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Border-Peeling Clustering
Hadar Averbuch-Elor, Nadav Bar, Daniel Cohen-Or

Abstract—In this paper, we present a novel non-parametric clustering technique. Our technique is based on the notion that each latent
cluster is comprised of layers that surround its core, where the external layers, or border points, implicitly separate the clusters. Unlike
previous techniques, such as DBSCAN, where the cores of the clusters are defined directly by their densities, here the latent cores are
revealed by a progressive peeling of the border points. Analyzing the density of the local neighborhoods allows identifying the border
points and associating them with points of inner layers. We show that the peeling process adapts to the local densities and
characteristics to successfully separate adjacent clusters (of possibly different densities). We extensively tested our technique on large
sets of labeled data, including high-dimensional datasets of deep features that were trained by a convolutional neural network. We
show that our technique is competitive to other state-of-the-art non-parametric methods using a fixed set of parameters throughout the
experiments.

Index Terms—Clustering, Non-parametric Techniques.
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1 INTRODUCTION

C LUSTERING is the task of categorizing data points into
groups, or clusters, with each cluster representing a

different characteristic or similarity between the data points.
Clustering is a fundamental data analysis tool, and as such
has abundant applications in different fields of science and
is especially essential in an unsupervised learning scenario.
Ideally, a clustering method should infer the structure of
the data, e.g., the number of clusters, without any manual
supervision.

Many of the state-of-the-art clustering methods operate
with several underlying assumptions regarding the struc-
ture of the data. A prominent assumption is that the clusters
have a single area that can be identified as the center, or the
core of the cluster. For instance, K-Means [1] operates under
the assumption that there is a single cluster center according
to the compactness of the data, while the Mean-Shift [2]
method defines this area as the one displaying the highest
density inside the cluster. Operating under this assumption
may result in overly split clusters containing several dense
areas, or centers, of smaller clusters.

Density based methods like DBSCAN [3] operate often
under the assumptions that different clusters have similar
levels of density, and that the cores of the clusters can be
defined based on density reasoning. However, often, the
cores of the clusters do not have a clear structural density
that can be directly defined, leading to a redundant merge
of adjacent clusters.

In this work, we introduce Border-Peeling: a non-
parametric clustering method that iteratively peels off layers
of points to reveal the cores of the latent clusters. The peel-
ing is a local process, where the decisions are a result of local
analysis, revealing the local behaviour of points without
expecting other clusters to share similar characteristics. Our
technique is non-parametric in the sense that the number
of clusters is not provided as input. The careful repeated
peeling forms a transitive association between the peeled
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border points and the remaining core points. The key is to
consider a layered structure for the latent clusters, where the
external layers implicitly separate the clusters. We analyze
the density of the local neighborhoods of each point to
iteratively estimate the border points and associate them
with inner-layer points. See Figure 1 for an illustration our
iterative technique.

In the following sections, we describe the details of our
method, and demonstrate the performance of our method
on various datasets and in comparison to other well-known
clustering methods. Except for common baseline datasets,
we use large datasets, containing thousands of points, for
which we have their ground truth clusters, and extensively
evaluated the performance using many random subsets.
Particularly, we evaluate our technique on high-dimensional
datasets of deep features that were trained by convolu-
tional neural networks. We show that the Border-Peeling
clustering algorithm is competitive to other state-of-the-
art non-parametric clustering methods using a fixed set of
parameters throughout the experiments.

2 RELATED WORK

Data clustering is one of the most fundamental problems in
data analysis, highly applicable to various fields of science.
For a comprehensive survey on data clustering techniques,
please refer to [4]. In our work, we present a novel non-
parametric clustering method. Non-parametric clustering is
an active field of research, receiving ongoing attention for
several decades now. In what follows, we elaborate on the
most closely related works.

The DBSCAN [3] method groups together points that are
packed together closely , marking points that lie individu-
ally in low-density regions as noise. The notion of border
points within a cluster has been established by DBSCAN
in the past. The border points in DBSCAN are defined as
points that are part of a cluster but are not surrounded by
a dense neighborhood. A notable difference between their
method and ours is that in DBSCAN, the identified border
points do not have a prominent role in the definition of
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Fig. 1: The Border-Peeling technique on two different datasets: Three consecutive peeling iterations are illustrated on the left,
with the identified border points colored in red. Next, we illustrate the clustering of the highly-separable core points that remain
after the peeling process. The rightmost figures illustrate our final clustering results (outliers are colored in black).

the different clusters. Furthermore, the association to their
resulting cluster is dependent on the order in which they
are processed. Additionally, the DBSCAN method has been
shown to be sensitive to its input parameters [5]. Later
works, e.g., [6], [7], extended their work to allow for an
automatic parameter estimation.

