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Abstract—Many real-world video sequences cannot be conveniently categorized as general or degenerate; in such cases, imposing a
false dichotomy in using the fundamental matrix or homography model for motion segmentation on video sequences would lead to
difficulty. Even when we are confronted with a general scene-motion, the fundamental matrix approach as a model for motion
segmentation still suffers from several defects, which we discuss in this paper. The full potential of the fundamental matrix approach
could only be realized if we judiciously harness information from the simpler homography model. From these considerations, we
propose a multi-model spectral clustering framework that synergistically combines multiple models (homography and fundamental
matrix) together. We show that the performance can be substantially improved in this way. For general motion segmentation tasks, the
number of independently moving objects is often unknown a priori and needs to be estimated from the observations. This is referred to
as model selection and it is essentially still an open research problem. In this work, we propose a set of model selection criteria
balancing data fidelity and model complexity. We perform extensive testing on existing motion segmentation datasets with both
segmentation and model selection tasks, achieving state-of-the-art performance on all of them; we also put forth a more realistic and
challenging dataset adapted from the KITTI benchmark, containing real-world effects such as strong perspectives and strong forward
translations not seen in the traditional datasets.

Index Terms—Spectral Clustering, Model Selection, Motion Segmentation, Multi-View Learning.
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1 INTRODUCTION

T HE task of 3D motion segmentation aims to separate tracked
feature points (in our case a sparse set of trajectories in

a video sequence) according to the respective rigid 3D motion.
Various geometric models have been used in the 3D motion
segmentation problem to model the different types of cameras,
scenes, and motion. In this problem as commonly set forth, the
underlying models are generally regarded as applicable under
different scenarios and these scenarios do not overlap. For in-
stance, when the underlying motion contains translation and the
scene structure is non-planar, the fundamental matrix is used to
model the epipolar geometry [1], [2]. When the scene-motion is
degenerate, i.e. close-to-planar structure and/or vanishing camera
translation, the homography is preferred [3], [4]. However, the
real world scene-motions are in fact not so conveniently divided.
They are more typified by near-degenerate scenarios such as a
scene that is almost but not quite planar, or a motion that is
rotation-dominant but with a non-vanishing translation. In such
cases, imposing a false dichotomy in deciding an appropriate
model would pose difficulty for subsequent subspace separation.
For instance, it is well-known [5], [6], [7] in the case of a scene
with dominant-plane, it is easy to find inliers belonging to the
degenerate configuration (the plane), but the precision of the
resulting fundamental matrix is likely to be very low. Most of the
inliers outside the degenerate configuration will be lost, and often
the erroneous fundamental matrix will pick up outliers (e.g. from
other motion groups). Since this is not a purely planar scene, using
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homography in a naive manner might fail to group all the inliers
together too, resulting in over-segmentation of the subspaces.

It is also not hard to establish—from a glance of the motion
segmentation literature—that of the various models, the funda-
mental matrix model is generally eschewed, due to the lack of
perspective effects in the Hopkins155 benchmark [8]. However,
it is never clearly articulated if the numerical difficulties arising
from degeneracies in such approach present insuperable obstacles.
And no one has put his/her finger on the exact manner how
the resulting affinity matrix is ill-suited for subspace clustering:
is it solely due to the degeneracies or are there other factors?
Considering that in many real-world applications say, autonomous
driving, perspective effects are not uncommon, it surely follows
that we should come to a better understanding of the suitability of
fundamental matrix (or for that matter, the homography model) as
a geometric model for motion segmentation. This, we contend, is
far from being the case. For instance, does it follow that if we use
the fundamental matrix for wide field-of-view scenes (such that
strong perspective effects exist [9]), like those found in the KITTI
benchmark [10], we will get better performance than those using
homography? We have in fact as yet no reason to believe that this
will be the case, judging by the way how the best performing
algorithm is based on homography model [4], outperforming
those based on fundamental matrix [2]. Empirically, we observed
that this superiority still persists for the MTPV62 dataset and
individual Hopkin sequences that have larger perspectives (though
admittedly still moderate in the latter). Indeed, from the results
we obtained on the KITTI sequences that we adapted for testing
motion segmentation in real-world scenarios, the superiority of the
homography-based methods is again observed. Thus, one might
naturally ask what factors other than degeneracies are hurting
the fundamental matrix approach? And why is the homography
matrix approach holding its own in wide perspective scenes, when
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it possesses none of the geometrical exactness of the fundamental
matrix?

In the remainder of this section, we will briefly investigate the
suitability of homography and fundamental matrices (H and F
respectively) as a geometric model for motion segmentation. We
shall henceforth denote the affinity matrices generated by H and
F as KH and KF respectively.

1.1 Success Roadmap of H
We have already alluded to the fact that the affinity matrix KH

may not exhibit high intra-cluster cohesion (due to lack of strong
affinity between different planes of the same rigid motion) and
is inadequate for 3D motion segmentation. In the Hopkins155
dataset, this is not an overriding concern since most of the
sequences have a small field-of-view and are dominated by pure
camera rotation. These are seemingly evidenced by the good em-
pirical results obtained by a wide variety of approaches based on
affine subspace or homography matrix. The recent homography-
based method [4] boasts state-of-the-art performance with a mean
error of 0.83%. The low error attained is noteworthy given that
there are actually some Hopkins sequences with non-negligible
perspective effects and significant camera translation (induced by
self-rotating objects); we feel that this phenomenon warrants a
better explanation than the reasoning offered so far.

As we observe from the real hypotheses shown in Fig. 1 (a-b),
the success can be attributed to the many planar slices induced by
the homography hypothesizing process; these are not necessarily
actual physical planes in the scenes (see the slices in Fig. 1 (a-
b)) but as long as these virtual planes belong to the same rigid
motion, it is evident that they can be fitted with a homography.
Such slicings of the scene create strong connections between
points across multiple real planar surfaces and result in a much
less over-segmented affinity matrix KH. If the scene contains
only compact objects or piecewise smooth structures, then such
connectivity created is sufficient to bind the various surfaces of a
rigid motion together. However, in the real world sequences, when
the above conditions are not satisfied, we suspect that this may
not be adequate. Fig. 1(c) illustrates a background comprising an
elongated object (a traffic light) and the marking on the road. It
is clear that in this case, while one can form virtual planar slices
as before, the resulting connectivity is much lower (most if not all
of the slices cannot connect large segments of both these elements
simultaneously, unlike those in Fig. 1 (a-b)).

