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Abstract

Popular clustering algorithms based on usual distance functions (e.g., Euclidean distance) of-
ten suffer in high dimension, low sample size (HDLSS) situations, where concentration of pairwise
distances has adverse effects on their performance. In this article, we use a dissimilarity measure
based on the data cloud, called MADD, which takes care of this problem. MADD uses the dis-
tance concentration phenomenon to its advantage, and as a result, clustering algorithms based
on MADD usually perform better for high dimensional data. Using theoretical and numerical
results, we amply demonstrate it in this article.

We also address the problem of estimating the number of clusters. This is a very challenging
problem in cluster analysis, and several algorithms have been proposed for it. We show that many
of these existing algorithms have superior performance in high dimensions when MADD is used
instead of the Euclidean distance. We also construct a new estimator based on penalized Dunn
index and prove its consistency in the HDLSS asymptotic regime, where the sample size remains
fixed and the dimension grows to infinity. Several simulated and real data sets are analyzed to
demonstrate the importance of MADD for cluster analysis of high dimensional data.

Keywords: Dunn index, hierarchical clustering, high dimensional consistency, k-means cluster-
ing, pairwise distances, Rand index.

1 Introduction

Let x1, . . . ,xn ∈ Rd be a sample of n unlabeled observations coming from different populations.

The aim of cluster analysis is to divide this sample into several groups of ‘similar’ observations. In

practice, one uses an appropriate measure of similarity (or, dissimilarity) between a pair of observa-

tions, and a clustering algorithm is developed based on that. When all measurement variables are

continuous, a popular choice for the dissimilarity index is the Euclidean distance or the squared Eu-

clidean distance. Popular clustering algorithms like k-means, k-medoids and hierarchical clustering

(see Hastie et al. 2009; Duda et al. 2012) generally use dissimilarity indices based on the Euclidean

distance. Spectral clustering algorithms (see von Luxburg 2007) often use similarity index based on
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the radial basis function, which is a decreasing function of the Euclidean distance. These algorithms

work well when the sample size is sufficiently large. But, like other nonparametric methods, they

often perform poorly in high dimension, low sample size (HDLSS) situations.

To demonstrate this, we consider an example (call it Example A), with two d-dimensional normal

distributions Nd(0d, σ21Σd) and Nd(µd, σ22Σd), where 0d = (0, . . . , 0)>, µd = (1,−1, . . . , (−1)d+1)>,

and Σd = ((σij))d×d is a block diagonal matrix with σii = 1 for i = 1, . . . , d, σ(2i−1)2i = σ2i(2i−1) =

0.98 for i = 1, . . . , bd/2c (btc is the largest integer ≤ t) and σij = 0 otherwise. Taking σ21 = 0.5

and σ22 = 2, we generated 50 observations from each distribution. Figure 1(a) shows the central

regions of these two distributions with coverage probabilities 0.25, 0.5, 0.75 and 0.9 when d = 2. We

used the average linkage method (AvgL) as well as the k-means algorithm (kM) based on Euclidean

distance to estimate two clusters in the sample consisting of 100 observations. For i = 1, . . . , n, let

C(xi) be the actual cluster label of xi and δ(xi) be the cluster label assigned to xi by a clustering

algorithm δ. We measure the performance of δ using the Rand index (see Rand 1971)

R(δ) =

(
n

2

)−1 ∑
1≤i<j≤n

I
[
I{δ(xi) = δ(xj)}+ I{C(xi) = C(xj)} = 1

]
, (1)

where I{·} is the indicator function. Note that δ leads to perfect clustering if δ(xi) = π{C(xi)}

for all i = 1, . . . , n and a suitable permutation π of {1, . . . ,max{C(x1), . . . , C(xn)}}. In that case,

we have R(δ) = 0. Higher values of Rand index indicate more deviation from perfect clustering.

We repeated our experiment 100 times, and the average Rand index of an algorithm over these 100

trials was computed for d = 2r, with r = 1, . . . , 11. In this example, separation between the two

populations is quite evident (see Figure 1(a)), and it increases with the dimension. So, for a good

clustering algorithm, the Rand index is expected to shrink to 0 as d increases. But, that was not the

case for AvgL and kM. Both of them had miserable performance for all values of d (see Figure 2(a)).

The spectral clustering algorithm proposed by Shi and Malik (2000) (Spect) also had higher Rand

index when a similarity measure based on radial basis function was used (see Figure 2(a)).

We carried out another experiment with observations generated from three distributions with

disjoint supports, viz., Ud(0, 0.5), Ud(1, 1.5) and Ud(2, 2.5). Here Ud(a, b) denotes the d-dimensional

uniform distribution over the region {x ∈ Rd : a
√
d ≤ ‖x‖ ≤ b

√
d}. Figure 1(b) shows the supports

of these three distributions for d = 2. We generated 50 observations from each distribution, and

different clustering algorithms were used to divide these 150 observations into three different clusters.
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Figure 1: (a) Central regions of the two normal populations in Example A and (b) Supports of the

three non-overlapping populations in Example B (for d = 2).

In this example (call it Example B) also, all these three methods, especially AvgL and kM, had

poor performance (see Figure 2(b)).

Clustering algorithm based on maximal data pilling (MDP) distance (Ahn et al. 2012), which

is especially designed for high dimensional data, performed well in Example A for d ≥ 27, but it

performed poorly for all smaller values of d. In Example B, its performance was even worse. It had

much higher Rand index for all values of d considered here.
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Figure 2: Rand indices for different algorithms in Examples A and B.

Failure of these popular algorithms shows the necessity to develop new methods for clustering

high dimensional data. In this article, we use a new dissimilarity index, called MADD (defined in

Section 2), for this purpose. Notice that both AvgL and kM yielded excellent results when MADD
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was used as the dissimilarity measure (see the curves corresponding to AvgL0 and kM0 in Figure 2).

In both examples, they led to perfect clustering in high dimensions. It is well known that both

AvgL and kM based on Euclidean distance are not much useful for finding non-convex clusters

in the data, but Example B clearly shows that their MADD versions can overcome this limitation.

Spectral clustering algorithm of Shi and Malik (2000) also performed well when a decreasing function

of MADD (defined in Section 2) was used as the similarity measure. While the use of MADD led

to perfect clustering for large d in Example A, it significantly reduced the Rand index in Example

B as well (see the curves corresponding to Spect0 in Figure 2).

The reasons behind the failure of Euclidean distance based clustering and the excellence of

MADD based clustering are investigated in Section 2. In this connection, we prove the high dimen-

sional consistency of some clustering algorithms based on MADD. Simulation studies are also carried

out to demonstrate the superiority of these MADD based algorithms. We consider the problem of

estimating the number of clusters from the data in Section 3. This is an important problem in cluster

analysis, and several methods are available for it. We observe that many of these methods perform

better when MADD is used for their constructions. We investigate the high dimensional behavior of

these MADD based estimation methods under appropriate regularity conditions. We also construct

a new estimator based on penalized Dunn index and prove its high dimensional consistency. Em-

pirical performances of different estimation methods are evaluated using simulation studies. Two

benchmark data sets are analyzed in Section 4 for further comparison among different estimation

methods and clustering algorithms. Finally, Section 5 gives a brief summary of the work and ends

with some related discussions. All proofs and mathematical details are given in the Appendix.

2 Clustering algorithms based on MADD

Suppose that the whole sample X = ∪k0i=1Xi consists of n unlabeled observations, where Xi denotes

the collection of ni observations (
∑k0

i=1 ni = n) from the i-th (i = 1, . . . , k0) population. In Example

A, we had k0 = 2 and n1 = n2 = 50. In this example, for two observations X = (X(1), . . . , X(d))>

and Y = (Y (1), . . . , Y (d))> from the second population, d−1‖X −Y‖2 = d−1
∑d

q=1(X
(q) − Y (q))2,

being an average of an m-dependent sequence (with m = 1) of identically distributed random

variables, converges to E(X(1) − Y (1))2 = 2σ22 = 4 in probability. But, if X comes from the first
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population and Y comes from the second population, d−1‖X − Y‖2 converges in probability to

σ21 +σ22 + 1 = 3.5. Due to this concentration of pairwise distances, for large d, all observations in X2

had their neighbors in X1. So, clustering algorithms based on the Euclidean distance failed to put

them in the same cluster. Hall et al. (2005) proved the concentration of Euclidean distance assuming

weak dependence among the component variables and provided an idea about the high dimensional

geometry of the data cloud consisting of observations from two distributions. They also pointed

out the adverse effects of distance concentration on some popular classifiers. In Example A, we

observe its adverse effects on clustering algorithms. In Example B also, we have similar convergence

of pairwise distances, which is shown in the following lemma.

Lemma 1. If X ∼ Ud(a1, b1), Y ∼ Ud(a2, b2), and they are independent, then d−1‖X−Y‖2 converges

in probability to b21 + b22 as the dimension d tends to infinity.

From Lemma 1, it is clear that for large values of d, all observations in X2 and X3 had their

nearest neighbors in X1 only. So, AvgL and kM algorithms had miserable performances in this

example as well. However, these two algorithms produced excellent results in Examples A and B

when, instead of Euclidean distance, we used a new dissimilarity index given by ρ(x,y) = (n −

2)−1
∑

z∈X\{x,y}
∣∣‖x − z‖ − ‖y − z‖

∣∣. Following our above discussion, one can show that in both

of these examples, d−1/2ρ(X,Y)
P→ 0 as d → ∞ if and only if X and Y come from the same

population. Otherwise, it converges to a positive constant. So, clustering algorithms based on ρ

had better performance in high dimensions.

This type of dissimilarity index based on Mean Absolute Difference of Distances (called MADD)

can be constructed using other distance functions as well. In this article, we consider distance

functions of the form ϕh,ψ(x,y) = h
{
d−1

∑d
q=1 ψ(|x(q) − y(q)|)

}
, where h : R+ → R+ and ψ : R+ →

R+ are continuous, monotonically increasing functions with h(0) = ψ(0) = 0 such that ϕh,ψ is

a distance in Rd. Clearly, this class of distance functions include all `p distances (upto a scalar

constant) with p ≥ 1. We define the general version of MADD as

ρh,ψ(x,y) =
1

n− 2

∑
z∈X\{x,y}

∣∣ϕh,ψ(x, z)− ϕh,ψ(y, z)
∣∣. (2)

Using h(t) =
√
t and ψ(t) = t2, we get ρh,ψ(x,y) = d−1/2ρ(x,y), and we call it ρ0. MADD has

some nice properties as a dissimilarity index. Lemma 2 shows that it is a semi-metric.

