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Abstract—We propose a Convolutional Neural Network (CNN)-based model “RotationNet,” which takes multi-view images of an object

as input and jointly estimates its pose and object category. Unlike previous approaches that use known viewpoint labels for training, our

method treats the viewpoint labels as latent variables, which are learned in an unsupervised manner during the training using an

unaligned object dataset. RotationNet uses only a partial set of multi-view images for inference, and this property makes it useful in

practical scenarios where only partial views are available. Moreover, our pose alignment strategy enables one to obtain view-specific

feature representations shared across classes, which is important to maintain high accuracy in both object categorization and pose

estimation. Effectiveness of RotationNet is demonstrated by its superior performance to the state-of-the-art methods of 3D object

classification on 10- and 40-class ModelNet datasets. We also show that RotationNet, even trained without known poses, achieves

comparable performance to the state-of-the-art methods on an object pose estimation dataset. Furthermore, our object ranking method

based on classification by RotationNet achieved the first prize in two tracks of the 3D Shape Retrieval Contest (SHREC) 2017. Finally,

we demonstrate the performance of real-world applications of RotationNet trained with our newly created multi-view image dataset

using a moving USB camera.

Index Terms—Object recognition, 3D shape retrieval, viewpoint estimation, multi-task learning, convolutional neural network

Ç

1 INTRODUCTION

OBJECT classification accuracy can be enhanced by the
use of multiple different views of a target object [3],

[25]. Recent remarkable advances in image recognition and
collections of 3D object models enabled learning of multi-
view representations of objects in various categories. How-
ever, in real-world scenarios, objects can often only be
observed from limited viewpoints due to occlusions, which
makes it difficult to rely on multi-view representations that
are learned with the whole circumference. The desired
property for the real-world object classification is that,
when a viewer observes a partial subset (� 1 images) of the
full multi-view images of an object, it should recognize
from which directions it observes the target object to cor-
rectly infer the category of the object. It has been understood
that if the viewpoint is known the object classification accu-
racy can be improved. Likewise, if the object category is
known, that helps infer the viewpoint. As such, object

classification and viewpoint estimation is a tightly coupled
problem, which can benefit from their joint estimation.

We propose a newConvolutional Neural Network (CNN)
model that we call RotationNet, which takes multi-view
images of an object as input and predicts its pose and object
category (Fig. 1). RotationNet outputs viewpoint-specific cat-
egory likelihoods corresponding to all pre-defined discrete
viewpoints for each image input, and then selects the object
pose that maximizes the integrated object category likeli-
hood. Whereas, at the training phase, RotationNet uses a
complete set of multi-view images of an object captured
from all the pre-defined viewpoints, for inference it is able to
work with only a partial set of all the multi-view images – a
single image at minimum – as input. In addition, Rotation-
Net does not require the multi-view images to be provided
at once but allows their sequential input and updates of the
target object’s category likelihood. This property is suitable
for applications that require on-the-fly classification with a
moving camera.

The most representative feature of RotationNet is that it
treats viewpoints where training images are observed as
latent variables during the training (Fig. 3). This enables
unsupervised learning of object poses using an unaligned
object dataset; thus, it eliminates the need of preprocessing
for pose normalization that is often sensitive to noise and
individual shape differences. Our method automatically
determines the basis axes of objects based on their appear-
ance during the training and achieves not only intra-class
but also inter-class object pose alignment (Fig. 2). Inter-class
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pose alignment is important to deal with joint learning of
object pose and category, because the importance of object
classification lies in emphasizing differences in different cat-
egories when their appearances are similar. Without inter-
class pose alignment, it may become an ill-posed problem
to obtain a model to distinguish, e.g., a car and a bus if the
side view of a car is compared with the frontal view of a
bus.

Our main contributions are described as follows. We first
show that RotationNet outperforms the current state-of-the-
art classification performance on 3D object benchmark data-
sets consisting of 10- and 40-categories by a large margin
(Table 5). Next, even though it is trained without the
ground-truth poses, RotationNet achieves superior perfor-
mance to previous works on an object pose estimation data-
set. We also show that our model generalizes well to a real-
world image dataset that was newly created for the general
task of multi-view object classification. Furthermore, Rota-
tionNet shows outstanding performance on the 3D object
retrieval task, both with CAD models and RGB-D scans of
real objects, which are demonstrated on the 3D Shape
Retrieval Contest (SHREC) 2017. Finally, we train Rotation-
Net with the new dataset named MIRO1 and demonstrate
the performance of real-world applications using a moving
USB camera.

2 RELATED WORK

There are twomain approaches for the CNN-based 3D object
classification: voxel-based and 2D image-based approaches.
The earliest work on the former approach is 3D Shape-
Nets [42], which learns a Convolutional Deep Belief Network
that outputs probability distributions of binary occupancy
voxel values. Latest works on similar approaches showcased
improved performance [22], [23], [41]. Even when working
with 3D objects, 2D image-based approaches are shown eff-
ective for general object recognition tasks. Su et al. [36] pro-
posed multi-view CNN (MVCNN), which takes multi-view
images of an object captured from surrounding virtual

cameras as input and outputs the object’s category label.
Multi-view representations are also used for 3D shape
retrieval [1]. Qi et al. [27] gives a comprehensive study on
the voxel-based CNNs and multi-view CNNs for 3D object
classification. Other than those above, point-based
approach [12], [17], [26] is recently drawing much attention;
however, the performance on 3D object classification is yet
inferior to those of multi-view approaches.

BecauseMVCNN integratesmulti-views in a view-pooling
layer which lies in the middle of the CNN, it requires a
complete set of multi-view images recorded from all the
pre-defined viewpoints for object inference. Unlike MVCNN,
our method is able to classify an object using a partial set of
multi-view images that may be sequentially observed by a
moving camera. Elhoseiny et al. [8] explored CNN architec-
tures for joint object classification and pose estimation learned
with multi-view images. Whereas their method takes a single
image as input for its prediction, we mainly focus on how to
aggregate predictions from multiple images captured from
different viewpoints.

Viewpoint estimation is significant in its role in improv-
ing object classification. Better performance was achieved
on face identification [49], human action classification [7],
and image retrieval [38] by generating unseen views
after observing a single view. These methods “imagine”
the appearance of objects’ unobserved profiles, which is
innately more uncertain than using real observations.
Sedaghat et al. [31] proposed a voxel-based CNN that out-
puts orientation labels as well as classification labels and
demonstrated that it improved 3D object classification
performance.

All the methods mentioned above assume known poses
in training samples; however, object poses are not always
aligned in existing object databases. Novotny et al. [24] pro-
posed a viewpoint factorization network that utilizes rela-
tive pose changes within each sequence to align objects in
videos in an unsupervised manner. Our method also aligns
object poses via unsupervised viewpoint estimation, where
viewpoints of images are treated as latent variables during
the training. Here, viewpoint estimation is learned in an
unsupervised manner to best promote the object categoriza-
tion task. In such a perspective, our method is related to
Zhou et al. [48], where view synthesis is trained as the
“meta”-task to train multi-view pose networks by utilizing
the synthesized views as the supervisory signal.

