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Properties of Mean Shift
Ryoya Yamasaki, and Toshiyuki Tanaka, Member, IEEE

Abstract—We study properties of the mean shift (MS)-type algorithms for estimating modes of probability density functions (PDFs),
via regarding these algorithms as gradient ascent on estimated PDFs with adaptive step sizes. We rigorously prove convergence of
mode estimate sequences generated by the MS-type algorithms, under the assumption that an analytic kernel function is used.
Moreover, our analysis on the MS function finds several new properties of mode estimate sequences and corresponding density
estimate sequences, including the result that in the MS-type algorithm using a Gaussian kernel the density estimate monotonically
increases between two consecutive mode estimates. This implies that, in the one-dimensional case, the mode estimate sequence
monotonically converges to the stationary point nearest to an initial point without jumping over any stationary point.

Index Terms—Mode estimation, mode clustering, mean shift algorithm, conditional mean shift algorithm, subspace constrained mean
shift algorithm
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1 INTRODUCTION

THE mean shift (MS) algorithm [1], [2], [3] is a method
to estimate modes of a probability density function

(PDF) via gradient ascent of an estimated PDF with adaptive
step sizes. The MS algorithm is mainly applied to mode
clustering [4], [5]. The MS-based mode clustering is a flexible
method that does not require specifying the number of
clusters and the initial points of cluster centers beforehand,
and it can cope with arbitrary cluster shapes. Also, in the
fields of computer vision, image processing, and pattern
recognition, the MS algorithm is widely used, for example,
in image segmentation [3], [6], edge detection [7], [8], object
tracking [9], [10], and so on.

The conditional mean shift (CMS) algorithm [11], [12],
[13], a variant of the MS algorithm, is a representative
technique for nonparametric modal regression, which has
been applied to analysis of traffic data [12], [13] and weather
data [14]. The CMS algorithm can be regarded as a weighted
version of the conventional MS algorithm with the weights
determined by the values of the independent variables in
the samples, and it estimates modes of a conditional PDF
of the dependent variables conditioned on the independent
variables.

Another variant of the MS algorithm is the subspace
constrained mean shift (SCMS) algorithm [15], [16], [17],
which is a method of estimating principal curves and prin-
cipal surfaces as ridges of an estimated PDF [18]. It has
been applied to face alignment [19] and analysis of cosmic
data [20]. This method performs gradient ascent with an
adaptive step size similar to the MS algorithm in a suitably
constrained subspace at each iteration. In this paper, we use
the term “the MS-type algorithms” to collectively refer to
these algorithms derived on the basis of the MS algorithm.
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TABLE 1
Classification of the main results according to problem dimension and

kernel function.

Dimension Kernel Results

General

General

Theorem 1
Corollary 1

Propositions 1 & 3
Lemmas 1, 2, & 4

Algorithm 2

Analytic
Theorem 2
Corollary 2

Propositions 2

Gaussian
Theorem 3

Propositions 3
Lemma 3

1-dim.
General Proposition 4

Gaussian Theorem 4
Algorithm 3

It has empirically been observed that mode estimate
sequences obtained by the MS algorithms efficiently con-
verge to local modes of estimated PDFs. However, our
understanding on theoretical properties of these algorithms,
such as their convergence properties, is quite limited. In
this paper, we study properties of mode estimate sequences
generated by the MS-type algorithms and the corresponding
density estimate sequences. Then, we give new findings and
unified understanding on properties and convergence of the
MS-type algorithms (see Table 1).

Although there are two well-known proofs for conver-
gence of the MS algorithm for estimated PDFs given by
kernel density estimation [3], [21], it has been pointed out
that neither is strictly rigorous. It was claimed in [3] that
the mode estimate sequence generated by the MS algorithm
is a Cauchy sequence and hence converges. As pointed
out in [22], however, there was a flaw in [3] in proving
that the mode estimate sequence satisfies the condition
of a Cauchy sequence. Convergence of the mode estimate
sequence generated by the MS algorithm was also claimed
in [21] under the assumption that a Gaussian kernel is used,
on the ground that the MS algorithm using a Gaussian
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kernel is an instance of the expectation maximization (EM)
algorithm. However, as pointed out in [23], the claim is
not justifiable since it is known that the EM algorithm
may not converge without additional conditions [24]. Also,
a recent paper [25], under the condition that sufficiently
small step sizes are used, gives an error bound between
a piecewise linear trajectory connecting the mode estimate
sequence (a mode estimate path in our Definition 5) and
a trajectory of the gradient flow of the underlying PDF,
and discusses the condition under which the mode estimate
sequence converges to proper modes (see our Definition 6).
However, their proof [25, middle of p. 15] on convergence
of the mode estimate sequence has the same flaw as [3], and
consequently, convergence of the mode estimate sequence
has not been proven in [25]. We also note that a step size
considered in [25] is smaller than the adaptive step size
currently used in most applications of the MS algorithm,
and consequently, the problem setting in [25] differs from
that in other papers discussing the convergence of the MS
algorithm.

Several studies attempt to rigorously prove convergence
of mode estimate sequences generated by the MS algorithm.
In [22], convergence of mode estimate sequences has been
proved under the assumption that an estimated PDF has
a finite number of stationary points inside the convex hull
of samples. It has not been proved, however, whether this
assumption holds for estimated PDFs with commonly used
kernel functions such as a Gaussian kernel (see e.g., [26]).
After that, a sufficient condition that an estimated PDF
with a Gaussian kernel satisfies this assumption has been
given in [27]. The obtained condition requires taking the
scale parameter (bandwidth) of the Gaussian kernel large
enough. Under this condition, however, an estimated PDF,
as well as the mode estimate sequences obtained therefrom,
would have a large bias, making practical significance of
the condition quite obscure. Consequently, as far as the
authors’ knowledge, there has been no complete proof of
convergence of the mode estimate sequence generated by
the MS algorithm under the multivariate setting as well as
with step sizes commonly used in applications. We would
like to mention, however, that it has rigorously been proved
in [23] that mode estimate sequences generated by the MS
algorithm with a wide range of kernel types including Gaus-
sian kernels converge if the problem is one dimensional.

In this paper, we provide a theorem for convergence of
mode estimate sequences generated by the MS-type algo-
rithms. The proof relies on analyticity of the kernel function,
while not requiring assumptions either on the finiteness of
stationary points of an estimated PDF, on non-degeneracy
of the Hessian of an estimate PDF at stationary points, or on
sufficiently small step sizes. This theorem therefore covers
most of typical settings appearing in practice, including the
case where the Gaussian kernel is used in estimating the
PDF.

Also, despite many studies on the convergence of the
MS algorithm, how the mode/density estimate sequences
behave have not been clarified yet. In particular, in view of
the MS algorithm as a gradient ascent method, significance
of the particular choice of step sizes adopted in the con-
ventional MS algorithm has not yet been fully elucidated.
In this paper, we study the MS-type algorithms with an

additional parameter to control step sizes, and show that
density estimates along the sequence of mode estimates
obtained from the MS-type algorithms are non-decreasing
if each step size is up to twice as large as that used in
the conventional MS-type algorithms. Moreover, the above-
mentioned convergence conditions of the mode estimate
sequences remain true even if the step sizes up to about
twice the conventional step size are used. These results
suggest that the computational efficiency of the MS-type
algorithms may be improved practically by using step sizes
larger than the conventional ones. Another result is that
the density estimate monotonically increases on the line
segment between two consecutive mode estimates gener-
ated by the MS-type algorithms using a Gaussian kernel
and the conventional step size. In the one-dimensional case,
it implies that the mode estimate sequence monotonically
converges. On the basis of these results, we propose two
acceleration techniques of the MS-type algorithms.

The organization of this paper is as follows. First, we
explain the MS algorithm and its variants in Section 2. Next,
we theoretically analyze these algorithms in Section 3. Then,
in Section 4, we propose two acceleration techniques of these
algorithms on the basis of the theoretical results in Section 3
and confirm their improvement via numerical experiments.
Finally, the conclusions are given in Section 5.

2 MEAN SHIFT ALGORITHM AND ITS VARIANTS

2.1 Mean Shift Algorithm

Let X ∈ Rd be a random variable. Assume that the prob-
ability distribution of X has a PDF p. Modes of a PDF p
are defined as local maximizers of p. In practical situations,
one often cannot have direct access to the PDF p itself but
only a finite number of samples drawn from it are available.
In such cases, although it is not possible to know exactly
the PDF p and its modes, one can still consider estimating
the PDF on the basis of the samples available, and then
estimating the modes as local maximizers of an estimated
PDF.