Lemma 2. If X = {x1, . . . ,xn} contains n ≥ 3 observations, ρh,ψ is a semi-metric on X .
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MADD is not a metric since it is possible to get x 6= y such that ρh,ψ(x,y) = 0. But, when X

consists of continuous random vectors, for x,y ∈ X and x 6= y, ρh,ψ(x,y) > 0 holds with probability

one. So, for all practical purposes, it behaves like a metric.

Since ϕh,ψ satisfies the triangle inequality, one can show that ρh,ψ(x,y) ≤ ϕh,ψ(x,y) for all

x,y ∈ Rd. Thus, closeness in terms of ϕh,ψ (e.g., Euclidean distance) also indicates closeness

in terms of MADD, but not the converse. In particular, for high dimensional data, unlike the

Euclidean distance, MADD usually provides small dissimilarities among observations from the same

population, and that helps us to develop better clustering algorithms.

2.1 High dimensional behavior of MADD

To study the high dimensional behavior of ρh,ψ and associated clustering algorithms in details, we as-

sume that X consists of n independent observations on the measurement vector X = (X(1), . . . , X(d))>

coming from a mixture of k0 populations, where ni = |Xi| ≥ 2 for all i = 1, . . . , k0. We also make

the following assumption.

(A1) For independent observations X and Y from i-th and j-th populations (1 ≤ i, j ≤ k0),

d−1
∑d

q=1

{
ψ(|X(q) − Y (q)|)− Eψ(|X(q) − Y (q)|)

} P→ 0 as d→∞.

This assumption regarding weak convergence of the sequence {ψ(|X(q)−Y (q)|) : q ≥ 1} is pretty com-

mon in the HDLSS literature. A sufficient condition for (A1) is V ar
{∑d

q=1 ψ(|X(q)−Y (q)|)
}

= o(d2).

If the component variables are independent and identically distributed (i.i.d.) with Eψ(|X(1) −

Y (1)|) < ∞, then (A1) holds. For sequences of dependent and non-identically distributed random

variables, we need some additional conditions. Several sufficient conditions have been used by many

researchers. For instance, Hall et al. (2005) assumed a ρ-mixing condition on the measurement

variables and uniform boundedness of their fourth order moments to study the high dimensional

behavior of some classifiers based on the Euclidean distance (i.e., when ψ(t) = t2). Jung and Marron

(2009) used some slightly weaker conditions to establish the high dimensional consistency of their

estimated principle component directions. Similar conditions were used by Ahn et al. (2012) and

Biswas et al. (2014) for high dimensional asymptotics. Biswas et al. (2015) derived some sufficient

conditions for the weak convergence of {ψ(|X(q) − Y (q)|) : q ≥ 1}. Some sufficient conditions based

on mixingales were derived by Andrews (1988) and de Jong (1995).

6



Suppose that X and Z are independent observations from the i-th and the `-th populations (1 ≤

i, ` ≤ k0). Then, using (A1) and the continuity of h, one gets |ϕh,ψ(X,Z) − ϕ∗h,ψ(i, `)| P→ 0, where

ϕ∗h,ψ(i, `) = h
{
d−1

∑d
q=1Eψ(|X(q) − Z(q)|)

}
. So, if X and Y are from i-th and j-th populations,

we have |ρh,ψ(X,Y)− ρ∗h,ψ(i, j)| P→ 0, where ρ∗h,ψ(i, j) = (n− 2)−1
[
(ni − 1)|ϕ∗h,ψ(i, j)− ϕ∗h,ψ(i, i)|+

(nj − 1)|ϕ∗h,ψ(i, j)− ϕ∗h,ψ(j, j)|+
∑

`6=i,j n`|ϕ∗h,ψ(i, `)− ϕ∗h,ψ(j, `)|
]
. This is formally stated below.

Lemma 3. Suppose that we have n independent observations from k0 populations satisfying (A1).

If X and Y come from the i-th and the j-th (1 ≤ i, j ≤ k0) populations, respectively, and h is

continuous, then |ρh,ψ(X,Y)− ρ∗h,ψ(i, j)| P→ 0 as d→∞.

Clearly, ρ∗h,ψ(i, j) = 0 if i = j and ρ∗h,ψ(i, j) ≥ 0 for i 6= j. However, for good performance of

clustering algorithms based on MADD, one would like to choose h and ψ such that ρ∗h,ψ(i, j) > 0

for i 6= j. Lemma 4 guides us to some suitable choices in this regard.

Lemma 4. If h and ψ are strictly increasing, and ψ′(t)/t is a non-constant monotone function on

(0,∞), then for any i 6= j, ρ∗h,ψ(i, j) = 0 if and only if the i-th and the j-th populations have the

same one-dimensional marginals.

There are several choices of ψ satisfying the properties mentioned in Lemma 4 (see, e.g., Bar-

inghaus and Franz 2010; Biswas et al. 2015). Some of them (e.g., ψ(t) = t, ψ(t) = t/(1 + t),

ψ(t) = 1− e−t) lead to distance functions in R. For such choices of ψ, it is enough to take h(t) = t

to make ϕh,ψ a distance in Rd. In these cases, we have ρ∗h,ψ(i, j) > 0 unless the two populations have

identical marginal distributions. For the Euclidean distance (i.e., ψ(t) = t2), ψ does not satisfy the

property mentioned in Lemma 4. But Lemma 5 shows that even in that case, ρ∗h,ψ(i, j) turns out

to be positive for a large class of examples.

Lemma 5. Let µi and Σi be the mean vector and the dispersion matrix of the i-th population

(i = 1, . . . , k0), respectively. For h(t) =
√
t and ψ(t) = t2, ρ∗h,ψ(i, j) takes the value 0 if and only if

µi = µj and trace(Σi −Σj) = 0.

Lemmas 4 and 5 show that for suitable choices of h and ψ, we usually have ρ∗h,ψ(i, j) > 0 for all

values of d. So, it is reasonable to make the following assumption.

(A2) For every 1 ≤ i 6= j ≤ k0, lim infd→∞ ρ
∗
h,ψ(i, j) > 0.

Note that (A2) holds in Examples A and B discussed in Section 1. It says that the separation between

two populations is not asymptotically negligible. We will use this assumption for investigating the

high dimensional behavior of MADD based algorithms.
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2.2 High dimensional behavior of MADD based clustering

We know that AvgL begins with n groups, each consisting of a single observation. At each step, it

chooses two closest groups and merges them into a single one. To measure closeness, ∆(Ci, Cj) =

(|Ci||Cj |)−1
∑

z∈Ci,w∈Cj
‖z−w‖ is used as the distance between two groups Ci and Cj . AvgL stops

merging when the pairwise distance between any two groups is bigger than a certain threshold or a

specified number of groups is attained. The final groups thus formed are considered as the estimated

clusters. Note that in Example A, for X1,X2
i.i.d.∼ Nd(0d, σ21Σd) and Y1,Y2

i.i.d.∼ Nd(µd, σ22Σd), we

have Pr(‖X1−X2‖ < ‖X1−Y1‖ < ‖Y1−Y2‖)→ 1 as d→∞ (see the discussion at the beginning

of Section 2). So, for large values of d, after the first 49 steps, all observations from the first

population were merged into a single group, and in each subsequent step, one observation from the

second population was added to it. As a result, when AvgL ended with two estimated clusters,

one of them had a single observation from the second population, and the other had the rest of the

observations. This led to a Rand index of 0.505. A similar phenomenon occurred in Example B as

well, where two of the three clusters estimated by AvgL had one observation each from the third

population (i.e., Ud(2, 2.5)), while the third cluster contained the rest. As a result, the Rand index

turned out to be 0.662. The same phenomenon was observed even when single or complete linkage

was used instead of AvgL.

We observed a diametrically opposite behavior for AvgL0, the MADD version of AvgL based

on ρ0, where ρ0 is used in place of ‖ · ‖ to define ∆(Ci, Cj). In Example A, as d → ∞, both

ρ0(X1,X2) and ρ0(Y1,Y2) converge to 0, while ρ0(X1,Y1) converges to a positive constant. So,

any linkage method based on ρ0 leads to perfect clustering (i.e., zero Rand index) as d increases.

Similar phenomenon occurs in Example B as well. This property of AvgL(h, ψ), the MADD version

of AvgL based on ρh,ψ, is asserted by the following theorem.

Theorem 1. Suppose that we have independent observations from k0 populations satisfying (A1).

If h and ψ satisfy (A2), and AvgL(h, ψ) is used to estimate k0 clusters in the data, its Rand index

converges to 0 in probability as d tends to infinity.

For a given k, kM algorithm aims at finding k groups C1, . . . , Ck with centers m1, . . . ,mk such

that Φ(C1, . . . , Ck) =
∑k

j=1

∑
i:xi∈Cj

‖xi −mj‖2 is minimized. In practice, it starts with an initial

choice of k groups, and then at each step an observation x is assigned to the group having the center
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closest to it. Group centers are updated accordingly. This iterative process is terminated when no

groups are modified further. Using the convergence results for Euclidean distance, one can show that

in Examples A and B, for large d, Φ is minimized when we have the same type of estimated clusters as

obtained by AvgL. Since Φ(C1, . . . , Ck) =
∑k

r=1 (2|Cr|)−1
∑

z,w∈Cr
‖z−w‖2, for the MADD version

of kM (denoted by kM(h, ψ)), we minimize Φ∗(C1, . . . , Ck) =
∑k

r=1 (2|Cr|)−1
∑

z,w∈Cr
ρ2h,ψ(z,w).

Again we start with k initial groups and use an iterative algorithm. At each step, distance of

an observation x from a group Cj is computed as ρ
(0)
h,ψ(x, Cj) = |Cj |−1

∑
z∈Cj

ρ2h,ψ(x, z), and it is

assigned to the group Ck̃, where k̃ = argminj ρ
(0)
h,ψ(x, Cj). This is done for all observations, and

the process is repeated until convergence. From Lemma 3, it is clear that for k0 estimated clusters

C1, . . . , Ck0 , Φ∗(C1, . . . , Ck0) attains its minimum value if and only if we have perfect clustering.