Although joint learning of object classification and pose
estimation has been widely studied [2], [21], [29], [37], [46],
inter-class pose alignment has drawn little attention. How-
ever, it is beneficial to share view-specific appearance infor-
mation across classes to simultaneously solve for object

Fig. 1. Illustration of the proposed method RotationNet. RotationNet
takes a partial set (� 1 images) of the full multi-view images of an object
as input and predicts its object category by rotation, where the best pose
is selected to maximize the object category likelihood. Here, viewpoints
from which the images are observed are jointly estimated to predict the
pose of the object.

Fig. 2. Illustration of inter-class alignment of 3D models. Objects are
placed in the direction of ever-increasing appearance. Inter-class align-
ment enables comparison among different categories in the pose where
image appearance is similar to each other, which emphasizes differen-
ces in different categories.

1. The dataset is publicly available on https://github.com/
kanezaki/MIRO.
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classification and pose estimation. Kuznetsova et al. [19]
pointed out this issue and presented a metric learning
approach that shares visual components across categories
for simultaneous pose estimation and class prediction. Our
method also uses a model with view-specific appearances
that are shared across classes; thus, it is able to maintain
high accuracy for both object classification and pose
estimation.

3 PROPOSED METHOD

3.1 Training and Inference

The training process of RotationNet is illustrated in Fig. 3.
We assume that multi-view images of each training object
instance are observed from all the pre-defined viewpoints.
Let M be the number of the pre-defined viewpoints and N
denote the number of target object categories. A training
sample consists of M images of an object fxxigMi¼1 and its cat-
egory label y 2 f1; . . . ; Ng. We attach a viewpoint variable
vi 2 f1; . . . ;Mg to each image xxi and set it to j when the
image is observed from the jth viewpoint, i.e., vi  j. In our
method, only the category label y is given during the train-
ing whereas the viewpoint variables fvig are unknown,
namely, fvig are treated as latent variables that are optimized in
the training process.

RotationNet is defined as a differentiable multi-layer
neural network Rð�Þ. The final layer of RotationNet is the
concatenation of M softmax layers, each of which outputs
the category likelihood P ðŷi jxxi; vi ¼ jÞ where j 2 f1; . . . ;
Mg for each image xxi. Here, ŷi denotes an estimate of the
object category label for xxi. For the training of RotationNet,
we input the set of images fxxigMi¼1 simultaneously and solve
the following optimization problem:

max
R;fvigMi¼1

YM
i¼1

P ðŷi ¼ y jxxi; viÞ: (1)

The parameters of R and latent variables fvigMi¼1 are opti-
mized to output the highest probability of y for the input of
multi-view images fxxigMi¼1.

Now, we describe how we design P ðŷi jxxi; viÞ outputs.
First of all, the category likelihood P ðŷi ¼ y jxxi; viÞ should
become close to one when the estimated vi is correct; in
other words, the image xxi is truly captured from the vith
viewpoint. Otherwise, in the case that the estimated vi is
incorrect, P ðŷi ¼ y jxxi; viÞ may not necessarily be high
because the image xxi is captured from a different viewpoint.
As described above, we decide the viewpoint variables
fvigMi¼1 according to the P ðŷi ¼ y jxxi; viÞ outputs as in (1). In
order to obtain a stable solution of fvigMi¼1 in (1), we intro-
duce an “incorrect view” class and append it to the target
category classes. Here, the “incorrect view” class plays a
similar role to the “background” class for object detection
tasks, which represents negative samples that belong to a
“non-target” class. Then, RotationNet calculates P ðŷi jxxi; viÞ
by applying softmax functions to the ðN þ 1Þ-dimensional

outputs, where
PNþ1

ŷi¼1 P ðŷi jxxi; viÞ ¼ 1. Note that P ŷi ¼ Nþð
1 jxxi; viÞ, which corresponds to the probability that the
image xxi belongs to the “incorrect view” class for the vith
viewpoint, indicates how likely it is that the estimated view-
point variable vi is incorrect.

Based on the above discussion, we substantiate (1) as fol-

lows. Letting Pi ¼ p
ðiÞ
j;k

h i
2 R

M�ðNþ1Þ
þ denote a matrix com-

posed of P ðŷi jxxi; viÞ for all the M viewpoints and N þ 1
classes, the target value of Pi in the case that vi is correctly
estimated is defined as follows:

p
ðiÞ
j;k ¼

1 ðj ¼ vi and k ¼ yÞ or ðj 6¼ vi and k ¼ N þ 1Þ
0 ðotherwiseÞ:

�
(2)

In this way, (1) can be rewritten as the following cross-
entropy optimization problem:

max
R;fvigMi¼1

XM
i¼1

log pðiÞvi;y þ
X
j 6¼vi

log p
ðiÞ
j;Nþ1

 !
: (3)

If we fix fvigMi¼1 here, the above can be written as a subprob-
lem of optimizing R as follows:

Fig. 3. Illustration of the training process of RotationNet, where the number of views M is 3 and the number of categories N is 2. A training sample
consists ofM images of an unaligned object and its category label y. For each input image, our CNN (RotationNet) outputsM histograms with N þ 1
bins whose norm is 1. The last bin of each histogram represents the “incorrect view” class, which serves as a weight of how likely the histogram does
not correspond to each viewpoint variable. According to the histogram values, we decide which image corresponds to views 1, 2, and 3. There are
three candidates for view rotation: (1, 2, 3), (2, 3, 1), and (3, 1, 2). For each candidate, we calculate the score for the ground-truth category (“car” in
this case) by multiplying the histograms and selecting the best choice: (2, 3, 1) in this case. Finally, we update the CNN parameters in a standard
back-propagation manner with the estimated viewpoint variables. Note that it is the same CNN that is being used.
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max
R

XM
i¼1

log pðiÞvi;y þ
X
j 6¼vi

log p
ðiÞ
j;Nþ1

 !
; (4)

where the parameters of R can be iteratively updated via
standard back-propagation of M softmax losses. Since
fvigMi¼1 are not constant but latent variables that need to be
optimized during the training of R, we employ alternating

optimization of R and fvigMi¼1. More specifically, in every

iteration, our method determines fvigMi¼1 according to Pi

obtained via forwarding of (fixed) R, and then update R

according to the estimated fvigMi¼1 by fixing them.
The latent viewpoint variables fvigMi¼1 are determined by

solving the following problem:

max
fvigMi¼1

XM
i¼1

log pðiÞvi;y þ
X
j 6¼vi

log p
ðiÞ
j;Nþ1

 !

¼ max
fvigMi¼1

XM
i¼1

log pðiÞvi;y þ
XM
j¼1

log p
ðiÞ
j;Nþ1 � log p

ðiÞ
vi;Nþ1

 !

¼ max
fvigMi¼1

YM
i¼1

pðiÞvi;y
p
ðiÞ
vi;Nþ1

;

(5)

in which the conversion used the fact that
PM

j¼1 log p
ðiÞ
j;Nþ1 is

constant w.r.t. fvigMi¼1. Because the number of candidates for

fvigMi¼1 is limited, we calculate the evaluation value of (5) for

all the candidates and take the best choice. The decision of

fvigMi¼1 in this way emphasizes view-specific features for

object categorization, which contributes to the self-alignment
of objects in the dataset.

