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Abstract—End-to-end distance metric learning (DML) has been applied to obtain

features useful in many computer vision tasks. However, these DML studies have

not provided equitable comparisons between features extracted from DML-based

networks and softmax-based networks. In this paper, we present objective

comparisons between these two approaches under the same network

architecture.
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1 INTRODUCTION

RECENT developments in deep convolutional neural networks have
made it possible to classify many classes of images with high accu-
racy. It has also been shown that such classification networks work
well as feature extractors. Features extracted from classification
networks show excellent performance in image classification [1],
detection, and retrieval [2], [3], even when they have been trained
to classify 1,000 classes of the ImageNet dataset [4]. It has also been
shown that fine-tuning for target domains further improves the
features’ performance [5], [6].

On the other hand, distance metric learning (DML)
approaches have recently attracted considerable attention. These
obtain a feature space in which distance corresponds to class
similarity; it is not a byproduct of the classification network.
End-to-end distance metric learning is a typical approach to con-
structing a feature extractor using convolutional neural net-
works and has been the focus of numerous studies [7], [8], [9],
[10], [11].

However, there have been no experiments comparing softmax-
based features with DML-based features under the same network
architecture or with adequate fine-tuning. An analysis providing a
true comparison of DML features and softmax-based features is
long overdue.

Fig. 1 depicts the feature vectors extracted from a softmax-
based classification network and a metric learning-based network.
We used LeNet architecture for both networks, and trained on the
MNIST dataset [12]. For DML, we used the contrastive loss func-
tion [13] to map images in two-dimensional space. For softmax-
based classification, we added a two- or three-dimensional fully
connected layer before the output layer for visualization. DML
succeeds in learning feature embedding (Fig. 1a). Softmax-based
classification networks can also achieve a result very similar to
that obtained by DML—Images are located near one another if
they belong to the same class and far apart otherwise (Figs. 1b
and 1c).

Our contributions in this paper are as follows:

� We show methods to exploit the ability of deep features
extracted from softmax-based networks, such as normali-
zation and proper dimensionality reduction. They are tech-
nically not novel, but they must be used for fair
comparison between the image representations.

� We demonstrate that deep features extracted from soft-
max-based classification networks show competitive, or
better results on clustering and retrieval tasks comparing
to those from state-of-the-art DML-based networks [9],
[10], [11] on the Caltech UCSD Birds 200-2011 dataset and
the Stanford Cars 196 dataset.

� We show how the clustering and retrieval performances of
softmax-based features andDML features change according
to the size of the dataset. DML features show competitive or
better performance in the Stanford Online Product dataset
which consists of very small number of samples per class.

� We show that L2 normalization of softmax-based features
is a powerful way to improve their performance. Even
though we introduce probability invariant shift, which
removes effects of softmax ambiguity and null space ambi-
guity, L2 normalization still works better.

In order to align the condition of the network architecture, we
restrict the network architecture to GoogLeNet [14] which has been
used in state-of-the-art of DML studies [9], [10], [11].

2 BACKGROUND

2.1 Previous Work

2.1.1 Softmax-Based Classification and Repurposing of the

Classifier as a Feature Extractor

Convolutional neural networks have demonstrated great potential
for highly accurate image recognition [14], [15], [16], [17]. It has been
shown that features extracted from classification networks can be
repurposed as a good feature representation for novel tasks [1], [2],
[18] even if the network was trained on ImageNet [4]. For obtaining
better feature representations, fine-tuning is also effective [6].

2.1.2 Deep Distance Metric Learning

Distance metric learning (DML), which learns a distance metric,
has been widely studied [18], [19], [20], [21]. Recent studies have
focused on end-to-end deep distance metric learning [7], [8], [9],
[10], [11], [12]. However, in most studies comparisons of end-to-
end DML with features extracted from classification networks
have not been performed using architectures and conditions suited
to enable a true comparison of performance.