So, kM(h, ψ) had excellent performance in Examples A and B, specially for large d. This perfect

clustering property of kM(h, ψ) is asserted by the following theorem.

Theorem 2. Suppose that we have independent observations from k0 populations satisfying (A1).

If h and ψ satisfy (A2), and kM(h, ψ) is used to estimate k0 clusters in the data, its Rand index

converges to 0 in probability as d tends to infinity.

Theorems 1 and 2 show the perfect clustering property of AvgL(h, ψ) and kM(h, ψ) when

lim infd→∞ ρ
∗
h,ψ(i, j) > 0 for all i 6= j. This holds when lim infd→∞ d

−1∑d
q=1

{
2Eψ(|X(q) − Y (q)|)−

Eψ(|X(q)
1 −X

(q)
2 |)−Eψ(|Y (q)

1 −Y (q)
2 |)

}
> 0, where X1,X2 are from i-th population and Y1,Y2 are

from j-th population (see the proof of Lemma 4). So, in some sense, (A2) assumes that the total

signal increases at least at the order of d. As pointed out by one of the reviewers, this is quite re-

strictive in practice. We can relax this condition if we make a slightly stronger assumption on h. Let

us assume that for any pair of independent observations X and Z, V ar
{∑d

q=1 ψ(|X(q) − Z(q)|)
}

=

O(ϑ2(d)). Then the perfect clustering property of AvgL(h, ψ) and kM(h, ψ) can be proved under

the following assumption.

(A2◦) For every i 6= j, ρ∗h,ψ(i, j) d/ϑ(d)→∞ as d→∞.

Note that if the component variables are i.i.d. with Eψ2(|X(1) −Z(1)|) <∞, then ϑ(d) � d1/2 (i.e.,

ϑ(d) and d1/2 are of the same asymptotic order). Under appropriate moment condition, we have

the same asymptotic order of ϑ(d) for m-dependent sequence of random variables as well. Also,

under weak mixing conditions on the component variables, we have ϑ(d) = o(d) (see, e.g., Lin and
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Lu 1996, Chap. 2). In all such situations, d/ϑ(d) → ∞, and hence (A2) implies (A2◦). Theorem

3 shows the perfect clustering property of AvgL(h, ψ) and kM(h, ψ) under this weaker assumption

(A2◦) when h is Lipschitz continuous.

Theorem 3. Suppose that we have independent observations from k0 populations satisfying (A2◦).

Also assume that h is Lipschitz continuous and ψ′(t)/t is a non-constant monotone function. Then,

Rand indices of AvgL(h, ψ) and kM(h, ψ) converge to 0 as d tends to infinity.

If X and Y are two independent observations from the i-th and the j-th populations, under

Lipschitz continuity of h, we have ρh,ψ(X,Y) = ρ∗h,ψ(i, j)+Op(ϑ(d)/d) (see the proof of Theorem 3).

While ϑ(d)/d can be interpreted as the order of stochastic variation (noise), ρ∗h,ψ(i, j) can be viewed

as the signal. Theorem 3 shows the perfect clustering property of AvgL(h, ψ) and kM(h, ψ) when

this signal-to-noise ratio diverges. Similar results may hold even when h is not Lipschitz continuous.

For instance, in the case of ρ0, where h(t) =
√
t does not satisfy the Lipschitz condition, we have

the following result.

Theorem 4. Suppose that we have independent observations from k0 populations, where the i-th (i =

1, . . . , k0) population has mean µi and dispersion matrix Σi that satisfies lim infd→∞ tr(Σi)/ϑ(d) >

0. For every i 6= j, if ‖µi−µj‖2/ϑ(d)→∞ and/or |tr(Σi)− tr(Σj)|/ϑ(d)→∞, then Rand indices

of AvgL0 and kM0 converge to 0 as d→∞.

Therefore, if ϑ(d) � d1/2 (i.e., in cases of weak dependence among component variables),

the perfect clustering property of AvgL0 and kM0 holds when d−1/2‖µi − µj‖2 → ∞ and/or

d−1/2|tr(Σi)− tr(Σj)| → ∞ as d→∞.

The spectral clustering algorithm of Shi and Malik (2000) also failed to perform well in Examples

A and B considered in Section 1. Note that spectral clustering methods deal with an edge-weighted

graph with nodes {x1, . . . ,xn} and a symmetric weight matrixW = ((wij))d×d, where wij represents

similarity between xi and xj . The matrix W is usually computed from a similarity matrix S, and

different methods are available for it (see von Luxburg 2007). Often S = ((sij)) itself is used as

W, and one popular choice is the radial basis function sij = exp{−‖xi − xj‖2/2σ2}, where σ is a

tuning parameter that controls the degree of similarity. These algorithms implicitly assume that sij

will be large (respectively, small) if xi and xj belong to the same population (respectively, different

populations). Since that was not the case in Examples A and B, Spect had poor performance.
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However, we do not have this problem if sij is defined using ρ2h,ψ(xi,xj) instead of ‖xi − xj‖2. So,

Spect(h, ψ), spectral clustering based on ρh,ψ, is expected to perform well, especially for large values

of d. We observed the same for Spect0 (spectral clustering based on ρ0) in Examples A and B.

MDP clustering algorithm (Ahn et al. 2012) largely depends on the data piling property, which

occurs only when the dimension exceeds the sample size. So, as expected, it performed poorly in both

examples for smaller values of d. Surprisingly, it failed in Example B even when d was large. A simple

investigation explains this artifact. MDP clustering algorithm estimates the clusters by using binary

splits at each step. For observations from two populations with mean vectors µ1,µ2 and dispersion

matrices Σ1,Σ2 satisfying d−1‖µ1 − µ2‖2 → ν12, d
−1trace(Σ1) → σ21 and d−1trace(Σ2) → σ22 as

d→∞, this algorithm perfectly separates the observations in the HDLSS set up when

ν12 +
σ21
n1

+
σ22
n2

> min
{G+ n1

Gn1
σ21,

G+ n2
Gn2

σ22

}
, (3)

where G is a pre-specified minimum number of observations in a cluster. Following Ahn et al.

(2012), we used G = 5 throughout this article. Recall that in Example B, all three populations had

the same location, and condition (3) was violated for each pair of populations.

2.3 Comparison of clustering algorithms using simulated datasets

We analyzed some simulated data sets for further evaluation of different clustering algorithms. In

each example, we generated the data set by taking 50 observations from each population, and

different algorithms were used on these data sets assuming the number of clusters to be known.

For these examples, we considered d = 100, 200 and 500, and each experiment was repeated 100

times. Average Rand indices of different algorithms were computed over these 100 trials, and they

are reported in Tables 1 and 2. MDP clustering needs the number of eigen-vectors T to be specified.

We used T = 1, 2, 3 as in Ahn et al. (2012), and reported the best results. For MADD, we used

h(t) =
√
t, ψ(t) = t2; h(t) = t, ψ(t) = t; and h(t) = t, ψ(t) = 1 − e−t. The MADD indices for these

three cases will be denoted by ρ0, ρ1 and ρ2, respectively. These three choices led to similar results

in Examples 1–6 (descriptions are given below). So, in Table 1, results are reported for ρ0 only.

Example-1: Observations were generated from three Gaussian distributions with the same

scatter matrix Σ◦d = ((0.5|i−j|))d×d but different mean vectors µ1, µ2 and µ3, respectively. We took

µ1 = 0d, while µ2 (respectively, µ3) had the first d/2 elements equal to 0.75 (respectively, −0.75)

and the rest equal to 0.
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Example-2: We used observations from four normal distributions, Nd(α,Σ◦d), Nd(β, 4Σ◦d),

Nd(−α,Σ◦d) and Nd(−β, 4Σ◦d), which differed in their locations and scales. The mean vector α =

(α1, . . . , αd)
> had αi = 1 and αi = 0.5 for even and odd values of i, respectively. We took β =

(β1, . . . , βd)
> with βi = (−1)iαi for i = 1, . . . , d, and Σ◦d as in Example-1.

Example-3: We considered three uniform distributions with disjoint supports S1, S2 and S3,

where Si = {x ∈ Rd : i − 1 ≤ x′Σ◦d
−1x ≤ i − 1/2} for i = 1, 2, 3, and Σ◦d is as in Example-1.

Figure 3(a) shows the supports of the three distributions for d = 2.

−2 −1 0 1 2

−2

−1
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1

2

(a) Example 3

X(1)

X
(2

)

−4 −2 0 2 4

−4

−3

−2

−1

0

1

(b) Example 4

X(1)

X
(2

)

Figure 3: Different populations in Examples 3 and 4 when d = 2.

Example-4: Define three sets S◦1 = {(x, y) : y ≥ 0, 1 ≤
√

(x− 2)2 + y2 ≤ 1.5}, S◦2 = {(x, y) :

y ≥ 0, 1 ≤
√

(x+ 2)2 + y2 ≤ 1.5} and S◦3 = {(x, y) : y ≤ 0, 4 ≤
√
x2 + y2 ≤ 4.5} (see Figure 3(b)).

We generated d/2 independent observations from the uniform distribution on S◦i to get d components

of an observation from the i-th population (i = 1, 2, 3).

Example-5: Observations were generated from two auto-regressive processes X(t) = 0.75 +

0.25X(t−1) +εt and X(t) = 0.25+0.75X(t−1) +εt for t = 1, . . . , d. In both cases, we had εt ∼ N (0, 1)

for every t. The distribution of X(0) was taken to be N (1, 16/15) and N (1, 16/7) in these two cases

to make the processes stationary.