In the inference phase, RotationNet takes as input M 0

ð1 �M 0 �MÞ images of a test object instance, either simul-
taneously or sequentially, and outputs M 0 probabilities.
Finally, it integrates the M 0 outputs to estimate the category
of the object and the viewpoint variables as follows:

ŷ; fv̂igM
0

i¼1
n o

¼ argmax
y;fvigM

0
i¼1

YM 0
i¼1

pðiÞvi;y
p
ðiÞ
vi;Nþ1

: (6)

Similarly to the training phase, we decide fv̂igM
0

i¼1 according
to the outputs fPigM

0
i¼1. Thus RotationNet is able to estimate

the pose of the object as well as its category label.

3.2 Viewpoint Setups for Training

While choices of the viewpoint variables fvigM
0

i¼1 can be arbi-
trary, we consider two setups in this paper, with and without
an upright orientation assumption, similarly toMVCNN [36].
The former case is often usefulwith images of real objects cap-
tured with one-dimensional turning tables, whereas the latter
case is rather suitable for unaligned 3D models. We also con-
sider the third case that is also based on the upright orienta-
tion assumption (as the first case) but with multiple elevation
levels.We illustrate the three viewpoint setups in Fig. 4.

3.2.1 Case (i): With Upright Orientation

In the casewherewe assume upright orientation,we fix a spe-
cific axis as the rotation axis (e.g., the z-axis), which defines
the upright orientation, and then place viewpoints at intervals

of the angle u around the axis, elevated by f (set to 30 degree
in this paper) from the ground plane. We set u ¼ 30� by
default, which yields 12 views for an object (M ¼ 12). We
define that “view mþ 1” is obtained by rotating the view
position “view m” by the angle u about the z-axis. Note that
the view obtained by rotating “viewM” by the angle u about
the z-axis corresponds to “view 1.” We assume the sequence
of input images is consistentwith respect to a certain direction
of rotation in the training phase. For instance, if vi is m
ðm < MÞ, then viþ1 ismþ 1. Thus the number of candidates
for all the viewpoint variables fvigMi¼1 isM.

3.2.2 Case (ii): W/o Upright Orientation

In the case where we do not assume upright orientation, we
place virtual cameras on the M ¼ 20 vertices of a dodecahe-
dron encompassing the object. This is because a dodecahe-
dron has the largest number of vertices among regular
polyhedra, where viewpoints can be completely equally dis-
tributed in 3D space. Unlike case (i), where there is a unique
rotation direction, there are three different patterns of rotation
from a certain view, because three edges are connected to
each vertex of a dodecahedron. Therefore, the number of can-
didates for all the viewpoint variables fvigMi¼1 is 60 (¼ 3M).2

3.2.3 Case (iii): With Upright Orientation and Multiple

Elevation Levels

This case is an extension of case (i). Unlike case (i) where the
elevation angle is fixed, we place virtual cameras at inter-
vals of f in ½�90�; 90�	. There are M ¼Ma �Me viewpoints,

where Ma ¼ 360�
u

and Me ¼ 180�
f
þ 1. As with the case (i), the

number of candidates for all the viewpoint variables fvigMi¼1
isMa due to the upright orientation assumption.

3.3 Self-Alignment During Training

The most characteristic property of RotationNet is the abil-
ity to align objects in datasets during its training. We con-
sider the situation that the reference axis of one object
instance in a training dataset differs from another. In most
cases, the basis axes of 3D models in such datasets are calcu-
lated using techniques such as principal component analy-
sis (PCA), which is known to be sensitive to noise and
individual differences in shapes. In contrast, we decide the
basis axes of objects based on their appearance in an unsu-
pervisedmanner rather than calculating them during prepro-
cessing. This self-alignment phenomenon is achieved in (5)
where the best choice of viewpoint variables fvigMi¼1 are

Fig. 4. Illustration of three viewpoint setups considered in this work. A
target object is placed on the center of each circle.

2. A dodecahedron has 60 orientation-preserving symmetries.
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determined based on object categorization performance.
Intuitively, an object instance in inference is rotated to the
pose where it appears most likely that the object is correctly
categorized. In this manner, after several iterations of for-
ward and backward process of RotationNet updates, it
achieves view-wise image representations that are reactive
to specific object pose. Fig. 5 shows important areas
(responses) in test images of a car corresponding to each
viewpoint, where we set M to 6 in case (i) in this example.
We used the interpretable explanations technique [11] to
visualize the responses of RotationNet to each viewpoint. A
high response value indicates a high probability that the
image belongs to a car category and is observed from the
respective viewpoint. Note that the response of some
images (image #1 and image # 6, in this case) are less salient
than other images. This explains our motivation to use
multi-view images for improving object categorization and
pose estimation.

Figs. 6 and 7 show the state transition of the inter- and
intra-class object pose alignment that is automatically
achieved during the training of RotationNet with Model-
Net40 [42]. They depict the variation of the average images
generated by concatenating multi-view images in order of

their predicted viewpoint variables. The figures correspond
to the cases (i): with upright orientation and (ii): w/o
upright orientation, respectively. We can see that the vari-
ance of average images decreases together with the variance
of object poses. The red dotted lines show the mean vari-
ance of average images of all the 40 classes, whereas the
blue lines show the variance of average images of the
“chair” class.

The images of test object instances in the “chair” class
with the same predicted viewpoint variable are shown in
the right of the figures. In both cases (i) and (ii), where the
latter case is more interesting because of its difficulty, the
chairs with initial random poses gradually get aligned in
the same direction after several hundreds of training itera-
tions. Moreover, the average images of all the 40 classes
with the same predicted viewpoint variable shown in red
boxes indicate that not only the intra-class alignment but
also the inter-class alignment is achieved. The alignment is
less obvious in the red boxes of Fig. 7; however, it is con-
firmed that this does not harm the object classification
accuracy.

3.4 Viewpoint Augmentation

Similar to MVCNN [36] and any other 3D object classifica-
tion method that considers discrete variance of rotation,
RotationNet has the limitation that each image should be
observed from one of the pre-defined viewpoints. In other
words, RotationNet does not guarantee to classify images
captured from a novel viewpoint, correctly. In order to miti-
gate the limitation, we introduce viewpoint augmentation
either or both in the training and inference phases. This is
available either with 3D object models or densely captured
continuous images (e.g., video frames). We prepare multi-
ple sets of multi-view images captured with different cam-
era system orientations. For the viewpoint augmentation in
training, we train a single RotationNet model with a mix-
ture of multiple sets of multi-view images captured with
different camera system orientation. For the viewpoint aug-
mentation in inference, we apply the same RotationNet
model to all the sets of multi-view test images captured

Fig. 5. Visualization of responses to each viewpoint. Images with the
maximum responses to each viewpoint are shown right.