The OPTICS [8] clustering technique extends DBSCAN.
Unlike DBSCAN, it can detect clusters in data of varying
density by producing a reachability plot with an ordering
of the data points according to their clusters. However,
OPTICS requires a manual analysis of the reachability plot.
Furthermore, it does not have a notion of border points.
HDBSCAN [9], a recent extension of both DBSCAN and
OPTICS, is a hierarchical version of DBSCAN, where a flat
partition, consisting of the most prominent clusters, can
be extracted from the hierarchy. HDBSCAN only requires
one parameter (the minimum cluster size) and can handle
data of varying density. Similarly to OPTICS, HDBSCAN
does not have a notion of border points. However, due
to the fact that HDBSCAN chooses the density threshold
automatically, by comparing hierarchies of dense areas, it
tends to cluster a large number of data points as noise.

CHAMELEON [5] is a hierarchical method of clustering,
which partitions the data according to its k-NN graph and
merges the components of the graph according to their
proximity and inter-connectivity. However, as discussed in
[10], this method may yield sub-optimal results for data in
higher dimensions. Other more recent hierarchical methods
have been shown to effectively handle outlier points [11],
[12]. The work presented in [10] suggests a clustering tech-
nique based on a shared (mutual) nearest neighbor (SNN)
approach. It has been shown that such an approach is
advantageous when the goal is to find the most significant
clusters, rather than identifying all the latent clusters [13].

The Mean-Shift [2] method clusters data points using
a kernel density estimation function, by iteratively shifting
each data point to a dense region in its proximity, and then

clustering the shifted data points. It is, however, dependent
on the bandwidth parameter of the kernel density estimator.
The Adaptive Mean-Shift [14] method overcomes this issue
by estimating a different bandwidth for each data point
according to the local neighborhood of the point. As men-
tioned in [15], in many cases, Mean-Shift clustering tends
to over-partition the clusters, i.e., it often returns a large
number of clusters, even when the actual number of clusters
is small. In our work, over-partitioning is avoided due
to our peeling termination criterion, which is determined
automatically according to the characteristics of the data.

The Affinity Propagation [16] technique clusters data
points according to the concept of message passing between
data points. Affinity propagation performs the clustering by
first finding exemplars in the dataset, and then clustering
each data point according to the exemplar that the data
point was associated with. Our method also uses data point
association to cluster the data points. However, unlike our
method, Affinity Propagation tends to over-partition the
data.

The topic of identifying cluster border points was pre-
viously addressed in Xia et al. [17], where the points in
the datasets are ordered according to the number of k-
neighborhoods in which they participate (Reverse KNN),
and points with a low number of neighborhoods are con-
sidered to be the border points. In their work, the border
identification is presented as a general pre-processing step
which may improve the clustering result. However, they
do not address to the issue of classifying the points to
different clusters, as well as to the clustering itself. The
QCC algorithm [18] bears some similarity to our method
as it also utilizes reverse k-nearest neighbors, however,
conceptually, it is quite different. Unlike our method where
the cluster borders are iteratively peeled, QCC is a center-
based approach, where the clustering results are driven by
the estimated cluster centers.
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3 THE ALGORITHM

Given a set of points in Rd, our clustering technique iter-
atively peels off border points from the set. The premise of
this method is that by repeatedly peeling off border points,
the final remaining points, termed core points will be better
separated and easy to cluster.

To cluster the input points, during the iterative peeling
process, each peeled point is associated and linked with a
neighboring point that was not identified as a border point.
This linkage forms a transitive association between the
peeled points with one of the core points. The clustering of
the peeled border points is then inferred by their association
to the clustered core points.