For estimating the PDF, the MS algorithm typically uses
kernel density estimation, which is one of the most represen-
tative nonparametric density estimation methods. Assume
that a sample set D := {xi ∈ Rd}ni=1, consisting of a finite
number n of independent and identically-distributed sam-
ples drawn from the probability distribution with the PDF
p, is available. We define a weight set asW := {wi > 0}ni=1.
The kernel density estimate (KDE) of the PDF p is then given
by

p̂D,W(x) :=
n∑

i=1

wiK(x− xi), (1)

where K is the kernel function and where wi > 0 is the
weight for sample i. In the following, we will drop the
subscriptsD andW of p̂D,W(x) when they are obvious from
the context. In the following discussion, the kernel function
K is assumed differentiable, nonnegative, and normalized,
that is,

∫
Rd K(x) dx = 1 holds. Note that (1) reduces to

the conventional KDE by letting wi = 1/n, i = 1, . . . , n.
Note also that in the definition above the KDE is not
normalized unless

∑n
i=1 wi = 1 holds, so that the following
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discussion also covers the generalized density estimate and
the associated weighted MS discussed in [28].

In kernel density estimation, a scale parameter (band-
width) of the kernel function significantly affects accuracy
of the density estimate. It is therefore important to select
an appropriate bandwidth in kernel density estimation as
well as in the MS-type algorithms [29], [30]. In this paper,
however, we assume that the bandwidth has already been
appropriately determined, so that we do not discuss how
to determine it. Also, although one does not have to use
the same bandwidth for the n appearances of the kernel
function in (1), we assume, unless otherwise stated, that the
same bandwidth is used for all appearances of the kernel
function.

One observes that kernel density estimation is transla-
tion invariant in the following sense. Given a sample set D,
a weight set W , and an arbitrary constant vector a ∈ Rd,
consider the translated sample set Da = {xi + a}ni=1. One
then has

p̂Da,W(x+ a) = p̂D,W(x). (2)

According to the usual discussion, assume that the ker-
nel function K is radially symmetric and strictly decreasing
with respect to the Euclidean norm of the argument. Then,
it can be expressed as K(x) = k(∥x∥2/2) using a certain
function k, called the profile of the kernel function K , where
∥ · ∥ denotes the Euclidean norm. Let g(u) = −k′(u), and
define a new kernel function G as G(x) := g(∥x∥2/2)
with g its profile. For example, if K is a Gaussian kernel,
G is also a Gaussian kernel. It should be noted that G
might not be normalized even if K is normalized. Since
∇K(x) = −xG(x) holds, the gradient of the KDE p̂ is

∇p̂(x) =
n∑

i=1

(xi − x)wiG(x− xi). (3)

Given a differentiable PDF estimate p̂, a mode estimate
should satisfy ∇p̂(x) = 0. When p̂ is given as a KDE, this
condition is rewritten as

n∑
i=1

(xi − x)wiG(x− xi) = 0. (4)

The MS algorithm is derived as a fixed-point iteration on
the basis of the above condition, as

yt+1 =

∑n
i=1 xiwiG(yt − xi)∑n
i=1 wiG(yt − xi)

. (5)

We call {yt} a mode estimate sequence with an initial mode
estimate y0. We also call the sequence {p̂(yt)} the density
estimate sequence.

The iterative equation derived above can alternatively be
viewed as a gradient ascent method using an adaptive step
size. The gradient ascent method is formulated as

yt+1 = yt + ηt∇p̂(yt), (6)

where ηt > 0 is the step size at iteration t. If one chooses

ηt =
1∑n

i=1 wiG(yt − xi)
> 0, (7)

then the expression (6) reduces to (5), implying that the MS
algorithm is a gradient ascent method1.

For use in the following discussion, we define the MS
function as

mD,W(x) :=

∑n
i=1 xiwiG(x− xi)∑n
i=1 wiG(x− xi)

− x. (8)

In the following, we will drop the subscripts D and W
of mD,W(x) when they are obvious from the context.
The MS algorithm can be reformulated using the MS
function as yt+1 = yt + m(yt). One also has m(x) =
∇p̂(x)/(

∑n
i=1 wiG(x− xi)), that is, the MS function m(x)

is proportional to the gradient ∇p̂(x). It should be noted
that our definition of the MS function given above reduces
to the conventional definition, which assumes the uniform
weights, that is, wi = 1/n, i = 1, . . . , n.

The translation invariance property of kernel density
estimation discussed above carries over to the MS function:
Given a sample set D, a weight set W , and an arbitrary
constant vector a ∈ Rd, one has

mDa,W(x+ a) = mD,W(x). (9)

If G is positive-valued, for any x,

x+mD,W(x) =

∑n
i=1 xiwiG(x− xi)∑n
i=1 wiG(x− xi)

(10)

is a convex combination of the samples in D. One then has:

Lemma 1. Assume that a kernel function K has a differentiable
and strictly decreasing profile. Let C be the convex hull of the
sample set D. One then has x+mD,W(x) ∈ C, for any x.

2.2 Variants of the Mean Shift Algorithm
Various variants of the MS algorithm have been proposed.
The CMS algorithm can be regarded as a weighted version
of the MS algorithm having the weights wi related to the
independent variable part of the sample points xi (see
[11], [12], [13] for details). Therefore, the CMS algorithm is
included in the general MS algorithm (5) as a special case.

For the SCMS algorithm, we leave its details to [15], [16],
[17]. Here we briefly review the iteration formula of the
SCMS algorithm. The SCMS algorithm iterates

yt+1 = yt +Utm(yt), (11)

where Ut is typically chosen as the projection matrix repre-
senting the normal projection onto the subspace spanned
by the (d − j) eigenvectors, associated with the (d − j)
largest eigenvalues, of the negative Hessian of log p̂ at yt,
which is called the local inverse covariance matrix. When
Ut is an identity matrix, the iteration formula of the SCMS
algorithm is identical to those of the MS algorithm and the
CMS algorithm, so that the SCMS algorithm can be regarded
as a generalization of the MS algorithm. As methods for
mode estimation, MS-variants based on Newton’s method
that uses Ut proportional to (∇2p̂(yt))

−1 have also been
developed [31].

1. Historically, the MS algorithm was originally proposed as a gradi-
ent ascent method as in (6) [1, Section IV-A]. The particular form (5) of
the MS algorithm, or equivalently, the particular choice (7) of the step
size, was studied extensively in [2], and it is this particular form that
has become commonly used.
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3 PROPERTIES AND CONVERGENCE OF THE
MEAN SHIFT-TYPE ALGORITHM

3.1 Properties of the Kernel Density Estimate
Before studying properties of the mode/density estimate
sequences generated by the MS-type algorithms, we inves-
tigate properties of the KDE in this subsection.

First, we show that the KDE has no stationary point
outside the convex hull C of the sample set. This fact, stated
in Proposition 1 below, justifies the behavior of the MS
algorithm implied by Lemma 1 that it seeks modes only
inside C.

Proposition 1. Assume that a kernel function K has a differen-
tiable and strictly decreasing profile. Then, the gradient ∇p̂ of the
KDE is nonzero outside the convex hull C of the sample set D.

Note. The Gaussian-kernel case, and the uniform-weight
case wi = 1/n, i = 1, . . . , n, of this proposition have
been proved in [32] and [27, Lemma 1], respectively. A
closely related result is [33, Theorem 2.1], which, without
assuming differentiability of the profile, proved absence of
a maximum, not of a stationary point, of the KDE outside C.

Proof: Let y /∈ C be an arbitrary point outside C. Since D is
finite, C is bounded and closed, so that there exists x0 ∈ C
which is the closest to y. The gradient ∇p̂ of the KDE at y
is given by

∇p̂(y) = −
n∑

i=1

(y − xi)wiG(y − xi). (12)

By assumption, one has G(y − xi) > 0 and wi > 0 for all
i = 1, . . . , n. From Lemma 4 in Appendix, (y − x0) · (y −
xi) > 0 holds for all i = 1, . . . , n. Thus, one has proved
(y−x0) ·∇p̂(y) < 0 at any point y ̸∈ C, and hence∇p̂ does
not vanish outside C.

Also, we show that the KDE using an analytic kernel
function does not have a plateau defined below.

Definition 1 (Plateau). A plateau of a function f on S ⊂ Rd

is defined as an open subset of S where f takes a constant value.

Proposition 2. Assume that a kernel function K is analytic.
Then, the KDE p̂ has no plateau.

Proof: Assume to the contrary that p̂ is constant on an open
set S ⊂ Rd. Take a line segment ℓ = {y(ϵ) = y0 + ϵd :
ϵ ∈ (0, 1)} ⊂ S, d ̸= 0, and define f : (0, 1) → R as
f(ϵ) = p̂(y(ϵ)). By the analyticity of K , the function f is
also an analytic function. Treating ϵ as a complex-valued
variable, the expression of ϵ then defines a function which
is holomorphic on C (i.e., a complex function that is analytic
on C) and is equal to p̂ on the straight line containing the
line segment ℓ. Since f is holomorphic on C and takes a
constant value on the interval (0, 1) in C, from the identity
theorem2, f is constant throughout C. But it is impossible
because f(ϵ) = p̂(y(ϵ)) as a function of real-valued variable
ϵ should be nonzero and should decay toward zero as |ϵ| →
∞, which is contradiction.