1.2 Problems with F

Besides the degeneracy issues, another root problem with the
fundamental matrix approach for the motion segmentation prob-
lem lies precisely in the fact that it is a complicated model that
becomes susceptible to capturing fictitious scene-motion configu-
rations. For example, when the 8 background points are not well
chosen (e.g. occupying a small spatial extent, or residing on a
surface close to a plane), the estimated F can be quite far from the
true F. This is the case for the scenes depicted in Fig. 2: the fitted
F erroneously incorporates points on the moving foreground but
misses some stationary background points.

Using F alone renders it likely to capture any correlation
between different rigid motion groups. Therefore, compared to
a simpler model such as homography, it is more likely to cause
overlapping between the subspaces of different rigid motion
groups. However, is it not possible that F also offers the greatest
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(a) Slicing example 1 (b) Slicing example 2

(c) Slicing example in real world

Fig. 1: Illustration of slicing effect of homography. (a-b) Red dots
indicate inlier points of a hypothesis. All points lie on a virtual
plane (a slice of the cube) highlighted in yellow. (c) Virtual planes
are highlighted as triangles with points in the same color as inliers.

scope for forming the best correct model, given that it starts with
a geometrically correct model and must have thus captured much
of what is correct? It perhaps requires some nudge in the correct
direction for us to reclaim the performance that ought be had for
KF. From this standpoint, even when we are confronted with
a general scene-motion with no degeneracies, there is still an
important reason for keeping the homography model—to midwife
the unborn model of KF.

1.3 Model Selection
Choosing the type of geometric model to describe the motion is
one of the open challenges in motion segmentation. Another open
challenge in motion segmentation is to automatically determine
the number of moving objects, which is also referred to as model
selection in the literature [2], [4], [11], [12], [13]. It is well
known that with perfect block diagonal affinity matrix, the number
of cluster corresponds to exactly the multiplicities of the zero
eigenvalue of the Laplacian matrix [14]. However, such noise-free
affinity matrix rarely exists in real-world problems. The modified
rule of gap heuristic [14] is purported to deal with noisy affinity
matrix but has seldom worked well in practice. Those approaches
that have performed well for model selection tend to be those that
explicitly acknowledge the presence of noise and either seek its
removal like LRR [15] or repair the affinity matrix like SCAMS
[16]. We too believe that it is important to avail ourselves of this
flexibility to deviate from the observed affinity matrix. Putting
this criterion together with the classical criteria of good clusters,
we arrive at the following three desiderata for model selection
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Fig. 2: Hypothesized F from background erroneously captures
foreground as inliers.
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and membership assignment: 1) the affinity reconstructed from
the clustering partition should be close to the original affinity
matrix; 2) the intra-cluster similarity should be maximized; and
3) the inter-cluster similarity should be minimized. As is well
known [14], the latter two criteria are encapsulated in the objective
function for normalized cut. The first criterion can be regarded
as the difference between original and reconstructed affinities,
namely the reconstruction error; thus we name our model selection
approach as normalized cut with reconstruction error (NCRE).
As simple as this extension seems, the research community has
surprisingly yet to explore, as far as we know, all of these
criteria in an integral manner in the form of a global objective
function. Later in this paper, we will show how our normalized
reconstruction error term can counterbalance the tendency of the
normalized cut term to under-segment clusters.

1.4 Proposed Solution

We point out that many real-world sequences cannot be classified
into neat categories such as general or degenerate scene-motions
and thus cannot be adequately addressed by any single model such
as H or F. We have also discussed the defects of the fundamental
matrix approach and conjectured that its full potential could
perhaps be realized if we judiciously harness information from a
simpler model such as H. From these considerations, we propose
a multi-modelspectral clustering framework that synergistically
combines these multiple models together. As there is no definite
consensus on how best to combine several models together for
spectral clustering, we evaluate a few extant fusion schemes. Since
these generic schemes ignore the hierarchical relationship of the
affinity matrix in each model, we also put forth a custom-made
fusion scheme that preserves the true hierarchical structure of the
affinity matrices. By doing so, we make sure that our findings are
not an artifact of a particular fusion scheme. As we will show
later, the performance of the fundamental matrix approach can be
substantially raised using the improved KF. We hasten to add that
one should not over-claim the potential gains of this fundamental
matrix approach. When the scene contains substantial amount of
degeneraciesit is always better to rely on the combined model for
the best performance. To enable automatic selection of the number
of moving objects, we propose a novel set of model selection
criteria.

To summarize, the contributions of our paper are as follows.
First, we contribute to an understanding of the strengths and draw-
backs of homography and fundamental matrices as a geometric
model for motion segmentation. We then propose using affinity
matrix fusion as a means of dealing with real-world effects that
are often difficult to model with a pure homography or funda-
mental matrix. We also propose a novel model selection criteria
balancing a good fit to the data and model complexity. Finally,
we perform extensive testing on existing motion segmentation
datasets, achieving state-of-the-art performance on all of them;
we also put forth a more realistic and challenging dataset adapted
from the KITTI benchmark, containing real-world effects such as
strong perspectives and strong forward translations not seen in the
traditional datasets.

2 RELATED WORK

In this section, we review related literature from three perspectives.
We first review the recent advances in 3D motion segmentation.

Then we briefly review representative works in multi-view unsu-
pervised clustering. Finally, we discuss the recent works in model
selection with focus on motion segmentation task.
Motion Segmentation Research into 3D motion segmentation can
be divided into two major groups: those based on a hypothesis-
and-test paradigm and those that are more analytic rather than
hypothesis-driven. Into the latter camp falls a wide variety of
approaches, including factorization [17], [18], [19], [20], [21],
algebraic method [22], [23], [24], [25], affinity matrix [26], [27],
including those constructed from sparse representation [15], [28].
They typically assume that the input is made up of a union of
motion groups of specific types, with only a few works [22], [29]
that can handle mixed types of motion groups. These analytic
approaches are rightly praised for their elegance but become
awkward in dealing with real world signals that are often drawn
from mixed multiple manifolds. In contrast, works in the former
category, being hypothesis-driven, are naturally more suited to
handling mixed models. This is exemplified in the earlier works
such as [6], [7] which explicitly decide on whether F or H is
better suited as a motion model in the face of possibly degenerate
scene-motion configuration, but these works are applied to cases
where the background is by far the most dominant group in the
scene. Subsequent hypothesis-and-test methods [30], [31], [32]
dealing with the realistic Hopkins155 [8] sequences almost as a
rule ignore the more complex fundamental matrix altogether.Thus,
these later works do not concern themselves with the problem of
dealing with mixed types of models. Our approach differs from
the above works in that not only do we allow for mixed types of
models, we also do not impose a dichotomous decision on what is
an appropriate model.

