreover, in both the learning and inference phases,
the spatial resolution of each sequence is downsampled to
half its original size for computational efficiency purposes.

APPENDIX C
PLANAR OPTICAL FLOW FORMULATION

The planar optical flow formulation from [55] relates the
ego-motion of a vision sensor facing a static planar scene
to the perceived optical flow and its corresponding visual
observables. The derivation of this model is made in the
camera-fixed reference frame centered at the focal point of
the sensor, denoted by the subscript C. Position is defined by
the Cartesian coordinates (X¢, Ye, Z¢), with (Ue, Ve, We) as
the corresponding velocity components. Using the pinhole
camera model [84], the ventral flow components (w,, w,) and
the flow field divergence D, which are the so-called optical
flow visual observables, are defined as:

We

D=2-¢

7@

Zy'
where Zj is defined as the distance to the surface along the
optical axis of the sensor. According to [55], (w., wy) are a
quantification of the average flows in the X- and Y -axis of
C, respectively. On the other hand, D is a measure of the
divergence of the optical flow field, thus measuring depth
variations with respect to the planar surface.
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APPENDIX D
SUPPLEMENTARY MATERIAL

D.1 Effect of the Max-Based Homeostasis Formulation

Figs. 16 and 17 illustrate the need for the homeostasis
parameter as detailed in Egs. (7) and (8), which considers
the maximum presynaptic trace of the direct spatial neigh-
borhood IN; j of the neuron under analysis, when dealing
with layers characterized by retinotopically-arranged cells.
For a better understanding, Fig. 16 should be compared to
Figs. 6 and 9a, and Fig. 17 to Figs. 7a and 7b.

As shown, when the neuron-specific presynaptic trace is
employed instead of the full homeostasis formulation, con-
volutional kernels specialize to the leading edge of moving
features, and hence most of these kernels are characterized
by more ambiguous synaptic configurations in which the
strong synapses are mainly located on the receptive field
borders. The effect of using this incomplete model on the
performance of the SS-Conv layer is that a greater number
of kernels is required to extract the same number of spatial
features. However, the impact of this formulation is more
visible in the MS-Conv layer. As shown in Fig. 17, the vast

a) Checkerboard

b) Roadmap

Fig. 16: SS-Conv kernels learned from synthetic (top) and real event
sequences (bottom) with the neuron-specific homeostasis formulation.
Synaptic strength is encoded in color brightness.

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

k=13 k=14 k=15 k=16
(a) x-1 representatlon

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
TL, . ....

= =10 k—ll k=12 k=13 k=14 k=15 k=16
b) y-7 representation

Fig. 17: MS-Conv kernels learned from the checkerboard texture with
the neuron-specific homeostasis formulation. Synaptic strength is en-
coded with brightness.

majority of MS-Conv kernels lose their velocity-selective
properties, simply because the spatiotemporally-oriented
traces of input features are no longer captured. The leading-
edge specialization also makes the learning process more
complex, since kernel overlap increases. This, in turn, leads
to some of these kernels being always prevented from firing,
i.e. prevented from triggering STDP (e.g. k = 11).

D.2 Spatiotemporal Structure of MS-Conv Kernels

Fig. 18 shows the spatiotemporal appearance of two MS-
Conv kernels learned from the checkerboard texture.

D.3 Velocity Selectivity of MS-Conv Neurons

Fig. 19 shows the velocity selectivity of MS-Conv neurons as
a function of 8. These results confirm that, while selectivity
to motion direction emerges regardless of the value of j,
the inhibitory component of MS-Conv kernels is crucial
for the development of speed selectivity. A more extensive
sensitivity analysis of these properties can be found in [77].

D.4 Temporal Response of Dense Neurons

Fig. 20 is shown to assess the temporal activity of neurons
from the Dense layer learned using the checkerboard texture

Fig. 18: Three-dimensional illustration of two of the sixteen MS-Conv
kernels learned from the checkerboard texture. Synaptic strength is
encoded with brightness.
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Fig. 19: Direction and speed selectivity of neurons in the MS-Conv layer
as a function of 3. The dashed lines indicate the training configuration,
and each response plot is normalized by its maximum value. Results
obtained with the checkerboard texture. 3 = 0 means no inhibition, while
B = 1 that inhibitory and excitatory weights contribute equally to the
response of this layer.
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(a) Constant speed

(b) Constant acceleration

(c) Fluctuating acceleration

Fig. 20: Temporal course of the postsynaptic trace of neurons i = 1—4 from the Dense layer learned from the checkerboard texture (bottom, see
Fig. 8), in response to leftward input stimuli with different speed profiles (top). Plots are normalized by the maximum trace on the stimuli evaluated:

0.4098 by i = 4 at t = 0.36 s for the fluctuating acceleration case.

in response to speed profiles that differ from the constant-
speed sequences employed for learning. Due to the pure
leftward motion of the stimuli used for this evaluation, only
the activity of neurons specialized to this motion direction is
shown. Neural activity is measured through the postsynaptic
trace y;(t) of these cells, which, similarly to Eq. (1), keeps
track of the recent history of postsynaptic spikes emitted by
a particular neuron, and is given by:

Yodt
Response aspects, such as the overlap of neural activity

for some ventral flow ranges, or the dominance of i = 4 for
fast motion, are in line with the results shown in Fig. 8a.