In the one-dimensional case, a similar argument has
been adopted for a Gaussian kernel in [16, Proposition 1]

2. The identity theorem states that, for two holomorphic functions f
and g in a region Ω ⊂ C, if f(z) = g(z) holds for all z in a set which
has an accumulation point in Ω, then f(z) = g(z) holds for all z ∈ Ω.

to show the finiteness of the stationary points of p̂. This
argument based on the identity theorem in complex analysis
to prove the finiteness of the stationary points does not
extend to two or more dimensions, however, since zero
sets of analytic functions in more than one variable are
known to be nondiscrete. There are studies on properties
of the MS algorithm on the basis of theories of a Morse
function (i.e., a function having no degenerate stationary
points): See, e.g., [34]. Even though the number of non-
degenerate stationary points of the KDE with a Gaussian
kernel has been shown to be finite [26], whether the total
number of stationary points of the KDE with a Gaussian
kernel, including degenerate ones, is finite is still an open
problem.

3.2 Properties of the Mean Shift Function

In this subsection, we discuss properties of the MS function,
which will be utilized in the following sections to study
properties of the MS-type algorithms. Here we introduce
novel concepts related to the MS function.

Definition 2 (Improvement ball and ascent ball). Given the
MS function m and a point x ∈ Rd, we define the improvement
ball I(x) at x associated with the MS function m(x) as the d-
dimensional ball centered at x + m(x) and of radius ∥m(x)∥.
Similarly, we define the ascent ball A(x) at x associated with
the MS function m(x) as the d-dimensional ball centered at x+
m(x)/2 and of radius ∥m(x)∥/2.

Note that these balls are not centered at x. Examples of
these balls can be found in Fig. 1. The significance of these
definitions will be elucidated in the rest of this subsection.
Briefly, if the kernel function K satisfies certain properties,
then one can guarantee that the value of p̂ in the improve-
ment ball I(x) is at least as large as p̂(x) (Lemma 2).
The improvement ball I(x) is also related to convergence
theorems (Theorems 1 and 2), given in the next subsection,
of the density/mode estimate sequences. Furthermore, if K
is a Gaussian kernel, then one can guarantee that, in the
ascent ball A(x), p̂ is increasing along any line passing
through x (Lemma 3). In particular, ∇p̂ is shown to be non-
vanishing in the interior of A(x).

First, we provide a sufficient condition for y given x,
in terms of the improvement ball I(x) at x, such that the
inequality p̂(y) > p̂(x) holds.

Lemma 2. Assume that a kernel function K has a differentiable
and strictly decreasing profile. For a point x ∈ Rd, let I(x)
be the improvement ball at x associated with the MS function
m(x). Then, for any y ∈ I(x), one has p̂(y) ≥ p̂(x), with
strict inequality if y is an interior point of I(x).

Proof: The translation invariance property of kernel density
estimation allows us to assume x = 0 without loss of
generality. The difference of the density estimate at y and
that at 0 is given by

p̂(y)− p̂(0) =
n∑

i=1

wi

[
k

(∥y − xi∥2

2

)
− k

(∥xi∥2

2

)]
.

(13)
The convexity and the differentiability of the profile k, as
well as the definition of g, yields the inequality k(u2) ≥
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k(u1) + g(u1)(u1 − u2) to hold for any u1, u2 ∈ [0,∞). It
allows us to provide a lower bound of p̂(y)− p̂(0), as

p̂(y)− p̂(0)

≥ 1

2

n∑
i=1

wiG(xi)
(
∥xi∥2 − ∥y − xi∥2

)
= y ·

n∑
i=1

xiwiG(xi)−
1

2
∥y∥2

n∑
i=1

wiG(xi)

=

(
y ·m(0)− 1

2
∥y∥2

) n∑
i=1

wiG(xi)

=
1

2

(
∥m(0)∥2 − ∥y −m(0)∥2

) n∑
i=1

wiG(xi). (14)

Since the improvement ball I(0) is centered at m(0) and
of radius ∥m(0)∥, one has ∥y − m(0)∥2 ≤ ∥m(0)∥2 for
any y ∈ I(0). Also, since the profile k is assumed strictly
decreasing, g(u) = −k′(u) is positive, and so is the kernel
G. Consequently, the last line of (14) is nonnegative for any
y ∈ I(0), and is strictly positive if y is an interior point of
I(0). One has therefore shown that p̂(y) ≥ p̂(x) holds for
any y ∈ I(x), with strict inequality when y is an interior
point of I(x).

Next, we provide, under the condition that a Gaussian
kernel is used, a sufficient condition for y given x, in
terms of the ascent ball A(x) at x, such that ∇p̂(y) is non-
vanishing.

Lemma 3. Assume that a kernel functionK is a Gaussian kernel.
For a point x ∈ Rd, let A(x) be the ascent ball at x associated
with the MS function m(x). Then, for any y ∈ A(x), the inner
product of the gradient ∇p̂(y) of the KDE at y and (y − x) is
nonnegative. Moreover, if y is an interior point of A(x), or if
there is at least one sample xi such that (y − x) · (y − xi) is
nonzero, the above inner product is strictly positive.

Proof: Let

f(y) := ∇p̂(y) · (y − x). (15)

We wish to prove the nonnegativity of f(y). For y = x, it
is trivially zero. For y = x + m(x), the positivity of f has
been proved in [3, Theorem 2]. Now the question is whether
f(y) is nonnegative for other values of y ∈ A(x).

We again make use of the translation invariance to
assume x = 0 without loss of generality. One has

f(y) =
n∑

i=1

y · (xi − y)wiG(y − xi), (16)

of which we wish to prove the nonnegativity.
We start with the definition of the MS function m(x),

which is rewritten when x = 0 as
n∑

i=1

(m(0)− xi)wiG(xi) = 0. (17)

Now, consider the quantity

n∑
i=1

(xi − y)wiG(y − xi). (18)

Adding to it the left-hand side of (17) multiplied by
G(0)/G(y) does not change its value, so that one has

n∑
i=1

(xi − y)wiG(y − xi) =
G(0)

G(y)

n∑
i=1

A(xi,y)wiG(xi),

(19)

where we let

A(x,y) = (x− y)
G(y − x)G(y)

G(x)G(0)
+ (m(0)− x)

= (x− y)

[
G(y − x)G(y)

G(x)G(0)
− 1

]
+ (m(0)− y).

(20)

Since G is a Gaussian kernel, one can write it as G(x) =
a exp(−b∥x∥2/2) with a, b > 0. One then has

G(y − x)G(y)

G(x)G(0)
= exp[−by · (y − x)]. (21)

Taking the inner product of A(x,y) and y gives

y ·A(x,y) =− y · (y − x)[exp(−by · (y − x))− 1]

− y · (y −m(0)). (22)

Since t(ebt − 1) ≥ 0 for all t ∈ R, one has

−y · (y − x)[exp(−by · (y − x))− 1] ≥ 0. (23)

When y ∈ A(0), one has y ·(y−m(0)) = ∥y−m(0)/2∥2−
∥m(0)/2∥2 ≤ 0, with strict inequality if and only if y is
an interior point of A(0). We have therefore shown that
y ·A(x,y) ≥ 0 holds for any x, with strict inequality either
if y is an interior point of A(0), or if y and (y − x) are not
orthogonal.

The argument so far, along with the positivity of the
kernel G and the weights wi, has proved that f(y), which
equals to the inner product of y and the right-hand side
of (19), is nonnegative. It is strictly positive either if y is an
interior point of A(0), or if there is at least one sample xi

such that y · (y − xi) is not equal to zero.
When y ̸= x, a simple sufficient condition for the

existence of a sample xi satisfying (y − x) · (y − xi) ̸= 0
is that the affine space containing the sample set D with the
minimum dimension is Rd.

The arguments on the basis of the improvement ball and
the ascent ball described so far tell us how the KDE p̂ and its
gradient∇p̂ behave in the vicinity of x, but information they
provide is “one-sided” in the sense that they tell us nothing
about behaviors of p̂ or∇p̂ at y satisfying (y−x)·m(x) < 0.
“Two-sided” information in this sense may be obtained
via an argument on the basis of Lipschitz continuity of
gradient of the kernel function. Such information, however,
is weak compared with that obtained via the MS function,
as discussed below.

Definition 3. A differentiable function f defined on S ⊂ Rd has
a Lipschitz-continuous gradient if there exists L > 0 such that

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ (24)

for any x,y ∈ S, where L is called the Lipschitz constant of ∇f .