Fig. 6. Variance change of the average images generated by concatenating multi-view images (case (i)) in order of their predicted viewpoint varia-
bles. Average images of 40 classes and images of the “chair” class with the same predicted viewpoint variable in iterations 0, 100, 200, and 400 are
shown in red boxes and blue boxes, respectively.
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with different camera system orientations, and then the pre-
dictions with the highest scores among different camera
system orientations are taken as the final results. As
described in Section 3.2.2, the number of pose candidates
we investigate is 60 in case (ii): w/o upright orientation.
Therefore, letting Ntr and Nte respectively denote the num-
bers of different camera system orientations, 60Ntr/60Nte

different poses of objects are taken into consideration in the
training/testing phase in case (ii). Even though the poses
are discrete, we achieve a high chance that one of the inves-
tigated poses in the testing phase is close to the pose of any
object in the training set. The effect of viewpoint augmenta-
tion is examined with the ShapeNetCore55 dataset [5] in
Section 4.4.2, where we setNtr and Nte to 11.

4 EXPERIMENTS

In this section, we show the results of the experiments with
3D model benchmark datasets (Section 4.1), a real image
benchmark dataset captured with a one-dimensional turn-
ing table (Section 4.2), and our new dataset consisting of
multi-view real images of objects viewed with two rota-
tional degrees of freedom (Section 4.3). We also describe
our submitted results as well as additional experiments on
the 3D Shape Retrieval Contest (SHREC) 2017 in Section 4.4.
Finally, we demonstrate a real-world application of Rota-
tionNet using a moving USB camera (Section 4.5). The base-
line architecture of our CNN is based on AlexNet [18],
which requires less memory than the VGG-M network
architecture that MVCNN [36] used. To train RotationNet,
we fine-tune the weights pre-trained using the ILSVRC 2012
dataset [28]. We used classical momentum SGD with a
learning rate of 0.0005 and a momentum of 0.9 for
optimization.

As a baseline method, we also fine-tuned the pre-trained
weights of a standard AlexNet CNN that only predicts
object categories. To aggregate the predictions of multi-view
images, we summed up all the scores obtained through the
CNN. This method can be recognized as a modified version
of MVCNN [36], where the view-pooling layer is placed

after the final softmax layer. We chose average pooling for
the view-pooling layer in this setting of the baseline, bec-
ause we observed that the performance was better than that
with max pooling. We also implemented MVCNN [36]
based on the AlexNet architecture with the original view-
pooling layer for a fair comparison.

4.1 Experiment on 3D Model Datasets

We first describe the experimental results on two 3D model
benchmark datasets, ModelNet10 and ModelNet40 [42].
ModelNet10 consists of 4,899 object instances in 10 catego-
ries, whereas ModelNet40 consists of 12,311 object instances
in 40 categories. First, we show the change of object classifi-
cation accuracy versus the number of views used for predic-
tion in cases (i) and (ii) with ModelNet40 and ModelNet10,
respectively, in Figs. 10a and 10b and Figs. 10d and 10e.
Here, we randomly shuffled the observation order of the
multi-view images of each object 120 times, and then we
computed the average classification accuracies of 120 trials.
For fair comparison, we used the same training and test
split of ModelNet40 as in [42] and [36]. We prepared multi-
view images (i) with the upright orientation assumption
and (ii) without the upright orientation assumption using
the rendering software published in [36]. In Figs. 10a and
10d, which show the results with ModelNet40, we also
draw the scores with the original MVCNN using Support
Vector Machine (SVM) reported in [36]. Interestingly, as we
focus on the object classification task whereas Su et al. [36]
focused more on object retrieval task, we found that the
baseline method with late view-pooling is better in most
cases than the original MVCNNwith the view-pooling layer
in the middle. The baseline method does especially well
with ModelNet10 in case (i) (Fig. 10b), where it achieves the
best performance among the methods. With ModelNet40 in
case (i) (Fig. 10a), RotationNet achieved a comparable result
with MVCNN when we used all the 12 views as input. In
case (ii) (Figs. 10d and 10e), where we consider three-axis
rotation, RotationNet demonstrated superior performance
to other methods. Only with three views, it showed

Fig. 7. Variance change of the average images generated by concatenating multi-view images (case (ii)) in order of their predicted viewpoint varia-
bles. Average images of 40 classes and images of the “chair” class with the same predicted viewpoint variable in iterations 0, 100, 200, and 500 are
shown in red boxes and blue boxes, respectively.
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comparable performance to that of MVCNN with a full set
(80 views) of multi-view images.

Next, we investigate the performance of RotationNet
with four different architectures: AlexNet [18], VGG-M [6],
ResNet-50 [13], and ResNet-18 [13]. We tested the perfor-
mance of RotationNet with 11 different camera system ori-
entations. Fig. 8 shows exemplar multi-view images of a
chair in ModelNet40 dataset captured in case (ii) with the 11
camera system orientations. Although “aligned” Model-
Net40 dataset has been recently released, we used the origi-
nal “unaligned” ModelNet40 dataset in our work. Camera
system orientations are first rotated by 36 degree about the
x-axis, and then rotated by t� 36� ðt ¼ 0; . . . ; 9Þ about the
y-axis. In this way, different camera system orientations can
capture different object profiles. Table 1 shows the compari-
son of classification accuracy (%) on ModelNet40 and Mod-
elNet10 with the different camera system orientations.
Surprisingly, the performance difference among different
architectures is marginal compared to the difference caused
by different camera system orientations. It indicates that the
placement of viewpoints is the most important factor in
multiview-based 3D object classification. The best scores
with each architecture among the orientations are shown in
bold. As shown here, the best camera system orientation is
consistent across different architectures: the second one for
ModelNet10 and the fourth one for ModelNet40. It indicates
that multi-view object classification is greatly improved by

observing appropriate aspects of objects. In addition, Table 1
shows that the best performance on the validation set
(which we extracted from the training split of ModelNet40)
was achieved with the same camera system orientation as
the test set. Therefore, it is possible to obtain the best Rota-
tionNet model by selecting the one that best classifies a vali-
dation set among different camera system orientations.

Since the second camera system orientation for Model-
Net10 provided significantly better results than the other ori-
entations, we measured the class separation S in Fisher’s
linear discriminant analysis [10]. We extracted the features
before the final fully-connected layer of the four networks pre-
trained on ImageNet. Letting C, mm, mmi, Sb, and Sw denote the
number of classes (i.e., 10 in this case,) themeanof all samples,
the mean of samples in the ith class, the between-class covari-
ance, and the covariance of the whole dataset, the class sepa-
ration Sww in a directionww can be computed as follows:

Sww ¼ ww>Sbww

ww>Swww
; s:t: Sb ¼ 1

C

XC
i¼1
ðmmi � mmÞðmmi � mmÞ>:

(7)

If ww is an eigenvector of S�1w Sb, Sww equals the corresponding
eigenvalue. Therefore, we compute S as the summation of
all eigenvalues of S�1w Sb. Fig. 9 shows S for different camera

Fig. 8. Exemplar multi-view images of a chair captured in case (ii) with 11
different camera system orientations. Numbers in the left indicate the
camera system orientation IDs.