Bell and Bala [7] compared classification networks and siamese
networks, but they used coarse class labels for classification net-
works and fine labels for siamese networks; thus, it was left unclear
whether siamese networks are better for feature-embedding learn-
ing than classification networks. Schroff et al. [8] used triplet loss
for deep metric learning in their FaceNet, which showed perfor-
mance that was state-of-the-art at the time, but their network was
deeper than that of the previous method (Taigman et al. [23]); thus,
triplet loss might not have been the only reason for the perfor-
mance improvement, and the contribution from adopting triplet
loss remains uncertain. Song et al. [9] used lifted structured feature
embedding; however, they only compared their method with a
softmax-based classification network pretrained on ImageNet
(Russakovsky et al., [4]) and did not compare it with a fine-tuned
network. Sohn [10], and Song et al. [11] also compared their meth-
ods to lifted structured feature embedding, thus the comparisons
with softmax-based features have not been shown.
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2.2 Differences Between Softmax-Based Classification
and Metric Learning

For classification, the softmax function (Eq. (1)) is typically used

pc ¼ expðucÞPC
i¼1 expðuiÞ

; (1)

where pc denotes the probability that the vector u belongs to the
class c. The loss of the softmax function is defined by the cross-
entropy

E ¼ �
XC

c¼1

qc log pc; (2)

where q is a one-hot encoding of the correct class of u. To minimize
the cross-entropy loss, networks are trained to make the output
vector u close to its corresponding one-hot vector. It is important to
note that the target vectors (the correct outputs of the network) are
fixed during the entire training (Fig. 2).

On the other hand, DML methods use distance between sam-
ples. They do not use the values of the labels; rather, they ascertain
whether the labels are the same between target samples. For exam-
ple, contrastive loss [13] considers the distance between a pair of
samples. Recent studies [8], [9], [10], [11] use pairwise distances
between three or more images at the same time for fast conver-
gence and efficient calculation. However, these methods have
some drawbacks. For DML, in contrast to optimization of the soft-
max cross-entropy loss, the optimization targets are not always
consistent during training even if all possible distances within the
mini-batch are considered. Thus, the DML optimization converges
slowly and is not stable.

3 METHODS

3.1 Dimensionality Reduction Layer

One of DML’s strength in using fine-tuning is the flexibility of its
output dimensionality by a final fully connected layer. When using
features of a mid-layer of a softmax classification network, on the
other hand, the dimensionality of the features is fixed. Some

existing methods [6] use PCA or discriminative dimensionality
reduction to reduce the number of feature dimensions. In our
experiment, we evaluated three methods for changing the feature
dimensionality. Following conventional PCA approaches, we
extracted features from a 1,024-dimensional pool5 layer of GoogLe-
Net [14] (Fig. 3a) and applied PCA to reduce the dimensionality.
As a comparison, we also tried random projection for dimensional-
ity reduction via orthogonal projection matrix. In a contrasting
approach, we made use of a fully connected layer—we added a
fully connected layer having the required number of neurons just
before the output layer (FCR1, Fig. 3b). We also investigated a third
approach in which a fully connected layer is added followed by a
dropout layer (FCR2, Fig. 3c).

3.2 Normalization

In this study, all the features extracted from the classification net-
works are from the last layer before the last output layer. The out-
puts are normalized by the softmax function and then evaluated
by the cross-entropy loss function in the networks. The output vec-
tor p ¼ pið Þ is given by softmax yð Þ. For an arbitrary constant c,
softmax yð Þ equals to softmax yþ c1ð Þ. The features x we extracted
from the networks are given as y ¼ Wxþ b, where W and b are
from the linear projection matrix and the bias, respectively. As
pointed out, the vector y has an ambiguity in the softmax function,
thus x should be normalized for the use of deep features.