Note that if f is of class C2 then one can take L =
supx∈S ∥∇2f(x)∥op, where ∥·∥op denotes the operator norm
induced by the Euclidean norm in Rd.
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Definition 4 (Lipschitz ball). Given a KDE p̂ based on a
kernel function K , which has a Lipschitz-continuous gradient
with Lipschitz constant L > 0, and a point x ∈ Rd, we define
the Lipschitz ball L(x) at x as the d-dimensional ball centered
at x and with radius ∥∇p̂(x)∥/ (L

∑n
i=1 wi).

Proposition 3. Assume that a kernel functionK has a Lipschitz-
continuous gradient with Lipschitz constant L. Assume that the
gradient of the KDE at x is nonzero. Then the gradient ∇p̂ is
nonzero in the interior of the Lipschitz ball L(x) at x.

Moreover, ifK is a Gaussian kernel, the radius of the Lipschitz
ball L(x) is strictly less than ∥m(x)∥.

Proof: The gradient ∇p̂ of the KDE is written as

∇p̂(x) =
n∑

i=1

wi∇K(x− xi). (25)

Since K has a Lipschitz-continuous gradient, one has for
any x and y,

∥∇K(x− xi)−∇K(y − xi)∥ ≤ L∥(x− xi)− (y − xi)∥
= L∥x− y∥. (26)

Let y be any stationary point of p̂, so that ∇p̂(y) = 0 holds.
One then has

∥∇p̂(x)∥ = ∥∇p̂(x)−∇p̂(y)∥

≤
n∑

i=1

wi∥∇K(x− xi)−∇K(y − xi)∥

≤ L∥x− y∥
n∑

i=1

wi, (27)

where the first inequality is due to the triangle inequality,
and where the second inequality follows from (26). We have
therefore proved

∥x− y∥ ≥ ∥∇p̂(x)∥
L
∑n

i=1 wi
, (28)

implying that any stationary point y is not in the interior
of the Lipschitz ball L(x). This proves the first part of the
proposition.

To prove the remaining part of the proposition, since K
is assumed to be a Gaussian kernel, one can let

K(x) = a exp

(
−b∥x∥

2

2

)
, b > 0, a =

(
b

2π

)d/2

. (29)

The gradient and the Hessian of K are calculated as

∇K(x) = −bxK(x) = −xG(x), (30)

∇2K(x) = b(bxxT − I)K(x), (31)

where I denotes the identity matrix. The Hessian ∇2K(x)
has eigenvalues b(b∥x∥2−1)K(x) (with eigenvector x) and
−bK(x) (with eigenvectors orthogonal to x), with the latter
being (d− 1)-fold degenerate. Since the Hessian ∇2K(x) is
symmetric, its operator norm is equal to the largest absolute
value of the eigenvalues, and is therefore given by bK(x)
if ∥x∥2 < 2/b, and b(b∥x∥2 − 1)K(x) if ∥x∥2 ≥ 2/b. It
depends on x but is bounded from above by L := ab, since
one hasK(x) ≤ K(0) = a and (b∥x∥2−1)K(x) ≤ (b∥x∥2−
1)K(x)|∥x∥2=3/b = 2ae−3/2 ≈ 0.446a < a.

Fig. 1. Comparison of improvement/ascent/Lipschitz balls for the exper-
iment in Example 1. The KDE is plotted as contour lines: the KDE is
higher for red and is lower for blue. The black points represent mode
estimate sequence {yt}t=0,...,10. The blue/red/green circles represent
the improvement/ascent/Lipschitz balls, respectively.

Here we are interested in relationship between
∥∇p̂(x)∥/ (L

∑n
i=1 wi) and ∥m(x)∥. Since G(x) = bK(x)

holds, one has

m(x) =

∑n
i=1(xi − x)wiK(x− xi)∑n

i=1 wiK(x− xi)
=
∇p̂(x)
bp̂(x)

. (32)

Since not all ∥x−xi∥2, i = 1, . . . , n, are simultaneously zero
when the gradient of p̂(x) is nonzero, one has

bp̂(x) = b
n∑

i=1

wia exp

(
−b∥x− xi∥2

2

)

= L
n∑

i=1

wi exp

(
−b∥x− xi∥2

2

)
< L

n∑
i=1

wi, (33)

which, together with (32), implies that
∥∇p̂(x)∥/ (L

∑n
i=1 wi) is strictly less than ∥m(x)∥,

completing the proof for the latter half of the proposition.

Remark 1. The relationship between the size of the ascent
ball and that of the Lipschitz ball depends on the inequal-
ity (33). In situations where samples are widely dispersed,
this inequality is not tight, so that the radius of the Lipschitz
ball can be considerably smaller than the diameter of the
ascent ball, as can be observed in Example 1 below.

Example 1. A sample set D of size 50 was generated from
the normal distribution N (0, I) on R2 with mean 0 and
covariance I. We used the uniform weights wi = 1/50, i =
1, . . . , 50, and the Gaussian kernel K(x) = (2π)−1e−∥x∥2/2

in kernel density estimation. We iterated yt+1 = yt+m(yt)
ten times from the initial mode estimate y0 = (0,−3)T to
obtain a mode estimate sequence {yt}t=0,...,10.

Figure 1 shows the KDE p̂, the mode estimate sequence
{yt}t=0,...,10, and the improvement/ascent/Lipschitz balls
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at each of {yt}t=0,...,10. It can be seen that the radius of the
Lipschitz ball can be significantly smaller than the diameter
of the ascent ball, even in this simple example. 2

3.3 Convergence of the Mean Shift-Type Algorithms
In this subsection, we discuss convergence of mode estimate
sequences generated by the MS-type algorithms and the
corresponding density estimate sequences. For this purpose,
we introduce the notions of the mode estimate path and the
density estimate path as extensions of the mode estimate
sequence and the density estimate sequence, respectively.
Properties of mode estimate paths generated by the MS al-
gorithm with sufficiently small step sizes have been studied
extensively in [25]. In this paper, these notions will be used
in Examples 2, 3, 5, and 6, as well as in Theorem 3.

Definition 5 (Mode estimate path and density estimate
path). Let {yt} be a mode estimate sequence. For τ ≥ 0, let
ϵ = τ − ⌊τ⌋. The mode estimate path M(τ) is defined as

M(τ) := (1− ϵ)y⌊τ⌋ + ϵy⌊τ⌋+1. (34)

The density estimate path D(τ) is defined as

D(τ) := p̂(M(τ)). (35)

In other words, the mode estimate path M(τ) is the
piecewise-linear trajectory in Rd connecting the mode es-
timates consecutively. The density estimate path D(τ) is
the estimated density values along the mode estimate path.
Note that, while M(τ) is piecewise-linear, D(τ) is not in
general (examples of which will be found in Figs. 2–5).

First, we investigate whether the density estimate se-
quence, obtained via an extended MS-type algorithm with
rescaled step sizes, is non-decreasing.

Theorem 1. Assume that a kernel function K has a convex,
differentiable, and strictly decreasing profile. Let the mode es-
timate sequence {yt} be obtained via the iteration yt+1 =
yt+ϵtUtm(yt), ϵt ∈ (0, 2], where Ut is a symmetric projection
operator. Then, the density estimate sequence {p̂(yt)} is non-
decreasing.

In addition to the above assumptions, assume further that K
is bounded. Then, the sequence {p̂(yt)} converges.

Note. In the case where ϵt = 1 for all t, this iteration cor-
responds to a fixed point iteration such as the conventional
MS/CMS/SCMS algorithms, and Theorem 1 in this case has
been proved in [16, Proposition 1], [22, Theorem 1].

Proof: If Utm(yt) = 0, then one has yt+1 = yy and thus
p̂(yt+1) = p̂(yt). In view of Lemma 2, one has only to show
that whenever Utm(yt) ̸= 0 holds, yt+1 is included in the
improvement ball I(yt) at yt. One has

∥yt+1 − yt −m(yt)∥2 = ∥ϵtUtm(yt)−m(yt)∥2

= (ϵ2t − 2ϵt)∥Utm(yt)∥2 + ∥m(yt)∥2 ≤ ∥m(yt)∥2 (36)

for ϵt ∈ (0, 2], which implies that yt+1 is in I(yt). From
Lemma 2, one has therefore shown that p̂(yt+1) ≥ p̂(yt)
holds for ϵt ∈ (0, 2].

Also, since the density estimate p̂ is bounded under the
additional assumption, the sequence {p̂(yt)} converges.
Remark 2. Fix Ut and assume Utm(yt) ̸= 0 to hold.
Let ℓt be the line passing through yt and yt + Utm(yt).