Algorithm 1 Border-Peeling Clustering

Input: A set of points X = {x1, x2, ..., xn} ∈ Rd.
Output: Cluster indices C = {c1, c2, ..., cn}.
X1 ← X
for peeling iteration 1 ≤ t ≤ T do

for each point xi ∈ Xt do
RN

(t)
k (xi)←

{
xj |xi ∈ N (t)

k (xj)
}

b
(t)
i ←

∑
xj∈RN(t)

k (xi)
exp

(
− ||xi−xj ||22

σ2
j

)
end for
X

(t)
B ←

{
xi : B

(t)
i = 1 ∧ xi ∈ X(t)

}
X(t+1) ← X(t) \X(t)

B

for each peeled point xi ∈ X(t)
B do

ρi ← ASSOCIATEPOINT(xi, X
(t+1)) {see Section 3.2}

end for
end for
c̃← CLUSTERCOREPOINTS(X(t+1)) {see Section 3.3}
c ← COMPUTEFINALRESULT(X, c̃, ρ) {linking core point
clustering to computed associations}

The algorithmic key idea of our technique is twofold: (i)
the definition of a border point, and (ii) the association of a
border point to its neighboring non-border point. These key
ideas will be elaborated in the following section.

The iterative peeling terminates when the identified bor-
der points are strictly weaker in terms of their ”borderness”
than the border points that were identified in the previous
iterations, thus forming the set of core points. These core
points are then grouped into clusters using a simplified ver-
sion of DBSCAN. In Algorithm 1, we describe our algorithm
in pseudo-code.

In what follows, we first introduce some notations and
describe how border points are identified at each iteration
(Section 3.1). We then detail the border point association
process (Section 3.2). Finally, we describe our clustering
procedure (Section 3.3).

3.1 Border Points Identification

Given a set of n data points X = {x1, x2, ..., xn} in Rd and a
dissimilarity function ξ : Rd × Rd → R as input, we denote
X(t) as the set of points which remain unpeeled by the start
of the tth iteration.

For each point xi ∈ X(t), denote the set of k nearest
neighbors by N (t)

k (xi). Following [19] and [17], the reverse
k nearest neighbors of xi is given by

RN
(t)
k (xi) =

{
xj |xi ∈ N (t)

k (xj)
}

(1)

That is, RN (t)
k (xi) is the set of points for which xi is one of

their k-nearest neighbors.
To estimate distances between points, we use a pairwise

relationship function f : Rd × Rd → R . In our work, where
the dissimilarity measure ξ is the Euclidean distance, we
calculate f by applying a Gaussian kernel with local scaling
[20] to the Euclidean distance:

f(xi, xj) = exp

(
−||xi − xj ||

2
2

σ2
j

)
, (2)

Following the choice of σj in [20] we set σj = ||xj −
N

(t)
k (xj)[k]||2. where N

(t)
k (xj) denotes the k-th nearest

neighbor of xj at iteration t, i.e. the distance to the kth

neighbor of the data point is used as the normalizing factor
for the Gaussian kernel. This approach has proven to be
effective in measuring the affinity between data points when
the affinity of the data points has a large variance.

Using f , we associate with each point in X(t) a density
influence value b(t)i where

b
(t)
i =

∑
xj∈RN(t)

k (xi)

f(xi, xj). (3)

The density influence bi aims at capturing the amount of
influence a point has on the local density of its neighboring
points. We would expect the values of bi to be smaller for
data points that lie on the border of the cluster, and larger
for points that are closer to the core of the cluster. In the
supplementary material we analytically demonstrate bi’s
desired behavior for the simple case where the points are
uniformly distributed over a section in R1.

Recall that in every peeling iteration, the algorithm clas-
sifies some of the points of X(t) as border points and peels
them off. Formally, for each point xi ∈ X(t), denote by
B

(t)
i the border classification value of that point that accepts

the value of 1 if xi is a border point and 0 otherwise. The
calculation of B(t)

i in each iteration is performed using an
iteration specific cut-off value τ (t):

B
(t)
i =

{
1, if b(t)i ≤ τ (t)

0, otherwise
(4)

It is important to note that B(t)
i is space-variant due to its

reliance on f (through b
(t)
i ). Simply put, we learn the local

characteristics of the dataset to determine whether a point is
classified as a border point or not. The set of cut-off values
τ (1), τ (2)... can be manually specified, or as we describe
below, it can be estimated from the intrinsic properties of
the input data.