Example-6: Let Sd be the d-dimensional unit sphere with center at the origin, and Cd be the

largest hypercube inscribed in it. We considered two uniform distributions, one on Sd and the other

on Cd. Note that if X comes from the first population, then Pr(X ∈ Cd) → 0 as d → ∞. So, the

two populations become completely separated in high dimensions.
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Table 1: Average Rand indices of different clustering algorithms in Examples 1–6

d AvgL AvgL0 kM kM0 MDP Spect Spect0
100 0.2906 0.0865 0.0185 0.0367 0.5801 0.2512 0.1851

Ex-1 200 0.2168 0.0104 0.0201 0.0095 0.0000 0.2419 0.1953
500 0.0429 0.0000 0.0074 0.0000 0.0000 0.2330 0.1919
100 0.7335 0.0502 0.4206 0.0067 0.6204 0.2609 0.0415

Ex-2 200 0.7361 0.0115 0.6206 0.0001 0.0714 0.2462 0.0440
500 0.7378 0.0000 0.6982 0.0000 0.0018 0.2187 0.0434
100 0.6616 0.0000 0.6608 0.0000 0.5885 0.4492 0.2348

Ex-3 200 0.6619 0.0000 0.6617 0.0000 0.5826 0.4513 0.2298
500 0.6619 0.0000 0.6619 0.0000 0.5761 0.4515 0.2286
100 0.2346 0.0000 0.2762 0.0000 0.5841 0.0745 0.0417

Ex-4 200 0.2330 0.0000 0.2769 0.0000 0.0000 0.0714 0.0361
500 0.2327 0.0000 0.2748 0.0000 0.0000 0.0752 0.0478
100 0.5047 0.3516 0.5027 0.2271 0.4895 0.4801 0.2584

Ex-5 200 0.5048 0.0762 0.5040 0.0784 0.4863 0.4813 0.1231
500 0.5048 0.0028 0.5048 0.0060 0.4795 0.4726 0.0119
100 0.5047 0.0000 0.5042 0.0000 0.4857 0.5000 0.0000

Ex-6 200 0.5048 0.0000 0.5048 0.0000 0.4836 0.4992 0.0000
500 0.5048 0.0000 0.5048 0.0000 0.4803 0.4992 0.0000

Bold figures indicate the best result in each example.

Table 1 clearly shows that both AvgL0 and kM0 performed much better than AvgL and kM. In

all six examples, they led to perfect clustering, especially for higher values of d. MDP clustering

algorithm performed poorly for d = 100. For d = 200 and 500, it performed well in Examples 1, 2

and 4, but in the other three examples, where the population distributions did not differ in their

means, it had miserable performance. Spect0 also performed better than Spect. In Example-6,

when all other clustering algorithms had Rand indices close to 0.5, those based on ρ0 led to perfect

clustering for all values of d considered here. Among them, overall performance of AvgL0 and kM0

was much better than Spect0.

Next, we considered two examples, where clustering based on ρ0, ρ1 and ρ2 led to widely varying

results (see Table 2). Descriptions of these two data sets are given below.

Example-7: Observations were generated from four normal distributions having the same mean

0d and diagonal dispersion matrices. For the first (respectively, second) population, the first d/2

diagonal elements were 1 (respectively, 9) and the rest were 9 (respectively, 1). The scatter matrix

of the third (respectively, fourth) population had 1 and 9 (respectively, 9 and 1) at even and odd

places along the diagonal, respectively.
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Example-8: We considered two populations where all the measurement variables were i.i.d.

For the first population, they were distributed as N (0, 3), while they had standard t3 (t with 3

d.f) distribution for the second population. So, the two populations had the same mean vector and

dispersion matrix, but they differed in their shapes.

Table 2: Average Rand indices of different clustering algorithms in Examples 7 and 8

d AvgL AvgL0 AvgL1 AvgL2 kM kM0 kM1 kM2 MDP Spect Spect0 Spect1 Spect2

E
x
-7

100 0.7366 0.4831 0.4914 0.0044 0.4432 0.4102 0.2721 0.0001 0.5868 0.7034 0.3765 0.1732 0.0907

200 0.7364 0.4873 0.3168 0.0001 0.4593 0.4082 0.0935 0.0000 0.6252 0.6990 0.3767 0.1310 0.0646

500 0.7370 0.4776 0.0471 0.0000 0.4522 0.4048 0.0192 0.0000 0.6173 0.6975 0.3756 0.0903 0.0540

E
x
-8

100 0.5048 0.5020 0.3883 0.1309 0.5048 0.4955 0.3132 0.0845 0.5021 0.5049 0.4894 0.3127 0.0956

200 0.5048 0.5021 0.2837 0.0251 0.5048 0.4930 0.2087 0.0157 0.5027 0.5048 0.4801 0.2138 0.0188

500 0.5049 0.5003 0.1109 0.0002 0.5049 0.4888 0.0889 0.0000 0.5029 0.5047 0.4818 0.0878 0.0000

Bold figures indicate the best result in each example.

Table 2 shows that AvgL, kM, MDP and Spect, all had miserable performance in these two

examples. Even MADD clustering algorithms failed when ρ0 was used, but those based on ρ1

(denoted by AvgL1, kM1 and Spect1) and ρ2 (denoted by AvgL2, kM2 and Spect2) had improved

performance. In these examples, we have ρ∗h,ψ(i, j) = 0 for all i 6= j when ρ0 is used, but they

are positive for ρ1 and ρ2. That was the reason for their improved performance. Among these

two choices, ρ2, which is based on a bounded ψ function, yielded better results. We also observed

similar phenomenon when the t distribution in Example-8 was replaced by the standard Cauchy

distribution. In that case, clustering algorithms based on ρ2 had Rand indices close to 0 for all

choices of d, but those for all other methods were close to 0.5. This shows the robustness of MADD

clustering algorithms based on bounded ψ functions against heavy tailed distributions.

3 Estimation of the number of clusters

So far we have assumed k0 to be known for our analysis. But in practice, one needs to estimate k0.

Several estimation methods have been proposed for it (see Calinski and Harabasz 1974; Hartigan

1975; Krzanowski and Lai 1985; Kaufman and Rousseeuw 1990; Tibshirani et al. 2001; Sugar and

James 2003; Wang 2010). Brief descriptions of some of these methods, that we use in this article, are

given below. These estimation methods can be used with any base clustering algorithm. Throughout

14



this article, we use average linkage or k-means algorithm (either based on Euclidean distance or based

on MADD) for base clustering.

KL statistic (Krzanowski and Lai 1985): For a given k, if C1, . . . , Ck are the k clusters estimated

by the base clustering algorithm, then the KL statistic is defined as KL(k) =
∣∣Diff(k)/Diff(k + 1)

∣∣,
where Diff(k) = (k − 1)2/dWk−1 − k2/dWk, and Wk =

∑k
j=1 (2|Cj |)−1

∑
z,w∈Cj

‖z − w‖2 is the

within group sum of squares. KL(k) is computed for a range of values {2, . . . ,K} of k and k̂KL =

argmax2≤k≤K KL(k) is used to estimate k0.

Gap statistic (Tibshirani et al. 2001): For any fixed k, the Gap statistic is defined as Gap(k) =

B−1
∑B

b=1 log(W
(b)
k ) − log(Wk), where Wk is as defined above, and W

(b)
k is the within group sum

of squares computed using the b-th bootstrap sample (b = 1, . . . , B) generated from a reference

distribution. The number of clusters k0 is estimated by k̂G = min{k : Gap(k) ≥ Gap(k+1)−sk+1},

where sk =
√

(1 +B−1)sdk, and sdk is the standard deviation of log(W
(b)
k ). Unlike the KL statistic,

Gap(k) can be defined for k = 1 as well.

Jump statistic (Sugar and James 2003): For k ≥ 1, the Jump statistic is defined as Jump(k) =

d̂−tk − d̂
−t
k−1, where d̂−t0 = 0, d̂k = d−1

∑n
i=1 minr=1,...,k(xi −mr)

>Γ−1(xi −mr) for k ≥ 1, and mr is

the center of the r-th cluster. The number of clusters is estimated by k̂J = argmax1≤k≤K Jump(k).

The authors suggested to use Γ = Id (the d×d identity matrix) and t = d/2. Note that for k-means

clustering with Γ = Id, we get d̂k = d−1
∑n

i=1 minr=1,...,k ‖xi −mr‖2 = d−1
∑k

j=1

∑
z∈Cj

‖z−mj‖2

= d−1
∑k

j=1 (2|Cj |)−1
∑

z,w∈Cj
‖z−w‖2 = Wk/d.

Cross-validated Rand index (Wang 2010): The whole sample X is randomly divided into three

parts X (1),X (2) and X (3) of sizes m,m and n − 2m, respectively. For any given k, the first two

parts are used to develop two clustering algorithms δ1 = δX (1),k and δ2 = δX (2),k, which are then

used on X (3) to estimate clustering instability given by Ins(k) =
(
n−2m

2

)−1∑
x 6=y∈X (3) I

[
I{δ1(x) =

δ1(y)} + I{δ2(x) = δ2(y)} = 1
]
. This process is repeated B times, and the results are aggregated.

The author proposed two methods for aggregation. In one method (call it CVa), the average

instability over B repetitions is computed, and k0 is estimated by minimizing this average instability

with respect to k. In the other method (call it CVv), for each repetition, the number of clusters is

estimated by minimizing Ins(k) over k, and finally the modal value of the minimizers is used as the

estimator of k0.
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We use another method based on the Dunn index (Dunn 1973). For fixed k, let C1, . . . , Ck be the

clusters estimated by a base clustering algorithm. Define ∆0(Ci) = {|Ci|(|Ci| − 1)}−1
∑

z,w∈Ci
‖z−

w‖ and ∆(Ci, Cj) = (|Ci||Cj |)−1
∑

z∈Ci,w∈Cj
‖z −w‖ (instead of average, other suitable measures

can also be used). The Dunn index is given by D(k) = B◦k/W
◦
k , where W ◦k = max1≤i≤k ∆0(Ci) and

B◦k = min1≤i<j≤k ∆(Ci, Cj), respectively. Dunn (1973) used this index for cluster validation, but

here we use it to estimate k0 by k̂D = argmax2≤k≤K D(k).

When AvgL or kM is used for base clustering, we use usual versions of these statistics. But,

when AvgL(h, ψ) or kM(h, ψ) is used for base clustering, we use ρh,ψ in place of ‖ · ‖ to define Wk

for KL, Gap and Jump statistics, and to define ∆0,∆ for the Dunn index.

(a) Example 1 (k0 = 3).

1 2 3* 4 5 >5
0

50

100
Dunn

Fr
eq

ue
nc

y

 

 

1 2 3* 4 5 >5
0

50

100
KL

Fr
eq

ue
nc

y

1 2 3* 4 5 >5
0

50

100
Gap

Fr
eq

ue
nc

y

1 2 3* 4 5 >5
0

50

100
Jump

Fr
eq

ue
nc

y

1 2 3* 4 5 >5
0

50

100

CV
a

Fr
eq

ue
nc

y

1 2 3* 4 5 >5
0

50

100

CV
v

Fr
eq

ue
nc

y

AvgL
kM
AvgL

0

kM
0

(b) Example 2 (k0 = 4).
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Figure 4: Barplots for k0 estimated by different methods in Examples 1 and 2.