Then, the mode estimate yt+1 = yt + ϵtUtm(yt) with
0 < ϵt ≤ 2 satisfies yt+1 ∈ ℓt ∩ I(yt). One can show
that ϵt = 1 maximizes the lower bound of p̂(yt+1) − p̂(yt)
given in (14). Indeed, under the conditions of Theorem 1,
yt + Utm(yt) is the orthogonal projection of yt + m(yt)
to the line ℓt, and thus it minimizes the distance from the
center yt +m(yt) of the improvement ball I(yt) to the line
ℓt, implying that yt+1 = yt+Utm(yt) maximizes the lower
bound (14) of p̂(yt+1)−p̂(yt) among those yt+1s given in the
form yt+1 = yt + ϵtUtm(yt) with 0 < ϵt ≤ 2. This result
is derived from the convexity of the profile of the kernel
function used for the KDE and suggests the adequacy of the
adaptive step sizes (i.e., ϵt = 1) used in the conventional
MS-type algorithms, as experimented in Example 2 below.

Example 2. Let the sample set D = {−0.5, 0.5}, the weight
set W = {1/3, 2/3}, and the initial mode estimate y0 =
−1.5. We estimated modes of the KDE p̂ using the Gaussian
kernel K(x) = (0.2π)−1/2e−x2/0.2, which has a bounded,
convex, differentiable, and strictly decreasing profile, so that
Theorem 1 is applicable. We considered the extended MS
algorithm, iterating yt+1 = yt + ϵm(yt) for 10 times. We
examined the cases with ϵ = 0.5, 1, 1.1, 1.9, and 2.1.

The KDE p̂, the mode estimate path (34), and the density
estimate path (35) associated with {yt}t=0,...,10 are shown in
Fig. 2. When ϵ > 1, the mode estimate sequence may not be
monotonic. It is confirmed that the corresponding density
estimate sequence is monotonically increasing when ϵ < 2,
and it may decrease otherwise. 2

Remark 3. Example 2 confirms the theoretically-predicted
behaviors of the MS algorithm with values of ϵt around ϵt =
1 and 2, while the theoretical results presented so far do not
imply that using ϵt = 1 leads to the fastest convergence of
the algorithm. For more realistic circumstances where the
sample distribution is more dispersed, the inequality (14)
may become looser, and then the update by the conventional
MS algorithm (i.e., ϵt = 1) may tend to be conservative. In
such cases, using values of ϵt with ϵt > 1 may result in faster
convergence of the algorithm, as experimented in Example 3
below.

Example 3. Let the sample set D be of size n = 5000
and generated from (1/3)N (−0.5, 0.1) + (2/3)N (0.5, 0.1),
whose PDF is the same as the KDE in Example 2. We
estimated modes of the KDE p̂ using the weight wi =
1/n, i = 1, . . . , n, and the Gaussian kernel K(x) =
(0.02π)−1/2e−x2/0.02. We compared the extended algo-
rithms yt+1 = yt + ϵm(yt) with ϵ = 1 and 1.9, starting
from y0 = −1.5.

As shown in Fig. 3, the density/mode estimate se-
quences converged faster when ϵ = 1.9 than when ϵ = 1.
2

Corollary 1. Under the assumptions of Theorem 1, assume
further that ϵt ∈ [γ, 2 − γ], and that, for any t such that
m(yt) ̸= 0, Ut satisfies Utm(yt) ̸= 0 and

Utm(yt) ·m(yt)

∥Utm(yt)∥∥m(yt)∥
≥ δ, (37)

with t-independent constants δ, γ ∈ (0, 1]. Then, one has

lim
t→∞

m(yt) = 0. (38)
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(a)

(b-1) (b-2) (c-1) (c-2)

(d-1) (d-2) (e-1) (e-2) (f-1) (f-2)

Fig. 2. KDE and mode/density estimate paths for the experiment in Example 2. The red and blue dotted lines represent the locations of the modes
near x = 0.5 and −0.5, respectively, and the density estimates at these modes. (a) shows the KDE. (b-1),. . .,(f-1) show the mode estimate path
M(τ) in a solid line and the mode estimate sequence {yt}t=0,...,10 as points. (b-2),. . .,(f-2) show the density estimate path D(τ) in a solid line and
the density estimate sequence {p̂(yt)}t=0,...,10 as points. {(b-1),(b-2)},. . .,{(f-1),(f-2)} are the results with ϵ = 0.5, 1, 1.1, 1.9, 2.1, respectively.

(a)

(b-1) (b-2) (c-1) (c-2)

Fig. 3. KDE and mode/density estimate paths for the experiment in Example 3. The red and blue dotted lines represent the locations of the modes
near x = 0.5 and −0.5, respectively, and the density estimates at these modes. (a) shows the KDE. (b-1) and (c-1) show the mode estimate paths
M(τ) in solid lines and the mode estimate sequences {yt}t=0,...,50 as points. (b-2) and (c-2) show the density estimate paths D(τ) in solid lines
and the density estimate sequences {p̂(yt)}t=0,...,50 as points. {(b-1),(b-2)} and {(c-1),(c-2)} are the results with ϵ = 1, 1.9, respectively.

If furthermore G is bounded, then

lim
t→∞

∇p̂(yt) = 0. (39)

Proof: Let D = maxx,y∈C ∥x − y∥ be the diameter of the
convex hull C of D, let ΠC denote the projection operator
from Rd onto C, and for h ≥ 0, let

Sh = {x ∈ Rd : ∥x−ΠCx∥ ≤ h} (40)

be the h-neighborhood of C. Also, let us define {ht} via
ht+1 = α(ht + D) with α =

√
1− δ2γ(2− γ) ∈ [0, 1) and

h0 = ∥y0 −ΠCy0∥.
We first show that the mode estimate sequence {yt}

satisfies yt ∈ Sht for all t under the assumptions of the
corollary. One has y0 ∈ Sh0 by the definition of h0. Assume
x ∈ Sht and m(x) ̸= 0, and let y = x+ ϵUm(x) with ϵ ∈
[γ, 2− γ] and U satisfying Um(x) ̸= 0 and (37). Since U is
a projection operator, one has Um(x) ·m(x) = ∥Um(x)∥2.
From (37), the inequality ∥Um(x)∥ ≥ δ∥m(x)∥ holds.
From Lemma 1, one has x + m(x) ∈ C, and thus ∥y −
ΠCy∥ ≤ ∥y − x −m(x)∥. The right-hand side is further
bounded as

∥y − x−m(x)∥2 = ∥m(x)∥2 − ϵ(2− ϵ)∥Um(x)∥2

≤ α2∥m(x)∥2, (41)

yielding

∥y −ΠCy∥ ≤ α∥m(x)∥
≤ α(∥x+m(x)−ΠCx∥+ ∥ΠCx− x∥)
≤ α(D + ht) = ht+1, (42)

where the second inequality is due to the triangle inequality.
The above formula shows that if yt ∈ Sht , then yt+1 =
yt + ϵtUtm(yt) ∈ Sht+1 holds, thereby proving that the
mode estimate sequence {yt} generated by the extended
MS algorithm yt+1 = yt + ϵtUtm(yt) with ϵt ∈ [γ, 2 −
γ] satisfies yt ∈ Sht for all t. Since ht = h∗ + αt(h0 −
h∗) with h∗ = Dα/(1 − α), the sequence {ht} converges
geometrically to h∗. It also implies that for an arbitrary h′ >
h∗, there exists T such that for all t > T one has yt ∈ Sh′ .

Fix h′ > h∗ and consider
∑n

i=1 wiG(y−xi) as a function
of y. Since Sh′ is a bounded and closed set, the minimum
of the function over Sh′ exists, and we let ϕ > 0 denote the
minimum.

In order to prove the corollary, we make use of the
inequality

p̂(yt+1)− p̂(yt)

≥ 1

2
(∥m(yt)∥2 − ∥yt+1 − yt −m(yt)∥2)

n∑
i=1

wiG(yt − xi),

(43)
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which is derived from (14). The above argument shows that
n∑

i=1

wiG(yt − xi) ≥ ϕ (44)

holds for all t > T . Also, from (41) one has

∥m(yt)∥2−∥yt+1−yt−m(yt)∥2 ≥ (1−α2)∥m(yt)∥2. (45)

Collecting the above inequalities, we have shown that
the inequality

p̂(yt+1)− p̂(yt) ≥
1− α2

2
ϕ∥m(yt)∥2 (46)

holds for all t > T . Since Theorem 1 has shown that the left-
hand side of (46) converges to 0 as t→∞, we have proved
that limt→∞ m(yt) = 0 holds.

Moreover, if G is bounded,
∑n

i=1 wiG(y − xi) as a
function of y takes a maximum ψ < ∞ in Sh′ . It then
follows that ηt = (

∑n
i=1 wiG(yt − xi))

−1 satisfies 0 <
1/ψ ≤ ηt ≤ 1/ϕ < ∞ for all t > T . Convergence
of {∇p̂(yt)} then follows from that of {m(yt)} and the
relation m(yt) = ηt∇p̂(yt).