To conclude the peeling iteration, the set of border points
at iteration t is given by

X
(t)
B =

{
xi ∈ X(t) : B

(t)
i = 1

}
(5)
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and the set of unpeeled data points for the next iteration by

X(t+1) = X(t) \X(t)
B (6)

3.2 Border Points Association

Following the identification of border points at iteration t,
we associate to each identified border point xi ∈ X

(t)
B a

neighboring non-border point which we denote as ρi ∈
X(t+1). In order to prevent a scenario in which an isolated
border point is associated with a relatively distant neighbor,
resulting with erroneous merging of distant clusters, we
mark some points as outliers. These points will not be part
of any cluster.

ρi is given by

ρi =

{
xj , ξ(xi, xj) ≤ li
∅, ξ(xi, xj) > li

(7)

where xj is the closest non-border point to xi at iteration
t from the set of non-border points and li is a spatially-
variant threshold value. ∅ is used to mark xi as an outlier.
In words, if there are no non-border points within a distance
of li from xi then xi is marked as an outlier. Otherwise, ρi
is the nearest non-border point to xi at iteration t.

For each border point xi, li is determined at the time
the point is classified as a border point. All border points
identified in the first iteration receive the value of λ, where
λ is a parameter of our method which serves as the maximal
threshold value. For the subsequent iterations, consider a
point xi at the iteration t where it was peeled. We take the
k-nearest data points to xi from the data points that are in
∪tr=1XB(r), i.e., the set of points that were already peeled
up to the current iteration and were not marked as outliers.
We denote this set by NN (t)

B,k(xi). We then compute

li = min

Ck
∑

xj∈NN(t)
B,k

ξ(xi, xj), λ

 (8)

where the constantC determines the strictness of the thresh-
old values (C = 3 in all our experiments).

We have found this method to perform better than when
using a constant threshold value, as it takes into account the
spatially-varying density of the data points. See Figure 2.

Figure 2 illustrates the effects of the spatially-variant
threshold value li. As the figure demonstrates, at first the
association areas (illustrated by blue circles), whose radius
equals li, are of equal size. Some data points (such as x3

in the figure) are not associated to a non-border point since
there are no non-border points with distance of at most λ.
The right figure illustrates the threshold values after one
iteration. The values of the newly identified border points
are calculated by averaging over the Euclidean distances to
the nearest peeled border points. Note, for example, that l4
is larger than l5, as x4 is further away from its nearest peeled
border points (assuming, for instance, k = 3).

3.3 Bottom-up Clustering

Our method iteratively identifies border points and asso-
ciates them to non-border points. The transitive association
thus yields paths from each input point to one of the core
points, which are the final remaining non-border points, i.e.,
the set X(T+1) with the set that contains ρi. We define a
heuristic to set the number of iterations T in a context-
sensitive manner (more details are provided in Section 4).

Once the border peeling process terminates, the remain-
ing set of core points are clustered by merging together close
reachable neighborhoods of points. Formally, we define
reachable neighborhoods of core points as follows:

Definition 3.1. A pair of core points xi, xj ∈ X(T+1) is said
to be reachable w.l.o.g. if there is a series of core points:
(xk1 , ...xkm) with k1 = i and km = j, such that for every
two adjacent indices in the series (kr, kr+1) the relation
ξ(xkr , xkr+1

) ≤ max(l
(T )
kr
, l

(T )
kr+1

) holds.

For every pair of core points (xi, xj) that are reachable,
we merge the set that contains xi with the set that contains
xj . This merging step is done iteratively, until all sets of
reachable data points are merged.

The set of cluster candidates are then defined by follow-
ing the border points association and linkage to the core
points. In order to be able and better filter out noise, we
mark small clusters as noise, using a user defined value of
the minimum cluster size. Following the filtering step, the
final set of clusters is returned.

4 EXPERIMENTS

To evaluate the performance of the Border-Peeling cluster-
ing method, we measured its performance on numerous
synthetic and real-life datasets and compared its perfor-
mance to other state-of-the-art algorithms. For each exper-
iment, the free parameters of all the alternative methods
were set according to their best performance over a large
range of possible configurations. Contrarily, for our method,
a fixed set of parameters was used throughout all of the
experiments. This gives a huge advantage to the alternative
methods and demonstrates that our method is insensitive to
its parameters setting (which we further validate in a sensi-
tivity evaluation which can be found in the supplementary
material).