To investigate the performance of these estimation methods, we considered the examples used in

Section 2.3 with d = 500. For CVa and CVv, we used B = 100, and m was taken to be the largest
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multiple of 5 not exceeding n/3. For the Gap statistic, we used B = 100, and bootstrap samples

were generated from the uniform distribution on the range of the measurement variables. When d

was large (in the order of hundreds or more), the use of t = d/2 led to poor performance by the

Jump statistic. So, we tried several values of t, and based on our empirical experience, we selected

t = 1 when MADD was used. However, we were unable to find any such t when the Euclidean norm

was used. In such cases, we performed our experiments with several choices of t and here we report

the best results. Throughout this article, we consider values of k in the range {1, . . . , 12}. However,

only Gap and Jump statistics are defined for k = 1.

Figure 4 shows barplots for the number of clusters estimated by different methods in Examples

1 and 2. From this figure, it is clear that barring the Gap statistic, all other methods worked

better when ρ0 was used. The results based on ρ0, ρ1 and ρ2 were almost similar. We observed

this phenomenon in Examples 3–6 as well. So, for reporting the performance of these methods in

Examples 1–6, we considered the results based on ρ0 only (see Table 3). For the Gap statistic,

there was no clear winner. For this method, we used both the Euclidean distance and ρ0 in all

examples, and in each case, the best result Table 3 clearly shows that except for Examples 1 and 6,

Gap statistic performed poorly throughout. CVa and CVv also underestimated k0 in Examples 2

and 3. But KL statistic, Jump statistic and Dunn index correctly estimated k0 on all occasions.

Results for Examples 7 and 8 are given in Table 4. Since the performance of the Gap statistic

was inferior to other methods, those results are not reported in Table 4. In these two examples,

MADD versions of different methods did not have satisfactory performance when ρ0 was used, but

those based on ρ1 and ρ2, particularly the latter ones, had much improved performance. This is

consistent with what we observed in Section 2.3.

The success of KL statistic, Jump statistic and Dunn index in all examples motivated us

to carry out a theoretical investigation regarding their high dimensional behavior. For this in-

vestigation, we make some assumptions on asymptotic orders of ρh,ψ. For two independent ob-

servations X and Y from i-th and j-th populations, let ρh,ψ(X,Y)
P� φij(d), i.e., as d → ∞,

Pr
(
ρh,ψ(X,Y)/φij(d) remains bounded away from 0 and ∞

)
→ 1. Here we assume that

(A3) φii(d) � φ−(d) for every i = 1, . . . , k0 and φij(d) � φ+(d) for every 1 ≤ i 6= j ≤ k0, where

φ−(d) = o(φ+(d)).
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Table 3: Frequency distribution for the estimated number of clusters in Examples 1–6

AvgL kM
k 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

E
x
-1

Dunn∗ 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0
KL∗ 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

Gap? 0 19 81 0 0 0 0 0 0 0 0 0 0 3 97 0 0 0 0 0 0 0 0 0
Jump∗ 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0
CV∗a 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0
CV∗v 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

E
x
-2

Dunn∗ 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
KL∗ 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0

Gap? 0 0 0 23 16 21 15 12 5 1 5 2 0 0 0 4 5 13 20 14 18 10 10 6
Jump∗ 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
CV∗a 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
CV∗v 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

E
x
-3

Dunn∗ 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0
KL∗ 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

Gap? 0 0 12 13 41 18 13 3 0 0 0 0 0 0 0 2 20 35 23 18 1 1 0 0
Jump∗ 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0
CV∗a 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
CV∗v 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

E
x
-4

Dunn∗ 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0
KL∗ 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

Gap? 0 20 19 10 15 9 9 4 9 1 2 2 0 3 27 23 24 9 4 6 2 0 1 1
Jump∗ 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0
CV∗a 0 9 91 0 0 0 0 0 0 0 0 0 0 9 91 0 0 0 0 0 0 0 0 0
CV∗v 0 9 91 0 0 0 0 0 0 0 0 0 0 9 91 0 0 0 0 0 0 0 0 0

E
x
-5

Dunn∗ 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
KL∗ 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

Gap? 0 19 12 29 28 10 2 0 0 0 0 0 0 0 1 17 47 28 7 0 0 0 0 0
Jump∗ 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
CV∗a 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
CV∗v 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

E
x
-6

Dunn∗ 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
KL∗ 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

Gap? 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
Jump∗ 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
CV∗a 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
CV∗v 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

Figures in bold indicate frequencies corresponding to k0. ∗ Results obtained using methods based on ρ0.
? Both the Euclidean distance and ρ0 were used, and the best result is reported

If X and Y come from the same population, under (A1) we have ρh,ψ(X,Y) = oP (1). So, φ−(d)

should decrease to 0 as d increases. It also follows from (A1) and (A2) that if X and Y are from the

i-th and the j-th populations (i 6= j), |ρh,ψ(X,Y)− ρ∗h,ψ(i, j)| P→ 0, where lim infd→∞ ρ
∗
h,ψ(i, j) > 0.

So, φ+(d) remains bounded away from 0 as d increases. Thus, (A3) holds trivially under (A1) and

(A2). Note that under (A2◦) also, we have φ−(d)/φ+(d) = O(ϑ(d)/d ρ∗h,ψ(i, j)) = o(1).

18



Table 4: Frequency distribution for the estimated number of clusters in Examples 7 and 8

ρ0 ρ1 ρ2
k 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

E
x
-7

A
v
g
L

Dunn∗ 0 100 0 0 0 0 0 0 0 0 0 1 0 61 30 6 2 0 0 0 0 0 0 100 0 0 0 0 0 0
PD∗ 58 42 0 0 0 0 0 0 0 0 25 4 0 65 6 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0
KL∗ 0 10 21 21 26 11 4 3 2 2 0 5 1 58 19 4 4 3 3 3 0 0 0 100 0 0 0 0 0 0
Jump∗ 100 0 0 0 0 0 0 0 0 0 75 0 0 13 11 0 1 0 0 0 0 0 0 100 0 0 0 0 0 0
CVa

∗ 0 1 1 0 2 0 2 2 3 89 0 1 0 40 55 4 0 0 0 0 0 0 0 100 0 0 0 0 0 0
CVv

∗ 0 38 5 10 10 8 2 1 0 26 0 13 0 50 36 1 0 0 0 0 0 0 0 100 0 0 0 0 0 0

k
M

Dunn∗ 0 99 1 0 0 0 0 0 0 0 0 9 1 86 4 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0
PD∗ 0 100 0 0 0 0 0 0 0 0 2 11 0 86 1 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0
KL∗ 0 60 14 4 7 6 2 3 2 2 0 0 5 63 6 2 1 6 9 8 0 0 0 100 0 0 0 0 0 0
Jump∗ 100 0 0 0 0 0 0 0 0 0 78 0 0 15 6 1 0 0 0 0 0 0 0 100 0 0 0 0 0 0
CVa

∗ 0 32 8 1 2 3 2 5 1 46 0 2 0 69 29 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0
CVv

∗ 0 74 21 2 3 0 0 0 0 0 0 18 1 79 2 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

E
x
-8

A
v
g
L

Dunn∗ 0 85 14 1 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
PD∗ 37 63 0 0 0 0 0 0 0 0 1 99 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
KL∗ 0 18 17 14 22 14 8 5 1 1 0 85 12 1 0 1 1 0 0 0 0 100 0 0 0 0 0 0 0 0
Jump∗ 0 0 16 26 32 13 6 4 2 1 0 94 6 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
CVa

∗ 0 32 0 0 0 0 1 3 4 60 0 93 2 0 0 1 0 0 3 1 0 100 0 0 0 0 0 0 0 0
CVv

∗ 0 94 2 0 0 0 0 0 0 4 0 99 1 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0

k
M

Dunn∗ 0 78 16 6 0 0 0 0 0 0 0 99 1 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
PD∗ 57 42 1 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
KL∗ 0 22 25 20 10 13 6 2 1 1 0 96 4 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
Jump∗ 1 2 44 33 14 5 1 0 0 0 0 96 4 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
CVa

∗ 0 15 0 0 0 1 2 2 2 78 0 95 1 0 0 0 0 0 1 3 0 100 0 0 0 0 0 0 0 0
CVv

∗ 0 83 3 0 0 3 0 2 5 4 0 100 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0

Figures in bold indicate frequencies corresponding to k0. ∗ Results are obtained using MADD versions.

Under this assumption, MADD versions of KL statistic, Jump statistic and Dunn index have

some nice properties in high dimensions if an appropriate base clustering algorithm is used. To make

it clear what we mean by an appropriate base clustering algorithm, we now introduce the concept

of perfect and order preserving (POP) clustering.

Definition 1. For any fixed k, let C
(k)
1 , . . . , C

(k)
k be k clusters estimated using a clustering algorithm

on X = ∪k0i=1Xi, which consists of observations from k0 classes. We call the algorithm perfect and

order preserving (POP) at k0 if the following conditions hold.

(a) The clustering algorithm is perfect, i.e., for k = k0, C
(k0)
i = Xπ(i) for every i = 1, . . . , k0 and

some permutation π of {1, . . . , k0}.

(b) For any k < k0 and for every i = 1, . . . , k0, there exists j ≤ k such that C
(k0)
i ⊆ C(k)

j .

(c) For any k > k0 and for every i = 1, . . . , k, there exits j ≤ k0 such that C
(k)
i ⊆ C(k0)

j .

Figure 5 demonstrates a POP clustering (at 4) by taking only one value of k smaller than 4 and

one value of k bigger than 4. But, one should notice that property (b) (respectively, property (c))
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Figure 5: A clustering algorithm which is POP at 4.

has to hold for all k < 4 (respectively, k > 4). It is easy to check that any hierarchical algorithm

is order preserving (i.e., satisfies (b) and (c)). So, if it leads to perfect clustering (i.e., satisfies

(a)), it becomes POP at k0. In Theorems 1–4, we have seen that AvgL(h, ψ) and kM(h, ψ) become

perfect with probability tending to one as d tends to infinity. Using Lemmas 3–5, one can show that,

they become POP at k0 with probability tending to one as the dimension diverges. Assuming that

such a POP algorithm is used for base clustering, the following theorem shows the high dimensional

behavior of estimators based on the MADD versions of Dunn index, KL statistic and Jump statistic.