In this paper, we show that L2 normalization is empirically
effective. Some studies used L2 normalization for deep features

Fig. 1. Depiction of MNIST dataset. (a) Two-dimensional features obtained by siamese network. (b) Two-dimensional features extracted from softmax-based classifier;
these features are well separated by angle but not by euclidean norm. (c) Three-dimensional features extracted from softmax-based classifier; we normalized these to
have unit L2 norm and depict them in an azimuth–elevation coordinate system. The three-dimensional features are well separated by their classes.

Fig. 2. Illustration of learning processes for softmax-based classification network
and siamese-based DML network. For softmax, the gradient is defined by the dis-
tance between a sample and a fixed one-hot vector; for siamese by the distance
between samples.

Fig. 3. GoogLeNet [14] architecture we use in this paper.We extracted the features of
the red-colored layers. For (a), we applied PCA to reduce the number of feature
dimensions. For (b) and (c), the dimensionality is reduced by the fc_reduction layer.

1280 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 5, MAY 2020



extracted from softmax-based classification networks [6], [23],
whereas many recent studies have used the features without any
normalization [9], [15], [26].Wx and Wx=jxj do not always result in
the same probabilities after the softmax function is applied. Apply-
ing L2-normalization for deep features rounds the confidence of
predicted results while it keeps the magnitude relationship
between probabilities of every classes. However, as Fig. 1b clearly
indicates, the distance between features extracted from a softmax-
based classifier should be evaluated by cosine similarity, not by the
Euclidean distance. In this study, we mainly validated the effi-
ciency of L2 normalization of deep features.

We also considered another way to cope with the ambiguity
introduced by the shift invariance of softmax function and null
space of W . We define a distance metric that takes softmax invari-
ance and the null space into account, which treats features that
result in the same probabilities as equal. We report the experimen-
tal results of using the distance metric with probability invariant
shift in Section 4.4.

4 EXPERIMENTS

In this section, we compared the deep features extracted from clas-
sification networks to those from state-of-the-art DML-based
networks [9], [10], [11]. The GoogLeNet architecture [14] was used
for all the methods—thus, the numbers of parameters are the same
between DML-based networks and softmax-based features. All
the networks were fine-tuned from the weights pretrained
on ImageNet [4]. We used the Caffe [27] framework for the
implementation.

4.1 Comparisons Between Softmax-Based Features and
DML-Based Features

Here, we give our evaluation of clustering and retrieval scores for
the state-of-the-art DML methods [9], [10], [11] and for the softmax
classification networks. We used the Caltech UCSD Birds 200-2011
(CUB) dataset [24], the Stanford Cars 196 (CAR) dataset [25], and

the Stanford Online Products (OP) dataset [9]. For CUB and CAR,
we used the first half of the dataset classes for training and the rest
for testing. For OP,we used the training–testing class split provided.
The dataset properties are shown in Table 1. We emphasize that the
class sets used for training and testingwere completely different.

For clustering evaluation, we applied k-means clustering 100
times and calculated Normalized Mutual Information (NMI) [28];
the value for k was set to the number of classes in the test set. For
retrieval evaluation, we calculated Recall@K [29].

In Tables 2 and 3, we show comparisons of the performance of
clustering and retrieval using NMI and Recall@K scores, respec-
tively, for CUB and CAR datasets. We compared the softmax-based
features, lifted structure [9], N-pair loss [10] and the clustering loss
[11]. The results of the DML methods were quoted from the paper
[11]. Regarding the lifted structure [9], the results in the parenthesis
correspond to the scores we obtained from running the publicly
available code ourselves, which we confirmed were almost the
same as those in [11]. As we can see from Tables 2 and 3, softmax-
based features outperformed DML features. The softmax-based
features all performed well in the two datasets.

In OP dataset shown in Table 4, contrasting to CUB and CAR
datasets, DML features outperform softmax-based features. We
will make detailed analysis in the subsequent section.