It should be noted, however, that convergence of the
density estimate sequence {p̂(yt)} stated in Theorem 1
does not generally imply convergence of the mode estimate
sequence {yt}. As described in Section 1, there is thus
far no rigorous proof of convergence of mode estimate se-
quence {yt} in the multi-dimensional cases. In the following
theorem, we provide a convergence proof of the MS-type
algorithms with an analytic kernel function, which is based
on the convergence theories of the gradient ascent algorithm
for an analytic function [35].

Theorem 2. Under the assumptions of Theorem 1, assume
further that K is an analytic function, that ϵt ∈ (0, 2 − γ] for
some t-independent constant γ ∈ (0, 2), and that Ut satisfies
either (i) Utm(yt) = 0 for all t ≥ T for some constant T or (ii)
Utm(yt) ̸= 0 and

Utm(yt) ·m(yt)

∥Utm(yt)∥∥m(yt)∥
≥ δ, (47)

for any t such that m(yt) ̸= 0 and some t-independent constant
δ ∈ (0, 1]. Then, the mode estimate sequence {yt} converges to a
single point for both cases (i) and (ii).

Note. Compared with Theorem 1 on the convergence of the
density estimate sequence {p̂(yt)}, the additional conditions
in Theorem 2 on the convergence of the mode estimate
sequence {yt} are the analyticity of the kernel function K
and the update conditions ϵt ∈ (0, 2 − γ] and (47) of the
algorithm. For example, the Gaussian kernel is an analytic
function, which is covered by this theorem. The region of
yt+1 satisfying the conditions of Theorem 2 is a subset of
the improvement ball I(yt), and the former approaches the
latter if choosing γ and δ sufficiently small.

Proof: The case (i) is obvious. In the following we prove the
case (ii). The analyticity of p̂ allows us to invoke Theorem
3.2 in [35] to prove either that limt→∞ ∥yt∥ = ∞ holds
or that the mode estimate sequence {yt} converges to a
single point. In the proof of Corollary 1, we have shown
that there exists T such that for all t > T one has yt ∈ Sh′ ,

which excludes the possibility of limt→∞ ∥yt∥ =∞, thereby
establishing the convergence of {yt}.

Now what remains is to confirm that the assumptions of
Theorem 3.2 in [35] hold for {yt}. The assumptions, called
the strong ascent conditions, consist of the primary ascent
condition

p̂(yt+1)− p̂(yt) ≥ ζ∥∇p̂(yt)∥∥yt+1 − yt∥ (48)

for all t and for some ζ > 0, and the complementary ascent
condition, requiring that p̂(yt+1) = p̂(yt) implies yt+1 = yt.

We first confirm the primary ascent condition (48) to
hold. One has, from (43),

p̂(yt+1)− p̂(yt) ≥
ϵt(2− ϵt)

2
∥Utm(yt)∥2

n∑
i=1

wiG(yt−xi).

(49)
Using ∥Utm(yt)∥ ≥ δ∥m(yt)∥ and ∇p̂(yt) =
m(yt)

∑n
i=1 wiG(yt − xi), both of which appeared in the

proof of Corollary 1, the above inequality is further rewrit-
ten as

p̂(yt+1)− p̂(yt)

≥ ϵt(2− ϵt)δ
2

∥Utm(yt)∥∥m(yt)∥
n∑

i=1

wiG(yt − xi)

≥ (2− ϵt)δ
2

∥yt+1 − yt∥∥∇p̂(yt)∥, (50)

confirming the primary ascent condition (48) to hold for
{yt} with ζ = γδ/2 > 0.

The complementary ascent condition holds due to
Lemma 2, since ϵt ∈ (0, 2−γ] assures that yt+1 is an interior
point of I(yt). This completes the proof.

Also, from Corollary 1, a condition to guarantee that a
converged point is a stationary point is given below.

Corollary 2. Under the assumptions of Theorem 2, assume
further that ϵt ∈ [γ, 2 − γ] for some t-independent constant
γ ∈ (0, 1], and that G is bounded. Then, the mode estimate
sequence {yt} converges to a stationary point for the case (ii).

Remark 4. The conditions (37) and (47) appearing in The-
orem 2 and Corollary 1, 2 are called the angle condition in
optimization research. Although the angle condition might
not seem simple, it cannot be removed, as demonstrated in
Example 4 below.

Example 4. For a two-dimensional case R2, let the sample set
D = {0} and the kernel K be a Gaussian kernel, for which
m(x) = −x holds. Introduce the polar coordinate system to
R2, and for x ∈ R2, let ∠x denote the angular coordinate of
x. Given x and θ, let Ux,θ be the projection operator onto a
one-dimensional subspace such that the angular coordinate
of the normal of the subspace spanned by Ux,θ is ∠x + θ.
One then has

Ux,θm(x) = sin θ

(
− sin θ − cos θ
cos θ − sin θ

)
x, (51)

and

x+Ux,θm(x) =

(
1− sin2 θ − sin θ cos θ
sin θ cos θ 1− sin2 θ

)
x

= cos θT(θ)x, (52)

where T(θ) denotes the rotation matrix by angle θ.
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Let {θt} be an angle sequence. Applying the update
yt+1 = yt + Utm(yt) iteratively, with Ut = Uyt,θt , one
has

yt = rtT(κt)y0, (53)

where rt =
∏t

s=1 cos θs and κt =
∑t

s=1 θs.
We show that when θt = 1/t, with which the angle

condition does not hold, as t tends to infinity rt approaches
a finite value, whereas κt diverges to infinity. The infinite
product r∞ =

∏∞
t=1 cos θt is convergent if and only if the

infinite series
∑∞

t=1(1 − cos θt) converges [36, Theorem 7].
Since 1 − θ2/2 ≤ cos θ ≤ 1 holds, one has 0 ≤ 1 − cos θ ≤
θ2/2, and thus

∞∑
t=1

(1− cos θt) ≤
1

2

∞∑
t=1

θ2t . (54)

For θt = 1/t, one has
∑∞

t=1 θ
2
t = ζ(2) = π2/6, where ζ

denotes the Riemann zeta function, and thus
∞∑
t=1

(1− cos θt) ≤
π2

12
. (55)

In particular, the infinite product r∞ converges. On the
other hand, it is well known that limt→∞ κt = ∞ for
θt = 1/t. These results imply that the forward limit set of
the sequence {yt} is the circle of radius r∞ > 0 centered at
the origin. Therefore, the sequence {yt} does not converge.
2

Even if analyticity of the kernel is not assumed, conver-
gence of the mode estimate sequence in a one-dimensional
problem can be established as follows.

Proposition 4. Consider a one-dimensional case. Assume that
K has a bounded, convex, differentiable, and strictly decreasing
profile and G is bounded and strictly decreasing. Then the mode
estimate sequence {yt} obtained via the iteration yt+1 = yt +
ϵtm(yt), ϵt ∈ (0, 1], converges.

The uniform-weight case wi = 1/n, i = 1, . . . , n, of
this proposition has been proved in [23, Theorem 1]. One
can prove Proposition 4 along the same way as in [23], via
showing that for a sufficiently large T the mode estimate
sequence {yt}t>T is monotonic and hence converges. We
omit the proof of Proposition 4, however, since the proof
in [23] itself is quite involved and the extension to the
weighted case is straightforward. It should be noted that
the case ϵt > 1 cannot be proved via the same strategy,
since the monotonicity of the mode estimate sequence no
longer holds.
Remark 5. Proposition 4 does not guarantee that the mode
estimate sequence including the initial point is monotonic.
Even if it converges to a mode, that point is not necessarily
the mode (or stationary point) nearest to the initial point,
as demonstrated in Example 5 below. This is incorrectly
claimed in several papers [3], [12], [23].

Example 5. Let the sample set D = {−0.5, 0.5}, the
weight set W = {1/3, 2/3}, and the initial mode estimate
y0 = −1.5 or −5. We estimated modes of the KDE p̂ using
K(x) ∝ (1+x2/0.1)−1. The kernel functionK(x) is the PDF
of Cauchy distribution (scaled by

√
0.1), and has a bounded,

convex, differentiable, and strictly decreasing profile. We
repeated the iteration of the conventional MS algorithm.

The KDE p̂, the mode estimate path (34), and the density
estimate path (35) associated with {yt}t=0,...,5 are shown
in Fig. 4. When y0 = −1.5, the mode estimate sequence
converges to the mode nearest to the initial points, but the
sequence is not monotonic. In the case where y0 = −5,
the mode estimate sequence is monotonic, but the sequence
converges to the mode farther from the initial point. In both
cases, it is commonly observed that the density estimate
path D(τ) is not monotonically increasing. 2

We next show that, when a Gaussian kernel is used,
one can obtain not only ascent property of density estimate
sequences but also that of density estimate paths.