TABLE 1
Comparison of Classification Accuracy (%) with Different Camera System Orientations.

Camera system orientation ID

Dataset Archit. 1 2 3 4 5 6 7 8 9 10 11 Mean

ModelNet40 - val AlexNet 93.03 94.33 95.14 95.54 92.63 92.46 92.38 92.95 92.79 92.79 92.87 93.35 
 1.06

AlexNet 93.03 94.04 95.22 96.39 93.35 92.99 92.79 93.15 92.99 93.31 93.48 93.70 
 1.07
ModelNet40 - test VGG-M 93.64 95.91 96.07 97.37 94.12 93.80 94.08 94.25 93.68 94.41 94.17 94.68 
 1.16

ResNet-50 93.76 96.64 95.91 96.92 94.08 93.68 94.45 94.29 94.45 94.29 94.00 94.77 
 1.10
ResNet-18 92.63 95.62 94.65 96.03 92.87 92.42 93.03 92.71 92.83 92.63 93.52 93.54 
 1.23

AlexNet 94.16 97.58 93.94 94.38 94.60 93.61 94.05 93.94 94.38 94.71 94.38 94.52 
 1.01
ModelNet10 - test VGG-M 94.38 98.46 94.05 94.93 94.38 94.38 94.38 94.49 94.82 94.49 94.27 94.82 
 1.17

ResNet-50 94.82 97.80 94.49 94.49 94.16 94.60 94.38 94.60 94.27 94.71 94.49 94.80 
 0.96
ResNet-18 94.27 98.90 95.15 94.82 95.04 94.82 95.04 94.82 95.15 94.71 95.04 95.25 
 1.18

The best scores with each RotationNet architecture among the orientations are shown in bold.

Fig. 9. Class separation S for different camera system orientations on
ModelNet10.
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system orientations. Regardless to the network architecture,
S for the second camera system orientation is larger than
that for the other orientations. This indicates that measuring
S (before training a network) enables to roughly estimate
how successful the camera orientation is, though the rank-
ing does not necessarily reflect the resulting classification
accuracies.

Finally, we summarize the comparison of classification
accuracy (per class and per instance) on ModelNet40 and
ModelNet10 to existing 3D object classification methods in
Table 5. RotationNet (with VGG-M architecture for Model-
Net40 and with ResNet-18 architecture for ModelNet10) sig-
nificantly outperformed existing methods. Note that we
reported the maximum accuracy among the aforementioned
11 rotation trials. The time required for training the 11 net-
works on a single GPUwas approximately 3 to 5 days, which
is relatively greater than competing methods, e.g., one day
for MVCNN-New [39] and a few hours for VoxNet [23] and
PointNet [26]. More detailed comparison to those methods is
shown in Table 6. Note that MVCNN-New [39] indicates

MVCNN with VGG-11 architecture. Even though the num-
ber of parameters is greater than that of VoxNet and Point-
Net, RotationNet with AlexNet architecture is the most
efficient with respect tomemory usage.

4.2 Experiment on a Real Image Benchmark Dataset

Next, we describe the experimental results on a benchmark
RGBDdataset published in [20], which consists of real images
of objects on a one-dimensional rotation table. This dataset
contains 300 object instances in 51 categories. Although it
contains depth images and 3D point clouds, we used only
RGB images in our experiment.We applied the upright orien-
tation assumption (case (i)) in this experiment, because the
bottom faces of objects on the turning table were not
recorded. We picked out 12 images of each object instance
with the closest rotation angles to f0�; 30�; . . . ; 330�g. In the
training phase, objects are self-aligned (in an unsupervised
manner) and the viewpoint variables for images are deter-
mined. To predict the pose of a test object instance, we predict
the discrete viewpoint that each test image is observed, and
then refer themost frequent pose value among those attached
to the training samples predicted to be observed from the
same viewpoint. We used the training/test split provided by
the official site.3

Table 2 summarizes the classification and viewpoint esti-
mation accuracies. Note that the reported viewpoint estima-
tion accuracy indicates the classification accuracy of 12
discrete viewpoints. The baseline method and MVCNN are

Fig. 10. Classification accuracy versus number of views used for prediction. From left to right are shown the results on ModelNet40, ModelNet10, and
our new dataset MIRO. The results in case (i) are shown in top and those in case (ii) are shown in bottom. See Table 5 for an overall performance
comparison to existing methods on ModelNet40 and ModelNet10.

TABLE 2
Accuracy of Classification and Viewpoint Estimation

(%) in Case (i) with RGBD

Algorithm class view

MVCNN (softmax) 86.08 -
Baseline 88.73 -
Fine-grained, T=300 81.23 26.94
Fine-grained, T=4000 76.95 31.96
RotationNet 89.31 33.59 3. http://rgbd-dataset.cs.washington.edu/dataset/rgbd-

dataset_eval/testinstance_ids.txt
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not able to estimate viewpoints because they are essentially
viewpoint invariant. As another baseline approach to com-
pare, we learned a CNN with AlexNet architecture that out-
puts 612 ð¼ 51� 12Þ scores to distinguish both viewpoints
and categories,whichwe call “Fine-grained.”Here, T denotes
the number of iterations that the CNN parameters are
updated in the training phase. As shown in Table 2, the classi-
fication accuracy with “Fine-grained” decreases while its

viewpoint estimation accuracy improves as the iteration
grows. We consider this is because the “Fine-grained”
classifiers become more and more sensitive to intra-class
appearance variation through training, which affects the cate-
gorization accuracy. In contrast, RotationNet demonstrated
the best performance in both object classification and view-
point estimation, although the ground-truth poses are not
given to RotationNet during the training.

Table 7 shows the object instance/category recognition as
well as pose estimation accuracy comparison to existing
methods. Here, we report the pose estimation accuracy on the
same training/test split and the metric used in [21] (and thus
the numbers are different from Table 2). RotationNet with a
single image input performs comparable to Elhoseiny et al.
[8]. Interestingly, when we estimate object instance/category
and pose using 12 views altogether, both accuracies are
remarkably improved.

4.3 Experiment on a 3D Rotated Real Image Dataset

We describe the experimental results on our new dataset
“Multi-view Images of Rotated Objects (MIRO)” in this
section. We used Ortery’s 3D MFP studio4 to capture
multi-view images of objects with 3D rotations. The RGBD
benchmark dataset [20] has two issues for training multi-
view based CNNs: insufficient number of object instances
per category (which is a minimum of two for training)
and inconsistent cases to the upright orientation assump-
tion. There are several cases where the upright orientation
assumption is actually invalid; the attitudes of object
instances against the rotation axis are inconsistent in some

TABLE 6
Comparison of the Number of Parameters, Memory Usage
(During Training with a Batch Size 64), and Classification

Accuracy on ModelNet40

Algorithm # Params Memory [GB] Accuracy [%]

MVCNN-New [39] 128.9M 10.0 95.0 (92.4)
PointNet [26] 3.5M 4.4 89.2 (86.1)
VoxNet [23] 1.4M 2.0 85.6 (81.4)
RotationNet (AlexNet) 60.2M 1.8 96.4 (94.9)
RotationNet (VGG-M) 102.2M 5.3 97.4 (96.3)

RotationNet (ResNet-50) 24.2M 7.1 96.9 (94.8)
RotationNet (ResNet-18) 11.6M 2.5 96.0 (93.6)

Numbers in brackets show per-class accuracy. Numbers for MVCNN-New,
PointNet, and VoxNet are derived from [39].