Finally, we briefly mention works based on alternative defi-
nitions of motion segmentation [33], [34], [35], [36], [37], [38].
These works segment motion groups entirely in the 2D domain,
and as such, cannot deal with the motion discontinuities arising
from background surfaces residing at different depths. Some
works such as [36], [38] do not attempt to separate the differently
moving foreground objects, being interested only in a binary
foreground-background separation. The datasets related to the
above works,including FBMS [33], either avoid strongly camera
translating sequences, or if it exists, provide a different ground-
truth label of motion clusters (i.e. the background is not grouped as
one cluster). These datasets are thus not appropriate for evaluating
3D motion segmentation approaches.
Multi-View Clustering Multi-view learning aims to synergis-
tically exploit the information derived from multiple modali-
ties/views to achieve better learning. The affinities induced by H
and F here are seen as two different views. To avoid confusion
with multi-frame motion segmentation, we use the term “multi-
model clustering/motion segmentation” hereafter. A detailed
review on the current status and progress can be found in [39].
While extensive efforts have been dedicated to supervised multi-
view/model learning [40], that for the unsupervised case, in
particular, clustering, is much less touched. We focus on the
spectral framework for clustering [14], under which there are
roughly two genres of multi-view approaches. The first kind
discovers an optimal combination to aggregate multiple affinity
matrices (kernels) for spectral clustering [41], [42], [43]. However
such combination is often non-trivial to discover. Alternatively,
studies have been carried out on discovering a consensus on
multiple kernels. In particular, the co-regularization scheme [44]
was proposed to force data from different views to be close to
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each other in the embedding space for clustering. Few if any of
the existing approaches can guarantee superiority to the simple
approach—kernel addition. In this work, we start our evaluation
with this simplest baseline and then reveal its relation with
the co-regularization schemes. We also evaluate a custom-built
version incorporating a subset constraint that preserves the true
hierarchical structure of the affinity matrices induced by different
geometric models.
Model Selection This refers to the problem of estimating the
number of clusters. We focus primarily on the model selection
works in motion segmentation. One approach selects the number
of models based on the multiplicities of the zero eigenvalue of
the Laplacian matrix [14], or in the noisy case, using the gap
heuristics [11], the silhouette index [45] or soft thresholding [15].
As opposed to direct spectral analysis, another line of works have
been developed for motion segmentation [2], [4]. They first over-
segment, i.e. estimate a higher number of clusters, and then a
merging scheme is applied to obtain the final model parameter.
These approaches achieved competitive performance on motion
segmentation tasks; however, they lack a strong theoretical under-
pinning, e.g. the degree of over-segmentation is rather arbitrarily
determined. The SCAMS approach [13] offers a principled char-
acterization of the trade-off between various terms, specifically,
a data fidelity term akin to our reconstruction error, and model
complexity in terms of the rank and L0 norm of the reconstructed
affinity matrix [13]. Our work is similar in spirit in that we also
have a global objective function, but the difference lies in that
our data fidelity term is normalized, and instead of using rank
and matrix norm to characterize the goodness of the clusters, we
adopt the classical criteria of intra-cluster coherence and inter-
cluster dissimilarity. These two well-known criteria introduced by
Shi and Malik [46] have been shown to be well-approximated
by the rate of loss of relevance information [47], defined in the
Information Bottleneck clustering method [48] as a representation
of model complexity. Model selection was also considered in the
2D motion segmentation work [33] by exploiting a 2D spatial
smoothness constraint. However, such assumption is often not true
in 3D motion segmentation tasks.

3 METHODOLOGY

In this section, we first describe the geometric models (affine, ho-
mography and fundamental matrix) used for motion segmentation
and their hypothesis formation process. We then explain how the
affinities between feature points are encapsulated in the ORK ker-
nel [4], [30]. Finally, we explain the extension from single-model
to multi-model clustering. In particular, we elaborate the relation
between kernel addition and co-regularization for generic multi-
kernel clustering, and we describe how the geometric relation that
exists between models can be used to formulate a custom-made
subset constrained multi-model clustering.

3.1 Geometric Model Hypothesis
Denote the observations of tracked points throughout F frames
as {xi}f=1···F . We then randomly sample a minimal number
of p such points visible in a pair of frames and use them to
fit a hypothesis of the model. The models tested include the
fundamental matrix F, homography H, as well as the affine
matrix A. The reason for including the affine matrix model is
because many existing datasets contain sequences with very weak
perspective so this simpler model might be numerically more

stable. For the three models F, H, and A, the respective values for
p are 8, 4, and 3. The parameters of the model are estimated via
direct linear transform (DLT) [9] and 500 × (F − 1) hypotheses
are sampled for each type of geometric model.

3.2 Affinity Captured as Ordered Residual Kernel
Given multiple hypotheses {yk}k=1···K generated from a partic-
ular model (affine, homography or fundamental matrix), we first
compute for each data point the residual to all these hypotheses
{d(xi,yk)}k=1···K in terms of their Sampson errors [9]. The
affinity between two features is captured in the correlation of
preference for these hypotheses. Specifically, we can define the
correlation in terms of the co-occurrence of points among all
hypotheses. That is, if we define the indicator of point xi being
the inlier of all hypotheses {yk} as oi ∈ {0, 1}K , then the
co-occurrence between two points is written as kij = o>i oj .
However, the threshold τ needed to determine when a data is
an inlier (i.e. oi = 1(d(xi,Hk) < τ)) is not easy to set, due
to the potentially disparate range of motion present in different
sequences. The ordered residual kernel (ORK) [4], [30] was
proposed to deal with this issue. Instead of fixing a threshold,
the ORK sorts the residual in ascending order {d̂i1 d̂i2 · · · d̂iK}
where ∀k : d̂ik <= d̂ik+1. An adaptive threshold is then selected
as the top h-th residual, i.e. τi = d̂ih. The ORK kernel is also
known to be resilient to serious sampling imbalance, an important
advantage in real-world scenes where background is usually very
large. Therefore, we adopt the ORK kernel to encapsulate the
affinities between feature points. After constructing the affinity
matrix, we normalize the affinities by dividing all kij entries by
the number of frames where both feature points i and j are visible.
This step removes the weighting balance caused by incomplete tra-
jectories. Finally, as is customary in motion segmentation works,
we subject the affinity matrix to a sparsification step. We use the
ε-neighborhood scheme of [4] for this purpose.