4.2 Detailed Comparisons Between Softmax-Based
Features and Lifted Structure Embedding Features

We made detailed comparisons between softmax-based features
and lifted structure embedding [9] when changing dimensional-
ities and size of data. We conducted these experiments using the
code available for lifted structure embedding [9].

First, we show how the performance varies when changing the
feature dimensionalities. We changed the dimensionalities of soft-
max-based features via PCA, FCR1 and FCR2, and investigated
how the performance of clustering and retrieval varied. We com-
pared them against those of lifted structure embedding of the same
dimensionality.

TABLE 1
Properties of Datasets Used in Our Experiments

Dataset Train Test Total

CUB [24] 5,864 5,924 11,788
100 100 200

CAR [25] 8,054 8,131 16,185
98 98 196

OP [9] 59,551 60,502 120,053
11,318 11,316 22,634

Each cell shows the number of images (upper figure)
and the number of classes (lower figure).

TABLE 2
CUB: NMI (Clustering) and Recall@K (Retrieval) Scores for the Test Set

of the Caltech UCSD Birds 200-2011 (CUB) Dataset

(clustering) Recall@K (retrieval)

dim NMI K = 1 K = 2 K = 4 K = 8

Lifted struct [9] 64 56.5 43.6 56.6 68.6 79.6
64 (56.0) (42.7) (55.0) (67.2) (78.1)

N-pair loss [10] 64 57.2 45.4 58.4 69.5 79.5
Clustering loss [11] 64 59.2 48.2 61.4 71.8 81.9
Random projection + L2 64 56.9 47.5 60.1 71.9 81.6
PCA + L2 64 60.8 51.1 64.0 75.3 84.0
FCR1 + L2 64 59.1 49.0 61.1 72.7 82.3
FCR2 + L2 64 57.4 48.0 60.3 72.2 81.6

TABLE 3
CAR: NMI (Clustering) and Recall@K (Retrieval) Scores for the Test Set

of the Stanford Cars 196 (CAR) Dataset

(clustering) Recall@K (retrieval)

dim NMI K = 1 K = 2 K = 4 K = 8

Lifted struct [9] 64 56.9 53.0 65.7 76.0 84.0
64 (57.1) (50.5) (63.6) (74.9) (83.6)

N-pair loss [10] 64 57.8 53.9 66.8 77.8 86.4
Clustering loss [11] 64 59.0 58.1 70.6 80.3 87.8
Random projection + L2 64 53.6 63.5 74.4 83.2 89.6
PCA + L2 64 58.3 69.4 80.0 87.2 92.4
FCR1 + L2 64 58.7 66.7 77.7 85.2 90.8
FCR2 + L2 64 60.4 67.9 78.4 86.1 91.3

TABLE 4
OP: NMI (Clustering) and Recall@K (Retrieval) Scores for the Test Set

of the Online Product (OP) Dataset

(clustering) Recall@K (retrieval)

dim NMI K = 1 K = 10 K = 100

Lifted struct [9] 64 88.7 62.5 80.8 91.9
64 (87.7) (61.0) (79.9) (91.5)

N-pair loss [10] 64 89.4 66.4 83.2 93.0
Clustering loss [11] 64 89.5 67.0 83.7 93.2
Random projection + L2 64 85.5 54.3 69.6 81.4
PCA + L2 64 87.5 62.4 78.9 89.7
FCR1 + L2 64 87.7 61.3 78.6 90.1
FCR2 + L2 64 87.9 62.5 79.8 90.8
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For training, we multiplied the learning rates of the changed
layers (output layers for all models and the fully connected layer
added for FCR1 and FCR2) by 10. The batch size was set to 128,
and the maximum number of iterations for our training was set to
20,000, which was large enough for the three datasets to converge
as mentioned in [11]. These training strategies were exactly the
same as those used in [9].

We show the results for CUB and CAR datasets in Fig. 4 and in
Fig. 5, respectively, under varying dimensionalities. The deep fea-
tures extracted from the softmax-based classification networks out-
performed the lifted structured feature embedding in clustering
(NMI) and retrieval (Recall@K).