= —yi(t) + 5 (t) (22)
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(a) Computation of spatial histograms
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(b) Line fitting of the difference of histograms

Fig. 21: Schematic of the histogram-matching algorithm employed to
associate MS-Conv kernels with optical flow vectors based on their
spatiotemporal weight distribution.

D.5 From MS-Conv Kernels to Optical Flow Vectors

To assess the performance of an MS-Conv layer, the optical
flow vector identified by each of its spatiotemporal kernels
needs to be computed. For this purpose, we employ a vari-
ation of the efficient histogram-matching method referred
to as EdgeFlow [85] on the spatial appearance of these
kernels over time (i.e. over the different synaptic delays). It
is important to remark that the application of this algorithm
does not have any impact on the learning or performance of
subsequent layers in the neural architecture.

The working principle of this approach is illustrated in
Fig. 21 for an MS-Conv kernel selective to the local motion
of a feature towards the bottom-left corner of the receptive
field. Firstly, after convergence, two of the m groups of
presynaptic connections of the kernel under analysis are
selected. Since optical flow is to be computed from the
difference between their spatial weight distributions, the
moving feature has to be clearly discernible in both cases.
Accordingly, we select the two more distant groups of
synapses, denoted by (Tvin, Tmax), whose cumulative sum
of weights Yw is greater than the maximum sum Xwyax
scaled by v € [0,1]. Secondly, for each synaptic group,
the histogram of each spatial dimension is computed by
summing up the weights along the opposite dimension, as
shown in Fig. 21a. Lastly, the resulting weight histograms
are subtracted, and the difference for each spatial dimension
is fitted to a linear model through least-squares fitting, as
shown in Fig. 21b. The slopes of these lines, denoted by
(04, 0,) for the horizontal and vertical dimension respec-
tively, are then used as metrics for the local motion of the
identified feature. The sign of these slopes encodes motion
direction, while speed is encoded in their absolute value.
Consequently, the optical flow components of an MS-Conv
kernel are obtained as follows:

0. 0.

v = (23)

! TMAX — TMIN TMAX — TMIN
where the inverse of the difference between temporal delays
is used as a scaling factor to consider the fact that each
kernel uses a specific pair of synaptic groups based on its

unique spatiotemporal weight distribution.
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Fig. 22: Optical flow field color-coding scheme. Direction is encoded in
color hue, and speed in color brightness.

D.6 Optical Flow Field Color-Coding

To visualize local motion estimates, we use the color-coding
scheme shown in Fig. 22. Direction of motion is encoded in
color (i.e. in hue), while speed is encoded in color bright-
ness. Note that, when assigning colors to the kernels of an
MS-Conv layer, the corresponding optical flow components
(obtained as in Appendix D.5), are normalized to the maxi-
mum value of the layer under analysis.

D.7 Texture Effect in Global Motion Perception

Dense neurons learn from the activity of the Pooling layer,
which is a low-dimensional representation of the local mo-
tion estimates of the MS-Conv layer. If two activity patterns
from the Pooling layer are clearly distinct, Dense neurons
will learn them individually, assuming they are equally
frequent in the learning process. On the other hand, due
to the aperture problem [71], the MS-Conv layer can only
represent the optical flow vectors that are normal to the
features in sight. Therefore, because of input texture, two

Fig. 23: Input events (left) and local motion perceived by the MS-Conv
layer (right) in a sequence from the roadmap texture. Both snapshots
correspond to the same global motion according to the planar optical
flow formulation from [55] (see Appendix C): wx ~ —0.4, w, = 0, and
D = 0. Specifically, they correspond to t = 0.75 s (top) and t = 1.25 s
(bottom), from Fig. 13a. MS-Conv color reference shown in Fig. 10, and
computed as in Appendices D.5 and D.6

activity patterns from the Pooling layer could be sufficiently
distinct to have different Dense neurons learning them
separately, even though they correspond to the same global
motion pattern. This is the case for neurons ¢ = {4,5} and
i ={6,7,8} from the Dense layer trained on the roadmap
texture. According to Fig. 13, these neurons are reactive to
pure leftward image motion. However, the former pair of
neurons is reactive to the leftward motion of almost pure
vertical features (see Fig. 23, top), while the latter group is
selective to the same global motion pattern, but perceived
through features with different spatial configuration (see
Fig. 23, bottom).

D.8 STDP Evaluation: SS-Conv Kernel Appearance

Fig. 24 shows the appearance of a set of SS-Conv kernels
learned from the roadmap texture using our STDP formu-
lation, and those proposed by Kheradpisheh et al. [25], and
Shrestha et al. [27]. Synaptic weights are clipped to the range
W, j.a € [0, 1] for display purposes only.

D.9 Video

In the supplementary video, we show additional qualitative
results of the network performance up to the MS-Conv layer
on the real event sequences employed for evaluation in this
work. The video can be found at https://goo.gl/MRTeUv.

mEOL'ES 1S
OSSR el

a) Kheradpisheh et al. [25]

(b) Shrestha et al. [27]

(c) Ours

Fig. 24: Appearance of sixteen SS-Conv kernels after the learning
process, using Kheradpisheh’s [25], Shrestha’s [27], and our STDP for-
mulation. Results obtained with the roadmap texture, the same learning
rate, and the same budget of training sequences. Synaptic strength is
encoded in color brightness.


https://goo.gl/MRTeUv
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