The free parameters of our method were set as follows:
In each iteration, τ (t) was set such that 90% of the re-
maining data points at each iteration have larger values
of b(t)i , and a value of k = 20 was used for the k-NN
queries. The value of λ was calculated by first calculating
all of the pairwise distances in the k-neighborhood of each
point: Dk = ∪xi∈X {d(xi, xj)|xj ∈ Nk(xi)}, and then set-
ting λ = MEAN(Dk) + STD(Dk). While other choices of
λ can be used, we have found this simple estimation method
to be effective, as can be seen in the results below.

To automatically set the number of iterations of the peel-
ing process T , we make the following observation: peeled
border points should reside in denser areas than the border
points of the previous iteration. Therefore, the assigned
density influence values should increase in average (which
implies that the points establish less coherent borders than
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Iteration 1 Iteration 2

Fig. 2: The border association process and calculation of li during the peeling process. The figures illustrate the border points
(shown in red) of the first two iterations and their association to non-border points, marked by the red arrows. The blue circles
represent the association area induced by the spatially-variant threshold value li.

the previous iterations). Furthermore, when over-clustering
occurs, the values of the border points are expected to be
significantly higher than the values of the border points in
the preceding iterations.

Hence, in each iteration t, we track the set of values of
border points that are about to be peeled:

{
b
(t)
i

∣∣∣B(t)
i = 1

}
,

and calculate the mean value of that set, denoted by b̄
(t)
p .

We then examine the the values of b̄(1)
p , b̄

(2)
p , ..., b̄

(t)
p , and

terminate the peeling when
b̄(t)p

b̄
(t−1)
p

− b̄(t−1)
p

b̄
(t−2)
p

> ε, where ε is a
positive constant that we empirically set to 0.15.

We compare our performance to that of a set of well-
known non-parametric clustering techniques: DBSCAN
(DB) and the more recent Hierarchical-DBSCAN (HDB) [9],
Mean-Shift (MS), Affinity Propagation (AP) [16], QCC [18]
and Robust Continuous Clustering (RCC) [21]. Similar to
Border-Peeling clustering, all of those clustering methods
try to infer the number of clusters automatically and do not
accept the number of clusters as a parameter. We also com-
pare our performance to the K-Means (KM) and Spectral
Clustering (SC) [22] methods, which accept the number of
clusters as a parameter. For each dataset, we run K-Means
1000 times with random initialization, taking the clustering
which minimizes the sum of distances of data points to
their closest cluster center among those 1000 runs. Similarly,
for Spectral Clustering, the K-Means phase is also run 1000
times, taking the best result among these runs.

In what follows, we explain and demonstrate our quan-
titative comparisons on three synthetic datasets as well as
on sampled large datasets. In the supplementary material,
we provide qualitative results on six additional synthetic
datasets of various distributions and further illustrate the
huge advantage we provide the alternative techniques by
presenting the entire grid of results. While all our results
are obtained with a fixed set of parameters, we explicitly
demonstrate how for alternative methods a fixed parameter
setting will work well for only some of the scenarios.

4.1 Evaluation on common synthetic datasets

First, we quantitatively evaluated our method on a number
of common synthetic datasets from the known clustering
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Fig. 3: Qualitative comparison of our Border-Peeling technique
to parametric clustering techniques on three synthetic
examples from the literature (labeled A-C). As the figure
demonstrates, our technique successfully recovers the number
of clusters automatically as well as identified the outliers
(colored in black), while the two parametric methods fail to
identify the correct clusters for datasets A and B.

literature [23], [24], [25], which consist of a small number of
clusters that lie in proximity to one another and are not eas-
ily separable, thus constituting a challenge to density-based
methods. We provide a comparative visualization of the
clusters formed by Border-Peeling clustering to the clusters
formed by K-Means and Spectral Clustering, to demonstrate
that our non-parametric clustering method outperforms
parametric techniques even in synthetic settings (see Figure
3).