For clustering performance measured by NMI, all of the soft-
max models (PCA, FCR1, and FCR2) showed better scores than the
lifted structured feature embedding. Regarding normalization,
softmax-based features with L2 normalization showed better per-
formance than those without normalization. The NMI scores of

PCA, FCR1 and FCR2 monotonically increased as the feature
dimensionality increased for the CUB dataset (Fig. 4). On the other
hand, in CAR dataset (Fig. 5), the NMI scores of FCR2 and the
lifted structure embeddings decreased from 256 dimensions and
those of PCA and FCR1 were saturated above 256 dimensions. This
experimental result shows that 1,024 dimensions is too large to rep-
resent the image classes of CAR dataset. It also implies that the fea-
ture dimensionality should be carefully considered in order to
achieve best performance depending on the target data.

For retrieval performance measured by Recall@K metric, the
softmax-based features also outperformed features of lifted struc-
tured feature embedding. Regarding L2 normalization, features
with normalization showed better score than without L2-
normalization.

Fig. 6 shows the clustering and retrieval performance measured
by NMI, and Recall@K, respectively, for the Online Products data-
set. Contrasting to CUB and CAR datasets, the softmax-based

Fig. 4. Comparisons between softmax-based features and lifted structured feature embedding [9] on NMI (clustering) and Recall@K (retrieval) scores for the test set of
the Caltech UCSD Birds 200-2011 (CUB) dataset. The dimension of the feature used in the retrieval experiments is 64.

Fig. 5. Comparisons between softmax-based features and lifted structured feature embedding [9] on NMI (clustering) and Recall@K (retrieval) scores for the test set of
the Stanford Cars 196 (CAR) dataset. The dimension of the feature used in the retrieval experiments is 64.

Fig. 6. Comparisons between softmax-based features and lifted structured feature embedding [9] on NMI (clustering) and Recall@K (retrieval) scores for the test set of
the Online Products (OP) dataset.The dimension of the feature used in the retrieval experiments is 64.
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features with L2 normalization and the lifted structure embedding

showed almost the same performance in the clustering and

retrieval. As shown in Table 1, the OP dataset is very different

from the CUB and CAR datasets in terms of the number of classes

and the number of samples per class—the number of classes is 22 k

and the number of samples is 120 k. The number of samples per

class in the OP dataset is 5.3 on average, which is far smaller than

the CUB and CAR dataset.

4.3 The Effect of the Dataset Scales

From the results for these three datasets, we conjecture that the data-
set size—that is the number of samples per class—has a consider-
able influence on softmax-based features. Hence, we changed the
size of datasets by sampling the images of CUB and CAR datasets
for each class and ran the experiments again. We constructed seven
datasets of different sizes, containing 5, 10, 20, 40, 60, 80, and 100
percent of the whole dataset, respectively. Among them, 5 percent
corresponds to approximately 3 and 4 images per class in the CUB
and the CARdataset, respectively. As shown in Figs. 7 and 8, the dif-
ferences between the scores for softmax and DML were small if the
size of the training dataset was small. The gap between softmax and
DML became larger as the dataset size increased. The softmax-
based classifierwas largely influenced by the size of the dataset.

4.4 Distance Metric with Probability Invariant Shift

We define a distance metric that considers the softmax invariance
and null space of the linear projection matrix W. When two feature
vectors are mapped to the same probability, the distance between
the two becomes zero. Assume a vector u such that

Wu ¼ 1: (3)

The shift operation xþ cu has no influence on the softmax
operation because softmax Wxð Þ ¼ softmax W xþ cuð Þð Þ ¼ softmax