3.3 Spectral Clustering for Motion Segmentation
We are now ready to use spectral clustering to recover the clusters.
We first review the single view spectral clustering problem and
then extend it to multi-view clustering.

3.3.1 Single-Model Spectral Clustering
Given the single affinity matrix K, the normalized Laplacian
L = I−D−0.5KD−0.5 is first computed, where D is the degree
matrix. The following objective is then set up to eigendecompose
L:

min
U

tr
(
U>LU

)
, s.t.UU> = I (1)

where tr (·) is the trace operator. The spectral embedding U ∈
R

N×M can be efficiently solved and then treated as a new feature
representation of the original points. A separate K-means step is
then fed with the first M dimensions of the normalized U for
grouping points into M motion groups.

3.3.2 Multi-Model Spectral Clustering
With multiple views provided by the different types of motion
models, we have now at our disposal multiple affinity matrices. We
explore two generic and one custom-made multi-model spectral
clustering schemes to fuse the multiple sources of information
together for clustering.
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Kernel Addition A naive way to fuse information from hetero-
geneous sources for clustering is by kernel addition [44]. Given
affinity matrices induced by heterogeneous sources {Kv}v=1···V ,
kernel addition yields a fused kernel by summing up each indi-
vidual kernel K =

∑
v Kv . With the corresponding Laplacian

matrices written as Lv = I −D−0.5v KvD
−0.5
v , the objective for

kernel addition can be written as,

min
U

tr(U>
∑
v

LvU), s.t.U>U = I

⇒ min
{Uv}

∑
v

tr(U>v LvUv), s.t.U>v Uv = I,

∀v, w ∈ {1, · · ·V } : Uv = Uw

(2)

We note the kernel addition strategy is equivalent to discovering a
common spectral embedding U among all models. This require-
ment of having a single consensus embedding can be too strong.
Co-Regularization Instead of demanding a common embed-
ding, another solution is to include an additional regularization
term in the objective function to encourage pairwise consensus
between any two spectral embeddings Uv and Uw. This has
been studied by [44] who introduced a co-regularization term
tr
(
UvU

>
v UwU

>
w

)
. This trace term returns high value if the

new kernel matrix in the spectral embedding space UvU
>
v and

UwU
>
w are similar to each other and vice versa. Incorporating the

co-regularization term, we obtain the following objective:

min
{Uv}

∑
v

tr(U>v LvUv)− λ
∑
v

∑
w

tr(UvU
>
v UwU

>
w),

s.t.U>v Uv = I

(3)

We can interpret the co-regularization scheme as a relaxed ver-
sion of kernel addition. By increasing the penalty coefficient λ, the
co-regularization scheme will approach kernel addition as all em-
beddings are forced to approach each other. This model is termed
as pairwise co-regularization by [44] as the co-regularization
term comprises of all pairs of spectral embeddings. The co-
regularization model can be efficiently solved by initializing each
view Uv separately in the same way as single-model spectral
clustering. Then we recursively update each view with all other
views fixed. When solving a single view, the problem becomes a
standard eigendecomposition problem. After convergence, we can
concatenate the new spectral embedding of all views to produce
an extended feature for the K-means step.

3.3.3 Subset Constrained Multi-Model Spectral Clustering
The above two multi-model spectral clustering schemes are
generic fusion methods that do not exploit any relation that might
exist between the different views. In the specific case of motion
segmentation, we know that for any H between two frames, we
can always define a family of F = [e]x × H parameterized
by a vector e, where [e]x denotes the skew-symmetric matrix
of e [9]. This means a pair of points that are the inliers of a
homography should always be the inliers of a certain fundamental
matrix. Conversely, if a pair of points are not the inliers of any F,
there is no homography which could take both points as inliers1.
Generally speaking, we should expect that if KA, KH, and KF

are ideal binary affinity matrices, then KA ≤ KH ≤ KF,
where ≤ indicates elementwise relation. We term this hierarchical

1. We assume in the above two propositions that there are always enough
points to fit an F if it exists.

relationship the subset constraint. Imposing this constraint will
help to further denoise or repair the affinity matrices. We cast this
problem as a constrained clustering problem (adapted from [49]):

min
{Uv}

∑
v

tr
(
U>v LvUv

)
− γtr(U>v QvUv),

s.t.U>v Uv = I, Qv ∈ {−1, 0, 1}N×N
(4)

where the matrix Qv provides the subset constraint for the v-th
view. For qij = 1, the constraint encourages a high inner product
u>viuvj where uvi indexes the i-th column. This means points i
and j are encouraged to fall into the same cluster. For qij = −1,
the constraint encourages a different cluster assignment between
i and j, and lastly, for qij = 0, there is no constraint. For any
single view v, the constraints Qv is imposed by other views. For
example, solving view H, the positive constraint qij is inherited
from the result of KA; that is, if there is a link between points
i and j from KA, then the (i, j) entry of KH is encouraged to
be 1. On the other hand, the negative constraints come from F.
One could solve this problem using an alternating minimization
scheme, but the subset constraint matrix Qv may flip their values
from 1 to -1 and vice versa in each alternating step, posing
significant difficulties for convergence.