We evaluate the performance of each method by calcu-
lating the Adjusted Rand Index (ARI) [26] and Adjusted
Mutual Information (AMI) [27] of the resulting metrics. The
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A (2 Classes) B (7 Classes) C (15 Classes)
ARI AMI Det# ARI AMI Det# ARI AMI Det#

KM 0.453 0.386 - 0.526 0.716 - 0.993 0.994 -
SC 0.388 0.411 - 0.731 0.857 - 0.726 0.851 -

DB 0.922 0.826 2 0.992 0.982 7 0.927 0.926 15
HDB 0.754 0.574 2 0.809 0.799 5 0.956 0.952 15
AP 0.138 0.240 12 0.393 0.601 16 0.993 0.994 15
MS 0.562 0.826 2 0.526 0.716 5 0.915 0.952 15
QCC 0.950 0.897 2 0.997 0.995 7 0.980 0.982 16
RCC 0.934 0.881 2 0.604 0.701 14 0.982 0.985 15
BP 0.983 0.962 2 0.996 0.992 7 0.982 0.985 15

TABLE 1: Comparison of Border-Peeling clustering (BP) with
parametric (KM, SC) and non-parametric (HDB, DB, AP, MS,
QCC, RCC) clustering techniques on the common synthetic
datasets A, B and C which are illustrated in Figure 3.
Alongside the scores, we also report the total number of
output clusters (Det#) obtained for each experiment for the
non-parametric techniques.

ARI and AMI are well-known metrics in the field of data
clustering and are frequently used in order to evaluate clus-
tering performance when ground truth data is available. The
scores for the well-known clustering methods were obtained
by running them over a range of parameters and taking
the clustering result with the best AMI score, while Border-
Peeling clustering was run using the parameters described
in the previous section. See Table 1 for the full comparison
on these synthetic datasets. As Figure 3 demonstrates, our
technique successfully identified the number of clusters for
each of the datasets and achieved the best scores overall.

4.2 Evaluation on large datasets

We further evaluated the performance of the Border-Peeling
method in comparison to other well-known clustering al-
gorithms by running it on large datasets. We perform two
different sets of experiments: (i) experiments on unsupervised
features and (ii) experiments on supervised (pretrained) fea-
tures. As can be expected, the results are generally better
on the supervised features. However, as the evaluation
illustrates, clustering a large dataset is challenging even
in a supervised setting (see Figure 4 for a visualization of
the supervised features). Our evaluation shows that our
method is competitive to other state-of-the-art techniques
in both cases. It is important to note that throughout our
experiments, the Border-Peeling parameters were fixed as
described above, while the parameters of the other tech-
niques were set separately for each dataset by taking the
parameters that yield the best result. Furthermore, note
that in this section, we only partially compare to the QCC
technique as their implementation is in MATLAB, making
it infeasible to run all the different configurations on these
large datasets.

4.2.1 Experiments on unsupervised feature vectors

We conducted a set of experiments on larger datasets
(approximately 10, 000 samples) of varying classes, where
the feature vectors are generated using auto-encoders. For
all the experiments, we used autoencoder dimensions of
dim (X)−500−500−2000−10. The training of the autoen-
coder included 50 epochs of layerwise training, followed by
50 additional epochs for fine-tuning the entire autoencoder.

YTF (41 Classes) USPS (10 Classes) REUTERS (4 Classes)
ARI AMI Det# ARI AMI Det# ARI AMI Det#

KM 0.587 0.760 – 0.517 0.616 – 0.574 0.494 –
SC 0.203 0.569 – 0.533 0.714 – 0.005 0.011 –

DB 0.016 0.220 312 0.000 0.005 21 0.011 0.021 64
HDB 0.657 0.765 111 0.088 0.285 14 0.083 0.063 3
AP 0.308 0.628 242 0.053 0.347 346 0.013 0.178 409
MS 0.016 0.115 5437 0.000 0.003 8315 0.002 0.003 7432
RCC 0.435 0.645 464 0.749 0.727 109 0.200 0.243 329
BP 0.252 0.683 106 0.672 0.723 19 0.145 0.246 47

TABLE 2: Comparison of Border-Peeling clustering (BP) with
parametric (KM, SC) and non-parametric (HDB, DB, AP, MS,
RCC) clustering techniques on large datasets in an
unsupervised setting. Alongside the scores, we also report the
total number of output clusters (Det#).

In Table 2, we report a full quantitative comparison on
the YouTube Faces (YTF) dataset [28] which contains 10, 000
samples of faces, on the USPS dataset which contains 11, 000
samples of handwritten digits, and on the REUTERS dataset
which contains 10, 000 samples of English news stories [29].
As the table illustrates, our method obtains competitive
performance on all three datasets, also in comparison to
parametric methods that are provided with the number
of clusters in the data. Furthermore, our method does not
over-segment these large datasets (unlike some of the other
methods). In the supplementary material, we demonstrate
that our method is insensitive to small variations of its
automatically estimated parameter by reporting our scores
on these datasets over a wide range of different parameter
values.