TABLE 3
Accuracy of Classification and Viewpoint Estimation

(%) in Case (i) with MIRO

Algorithm class view

MVCNN (softmax) 95.83 -
Baseline 95 -
Fine-grained, T=800 92.76 56.72
Fine-grained, T=4000 91.35 58.33
RotationNet 98.33 85.83

TABLE 4
Accuracy of Classification and Viewpoint Estimation

(%) in Case (ii) with MIRO

Algorithm class view

MVCNN (softmax) 94.17 -
Baseline 95.83 -
Fine-grained, T=1100 94.21 70.63
Fine-grained, T=2600 93.54 72.38
RotationNet 99.17 75.67

TABLE 5
Comparison of Classification Accuracy (%)

ModelNet40 ModelNet10

Algorithm Per Instance Per Class Per Instance

RotationNet 97.37 96.29 98.90

MVCNN-New [39] 95.0 92.4 -
MVCNN-MultiRes [27] 93.8 91.4 -
Dominant Set Clustering [40] 93.8 - -
Kd-Networks [17] 91.8 - 94.0
VRN-single [4] 91.33 - 93.61
FusionNet [14] 90.80 - 93.11
Pairwise [16] 90.70 - 92.80
PANORAMA-NN [32] 90.7 - 91.1
DeepSets [44] 90.3 - -
MVCNN [36] 90.10 90.10 -
ORION [31] 89.7 - 93.80
PointNet [26] 89.2 86.2 -
LightNet [47] 88.93 - 93.94
FPNN [22] 88.4 - -
Multiple Depth Maps [45] 87.8 - 91.5
ECC [34] 87.4 83.2 90.8
VoxNet [23] 85.9 83.0 -
3DShapeNets [42] 84.7 77.3 -
Geometry Image [35] 83.9 - 88.4
3D-GAN [41] - 83.30 -
GIFT [1] 83.10 - 92.35
Beam Search [43] 81.26 81.26 88
DeepPano [33] 77.63 - 85.45
PointNet [12] - - 77.6

RotationNet achieved the state-of-the-art performance both with ModelNet40
and ModelNet10.

TABLE 7
Comparison on Object Instance/Category Recognition and

Pose Estimation on RGBD Dataset

Instance (%) Category (%) Avg. Pose (%)

Lai et al. [21] 78.40 94.30 53.50
Zhang et al. [46] 74.79 93.10 61.57
Bakry et al. [2] 80.10 94.84 76.63
Elhoseiny et al. [8] - 97.14 79.30
Ours - single view 90.44 96.55 78.67
Ours - 12 views 97.45 99.51 81.17

4. https://www.ortery.com/photography-equipment/3d-
modeling/
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object categories. Also, this dataset does not include the
bottom faces of objects on the turning table. Our MIRO
dataset includes 10 object instances per object category. It
consists of 120 object instances in 12 categories in total.
We captured each object instance with Me ¼ 10 levels of
elevation angles and 16 levels of azimuth angles to obtain
160 images. For our experiments, we used 16 images
(u ¼ 22:5�) with 0� elevation of an object instance in case
(i). We carefully captured all the object instances in each
category to have the same upright direction in order to
evaluate performance in the case (i). For case (ii), we used
20 images observed from the 20 vertices of a dodecahe-
dron encompassing an object. Fig. 11 shows examples of
multi-view images of objects in case (ii).

Figs. 10c and 10f show the object classification accuracy
versus the number of views used for the prediction in case (i)
and case (ii), respectively. In both cases, RotationNet clearly
outperforms both MVCNN and the baseline method when
the number of views is larger than 2. We also tested the
“Fine-grained” method that outputs ð192 ¼ 12� 16Þ scores
in case (i) and ð240 ¼ 12� 20Þ scores in case (ii) to distin-
guish both viewpoints and categories, and the overall results
are summarized in Tables 3 and 4. The reported viewpoint
estimation accuracy indicates the classification accuracy of
16 and 20 discrete viewpoints for case (i) and (ii), respec-
tively. Similar to the results with an RGBD dataset described
above, there is a trade-off between object classification and
viewpoint estimation accuracies in the “Fine-grained”
approach. RotationNet achieved the best performance in
both object classification and viewpoint estimation, which
demonstrates the strength of the proposed approach.

4.4 Experiment on 3D Shape Retrieval

In this section, we describe our results using RotationNet on
the 3D Shape Retrieval Contest (SHREC) 2017. We partici-
pated in two tracks of the SHREC’17: (Track 1) “RGB-D

Object-to-CADRetrieval Contest” and (Track 3) “Large-scale
3D Shape Retrieval from ShapeNet Core55 Challenge”. The
former track tackles the retrieval of CAD models with noisy
RGB-D objects as input. The latter track also aims at the
retrieval of CADmodels, butwith the inputs of CADmodels.
We treated rendered multi-view images of CADmodels and
RGBD objects (without color) in the same manner in both
tracks, where we won the best scores among all teams. We
describe our results on the track 1 in Section 4.4.1 and the
track 3 in Section 4.4.2.We also show additional results using
viewpoint augmentation on ShapeNetCore55 dataset [5]
in Section 4.4.2.

4.4.1 Track 1: RGB-D to CAD Retrieval

The dataset provided in the SHREC’17 track 1 contains 1,667
RGB-D objects and 3,308 CAD models in ShapeNet [5] in 20
categories. The RGB-D objects are split into training, valida-
tion, and test set (query) with the split ratio of 50=25=25 per-
cent. The retrieval is performed using the RGB-D objects as
query and the CADmodels as targets.5 The RGB-D objects are
acquired from a consumer-grade depth camera, so that the
reconstructed 3D models are noisy and partial, due to occlu-
sion. Note that the specific CADmodel corresponding to each
query RGB-D object does not exist. A retrieved CADmodel is
considered correct if it belongs to the same category as the
query RGB-D object, regardless of the similarity in shape or
texture. Fig. 12 shows exemplar chair images of the CAD
models and the RGB-D objects in the dataset. We rendered
both the CADmodels and the RGB-D objects in case (ii) view-
point setting (i.e., w/o upright orientation assumption).

We trained our RotationNet model using the provided
3,308 CAD models, and then we fine-tuned the model using
the RGB-D objects in the training set. Interestingly, our

Fig. 11. Exemplar multi-view images of objects in our new dataset MIRO. There are 20 images for each object instance in case (ii).

Fig. 12. Exemplar chair images of the CAD models and the RGB-D scans in SHREC’17 track 1.

5. Target models are allowed to be used for training a system.
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preliminary experiments showed that the pre-training of
RotationNet with CAD models improved the classification
accuracy of RGB-D objects. It indicates that RotationNet has
a high potential to transfer category knowledge obtained
from CADmodels to real objects.