Therefore, we relax Qv to continuous values. Instead of using
the discretized results from other views, we use the affinity recon-
structed from the spectral embedding K̂ = UU> to construct Qv

as detailed in Eq (5). We assume the three models are placed in
the order of affine (v = 1), homography (v = 2) and fundamental
matrix (v = 3). The final objective is given by Eq (5).

min
{Uv}

∑
v

tr
(
U>v LvUv

)
− γtr(U>v QvUv), s.t.U>v Uv = I,

Qv =


1

(
K̂v+1 < 0

)
◦ K̂v+1, v = 1

1

(
K̂v−1 > 0

)
◦ K̂v−1 + 1

(
K̂v+1 < 0

)
◦ K̂v+1, v = 2

1

(
K̂v−1 > 0

)
◦ K̂v−1, v = 3

(5)
where ◦ represents element-wise multiplication and 1 (·) is the
indicator function. The subset constraint means for model A
(v = 1), only the negative constraint from H is applied, for
model H, both positive and negative constraints from A and
F are applied respectively. The final problem can be solved by
optimizing each view Uv in an alternating fashion. We summarize
the whole procedure in Algorithm 1.

3.3.4 Convergence Analysis
For both co-regularization and subset constrained clustering, we
note the objective is not guaranteed to be convex w.r.t. all views’
embeddings, depending on the values of λ or γ. Nevertheless, we
prove that the co-regularization model is guaranteed to converge
to at least a local minimum. As we solve the problem in an
alternating fashion, each step involves solving Eq (3) for the v-
th view with all other views fixed as below,

min
Uv

tr
(
U>v

(
Lv − λ

∑
w,w 6=v UwU

>
w

)
Uv

)
s.t.U>v Uv = I (6)

The above problem can be efficiently solved by
eigendecomposition regardless of the convexity of(
Lv − λ

∑
w,w 6=v UwU

>
w

)
. Therefore, solving all views

iteratively results in a monotonically decreasing cost until
convergence to a local minimum. The convergence for subset
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constrained clustering is, however, not guaranteed due to the
constraint matrix Qv changing at each iteration. Nevertheless,
experimental results suggest that a proper selection of γ say, less
than 1e− 2, renders the problem amenable to convergence.

Algorithm 1: Subset Constrained Clustering
input : Kernel matrices {Kv}, no. of motion M and γ
output: Rigid motion index X
// Initialize Spectral Embedding
for v ← 1 to V do

Compute Laplacian matrix Lv = I−D−0.5v KvD
−0.5
v ;

Uv ← first M eigenvectors of Lv;
// Subset Constrained Spectral Clustering
while Not Converged do

for v ← 1 to V do
Compute Qv following Eq (5);
Compute constrained Laplacian matrix
L̃v = Lv − γQv;
Uv ← first M eigenvectors of L̃v;

// K-means to return index
U← Concatenate(U1, · · ·UV ) ;
X← K-means(U,M)

4 MODEL SELECTION

In the preceding section, the final K-means step in the multi-model
spectral clustering algorithm assumes that the number of clusters,
i.e., the number of motion groups M in Algorithm 1 is known a
priori. However, any motion segmentation algorithm, understood
in the broadest term, should really estimate this parameter M
directly from the affinity matrix. This procedure is often termed as
model selection in the clustering literature. In Section 1, we have
proposed three criteria for model selection: data fidelity, intra-
cluster coherence and inter-cluster dissimilarity. In this section,
we introduce in greater details the various terms that represent the
three criteria: the reconstruction error term for data fidelity, and
the normalized cut term for the intra-cluster coherence and inter-
cluster dissimilarity. Before doing so, we introduce some basic
graph notation we will use for this discussion. Suppose the affinity
matrix has been set up in a similarity graph (V, E) where each
vertex in V represents a data point and each edge between two
vertices the similarity between two data points. For a subset A of
V , vol(A) sums over the weights of all edges attached to vertices
in A; for two disjoint subsets A and B of V , cut(A,B) sums the
edge weights between nodes in A and B.

4.1 Reconstruction Error

Define an assignment matrix under a M-way clustering as,

X = [x1 · · ·xM ] , xi ∈ {0, 1}N×1,∀i 6= j : x>i xj = 0 (7)

where xi is the indicator vector for cluster i. The corresponding
M clusters are denoted as {Am}m=1···M . We can therefore
reconstruct the ideal affinity matrix W as

W = XX> =
∑
i

xix
>
i (8)

For any feature pair j, k in this reconstructed affinity matrix,
wjk indicates if these two feature points belong to the same cluster
and takes on only {0, 1} values. A good clustering should yield a
W not too far from the original affinity matrix K. We propose to
measure such difference with the normalized Frobenius norm:

ε (W,K) =

∥∥∥∥∥ XX>

‖XX>‖F
− K

‖K‖F

∥∥∥∥∥
2

F

= tr

( XX>

‖XX>‖F
− K

‖K‖F

)>(
XX>

‖XX>‖F
− K

‖K‖F

)
= 2− 2

‖XX>‖F ‖K‖F
tr
(
XX>K

)
(9)

It can be seen from the last line of the preceding equation that
the reconstruction error is negatively related to the two matrices’
Frobenius inner product tr(XX>K) = 〈XX>,K〉F which
characterizes the similarity between the two matrices. The recon-
struction error is also positively related to the normalization factor
||XX>||F which characterizes the sparsity of the reconstructed
affinity (since ||XX>||2F = ||XX>||0 for a binary matrix X).
From the graph-theoretic point of view, the inner product is
equivalent to the following cut:

tr
(
XX>K

)
= tr

(
X>DX

)
− tr

(
X>LX

)
= C −

∑
m

cut
(
Am, Ām

) (10)

where C =
∑

i dii is a constant. Therefore, as M increases, there
will be more cut cost incurred. Furthermore, this is accompanied
by a faster decrease in the normalization factor ||XX>||F , as a
larger M would increase the sparsity. The overall effect is to re-
duce ε(W,K) with increasing M . Thus using the reconstruction
error alone incurs the risk of over-estimating M .