4.2.2 Experiments on supervised feature vectors

To further validate the performance of our technique on
large datasets, we generated large sets by extracting feature
vectors generated by convolutional neural networks (CNN)
that were trained separately on MNIST [30]. MNIST is a
well-known handwritten digit image dataset which consists
of 70000 labeled images of handwritten digits divided into a
training set of 60,000 images and a test set of 10,000 images.

To obtain a strong feature representation on the MNIST
samples, we trained a CNN using the training set and then
used it to produce an embedding of the images in the test
set to n-dimensional feature vectors (n = 500). To obtain the
feature vectors, we used the CNN implementation which
is available in the MatConvNet [31] library. To produce
varying less balanced datasets with an unknown number
of clusters, the embedded test sets were sampled by taking
all the embedded vectors which are within a certain radius
of randomly sampled points. By using different radii, we
generated several datasets of varying sizes. The selected
radii values yielded varying datasets containing roughly a
few thousand elements, spanning most, but not necessarily
all, the digits (as illustrated on the top of Table 3). On
average, the number of sampled images is 2151, 3115, 4321
and 4471 for radius size 120, 130, 140 and 150, respectively.
Embeddings of selected samples of the MNIST dataset to
2D can be seen in Figure 4. As a final preprocessing step, we
employed PCA on the sampled datasets to avoid clustering
in an overly-high dimensional space, reducing the original
dimensions down to 30.
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Fig. 4: Embeddings in 2d for selected samples of the MNIST features that were produced by a CNN. The embeddings were
obtained by running PCA on the datasets.

full r = 120 (8.0 Classes) r = 130 (8.7 Classes) r = 140 (9.5 Classes) r = 150 (9.9 Classes)
ARI AMI Det# ARI AMI Det# ARI AMI Det# ARI AMI Det# ARI AMI Det#

DB 0.232 0.438 24 0.869 0.845 8.6 0.667 0.729 9.0 0.534 0.634 9.0 0.409 0.573 8.4
HDB 0.204 0.505 20 0.934 0.899 8.6 0.759 0.759 8.7 0.730 0.792 9.9 0.656 0.767 9.6
AP 0.050 0.354 405 0.265 0.484 33.6 0.197 0.442 57.0 0.184 0.443 75.6 0.149 0.427 110.9
MS 0.238 0.188 32 0.625 0.714 7.9 0.544 0.693 8.4 0.430 0.650 8.8 0.333 0.609 9.6
QCC 0.153 0.233 9 0.131 0.098 53.7 0.142 0.176 82.6 0.247 0.263 94.7 0.229 0.226 115.5
RCC 0.936 0.932 18 0.976 0.929 8.2 0.952 0.922 8.6 0.796 0.817 15.2 0.829 0.873 18.5
BP 0.855 0.836 14 0.932 0.896 7.9 0.946 0.909 8.9 0.928 0.890 10.0 0.927 0.895 10.6

TABLE 3: A comparison to non-parametric clustering techniques on samples of the MNIST dataset. For each radius size, we
sample multiple dataset configurations, reporting the average metrics (ARI, AMI) and the average number of clusters (Det#). In
the leftmost column, we report the scores on the full datasets, without performing a random sampling strategy.

The results of running Border-Peeling clustering as well
as the other non-parametric clustering techniques are il-
lustrated in Table 3. For each radii value, we perform ten
different runs and average the results of the clustering
methods over these random runs. As a baseline, we also
report the results on the full (not-sampled) datasets.

As the table demonstrates, RCC and our technique
achieve the best performance on average in terms of AMI
and ARI, and for larger radii values our method outper-
forms the RCC technique. It is especially interesting to ob-
serve the huge variability in performance in this experiment
where the features are obtained in a supervised fashion and
indeed, for some methods, the scores are rather high in
most cases. However, it seems that some common clustering
solutions do not scale up to the large dataset size or the
high dimensional feature space of the real image samples,
even when provided with the supervised feature vectors.
Furthermore, these experiments also demonstrate that our
proposed method avoids over-partitioning to some degree,
in particular in comparison to other methods.