For each query, we constructed a retrieval set in three dif-
ferent approaches described below.

single. We predict a single category label for each query
and construct a retrieval set with all the target models in the
same category.

thresh. We rank categories by the classification scores for
each query. If the score of a category is higher than a certain
ratio of the maximum score, we add the target models in
the category to the retrieval set. We set the threshold to 0.1.

In the case that the scores of all the categories (except for the
predicted category) are lower than 10 percent of the score of
the predicted category, we obtain exactly the same retrieval
set as “single” case.

1,000. In order of decreasing classification scores, we add
the target models in the same category to the retrieval set for
each query. We stop adding a target model when the num-
ber of the models in the retrieval set reaches to 1,000.

Table 8 shows evaluation results on the test set in
SHREC’17 track 1 (quoted from [15]).6 RotationNet with
“1,000” retrieval strategy achieved the best scores in all the

TABLE 8
Evaluation Results on the Test Set in SHREC’17 Track 1 (Quoted from [15])

Team Run Training Domain Precision Recall F1 mAP NDCG Tier-1 Tier-2

Kanezaki (RotationNet) single Y View-based 0.792 0.792 0.792 0.792 0.792 0.792 0.792
Kanezaki (RotationNet) thresh Y View-based 0.793 0.799 0.794 0.794 0.796 0.794 0.794
Kanezaki (RotationNet) 1000 Y View-based 0.820 0.820 0.820 0.833 0.805 0.824 0.824
Chiang 3dcnn Y Full 3D 0.769 0.769 0.769 0.749 0.774 0.769 0.769
Chiang mvcnn Y View-based 0.727 0.727 0.727 0.710 0.735 0.727 0.727
Chiang fuse Y - 0.759 0.759 0.759 0.746 0.763 0.759 0.759
Chiang mvcnn_triplet Y View-based 0.672 0.672 0.672 0.649 0.714 0.672 0.672
Truong 2D Y View-based 0.740 0.740 0.740 0.740 0.740 0.740 0.740
Truong 3D Y Full 3D 0.487 0.487 0.487 0.487 0.487 0.487 0.487
Li N View-based 0.105 0.320 0.145 0.062 0.476 0.120 0.100
Tashiro N View-based 0.141 0.472 0.198 0.149 0.552 0.188 0.144

TABLE 9
Evaluation Results on the Test Set in SHREC’17 Track 3 (Quoted from [30])

micro macro

Dataset Method P@N R@N F1@N mAP NDCG@N P@N R@N F1@N mAP NDCG@N

Normal

Kanezaki (RotationNet) 0.810 0.801 0.798 0.772 0.865 0.602 0.639 0.590 0.583 0.656
Zhou 0.786 0.773 0.767 0.722 0.827 0.592 0.654 0.581 0.575 0.657
Tatsuma 0.765 0.803 0.772 0.749 0.828 0.518 0.601 0.519 0.496 0.559
Furuya 0.818 0.689 0.712 0.663 0.762 0.618 0.533 0.505 0.477 0.563
Thermos 0.743 0.677 0.692 0.622 0.732 0.523 0.494 0.484 0.418 0.502
Deng 0.418 0.717 0.479 0.540 0.654 0.122 0.667 0.166 0.339 0.404
Li 0.535 0.256 0.282 0.199 0.330 0.219 0.409 0.197 0.255 0.377
Mk 0.793 0.211 0.253 0.192 0.277 0.598 0.283 0.258 0.232 0.337
SHREC16-Su (MVCNN) 0.770 0.770 0.764 0.735 0.815 0.571 0.625 0.575 0.566 0.640
SHREC16-Bai 0.706 0.695 0.689 0.640 0.765 0.444 0.531 0.454 0.447 0.548

Perturbed

Furuya 0.814 0.683 0.706 0.656 0.754 0.607 0.539 0.503 0.476 0.560
Tatsuma 0.705 0.769 0.719 0.696 0.783 0.424 0.563 0.434 0.418 0.479
Zhou 0.660 0.650 0.643 0.567 0.701 0.443 0.508 0.437 0.406 0.513
Kanezaki (RotationNet) 0.655 0.652 0.636 0.606 0.702 0.372 0.393 0.333 0.327 0.407
Deng 0.412 0.706 0.472 0.524 0.642 0.120 0.659 0.164 0.329 0.395
Li 0.496 0.234 0.258 0.172 0.303 0.199 0.373 0.179 0.215 0.336
Mk 0.690 0.012 0.020 0.009 0.043 0.546 0.052 0.052 0.047 0.109
SHREC16-Bai 0.678 0.667 0.661 0.607 0.735 0.414 0.496 0.423 0.412 0.518
SHREC16-Su (MVCNN) 0.632 0.613 0.612 0.535 0.653 0.405 0.484 0.416 0.367 0.459

RotationNet + aug. (train, test) 0.732 0.734 0.723 0.698 0.777 0.504 0.530 0.481 0.464 0.535
RotationNet + aug. (test) 0.698 0.707 0.691 0.662 0.751 0.434 0.478 0.412 0.399 0.476
RotationNet + aug. (train) 0.664 0.658 0.639 0.613 0.694 0.405 0.433 0.357 0.349 0.421

Methods are ranked by the average of the micro and macro mAP. The best scores with each metric are shown in bold, whereas the second best scores are shown
with underlines. We include additional results of RotationNet with viewpoint augmentation on “perturbed” dataset separately below the SHREC’17 results
reported in [30]. RotationNet without viewpoint augmentation achieved the best mAP scores with “normal” dataset, whereas RotationNet with viewpoint aug-
mentation (both in training and testing phases) outperformed all the SHREC’17 results with “perturbed” dataset, with respect to the average mAP.

6. http://people.sutd.edu.sg/�saikit/projects/sceneNN/shrec17/
evaluation/
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metrics. Note that other teams “Chiang” and “Truong” also
used CNNs, whereas “Li” and “Tashiro” performed feature
matching using bag-of-words or shape descriptors. Please
refer to [15] for more details.

4.4.2 Track 3: Large-Scale Shape Retrieval

The dataset provided in the SHREC’17 track 3 is named
ShapeNetCore55, which contains a total of 51,162 3D mod-
els categorized into 55 WordNet synsets. Two different ver-
sions of the dataset is provided: “normal” dataset, where all
model data is consistently aligned, and “perturbed” dataset,
where each model has been randomly rotated by a uni-
formly sampled rotation in SOð3Þ. Participants were asked
to return a ranked list of (up to 1,000) retrieved models for
each model in the testing set, where the target models to be
retrieved were all models in that set, including the query
model itself. As is the case in track 1 (Section 4.4.1), a
retrieved model is considered correct if it belongs to the
same category as the query model. In the same manner as
track 1 (Section 4.4.1), we trained RotationNet in case (ii)
with “train” data and classified all the models of “test”
data. For each query, we constructed a retrieval set contain-
ing all the samples with the same predicted category label
in the order of descending scores of the predicted category.