4.2 Normalized Cut

The two classical criteria of intra-cluster coherence and inter-
cluster dissimilarity are simultaneously optimized by the normal-
ized cut objective [46]:

Ncut ({Am}) =
∑

m=1···M

cut
(
Am, Ām

)
vol (Am)

=
∑

i=1···M

x>i Lxi

x>i xi
= tr

((
X>X

)−1
X>LX

) (11)

If the number of clusters M is unknown and has to be
estimated from minimizing the normalized cut cost, one can easily
verify that a trivial solution would be obtained, i.e. M = 1.
Even if one ignores this trivial solution, there is still a tendency
for the normalized cut to underestimate M . The reasoning is
as follows: Given that the normalized Laplacian matrix L is
positive-semidefinite, then the Rayleigh quotient [50] satisfies
0 ≤ λmin ≤ x>

i Lxi

x>
i xi

≤ λmax where λmin and λmax are the min-
imal and maximal eigenvalues of L. A large M in the normalized
cut objective would mean that there are more Rayleigh quotients,
all of which are positive. This would likely lead to a higher cost
for higher M , meaning that over-segmentation will be penalized.
Although we cannot prove that this is always true as it depends
on the specific data distribution and the corresponding partition
configuration, under most data distribution, the normalized cut
term does behave as a model complexity term. This viewpoint
also concurs with the information-theoretic derivation of min-cut
based clustering [47], which showed that in the well-mixed limit of
graph diffusion, the normalized cut term can be well-approximated
by the rate of loss of relevance information, defined in [48] as a
representation of model complexity.

Our proposed combination of the normalized cut and the re-
construction error (NCRE) together controls the optimal selection
of the cluster number, as it balances the trade-off between the
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cost of partitioning the graph (normalized cut) and keeping the
partition as close to the original similarity graph as possible:

min
X,M

Ncut ({Am}) + δε (W,K)

⇒min
X,M

tr

((
X>X

)−1
X>LX

)
− δ

2tr
(
XX>K

)
‖XX>‖F ‖K‖F

s.t. X ∈ {0, 1}N×M ,M ∈ {1, · · ·N}

(12)

Instead of optimizing Eq (12), we directly search for M ,
since this number is likely to be small, and this considerably
simplifies the problem. Firstly, a number of candidate partitions
are generated by varying M from 1 to N and these are denoted as
{XM ,M}M=1···N . Then, all candidates are evaluated against the
cost in Eq (12); the candidate with the minimal cost is selected as
the best model. The multi-model extension is naturally formulated
as the sum of costs from all views:

min
X,M

∑
v

tr

((
X>X

)−1
X>LvX

)
− δ

∑
v

2tr
(
XX>Kv

)
‖XX>‖F ‖Kv‖F

(13)

An algorithm for choosing the optimal M is summarized in
Algorithm 2.

Algorithm 2: Estimate Number of Clusters
input : Kernel matrices {Kv}, and δ
output: Optimal number of cluster M̂
// Initialize Spectral Embedding
for v ← 1 to V do

Compute Laplacian matrix
Lv = I−D−0.5v KvD

−0.5
v ;

Uv ← first M eigenvectors of Lv;
// Single-Model or Multi-Model Spectral Clustering
for M ← 1 to N do

Get Assignment XM from Algorithm 1;
Calculate Residual rM according to Eq (13);

// Optimal No. of Cluster
M̂ = argminM rM

5 EXPERIMENT

We first of all extensively evaluate existing motion segmentation
and model selection approaches and our proposed methods on
five motion segmentation datasets including the KT3DMoSeg
benchmark proposed by us. The creation of KT3DMoSeg is then
detailed in the following section. Finally, we present qualitative
examples to analyze the success of our approach and the impact
of individual models on motion segmentation.

5.1 Dataset
We carry out experiments on three extant motion segmentation
benchmarks including the Hopkins155 [8], the Hopkins12 [22]
for testing incomplete trajectories, the MTPV62 [2] for testing
stronger perspective effects and the newly created KT3DMoSeg
[51] for testing outdoor scenes with strong perspective effects and
large camera motion.
Hopkins 155 was the first large-scale dataset proposed for evaluat-
ing motion segmentation performance by Tron et al. [8]. It consists
of 120 sequences with 2 motion groups and 35 sequences with 3
motion groups. It has been widely used by motion segmentation
and subspace clustering works [2], [28], [52], [53] and serves as
the de facto standard benchmark for motion segmentation. The
feature trajectories are provided by the dataset.
Hopkins 12 was created by [22] based on [8]. Three sequences are
taken and re-combined to create 12 sequences with 2 to 3 motion
groups. Within these sequences, 0 to 75 percent of the observation

matrix entries are missing. The feature trajectories are provided
by the dataset.
MTPV 62 was proposed for evaluating various real-world chal-
lenges in motion segmentation by [2]. This dataset consists of 50
clips from the Hopkins 155 dataset and 12 clips collected from
real outdoor scenes. 9 clips contain strong perspective effects. The
feature trajectories are provided by the dataset.
KT3DMoSeg was created by [51] by selecting 22 clips from the
KITTI dataset [10]. The number of moving objects (including
background) ranges from 2 to 5 and all sequences contain real-
world effects such as strong perspectives and strong forward
translations not seen in the traditional datasets. We evaluate the
performance on this dataset in terms of classification error [8]
for motion segmentation and correct rate for model selection.
Feature trajectories are obtained with the method introduced in
section 5.3.1.
FBMS59 was created by [33] for evaluating long-term motion
segmentation performance. The dataset consists of training set and
test set each with 29 and 30 sequences respectively. The number
of motions is kept unknown and estimated by model selection
algorithms. Feature trajectories are obtained by dense tracking
[54] without further processing.
ComplexBackground was originally created for video segmen-
tation [55], [56]. Our evaluation is based upon a variant of the
dataset, termed the ComplexBackground motion segmentation
dataset, in which new ground-truth masks on a subset of fives
sequences have been provided for motion segmentation tasks by
[57]. The number of motions is automatically estimated as with
FBMS59. Feature trajectories are obtained by dense tracking [54]
without further processing.

5.2 Motion Segmentation on Existing Benchmarks

In this section, we extensively compare single-model and multi-
model approaches on Hopkins155 benchmark [8]. Specifically, for
single-model, we evaluate using affine, homography and funda-
mental matrix as the single geometric model. For multi-model
motion segmentation, we evaluated Kernel Addition (KerAdd),
Co-Regularization (CoReg) [44] and Subset Constrained Cluster-
ing (Subset). We fix the regularization parameter λ and γ at 10−2.
We also extensively compare with state-of-the-art approaches,
including: ALC [22], GPCA [25], LSA [58], SSC [28], TPV [2],
T-Linkage [52], S3C [53], RSIM [59], RV [1], BB [60] and MSSC
[4]. Among all these, the ALC, GPCA, LSA, SSC and S3C assume
an affine camera projection. MSSC and TPV adopted homography
and fundamental matrix respectively as the motion model. The
results are presented in Table 1. For those algorithms which do
not explicitly handle missing data, we recover the data matrix
using Chen’s matrix completion approach [61].