Wxþ c1ð Þ, where c is an arbitrary constant. u exists when the
dimensionality of the feature x is larger than the number of classes
to be classified. u is represented by

u ¼ c0W
T WWT
� ��1

1þ
XD�1

i¼1

civi; (4)

where WT WWT
� ��1

is the pseudo-inverse of the linear projection
matrix W , v1 . . . vD�1f g are the basis vectors that span the null
space ofW , and c0 . . . cD�1f g are arbitrary constants. The shift oper-
ation is called the probability invariant shift in this paper. Using
the probability invariant shift, the distance between x1 and x2,
defined below, removes the effects of the softmax ambiguity and
dimensionality reduction

d x1; x2ð Þ ¼ min
c0 ;...;cD�1f g

x1 � x2 � c0W
T WWT
� ��1

1�
XD�1

i¼1

civi

�����

�����:

(5)

Fig. 7. CUB: NMI (clustering), and Recall@K (retrieval) scores for test set of the Caltech UCSD Birds 200-2011 dataset under different dataset sizes. The feature
dimensionality is fixed at 1,024.

Fig. 8. CAR: NMI (clustering), and Recall@K (retrieval) scores for test set of the Stanford Cars 196 dataset under different dataset sizes. The feature dimensionality is
fixed at 256.

TABLE 5
NMI Scores for the Test Set of the Caltech UCSD Birds 200-2011 (CUB)
Dataset: Comparisons of the Distance Metric with a Probability Invariant

Shift and L2 Normalization

dimensionality

128 256 512 1024

FCR 1 59.4 59.7 60.4 61.1
FCR 1+Shift 59.2 59.1 59.3 59.3
FCR 1+L2 60.1 60.4 60.9 62.0

FCR 2 59.6 60.9 61.6 61.8
FCR 2+Shift 59.3 60.0 60.0 60.1
FCR 2+L2 60.5 61.7 62.2 62.3
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In this section, we present comparative experiments on the dis-
tance with a probability invariant shift and with L2 normalization
using the CUB and the CAR datasets. Because the CUB and CAR
have 100 and 98 classes in their training datasets respectively, we
use f128; 256; 512; 1024g dimensionality for the features for the
experiments.

Tables 5 and 6 show the results of the comparisons. In all cases,
the L2 normalization was the most effective. The results demon-
strated that the distance metric with a probability invariant shift
had little effect on the clustering performance.

5 CONCLUSION

Because there was no equitable comparison in previous studies, we
conducted comparisons of the softmax-based features and the
state-of-the-art DML features using a design that would enable
these methods to objectively demonstrate their true performance
capabilities. Our results showed that the features extracted from
softmax-based classifiers performed better than those from state-
of-the-art DMLmethods [9], [10], [11] on fine-grained classification,
clustering, and retrieval tasks when the size of the training dataset
(samples per class) is large. The results also showed that the size of
the dataset largely influenced the performance of softmax-based
features. When the size of the dataset was small, DML showed bet-
ter or competitive performance. DML methods have advantages
when the number of classes is very large and the softmax-based
classifier is no longer applicable. In DML studies, softmax-based
feature have rarely been compared fairly with DML-based feature
under the same network architecture or with adequate fine-tuning.
This paper revealed that the softmax-based features are still strong
baselines. The results suggest that fine-tuned softmax-based fea-
tures should be taken into account when evaluating the perfor-
mance of deep features.

5.1 Limitations

� When the number of classes is huge, it is hard to train clas-
sification networks due to GPU memory constraints. DML-
based methods are suitable for such cases because they do
not need the output layer which is proportional to the
number of classes.

� For cross-domain tasks, such as sketches to photos [30],
[31] or aerial views to ground views [32], DML is effective.
Classification-based learning needs complicated learning
strategies like in [33]. DML-based methods can learn cross-
domain representation only by using a pair of networks.

� For datasets with continuous labels, DML-based methods
might be helpful because classifier-based method cannot
deal with them. However, most recent DML studies are
specialized to datasets with discrete labels. To utilize the
methods to datasets with continuous labels, some exten-
sions are necessary.
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