Table 9 shows evaluation results on the test set in
SHREC’17 track 3 (quoted from [30]). RotationNet achieved
the best performance in “normal” dataset, whereas the
point set-based approach of Furuya has the best overall perfor-
mance for “perturbed” dataset. It indicates that point-based
approach is more robust to random rotation than multi-view
image based approaches. However, we argue that adding
more images captured from different viewpoints improve the
robustness to rotation. After the SHREC’17 submission period,
we conducted additional experiments of RotationNet with the
viewpoint augmentation either or both in the training and
inference phases, as described in Section 3.4. In the sameman-
ner as Section 4.1, we trained/tested RotationNet with the 11
camera system orientations, which are nearly equally distrib-
uted in 3D space. Table 9 also shows the results of RotationNet
with the viewpoint augmentation on “perturbed” dataset sep-
arately below the SHREC’17 results reported in [30]. The view-
point augmentation either in the training or the testing phase
improve the retrieval performance for the “perturbed” data-
set, where the latter has more gain than the former. This
implies that taking many viewpoints in consideration for
object inference is a key issue to improve object categorization

performance. Fig. 14 shows validation samples in five catego-
ries in the “perturbed” dataset. The fifteen object instances
classifiedwith highest likelihoods per category are shown. For
each object instance in the latter half of the figure, the orienta-
tionwith the highest category likelihood among the 11 camera
system orientations is selected, and then the object is rotated
(i.e., aligned) according to the orientation and captured from a
certain consistent viewpoint. It is notable that the assignment
of the viewpoints is determined by RotationNet. Although the
alignment is not completely consistent and some objects are
upside down, the objects’ appearance is correlated to each
other. Therefore, this brings a great improvement on the cate-
gorization performance. Eventually, RotationNet with the
viewpoint augmentation both in the training and the test-
ing phases outperformed all the SHREC’17 results with
“perturbed” dataset, with respect to the averagemAP.

We further examined the influence of the viewpoint aug-
mentation in inference. We trained our RotationNet model
with “normal” training dataset and tested the classification
of “perturbed” validation dataset. Fig. 13 shows the classifi-
cation accuracy (%) where we randomly rotated a test
model (in the “perturbed” validation dataset) N times and
used the maximum scores for the final inference. The classi-
fication accuracy without viewpoint augmentation (i.e.,
when N ¼ 1) was 38 percent whereas it was 90 percent for
“normal” validation set, which means our model is rather
sensitive to pre-defined viewpoints. However, as shown in
Fig. 13, the accuracy increases if we randomly rotate the test
modelN times. This is because adding more views for infer-
ence increases the probability of observing objects from the
viewpoints that are close to the pre-defined viewpoints,
which tend to give higher object category likelihood than
unseen views.

4.5 Demonstration of Real-World Application of
RotationNet Trained with the MIRO Dataset

Finally, we demonstrate the performance of RotationNet for
real-world applications. Here, we tackle the application of
object recognition and pose estimation on real images with
cluttered backgrounds captured by a moving USB camera.
For training, we used our MIRO dataset with the viewpoint
setup case (iii), where all the outputs for images with 10

Fig. 13. Classification accuracy (%) on ShapeNetCore55. We rotated a
test modelN times and used the maximum scores.

Fig. 14. Validation samples of the “perturbed” SHREC’17 dataset in ini-
tial poses and aligned poses using RotationNet.
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levels of elevation angles are concatenated, which enables
RotationNet to distinguish 160 viewpoints. We added ren-
dered images of a single 3D CADmodel (whose upright ori-
entation is manually assigned) to each object class, which
were trained together with MIRO dataset. Then we obtained
successful alignments between a CAD model and real
images for all the 12 object classes (Fig. 15).

The MIRO dataset is created in a controlled lighting sys-
tem with a white background. Also, the target objects are
placed on the center of images in the MIRO dataset. To
improve the robustness to background clutters and transla-
tion of objects, we augmented the training images in two
manners: background synthesis and random shift. We ran-
domly crop a square region from an image randomly
selected from the ILSVRC 2012 validation dataset [28]. Then
we synthesize a MIRO image that is removed the white
background with the random vertical and horizontal shift

ranging from 0 to 56 pixels. We augmented the training
dataset in this way from 20 thousands to 2 million.

Fig. 16 shows exemplar objects recognized using a USB
camera. We estimated relative camera poses by LSD-
SLAM [9] to integrate predictions from multiple views in
sequence. The results obtained using multiple views (shown
in the third and sixth rows) are consistently more accurate
than those using a single view (shown in the second and
fifth rows). It is worth noting that not only object classifica-
tion but also pose estimation performance is improved by
using multiple views. The classification and pose estimation
run faster than 30 fps with a Titan X GPU.

5 DISCUSSION

We proposed RotationNet, which jointly estimates object
category and viewpoint from each single-view image and
aggregates the object class predictions obtained from a par-
tial set of multi-view images. In our method, object instan-
ces are automatically aligned in an unsupervised manner
with both inter-class and intra-class structures based on
their appearance during the training. In the experiment
using 3D object benchmark datasets ModelNet40 and Mod-
elNet10, RotationNet significantly outperformed the state-
of-the-art methods based on voxels, point clouds, and
multi-view images. RotationNet is also able to achieve com-
parable performance to MVCNN [36] with 80 different
multi-view images using only a couple of view images,
which is important for real-world applications. Another
contribution is that we developed a publicly available new
dataset named MIRO. Using this dataset and RGBD object
benchmark dataset [20], we showed that RotationNet even
outperformed supervised learning based approaches in a
pose estimation task. We consider that our pose estimation
performance benefits from view-specific appearance infor-
mation shared across classes due to the inter-class self-
alignment.

Fig. 15. Object instances self-aligned as a result of training RotationNet.
The last instance in each category is a 3D CAD model.

Fig. 16. Exemplar objects recognized using a USB camera. The second and fifth rows show 3D models in the estimated category and pose from a
single view, whereas the third and sixth rows show those estimated using multiple views. The number in each image indicates the number of views
used for predictions. Failure cases are shown in red boxes.
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Multi-view based approaches have drawbacks in dealing
with unseen viewpoints because 2D image representation
depends on discrete viewpoints. In order to mitigate the limi-
tation, we introduced viewpoint augmentation either or both
in the training and inference phases. Either with 3D object
models or densely captured continuous images (e.g., video
frames), this is available by preparing multiple sets of multi-
view images captured with different camera system orienta-
tions. We trained a single RotationNet model using aug-
mented training images with 11 different camera system
orientations, which brought a three percent improvement in
mAP in the “SHREC’17 Large-Scale Shape Retrieval” task.
This indicates that a better classification model can be
achieved with consideration of more viewpoints. Taking
many viewpoints in consideration for the inference phase is
even more effective and achieved 14 percent boost in mAP.
Eventually, with the viewpoint augmentation both in the
training and inference phases, RotationNet outperformed all
the existing methods including point-based approaches for
the “perturbed” ShapeNetCore55 dataset in the SHREC’17
track. This is an important insight into 3D object recognition
both with synthetic models and real scanned objects.
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