Theorem 5. Suppose that there are observations from k0 ≥ 2 populations which satisfy (A3), and

also assume that the base clustering algorithm is POP at k0.

Then (i) k̂∗D
P→ k0, (ii) k̂∗KL

P→ k0 and (iii) Pr(k̂∗J ≥ k0)→ 1 as d→∞.

(Here k̂∗D, k̂∗KL and k̂∗J are the number of clusters estimated by MADD versions of Dunn index, KL

statistic and Jump statistic (with t = 1), respectively.)

Theorem 5 shows the high dimensional consistency of k̂∗KL and k̂∗D. But since D(1) and KL(1)

are not defined, they cannot detect the presence of a single cluster. Jump statistic can be used in

such situations, but Theorem 5 only shows that Pr(k̂∗J ≥ k0)→ 1 as d→∞. So, it can overestimate

k0 in some cases. To overcome these limitations, we define a penalized version of Dunn index (PD).

For any fixed k, it is given by PD(k) = B◦k/W
◦
k − kζ(d), where B◦k (for k ≥ 2) and W ◦k have the

same meaning as in the Dunn index, B◦1
def
= B◦2 and ζ is the penalty function. We estimate k0 by

maximizing PD(k) with respect to k and denote it by k̂PD (k̂∗PD when MADD versions are used).

The following theorem shows the high dimensional consistency of k̂∗PD for suitable choices of ζ.
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Theorem 6. Suppose that there are observations from k0 ≥ 1 population(s), which satisfy (A3),

and the penalty function ζ(d)→∞ in such a way that φ−(d)ζ(d)/φ+(d)→ 0 as d→∞. If the base

clustering algorithm is POP at k0, then k̂∗PD
P→ k0 as d→∞.

We have already seen that under (A1) and (A2), while φ+(d) remains bounded away from 0,

φ−(d) converges to 0 as d increases. So, if we assume φ−(d) = O(d−α0) for some α0 > 0, one

can use any ζ such that 1/ζ(d) decreases to zero at a slower rate than O(d−α0). For instance,

one can use ζ(d) = λ log(d) for a suitable choice of the parameter λ. Some sufficient conditions

for φ−(d) = O(d−α0) are given in the Appendix (see Lemma 6 and the remark after the proof of

Lemma 6). Throughout this article, we used ζ(d) = λ log(d), where λ = 0.015 was chosen based

on our empirical experience. This choice of ζ worked well in all simulated and real data sets we

analyzed in this article.

In Examples 1–6, k̂∗PD had same results as obtained using k̂∗D. Use of ρ0, ρ1 and ρ2 yielded

similar results in these examples. In Examples 7 and 8, however, the MADD version of PD did

not have satisfactory results when ρ0 was used. In many cases, it failed to identify the underlying

clusters, and k̂∗PD turned out to be 1. Using ρ1 and ρ2, we got better results in these two examples

(see the results corresponding to PD∗ in Table 4). Among these two choices, the latter one yielded

better results. For further evaluation of the performance of k̂∗PD, we generated 100 observations

from a uniform distribution on the 500-dimensional unit hypercube, and repeated the experiment

100 times. In all these 100 cases, it successfully identified the presence of a single cluster in the data

set for all three choices of ρh,ψ.

Note that Theorems 5 and 6 show the consistency of k̂∗KL, k̂∗D and k̂∗PD when all within clus-

ter separations are of the same asymptotic order and so are the between cluster separations,

i.e., φii(d) � φ−(d) for all i and φij(d) � φ+(d) for all i 6= j. If that is not the case but

maxi φii(d) = o(mini 6=j φij(d)), these methods may detect k′0(< k0) super-clusters in the data, each

consisting of one or more clusters (can be proved using similar arguments as used in the proofs of

Theorems 5 and 6). In that case, instead of stopping after one step, we need to repeat the algorithm

on each of the estimated super-clusters. One can use the penalized Dunn index (with appropriate

penalty function) for this purpose and stop splitting a super-cluster when k̂∗PD turns out to be 1.

One can check that this repetitive use of PD consistently estimates k0. However, we did not use

this repetitive method in this article.
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4 Analysis of benchmark data sets

We analyzed two benchmark data sets, ‘Lymphoma’ data and ‘Control Chart’ data, for further

evaluation of our proposed methods. Lymphoma data set was first analyzed by Alizadeh et al.

(2000) for identification of distinct types of lymphoma, and it is available in the R package spls.

Control Chart data set can be obtained from the UCI Machine Learning Repository (https://

archive.ics.uci.edu/ml/datasets.html).

4.1 Lymphoma data

This data set contains expression levels of 4026 genes for 42 diffuse large B-cell lymphoma (DLBCL),

9 follicular lymphoma (FL) and 11 chronic lymphocytic leukemia (CLL) samples. A plot of these 62

observations is given in Figure 6.
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Figure 6: Gene expression of 4026 genes for DLBCL( ), FL( ) and CLL( ).

We used different methods to estimate k0 and the results are given in Table 5. This table

shows that all methods, except the Gap statistic, identified two clusters. When we used different

clustering algorithms to estimate these two clusters, all of them put almost all DLBCL samples

in one cluster and the rest in another cluster (see Figure 7(a)). This indicates that it is very

hard to distinguish between FL and CLL samples, which can be seen in Figure 6 as well. This

claim is also justified by the behavior of FL, which can sometimes present itself as CLL (see https:

//en.wikipedia.org/wiki/B-cell chronic lymphocytic leukemia).

Since it was known that the observations were actually from three populations, we used different

clustering algorithms to find three clusters in this data set as well. In Figure 7(b), one can see

that both AvgL and kM failed to identify the three populations. But, AvgL0 and kM0 successfully

differentiated between observations from FL and CLL classes. The method based on MDP led to
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Table 5: Number of clusters estimated by different methods in ‘Lymphoma’ data

Dunn PD KL Gap Jump CVa CVv

AvgL 2 2 2 12 2 2 2

AvgL0 2 2 2 7 2 2 2

kM 2 2 2 12 2 2 2

kM0 2 2 2 7 2 2 2

perfect clustering, but spectral clustering algorithms did not perform well. Since all three choices

of ρh,ψ (i.e., ρ0, ρ1 and ρ2) led to similar results in this data set, here we have reported the results

for MADD versions based on ρ0 only.
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Figure 7: Compositions of (a) two and (b) three estimated clusters for Lymphoma data. Each bar corresponds
to a single cluster consisting of DLBCL( ), FL( ) and CLL( ) samples

4.2 Control chart data

This data set contains 60 dimensional observations from 6 classes, viz., normal(N), cyclic(C), in-

creasing trend(IT), decreasing trend(DT), upward shift(US) and downward shift(DS). We have 100

observations from each class. Figure 8 depicts a representation of the 6 classes.

Dunn index and PD could find only two clusters in this data set, but most of their MADD

versions identified three or more clusters, as did most other methods (see Table 6). Gap statistic

again overestimated k0. Jump statistic also overestimated k0 in some cases, but when ρ2 was used,

k̂∗J turned out to be 1. It also turned out to be 6 in some cases, but those estimated clusters did

not correspond to the six classes, as one can see from Figure 10.
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Figure 8: Six classes in ‘Control Chart’ data

Table 6: Number of clusters estimated by different methods in ‘Control Chart’ data

Dunn PD KL Gap Jump CVa CVv

AvgL 2 2 3 10 8 3 3
AvgL0 3 3 10 8 6 3 3
AvgL1 3 3 10 10 10 3 3
AvgL2 3 2 11 7 1 4 4

kM 2 2 3 9 3 3 3
kM0 3 3 3 10 10 3 2
kM1 3 3 3 10 6 3 3
kM2 4 2 6 7 1 4 4

Since most of the methods identified two or three clusters in this data set, at first we used

different clustering algorithms for finding those two or three clusters. These results are shown in

Figure 9. MDP clustering had poor performance in this example. Since the dimension was smaller

than the sample size, it was quite expected in view of the results reported in Figure 1 and Tables 1–2.

So, results for MDP clustering are not reported here. Results for ρ0 and ρ1 were almost similar, but

those for ρ2 were somewhat different. So, we reported the results based on ρ0 and ρ2 only.

Figure 9(a) shows that when different clustering algorithms were used to divide the data set

into two groups, most of them put the observations from classes IT and US in one cluster and the

rest in the other cluster. Methods based on ρ2 led to different cluster formations. Spect put the

observations from the class IT in a cluster and the rest in another cluster.

When we divided the data set into three clusters, AvgL, AvgL0, kM and kM0 formed one cluster

mainly consisting of N and C samples; one cluster mainly consisting of DT and DS samples, while

the third cluster was formed mainly by IT and US samples as before (see Figure 9(b)). Again, ρ2
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Figure 9: Compositions of (a) two and (b) three estimated clusters. Each bar corresponds to a single clus-

ter, comprising of observations from different classes (normal( ), cyclic( ), increasing trend( ), decreasing

trend( ), upward shift( ) and downward shift( )).

led to slightly different formation of clusters. Performance of AvgL and AvgL0 was slightly better

than kM and kM0. Spect performed poorly, but Spect0 performed much better. It led to the same

clusters as obtained by AvgL and AvgL0.

Figure 10(a) shows the clusters estimated by different methods when the observations were

divided into four clusters. In this case, AvgL and kM divided the cluster containing N and C samples

to form two new clusters, one containing half of the C samples, and the other containing the rest.

However, AvgL2 and kM2 successfully separated N and C samples. Performances of Spect and Spect0

were similar, but Spect2 yielded different results.

We also divided the data set into six clusters. In that situation, clustering algorithms based on

MADD (both ρ0 and ρ2) performed better than their Euclidean counterparts (see Figure 10(b)).

For instance, while AvgL and kM put many of the N and C samples in the same cluster, AvgL0,

kM0, AvgL2 and kM2 successfully separated normal (N), cyclic (C), upward (IT, US) and downward

(DT, DS) patterns. However, none of them could completely distinguish between IT and US samples

or DT and DS samples. This is quite expected from the plot of the observations in Figure 8. Spectral

clustering algorithms failed to have satisfactory performance in this case.
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(a) Compositions of 4 clusters
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(b) Compositions of 6 clusters
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Figure 10: Compositions of (a) four and (b) six estimated clusters. Each bar corresponds to a single clus-

ter, comprising of observations from different classes (normal( ), cyclic( ), increasing trend( ), decreasing

trend( ), upward shift( ) and downward shift( )).