Theorem 3. Assume that a kernel function K is a Gaussian
kernel. Let the mode estimate sequence {yt} be obtained via the
iteration yt+1 = yt + ϵtUtm(yt), ϵt ∈ (0, 1], where Ut is
a symmetric projection operator. Then, the density estimate path
D(τ) associated with the sequence {yt} is non-decreasing with
respect to τ .

Proof: If Utm(yt) = 0, then one has yt+1 = yy and thus
D(τ) takes a constant value for τ ∈ [t, t + 1]. Assume
Utm(yt) ̸= 0. Then, one has∥∥∥∥yt+1 − yt −

1

2
m(yt)

∥∥∥∥2 =

∥∥∥∥ϵtUtm(yt)−
1

2
m(yt)

∥∥∥∥2
= (ϵ2t − ϵt)∥Utm(yt)∥2 +

∥∥∥∥12m(yt)

∥∥∥∥2 ≤ ∥∥∥∥12m(yt)

∥∥∥∥2 ,
(56)

which implies that yt+1 is in the ascent ball A(yt). From
Lemma 3, one has shown that the density estimate path
D(τ) associated with {yt} is non-decreasing.
Remark 6. In the cases where different bandwidth values
are used for different appearances of the kernel function,
Theorem 3 may not hold even if a Gaussian kernel is used,
as Example 6 below demonstrates.

Example 6. Let the sample set D = {−0.5, 0.5}, the
weight set W = {1/4, 3/4}, and the initial mode estimate
y0 = −1.5 or −5. We confirm properties of the KDE using
different values of bandwidth in the two appearances of the
kernel function and the corresponding MS algorithm with
the following setting:

p̂(x) =
∑
i=1,2

wiKi(x− xi), (57)

m(x) =

∑
i=1,2 xiwiGi(x− xi)∑
i=1,2 wiGi(x− xi)

− x, (58)

where Ki(x) = (2πσ2
i )

−1/2e−x2/(2σ2
i ), Gi(x) = σ−2

i Ki(x),
σ1 = 0.2 and σ2 = 0.4. We repeated the iteration yt+1 =
yt+m(yt) using the MS function (58) for 5 times to estimate
modes of the KDE (57).

The KDE (57), the mode estimate path (34), and the
density estimate path (35) associated with {yt}t=0,...,5 are
shown in Fig. 5. In every case, it is commonly observed
that the density estimate path D(τ) decreases on part of the
interval (0, 1). For this reason, when y0 = −1.5, the mode
estimate sequence including the initial point is not mono-
tonic, and in the other case, the mode estimate sequence
converges to the mode farther from the initial point. 2
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(a)

(b-1) (b-2) (c-1) (c-2)

Fig. 4. KDE and mode/density estimate paths for the experiment in Example 5. The red and blue dotted lines represent the locations of the modes
near x = 0.5 and −0.5, respectively, and the density estimates at these modes. (a) shows the KDE. (b-1) and (c-1) show the mode estimate paths
M(τ) in solid lines and the mode estimate sequences {yt}t=0,...,5 as points. (b-2) and (c-2) show the density estimate paths D(τ) in solid lines
and the density estimate sequences {p̂(yt)}t=0,...,5 as points. {(b-1),(b-2)} and {(c-1),(c-2)} are the results with y0 = −1.5,−5, respectively.

(a)

(b-1) (b-2) (c-1) (c-2)

Fig. 5. KDE and mode/density estimate paths for the experiment in Example 6. The red and blue dotted lines represent the locations of the modes
near x = 0.5 and −0.5, respectively, and the density estimates at these modes. (a) shows the KDE. (b-1) and (c-1) show the mode estimate paths
M(τ) in solid lines and the mode estimate sequences {yt}t=0,...,5 as points. (b-2) and (c-2) show the density estimate paths D(τ) in solid lines
and the density estimate sequences {p̂(yt)}t=0,...,5 as points. {(b-1),(b-2)} and {(c-1),(c-2)} are the results with y0 = −1.5,−5, respectively.

In Examples 2, 5, and 6, it was confirmed that the mode
estimate sequence may jump over the mode nearest to the
initial point and converge to a farther mode, depending on
the choice of the step sizes and the kernel function. Below,
we give a formal definition of the mode nearest to the initial
point just mentioned, and discuss its properties.

Definition 6 (Proper stationary point and proper dynamical
system). Given a KDE p̂, consider the continuous-time gradient
system

dy(τ)

dτ
= ∇p̂(y(τ)), τ ∈ [0,∞), (59)

starting from an initial point y(0) = y0. If y∗ = limτ→∞ y(τ)
exists and is a stationary point of p̂, we then define y∗ as the
proper stationary point starting from y0.

We say that a discrete-time dynamical system, generating a
mode estimate sequence {yt} for p̂ given y0, is proper if for
any y0 the limit limt→∞ yt of the mode estimate sequence {yt}
equals to the proper stationary point starting from y0, whenever
the latter exists.

This definition of the term proper is related to the stan-
dard definition of a cluster in mode clustering [5], [34] as
the basin of attraction of the limit point y∗ in the gradient
system (59):

C(y∗) := {y0 ∈ Rd : y(0) = y0, lim
τ→∞

y(τ) = y∗}. (60)

Therefore, if a discrete-time dynamical system is proper for
any p̂, then the system is able to perform mode clustering
properly.

The following theorem guarantees that, under the con-
ditions that the problem is one-dimensional and a Gaussian
kernel is used, the MS algorithm yt+1 = yt+m(yt) is proper.

Theorem 4. Consider a one-dimensional case. Assume that a
kernel function K is a Gaussian kernel. Let the mode estimate
sequence {yt} be obtained via the iteration yt+1 = yt + ϵtm(yt),

Fig. 6. KDE and mode estimate sequence for the experiment in Ex-
ample 7. The KDE is plotted as contour lines: the KDE is higher for
red and is lower for blue. The mode estimate sequence shown in
red (resp. blue) is obtained via the iteration yt+1 = yt + m(yt)
(resp. yt+1 = yt + 0.1m(yt)) from y0, and converges to the point
ỹ∗ ≈ (1.69, 0.00)T (resp. y∗ ≈ (−1.46,−0.50)T ).

where ϵt ∈ [γ, 1] for some t-independent constant γ > 0.
Then, the mode estimate sequence {yt} monotonically converges
to the proper stationary point starting from y0. In particular, the
conventional MS algorithm is proper.

Proof: It has been proved in Theorem 2 that the mode
estimate sequence converges to a stationary point. This,
along with Theorem 1, implies that the density estimate se-
quence is monotonically increasing until the mode estimate
sequence converges. Theorem 3 shows that the sequence
monotonically converges without jumping over any station-
ary points. On the basis of the above three results, the proof
of this theorem is completed.
Remark 7. Even in the one-dimensional case, Theo-
rem 4 may not hold for other kernels. Also, in the multi-
dimensional case, the mode estimate sequence may not
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converge to a proper stationary point even if a Gaussian
kernel is used, as observed in Example 7 below.

For one-dimensional case, see Examples 2, 5, and 6
for the behaviors of mode estimate sequences when using
Gaussian and other kernels.
Example 7. We give a two-dimensional example. Let the
sample set D = {(−1.5,−0.5)T , (1.7,−0.5)T , (1.7, 0.5)T },
the weight set W = {1/3, 1/3, 1/3}, and the initial mode
estimate y0 = (0,−3)T . We estimated modes of the KDE p̂
using the Gaussian kernel K(x) = (2π)−1e−∥x∥2/2.

The mode estimate sequence shown in red (resp. blue) in
Fig. 6 is obtained via the iteration yt+1 = yt +m(yt) (resp.
yt+1 = yt + 0.1m(yt)) from y0 for 100 times. Then, the
mode estimate sequences shown in red and blue converge to
different modes from each other. In other words, the mode
estimate sequence generated by the MS algorithm may not
converge to the proper stationary point (mode) of y0. 2

4 ACCELERATION TECHNIQUES OF THE MEAN
SHIFT ALGORITHM

4.1 Proposed Acceleration Techniques
On the basis of the theoretical results in Section 3, we pro-
pose two acceleration techniques of the MS-type algorithms.
One is based on Theorems 1 and 2 and applicable to general
cases, while the other, based on Theorem 4, is applicable
when a Gaussian kernel is used and the problem is one di-
mensional, for example, to nonparametric modal regression
with the dependent variable being one-dimensional.