We make the following observations from the results. Firstly,
with regards to the use of homography matrix as a single geometric
model, our finding echoes the excellent results of earlier work such
as MSSC [4]. In fact, the simpler affine model has an even lower
error figures. Clearly, the stitching argument (via virtual slices)
put forth in Section 1 for explaining the success of homography
applies to the affine case too, in particular under weak perspective
views. For the fundamental matrix as a model, the performance
is slightly worse-off. The reasons are manifold: strong camera
rotation, limited depth relief, and not least the subspace overlap
between different rigid motion groups, to which this richer fun-
damental matrix model is particularly susceptible. Secondly, after
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fusing multiple kernels, we saw a boost in performance compared
to single-model approaches, e.g. 0.36% error for kernel addition
and 0.31% for subset constrained clustering on Hopkins155.
Consistent boost in performance can be observed on Hopkins12
and MTPV62 as well. Usually, the fusion can produce the best of
all performance regardless of the fusion scheme used. Even the
simple kernel addition yields very competitive performance. This
provides a strong option for real applications where parameter
tuning is not desirable.

TABLE 1: Motion segmentation results on Hopkins155, Hop-
kins12, MTPV62 and KT3DMoSeg datasets evaluated as classi-
fication error (%). ∗The best performing model (RPCA+ALC5 is
reported for ALC [22]). ∗∗ State-of-the-Art models’ performances
are reported for the sequences with correct number of moving
objects. ‘−’ cells indicate not reported or no public code is
available.

Models Hopkins155 [8] Hopkins12 [22] MTPV62 [2]∗∗ KT3DMoSeg

Existings 2 Mot. 3 Mot. All Avg. Med. Persp.
9 clips

Missing
12 clips

Hopkins
50 clips

All
62 clips Avg. Med.

LSA [58] 4.23 7.02 4.86 - - - - - - 38.30 38.58
GPCA [25] 4.59 28.66 10.02 - - 40.83 28.77 16.20 16.58 34.60 33.95
ALC [22] 2.40 6.69 3.56 0.89∗ 0.44∗ 0.35 0.43 18.28 14.88 24.31 19.04
SSC [28] 1.52 4.40 2.18 - - 9.68 17.22 2.01 5.17 33.88 33.54
TPV [2] 1.57 4.98 2.34 - - 0.46 0.91 2.78 2.37 - -
MSMC [3] 3.04 8.76 4.33 - - - - - - 27.74 35.80
LRR [15] 1.33 4.98 1.59 - - - - - - 33.67 36.01
T-Lkg. [52] 0.86 5.78 1.97 - - - - - - - -
S3C [53] 1.94 4.92 2.61 - - - - - - - -
RSIM [59] 0.78 1.77 1.01 0.68 0.70 - - - - - -
RV [1] 0.44 1.88 0.77 - - - - - - - -
BB [60] - - 0.63 - - - - - - - -
MSSC [4] 0.54 1.84 0.83 - - - 0.65 0.65 0.65 - -

Single-
Model

Affine 0.40 1.26 0.59 0.15 0.10 0.25 0.35 0.93 0.82 15.76 11.52
Homo 0.45 1.61 0.71 0.18 0.10 0.70 0.48 1.23 1.08 11.45 7.14
Fund 1.22 7.60 1.79 1.10 0.10 5.09 2.53 4.31 3.97 13.92 5.09

Multi-
Model
KerAdd 0.27 0.66 0.36 0.11 0.00 1.54 1.41 0.76 0.88 8.31 1.02
CoReg 0.37 0.75 0.46 0.06 0.00 0.22 0.30 0.83 0.73 7.92 0.75
Subset 0.23 0.58 0.31 0.06 0.00 0.20 0.30 0.77 0.65 8.08 0.71

5.3 Motion Segmentation on KITTI Benchmark

The limitations of the Hopkins155 dataset are well-known: limited
depth reliefs, dominant camera rotations, among others. Such
a dataset cannot meet the requirements of a benchmark meant
for investigating motion segmentation capability in-the-wild, in
particular, in self-driving scenario where the camera platform is
often performing large translation and the scene is considerably
more complex. For this reason, we propose a new motion segmen-
tation benchmark based on the KITTI dataset [10], the KITTI 3D
Motion Segmentation Benchmark (KT3DMoSeg) 2. We choose
short video clips from the raw sequences of KITTI governed
by three principles. Firstly, we wish to study sequences with
more significant camera translation so camera mounted on moving
cars are preferred. Secondly, we wish to investigate the impact
of complex background structure; therefore, scene with strong
perspective and rich clutter (in the structure sense) is selected. The
moving objects could be of arbitrary (e.g. elongated) shapes rather
than compact shapes like cubes or cones. Lastly, we are interested
in the interplay of multiple motion groups, so clips with more than
3 motion groups are also chosen, as long as these moving objects

2. The dataset can be accessed from https://alex-xun-
xu.github.io/ProjectPage/KT3DMoSeg/index.html

contain enough features for forming motion hypotheses. In all, 22
short clips, each with 10-20 frames, are chosen for evaluation.