5 Concluding remarks

In high dimensions, concentration of Euclidean distance often leads to poor performance by clus-

tering algorithms based on it. In this article, we have used a data driven dissimilarity measure,

called MADD, which takes care of this problem. Clustering algorithms based on MADD can lead to

perfect clustering for HDLSS data even when those based on Euclidean distance perform miserably.

We have amply demonstrated it in this article using theoretical as well as numerical results. While

MDP clustering performs poorly for HDLSS data with populations not differing in their locations,
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MADD based clustering algorithms can have excellent performance even when the populations have

the same location and scale. Using suitable transformation ψ on each covariate, MADD is able to

distinguish between populations with different marginal distributions. However, instead of applying

ψ on each co-ordinate, one can divide X into disjoint blocks X = (X(1), . . . ,X(d0))> and define

ϕh,ψ(X,Z) = h
{∑d0

q=1 ψ(‖X(q) − Z(q)‖)
}

. MADD can be defined accordingly. If the sizes of these

blocks are uniformly bounded, ρ∗h,ψ(i, j) turns out to be positive unless the i-th and the j-th pop-

ulations have the same block distributions. Naturally one would like to have nearly independent

blocks, but a suitable algorithm needs to be developed for this purpose.

For most of the data sets analyzed in this article, the spectral clustering algorithm of Shi and

Malik (2000) also worked better when a MADD based similarity measure was used. We observed the

same for the spectral clustering algorithm of Ng et al. (2002) as well, but to save space, we decided

not to report them in this article. Throughout this article, we have used AvgL for hierarchical

clustering. However, other linkage methods like single linkage, complete linkage, Ward’s linkage or

centroid linkage (see, e.g., Duda et al. 2012; Johnson and Wichern 2014) can also be used. One can

prove the perfect clustering property of MADD versions of these linkage algorithms following the

same line of arguments as used in the proofs of Theorems 1, 3 and 4.

We have also considered the problem of estimating the number of clusters and seen that the

methods based on Jump statistic and KL statistic usually perform better in high dimensions when

their MADD versions are used. We have also successfully used MADD versions of Dunn index

and penalized Dunn index for this purpose. Under appropriate regularity conditions, the methods

based on KL statistic, Dunn index and penalized Dunn index turn out to be consistent in HDLSS

asymptotic regime when AvgL(h, ψ) or kM(h, ψ) is used for base clustering. But, the choice of

penalty function ζ in the penalized Dunn index still remains an issue to be resolved. Throughout

this article, we have used ζ(d) = λ log(d), which was chosen based on our empirical experience.

But, a suitable data driven choice of ζ may further improve the empirical performance of different

clustering algorithms.
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Appendix: Proofs and mathematical details

Proof of Lemma 1: Since X ∼ Ud(a1, b1), the distribution function of R = d−1/2‖X‖ is given by

FR(r) = (rd − ad1)/(bd1 − ad1) for a1 ≤ r ≤ b1, 0 for r < a1 and 1 for r > b1. So, R has the density

fR(r) = drd−1/(bd1 − ad1) for a1 ≤ r ≤ b1 and 0 otherwise. Therefore,

E(d−1‖X‖2) = E(R2) =
d

d+ 2

bd+2
1 − ad+2

1

bd1 − ad1
→ b21, and

E(d−2‖X‖4) = E(R4) =
d

d+ 4

bd+4
1 − ad+4

1

bd1 − ad1
→ b41 (4)

as d → ∞. This implies V ar(d−1‖X‖2) → 0 and hence d−1‖X‖2 P→ b21 as d → ∞. Similarly, we

have d−1‖Y‖2 P→ b22 as d→∞.

Now, it is enough to show that d−1 〈X,Y〉 P→ 0 as d → ∞. Here X and Y are independent,

and they are spherically symmetric about 0 (see Fang et al. 1990). So, we have E(d−1 〈X,Y〉) =

d−1
∑d

q=1E(X(q))E(Y (q)) = 0, and E(X(q)X(q′)) = E(Y (q)Y (q′)) = 0 for all q 6= q′. Therefore,

V ar(d−1 〈X,Y〉) = E(d−2 〈X,Y〉2) = d−1E(X(1)2)E(Y (1)2) = d−1E(d−1‖X‖2)E(d−1‖Y‖2). We

have proved that E(d−1‖X‖2) → b21 and E(d−1‖Y‖2) → b22 as d → ∞. So, V ar(d−1 〈X,Y〉) → 0

and hence d−1 〈X,Y〉 P→ 0 as d→∞.

Proof of Lemma 2: Non-negativity of ρh,ψ is obvious and symmetry comes from the fact that

ϕh,ψ is symmetric. When n = 3, we get

|ϕh,ψ(x1,x3)− ϕh,ψ(x2,x3)| = |ϕh,ψ(x1,x3)− ϕh,ψ(x1,x2) + ϕh,ψ(x1,x2)− ϕh,ψ(x2,x3)|

≤ |ϕh,ψ(x1,x2)− ϕh,ψ(x3,x2)|+ |ϕh,ψ(x2,x1)− ϕh,ψ(x3,x1)|

When n ≥ 4, for any k = 4, . . . , n, we get

|ϕh,ψ(x1,xk)− ϕh,ψ(x2,xk)| = |ϕh,ψ(x1,xk)− ϕh,ψ(x3,xk) + ϕh,ψ(x3,xk)− ϕh,ψ(x2,xk)|

≤ |ϕh,ψ(x1,xk)− ϕh,ψ(x3,xk)|+ |ϕh,ψ(x2,xk)− ϕh,ψ(x3,xk)|

Combining these two facts, we have∑
k 6=1,2

|ϕh,ψ(x1,xk)− ϕh,ψ(x2,xk)|

≤
∑
k 6=1,3

|ϕh,ψ(x1,xk)− ϕh,ψ(x3,xk)|+
∑
k 6=2,3

|ϕh,ψ(x2,xk)− ϕh,ψ(x3,xk)|
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Proof of Lemma 3: The proof follows from our discussion preceding the statement of the lemma.

Hence it is omitted.

Proof of Lemma 4: If the i-th and the j-th populations have the same marginal distributions,

then ϕ∗h,ψ(i, `) = ϕ∗h,ψ(j, `) for all ` = 1, . . . , k0. As a result, we have ρ∗h,ψ(i, j) = 0.

For the only if part, first observe that ρ∗h,ψ(i, j) ≥ (ni − 1)
∣∣ϕ∗h,ψ(i, j) − ϕ∗h,ψ(i, i)

∣∣ + (nj −

1)
∣∣ϕ∗h,ψ(i, j) − ϕ∗h,ψ(j, j)

∣∣. Now, if the right side is zero, we have ϕ∗h,ψ(i, j) = ϕ∗h,ψ(i, i) and

ϕ∗h,ψ(i, j) = ϕ∗h,ψ(j, j). Since h is a one-to-one function, this implies d−1
∑d

q=1

{
2Eψ(|X(q)

1 −Y
(q)
1 |)−

Eψ(|X(q)
1 −X

(q)
2 |)−Eψ(|Y (q)

1 −Y (q)
2 |)

}
= 0, where X1,X2 and Y1,Y2 are independent observations

from the i-th and the j-th populations, respectively. Now, since ψ′(t)/t is strictly monotone, each

summand in the left side is positive, and it is zero if and only if the respective marginal distributions

are equal (see Baringhaus and Franz (2010); Biswas et al. (2015)). Thus, ρ∗h,ψ(i, j) = 0 implies that

the i-th and the j-th populations have the same marginals.

Proof of Lemma 5: If ρ∗h,ψ(i, j) = 0, then for ` = 1, . . . , k0, we have ϕ∗h,ψ(i, `) = ϕ∗h,ψ(j, `).

Now, for h(t) =
√
t and ψ(t) = t2, we have ϕ∗h,ψ(i, `) = d−1/2

√
tr(Σi) + tr(Σ`) + ‖µi − µ`‖2 and

ϕ∗h,ψ(j, `) = d−1/2
√
tr(Σj) + tr(Σ`) + ‖µj − µ`‖2. So, ρ∗h,ψ(i, j) = 0 if and only if ‖µi − µ`‖2 +

tr(Σi) = ‖µj − µ`‖2 + tr(Σj) for every ` = 1, . . . , k0. Therefore, taking ` = i and ` = j, we get

tr(Σi) = tr(Σj) and ‖µi − µj‖ = 0. On the other hand, if tr(Σi) = tr(Σj) and µi = µj , it is easy

to check that ρ∗h,ψ(i, j) = 0.

Proof of Theorem 1: From Lemma 3 and (A2), we have ρh,ψ(X,Y)
P→ 0 when X,Y come from

the same population, but when they are from different populations, we have ρh,ψ(X,Y) > 0 for all

but finitely many d. So, for every k and i 6= j, we get

Pr
(

max
X,Y∈Xk

ρh,ψ(X,Y) < min
X∈Xi,Y∈Xj

ρh,ψ(X,Y)
)
→ 1 as d→∞. (5)

Therefore, at the first step of AvgL(h, ψ), two members of the same population merge together with

probability converging to 1 as d→∞. Now at any step r (2 ≤ r < n− k0), given that observations

from the same population were merged together at each of the (r− 1) previous steps, any cluster C

becomes a subset of Xk for some k, and we have

Pr
(

max
k

max
C,C′⊂Xk

∆(C,C ′) < min
i 6=j

min
C⊂Xi,C′⊂Xj

∆(C,C ′)
)
→ 1 as d→∞, (6)
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where ∆(C,C ′) = (|C||C ′|)−1
∑

X∈C,Y∈C′ ρh,ψ(X,Y). Therefore, two clusters containing observa-

tions from the same population will merge with probability tending to 1 as d → ∞. Since k0 is

known, these two facts together prove the result.

Proof of Theorem 2: Note that for any k, |Ck|−1
∑

Z∈Ck,Z 6=X ρ
2
h,ψ(X,Z)

P→ 0 as d→∞ if and only

if X and all observations in Ck are from the same population (follows from the proof of Theorem 1).