As described in Remark 2, the adaptive step size (i.e.,
ϵt = 1) used in the conventional MS algorithm (Algorithm 1)
is supported by the fact that the lower bound of the in-
crement p̂(yt+1) − p̂(yt) given in (14) is maximized when
ϵt = 1. However, even with 1 < ϵt < 2, the algorithm
yt+1 = yt + ϵtUtm(yt) comes with theoretical guarantees
such as monotonicity of the density estimate sequence (The-
orem 1) and convergence of the mode estimate sequence
(Theorem 2). As shown in Example 3, the algorithm may
converge faster when 1 < ϵt < 2 than when ϵt = 1. Thus, we
propose the idea of using ϵt = ϵ ∈ (1, 2) as an acceleration
method for the MS-type algorithms (Algorithm 2). This idea
is based on overrelaxation3. Although it is also possible
to adaptively determine the value of ϵt as in [38], it may
incur extra computation, making the total computation time
longer. We observed that use of a fixed value, say 1.9, as ϵt
yields empirically good improvement in convergence speed.
We note that this method can be applied even if the problem
is multidimensional or using a general kernel function. The
pseudo-code of Algorithm 2 is for the MS algorithm aiming
to mode estimation, but the overrelaxation can also be
applied to the CMS for nonparametric mode regression and
the SCMS for principal curve estimation. It should however
be noted that using ϵt > 1 in mode clustering, in which the
destination of the mode estimate sequence is important, can
degrade the clustering accuracy.

The second acceleration method proposed in this paper
is based on Theorem 4. Even in the one-dimensional case,

3. A well-known and well-established example of overrelaxation is
the successive overrelaxation (SOR) [37] for accelerating the Gauss-
Seidel method for solving linear equations.

Algorithm 1 & 2 Conventional MS (Algorithm 1) and Over-
relaxed MS (Algorithm 2) for mode estimation

Input: Sample set {xi ∈ Rd}ni=1, weight set {wi > 0}ni=1,
kernel function K , initial points {mi ∈ Rd}li=1, con-
ventional step size ϵ = 1 in Algorithm 1 or acceleration
parameter ϵ ∈ (1, 2) in Algorithm 2, and threshold δ

1: M← ∅
2: for i = 1, . . . , l do
3: y0 ←mi

4: repeat yt+1 ← yt + ϵm(yt) until |m(yt)| < δ
5: Add yt+1 toM
6: end for

Output: Estimated mode setM

current implementations of the MS algorithm use the multi-
start method, which often uses mesh points in the data
domain as initial points, as shown in Algorithm 1 [11],
[12], [23]. In such implementations, it is necessary to use
a sufficient number of initial points so as not to overlook
any mode. Consequently, the same region may be searched
many times, making the algorithm inefficient. Also, since
mode estimate results are generated by the number of initial
points, it requires post-processing such as grouping mode
estimate results close to each other. This problem occurs
in Algorithm 2 as well. Thus, we propose Algorithm 3, in
which the mode is searched in one direction from the bottom
to the top of the data domain. This eliminates searching the
same area multiple times and the post-processing, so that it
operates more efficiently.

Algorithm 3 One-way search acceleration of MS for mode
estimation in R
Input: Sample set {xi ∈ R}ni=1, weight set {wi > 0}ni=1,

Gaussian kernel K , skip size s, and threshold δ
1: M← ∅
2: y0 ← min{xi}
3: repeat
4: if m(y0) ≥ 0 then
5: repeat yt+1 ← yt +m(yt) until m(yt) < δ
6: Add yt+1 toM, and y0 = yt+1 + s
7: else {m(y0) < 0}
8: y0 = y0 + s
9: end if

10: until y0 > max{xi}
Output: Estimated mode setM

4.2 Numerical Experiment

In this subsection, we compare the efficiency of the baseline
algorithm using the conventional step size and multi-start
method (Algorithm 1), the overrelaxation-based acceleration
(Algorithm 2), and the one-way search acceleration (Algo-
rithm 3) for mode estimation in the one-dimensional case.
For the purpose, we performed a numerical experiment
using real-world data.

We used the dataset “Individual household electric
power consumption Data Set” [39], which includes mea-
surements of electric power consumption in one household
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Fig. 7. Sample points and conditional mode estimates obtained by
Algorithm 1 with l = 30 for the numerical experiment in Subsection 4.2.
The black dots represent the sample points and red circles represent
the mode estimates of the conditional PDF.

Fig. 8. The number of the overlooked conditional modes (per 386)
and the total execution time (in second) by Algorithms 1, 2, and 3 for
the numerical experiment in Subsection 4.2. The vertical axis is log-
scaled and the horizontal axis is scaled by the so-called log-plus-one
transformation log(·+ 1).

with a one-minute sampling rate for 47 months from Decem-
ber 2006 to November 2010. Although this dataset contains
365 × 24 × 60 = 525 600 sample points in the year 2009,
we used n = 521 320 points excluding missing values. Let
the independent variable be the time of a day in hours,
{ti ∈ [0, 24)}ni=1, and the dependent variable be the third at-
tribute of this dataset, that is, “global active power: house-
hold global minute-averaged active power (in kilowatt)”,
{xi ∈ R}ni=1. We then analysed the relationship between
the independent variable and the dependent variable, using
nonparametric modal regression. For 100 points t which
divide [0, 24] at equal intervals, we estimated modes of
the conditional PDF of the dependent variable conditioned
on the time t, using the CMS algorithm. The common
settings for all of Algorithms 1, 2, and 3 were that the
weights were wi = e−(t−ti)

2/(2σ2
t )/(

∑n
j=1 e

−(t−tj)
2/(2σ2

t )),
i = 1, . . . , n, that the kernel function was the Gaussian
kernelK(x) = (2πσ2

x)
−1/2e−x2/(2σ2

x), and that the threshold
was δ = 10−6, where σt =

√
0.75 and σx =

√
0.75. In this

situation, the total number of underlying conditional modes
is 386. For Algorithms 1 and 2, the initial points were set as
mi = min{xj} + (i − 1)(max{xj} −min{xj})/(l − 1), i =
1, . . . , l, where we examined the cases with l = 4, 5, . . . , 30,
except for the cases l = 1, 2, 3 where algorithms certainly
overlook modes. We set acceleration parameter ϵ of Algo-
rithm 2 to 1.9. For Algorithm 3, the skip size was set to
s = 0.01, 0.02, . . . , 0.3.

The results of this experiment are summarized in Figs. 7
and 8. For all the three algorithms there is trade-off between

the total execution time and the number of overlooked
modes: The number of overlooked modes can be reduced by
increasing the number l of the initial points in Algorithms 1
and 2, and by employing a smaller skip size s in Algo-
rithm 3, at the price of increase in the total execution time.
The results in Fig. 8 show that Algorithm 2 achieves better
trade-off than Algorithm 1, and that Algorithm 3 achieves
even better trade-off than the other two.

5 CONCLUSIONS

In this paper, we have provided several new results on
properties and convergence of the MS-type algorithms,
by theoretically studying properties of the MS function,
behaviors of mode estimate sequences generated by the
MS-type algorithms, and the corresponding density esti-
mate sequences (see Table 1). Novel notions of the im-
provement/ascent/Lipschitz balls have been introduced,
and properties of KDE p̂, as well as its gradient, have
been elucidated in terms of these notions. These properties
have then been used to prove several properties of the
MS-type algorithms, including Theorem 1, which shows
that the density estimate sequence is non-decreasing and
converges even using a step size of up to twice as large as
that used in the conventional MS algorithms, Theorem 2,
which shows that mode estimate sequences generated by
the MS-type algorithms with a kernel function which is
analytic converge under general settings, and Theorem 3,
which shows monotonic increase of the density estimate
path generated by the MS-type algorithms with a Gaussian
kernel. We have also shown in Theorem 4 that in the one-
dimensional case the mode estimate sequence generated by
using a Gaussian kernel monotonically converges to the
nearest stationary point.

On the basis of these results, we have proposed two
acceleration techniques of the MS algorithm. One of them
is based on the idea of overrelaxation and is applicable
to general settings. The other one is applicable when the
problem is one-dimensional and a Gaussian kernel is used.
The efficiency of both proposed techniques was confirmed
via the numerical experiment.

APPENDIX

Lemma 4. Let C ⊂ Rd be a closed convex set and let y ∈ Rd\C .
Also, let x0 ∈ C be the point in C that is the closest to y. Then
(y − x0) · (y − x) > 0 holds for any x ∈ C .

Proof: We will show that for any x ∈ C the inequality

(y − x0) · (x0 − x) ≥ 0 (61)

holds. The proof of the lemma will be immediate by adding
∥y − x0∥2 > 0 to both sides of (61).

We prove (61) by contradiction. Assume that there exists
x ∈ C for which (y − x0) · (x0 − x) < 0 holds. The
three points y, x0, and x defines a triangle in Rd, and since
x0,x ∈ C and C is convex, the edge x0-x is contained in
C . The condition (y − x0) · (x0 − x) < 0 implies that the
angle of the triangle at the vertex x0 is less than the right
angle. It in turn implies that on the edge x0-x there is a
point in C closer to y than x0. This, however, contradicts
the assumption that x0 is the point in C that is the closest
to y, completing the proof.
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