Our incremental peeling process can also infer a confi-
dence value associated with the data points of each cluster.
As discussed in Section 3.1, data points with lower values
of bi are expected to be along the border of the cluster, and
thus, with a lower confidence. To illustrate this simple con-
fidence ranking, Figure 5 visualizes the top-10 and bottom-
10 instances of clustering the MNIST dataset. Note that the
images of digits with lower values of b(0)

i are often harder
to identify, while images with higher values are clearer and
more pronounced.

4.3 Implementation details and runtime

The Border-Peeling clustering method was implemented in
the Python programming language using the numpy [32]
software library. In order to compare our performance with
other clustering algorithms we used the implementation
available in the SciKit-Learn [33] Python library. The time
complexity of our technique is O(T · (k · n+ f̃knn)), where
f̃knn is the asymptotic complexity of the k − NN method
with respect to the dataset.

Fig. 5: The images corresponding to the bottom-10 (odd rows)
and top-10 values (even rows) of b(0)i for four different clusters
which were obtained using Border-Peeling clustering on a
random subset of the MNIST dataset.

The runtime performance on a 2.5 GHz Intel Core i7
Mac-Book Pro on the datasets evaluated in Section 4.2.1
is as follows: 71 seconds on the YTF dataset (T = 19), 98
seconds on the USPS dataset (T = 36), and 106 seconds on
the REUTERS dataset (T = 23). For comparison, the average
runtime of a single run of the RCC technique on these
datasets is 36 seconds, 65 seconds, and 55 seconds, respec-
tively. The implementation of our method is available at:
https://github.com/nadavbar/BorderPeelingClustering.

5 CONCLUSIONS

We have presented a non-parametric clustering technique
that groups points into different clusters by iteratively
identifying points that reside on the borders of the cluster
and removing them until separable areas of data remain.
During the peeling process, the method creates associations
between the peeled border points and points in the inner
layers by estimating the local density of the data points.
These associations are then used to link between the sep-
arable unpeeled data points and thus form the resulting
clusters.

https://github.com/nadavbar/BorderPeelingClustering
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The main idea of the method is the peeling of the border
points which ensures that the cores of near-by clusters
are clearly separated before the data points are classified
as separate clusters. We present a novel formulation for
identifying border points, which we validated analytically
on a simple setting of a uniformly-distributed cluster. Ad-
ditionally, as we have shown above, our border peeling
technique can be used to infer confidence values associated
with the data points of each cluster. Unlike other methods,
we do not make strong assumptions about the structure
of the data points or their density distribution such as a
single density peak or uniform density levels. Our approach
can cope with multiple distribution models, as k − NN
neighborhoods, unlike ε-neighborhoods, are not affected by
varying distributions in the data. Furthermore, the method
has been shown to be stable in the sense that it is insensitive
to the setting of hard coded parameters.

We have extensively analyzed the performance of the
Border-Peeling method over large datasets for which the
number of clusters is unknown, and there is no prior knowl-
edge about its general structure or density distribution. As
we have shown, Border-Peeling clustering is competitive
to other state-of-the-art non-parametric clustering methods,
even when their free parameters are fine-tuned to achieve
their best performance. In particular, the performance of
Border-Peeling in comparison to DBSCAN is interesting
since conceptually the two techniques have much in com-
mon, as both methods extract the core of the clusters that
separate adjacent clusters, and then expand core points to
the rest of the cluster. However, the difference in perfor-
mance is intriguing. We attribute the better performance of
Border-Peeling clustering to the fact that the core points
are not defined globally, but through an iterative process
that senses the local densities. The incremental peeling not
only identifies the border points but also carefully associates
them with points that seem to be closer to the core of
the cluster. Furthermore, the locally adaptive approach is
advantageous in sensing and avoiding over-segmentation
of the clusters. Having said that, we believe that the more
significant advantage of Border-Peeling over DBSCAN and
other non-parametric clustering methods is that the method
is insensitive to small variations in parameter values, and
that those values can be easily set according to the charac-
teristics of the data set, as can be seen in the experiments
section.

All our results were generated with the same set of
parameters, which is detailed in the paper. To control the
maximum association distance between data points, we es-
timated λ (introduced in Section 3.2) according to the global
behavior of the data. We believe that this global estimation
can be further refined to better suit datasets with different
structures and densities, perhaps in a semi-supervised set-
ting where some samples are labeled. In general, as future
work, we believe that our unsupervised technique can be
expanded to accommodate supervised scenarios, to achieve
improved accuracy in such controlled settings.
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