So, if each Ck (k = 1, . . . , k0) contains observations from the same population, Φ∗(C1, . . . , Ck0)
P→ 0

as d → ∞. Otherwise, we have lim infd→∞Φ∗(C1, . . . , Ck0) > 0 (follows from (A2)). So, when k0

is known, for the minimization of Φ∗(C1, . . . , Ck0), each Ck must contain all observations from a

single population with probability converging to one as the dimension increases. This proves the

convergence of the Rand index to zero.

Proof of Theorem 3: Let X and Z be independent observations from i-th and `-th populations

(i, ` = 1, . . . , k0), and define Vd = d−1
∑d

q=1 ψ(|X(q) − Z(q)|). Since
(
Vd − E(Vd)

)
/
√
V ar(Vd) =

OP (1), we have Vd−E(Vd) = OP (ϑ(d)/d). Since h is Lipschitz continuous, this implies
∣∣ϕh,ψ(X,Z)−

ϕ∗h,ψ(i, `)
∣∣ = |h(Vd)−h(E(Vd))| ≤ C0|Vd−E(Vd)| = OP (ϑ(d)/d). So, for an independent observation

Y from the j-th population, we get
∣∣ϕh,ψ(X,Z)−ϕh,ψ(Y,Z)

∣∣ =
∣∣ϕ∗h,ψ(i, `)−ϕ∗h,ψ(j, `)

∣∣+OP (ϑ(d)/d)

as d→∞. Since the number of observations is finite, we get ρh,ψ(X,Y) = ρ∗h,ψ(i, j) + OP (ϑ(d)/d).

Now, for all i = 1, . . . , k0, ρ
∗
h,ψ(i, i) = 0, while for all i 6= j, ρ∗h,ψ(i, j) has asymptotic order higher than

that of ϑ(d)/d. Therefore, for X,Y from the same population and X′,Y′ from different populations

we get Pr
(
ρh,ψ(X,Y) < ρh,ψ(X′,Y′)

)
→ 1 as d → ∞. Now, the proof follows using the same line

of arguments as used in the proofs Theorems 1 and 2.

Proof of Theorem 4: Let X and Z be two independent observations from i-th and `-th populations

(i, ` = 1, . . . , k0). Note that for ρ0, we use h(t) =
√
t and ψ(t) = t2. Therefore, taking Vd =

d−1
∑d

q=1(X
(q) − Z(q))2, we get ϕh,ψ(X,Z) − ϕ∗h,ψ(i, `) =

√
Vd −

√
E(Vd) = (Vd − E(Vd))/

(√
Vd +√

E(Vd)
)
, where E(Vd) = d−1

{
‖µi−µ`‖2 + tr(Σi + Σ`)

}
≥ d−1tr(Σi). So,

√
dE(Vd)/ϑ(d) remains

bounded away from 0, and hence
√
ϑ(d)/

(√
dVd +

√
dE(Vd)

)
remains bounded as d → ∞. Now,

(Vd−E(Vd))/
√
V ar(Vd) = Op(1) implies (Vd−E(Vd)) = Op(ϑ(d)/d). Again, 1/

(√
Vd+

√
E(Vd)

)
=

Op(
√
d/ϑ(d)). So, ϕh,ψ(X,Z) = ϕ∗h,ψ(i, `)+OP (

√
ϑ(d)/d), and hence we have ρ0(X,Y) = ρ∗0(i, j)+

OP (
√
ϑ(d)/d). So, following the proof of Theorem 3, one can show that AvgL0 and kM0 will have

the perfect clustering property if for every i 6= j,
√
dρ∗0(i, j)/

√
ϑ(d) → ∞ or dρ∗20 (i, j)/ϑ(d) → ∞
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as d → ∞. Now, from the proof of Lemma 5, it follows that if ‖µi − µj‖2/ϑ(d) → ∞ and/or

|tr(Σi)− tr(Σj)|/ϑ(d)→∞, then dρ∗20 (i, j)/ϑ(d)→∞ as d→∞.

All estimation methods that we discuss henceforth are based on ρh,ψ. So, we have

Wk =
∑k

j=1 (2|Cj |)−1
∑

z,w∈Cj
ρ2h,ψ(z,w), ∆0(Ci) = {|Ci|(|Ci| − 1)}−1

∑
z,w∈Ci

ρh,ψ(z,w), and

∆(Ci, Cj) = (|Ci||Cj |)−1
∑

z∈Ci,w∈Cj
ρh,ψ(z,w).

Proof of Theorem 5: (i) Since the base clustering algorithm is POP at k0, for any k < k0, there

exists at least one estimated cluster which contains observations from two different populations, and

no two clusters contain observations from the same population. So, under (A3), we have ∆0(Ci)
P�

φ+(d) for some i and ∆(Ci, Cj)
P� φ+(d) for every i 6= j. Thus, B◦k = min1≤i<j≤k ∆(Ci, Cj)

P� φ+(d)

and W ◦k = max1≤i≤k ∆0(Ci)
P� φ+(d), and hence we get D(k) = B◦k/W

◦
k

P� 1.

For k > k0, no cluster contains observations from two different populations, while there exists at

least two clusters which contain observations from the same population. So, ∆0(Ci)
P� φ−(d) for

every i and ∆(Ci, Cj)
P� φ−(d) for some i 6= j. Thus, B◦k

P� φ−(d), W ◦k
P� φ−(d), and hence D(k)

P� 1.

For k = k0, each cluster contains observations from same population and two different clusters

contain observations from two different populations. This implies that ∆0(Ci)
P� φ−(d) for every

i and ∆(Ci, Cj)
P� φ+(d) for every i 6= j. So, we have B◦k

P� φ+(d) and W ◦k
P� φ−(d) and hence

D(k)
P�
(
φ+(d)/φ−(d)

)
.

Combining these three cases, and noting that φ−(d) = o
(
φ+(d)

)
, we get Pr

(
D(k0) > D(k) ∀k 6=

k0
)
→ 1 as d→∞. This implies k̂∗D

P→ k0 as d→∞.

(ii) For all k ≥ 2, the KL statistic can be written as KL(k)=
∣∣(Λk−1 − Λk)/(Λk − Λk+1)

∣∣, where

Λk = k2/dWk. Since the base clustering algorithm is POP at k0, from our discussion in part (i), it

follows that Wk
P� φ+(d) for k < k0 and Wk

P� φ−(d) for k ≥ k0. Note that, for any fixed k, k2/d → 1

as d→∞. So, for all k ≥ 1, Λk
P�Wk. Now, it is easy to check that KL(k0)

P�
(
φ+(d)/φ−(d)

)
and

KL(k)
P� 1 for all other values of k. Therefore, Pr

(
KL(k0) > KL(k) ∀k 6= k0

)
→ 1 as d→∞, and

hence we have k̂∗KL
P→ k0 as d→∞.

(iii) Note that d̂k = Wk
P� φ+(d) and φ−(d) for 1 ≤ k < k0 and k ≥ k0, respectively (follows from

our discussion in parts (i) and (ii)). So, we have Jump(k) = d̂−1k − d̂
−1
k−1

P� 1/φ+(d) or 1/φ−(d)

according as k < k0 or k ≥ k0. This implies that Pr
(
k̂∗J < k0

)
→ 0 as d→∞.
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Proof of Theorem 6: First consider the case k0 ≥ 2. While proving part (i) of Theorem 5, we have

shown that in this case, D(k0)
P�
(
φ+(d)/φ−(d)

)
and D(k)

P� 1 for all other choice of k ≥ 2. Also, we

have W ◦1
P� φ+(d) and B◦1

def
= B◦2

P� φ+(d), which implies D(1)
def
= B◦1/W

◦
1

P� 1. So, for any k 6= k0,

PD(k0) − PD(k) = D(k0) −D(k) − (k0 − k)ζ(d)
P→ ∞ as d → ∞ (since ζ(d) = o

(
φ+(d)/φ−(d)

)
).

Thus, k̂∗PD
P→ k0 as d→∞.

When k0 = 1, we have W ◦k
P� φ−(d), B◦k

P� φ−(d) for every k ≥ 1. So, PD(1) − PD(k) =

D(1)−D(k) + (k− 1)ζ(d)
P→∞ as d→∞ (since D(k)

P� 1 for k ≥ 1 and ζ(d)→∞ as d→∞) and

hence k̂∗PD
P→ k0.

Lemma 6. Let X and Y be two independent observations from the i-th population. For an inde-

pendent observation Z from the j-th population (j = 1, . . . , k0), assume that V ar
{∑d

q=1 ψ(|X(q) −

Z(q)|)
}

= O(d2−ε0) for some ε0 > 0. If h is Hölder continuous with exponent γ, then ρh,ψ(X,Y) =

OP (d−α0) with α0 = γε0/2.

Proof: Define Vd = d−1
∑d

q=1 ψ(|X(q) − Z(q)|) and V ′d = d−1
∑d

q=1 ψ(|Y (q) − Z(q)|), for some

Z 6= X,Y. Note that Vd − V ′d = (Vd − EVd)− (V ′d − EV ′d). Now, write

Vd − EVd =
Vd − EVd√
V ar(Vd)

√
V ar(Vd).

The first term on the right side is OP (1), and under the given condition, the second term is O(d−ε0/2).

So, we have Vd − EVd = OP (d−ε0/2). Similarly, one gets V ′d − EV ′d = OP (d−ε0/2). Thus, Vd − V ′d =

OP (d−ε0/2). Now, since h is Hölder continuous with exponent γ, we get
∣∣ϕh,ψ(X,Z)−ϕh,ψ(Y,Z)

∣∣ =∣∣h(Vd) − h(V ′d)
∣∣ ≤ C0

∣∣Vd − V ′d∣∣γ = OP (d−γε0/2) = OP (d−α0). Since n is finite, this in turn proves

that
∑

Z6=X,Y |ϕh,ψ(X,Z)− ϕh,ψ(Y,Z)| = OP (d−α0).

Remark 1. For ρ0 (i.e., h(t) =
√
t and ψ(t) = t2), ϕh,ψ(X,Z) − ϕh,ψ(Y,Z) = h(Vd) − h(V ′d) =

(Vd − V ′d)(2
√
ξd)
−1, where ξd lies between Vd and V ′d. Also, Vd = d−1‖X − Z‖2 remains bounded

away from 0 in probability (and so does V ′d). Therefore, ξ
−1/2
d = OP (1), and hence ϕh,ψ(X,Z) −

ϕh,ψ(Y,Z) = OP (d−ε0/2). So, the Hölder continuity of h is only sufficient, but not necessary.
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