5.3.1 Preprocessing and Labelling
In this section, we introduce the details of how we preprocess and
label all clips.
Tracking First of all, we extract dense trajectories from each
video clip using the code provided by [54]. Key points are densely
sampled on the whole frame with a gap of 8 pixels. Occlusion is
detected by checking the consistency of the forward and backward
flow [54]. Trajectories which fail the check are considered to be
occluded or the underlying flow is incorrect. These trajectories are
stopped. In the next frame, new trajectories are densely sampled
in those areas not occupied by existing trajectories. Finally, we
further filter out short trajectories less than 5 frames for robustness.
The resultant feature trajectories are very dense, on the order
of 1500-5000 points per sequence, and more importantly, the
background points account for an overwhelming majority of all
feature points. This huge imbalance of background and foreground
point sets renders hypothesis-driven methods liable to miss small
foreground objects, and also impose high computational load on
most algorithms. To relieve these problems, we sub-sample 10%
of the background points so that the average number of points
is between 200-1000 for all sequences. The distribution of the
number of points for all rigid motion groups is given in Fig. 4(d).
Manual Labelling Due to the large number of tracked points,
we need to come up with a method that can substantially reduce
the effort in labelling. Our method is to only manually label
the foreground moving objects, with the remaining unlabelled
points all treated as stationary background points. Clearly, both
the foreground and background obtained in this simple manner
have many feature trajectories that do not belong well, either due
to tracking errors or non-rigidities in the foreground motion. We
next propose an efficient way to remove these outliers.
Outlier Removal We witness many erroneous trajectories gener-
ated by the dense tracking. Typical errors include those stemming
from point drifting, in particular background points adhering
themselves to moving foreground objects. In this dataset, we
identify outliers in a semi-autonomous manner with human-in-the-
loop. In particular, we estimate via RANSAC a single fundamental
matrix F over two frames using all points in each rigid motion
group defined above. This is repeatedly done for all consecutive
pairs of frames. The goodness of a trajectory is based on the sum
of Sampson errors w.r.t the respective Fs along the trajectory and
normalized by the number of frames the point has appeared in.
Points with accumulated residuals greater than Q3 + 7IQR are
considered as outliers and removed; in the above, Q3 is the third
quartile and IQR is the inter-quartile range of all the residuals
for points within a single motion. We do not claim that all bad
features have been removed as a result, just as some small amount
of bad feature trajectories still exist in the Hopkins 155 dataset.
A completely automatic and reliable outlier detection module
remains elusive, but addressing this problem is beyond the scope
of our paper. To encourage further research on outlier detection
for motion segmentation in-the-wild (i.e. without any manual
intervention), we also publish the untrimmed feature trajectories.
An illustration of the individual sequences with their various rigid
motion groups and outliers is presented in Fig. 3, in which red
dots indicate detected outliers.

The same set of motion segmentation performance evaluation
is carried out as in the preceding subsection and the results are pre-
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Fig. 3: Example frames of KT3DMoSeg dataset with trajectories overlapped. The color indicates different motion and outliers.

sented in Table 1. Both average and median classification errors
are reported. The performances of the multi-model approaches
are again consistently better than those of the single geometric
model. Further evaluation on individual sequence is presented in
Fig. 4 (a). To give some context to the performance figures, we use
the “Prevalence” column to indicate the baseline solution of just
assigning every feature as belonging to the prevalent group—the
background. The overall performance of this baseline approach
is 27.95% which is pretty strong compared to many existing
approaches. For the more recent and hypothesis-driven approach
like MSSC, although we do not have the codes for evaluation, we
can get an idea of its performance in KT3DMoSeg by looking at
the result of homography model, due to its essential similarity
to MSSC. Clearly, the homography model is able to replicate
its strong performance (11.45%) on this real-world dataset de-
spite facing much stronger perspective effects. The affine model
performs the worst due to the strong perspective effect present
in the dataset. While all our single-model approaches turned
in substantially better results than the baseline approach, it is
also evident from the percentage errors that each single-model
has difficulties in dealing with real-world effects. The various
multi-model schemes, especially the co-regularization approach,
can further improve the performance. We noted the significant
difference between the mean and median errors in the multi-
model approaches. We attribute this to a few difficult sequences,
e.g. “Seq009 Clip01”, “Seq038 Clip02” and “Seq095 Clip01”,
whose special configurations pose significant difficulties for 3D
motion segmentation. Detailed analysis are made in Section 5.6.1.

5.4 Model Selection
In this section, we extensively evaluate the performance of our
NCRE algorithm on model selection in terms of both the clas-
sification error and correct rate, i.e. the number of sequences
with correctly estimated number of moving objects. This evalu-
ation is carried out over three motion segmentation benchmarks,
Hopkins 155, MTPV62 and KT3DMoSeg, and under both the
single-model and multi-model settings. The δ in Eq (12) is
specifically set to 0.1 for Hopkins 155, MTPV 62 and Hop-
kins 12 and 1 for KT3DMoSeg. For all three datasets, we
implement simple model selection approaches for comparison,
including Self-Tuning Spectral Clustering [62] and Gap Heuristic,
i.e. M = arg maxm (σm+1 − σm); in both these approaches,
the affinity matrix is provided by the homography model. We
also extensively compare with state-of-the-art model selection
approaches for motion segmentation. Specifically, we present the

results of ALC [22], GPCA [25], LSA [58], ORK [30], KO [12],
LBF [63], SSC [28], MTPV [2], LRR [15], MB-FLoSS [64],
BB [60] and MSSC [4] on Hopkins 155 and MTPV62. The
GPCA, LBF and SSC are implemented with the second order
difference (SOD) [63] method for selecting the optimal number
of moving objects. It is worth noting that GPCA, LBF, SSC, self-
tuning and its variant MSSC exclude the possibility of a single
cluster. Since the sequences tested indeed do not contain the
case of single rigid motion, advantages over other competitors are
gained by these approaches. To allow fair comparison, we evaluate
the performance of our NCRE algorithm under two cases: when
the candidate number of cluster is allowed to range from 1 to
Mmax, and from 2 to Mmax. The latter permits comparison with
approaches such as GPCA, self-tuning, MSSC, etc. which make
similar assumption, while the former permits comparison with all
others. We fix Mmax = 10 for all experiments. Further increasing
Mmax would not affect the model selection accuracy but instead
increase computation cost.

We present the model selection results on Hopkins155 in
Table 2, in which the performances of our proposed method
under the two different ranges of candidate number of clusters are
separated by a slash. It is obvious that under single-model affinity
matrix, our model selection criteria are able to identify the number
of moving objects with higher accuracy than all existing models
with single-model affinity matrix. In particular, the homography
model yields the best performance of all, 87.10% for 1 to Mmax

candidate no. of motion groups and 92.26% for 2 to Mmax

candidate no. of motion groups. This leads to an improvement of
more than 6% over the state-of-the-art result, MSSC with 85.81%.
It corroborates our previous analysis that since the Hopkins155
dataset is rotation-dominant, homography is the most suitable
geometric model. The advantage in the model selection problem
is clearer because, without knowing the number of motion groups
a priori, the algorithm has to rely more on the inherent quality of
the modelling. The effect of errors in other models, in particular
F, are also felt more, limiting the benefits that can be reaped by
the fusion method compared to the best single-model method. By
fusing three models, we observe the correct rate in model selection
to be on par with the best single-model (homography), while the
classification error experiences a significant drop from 3.95%
and 2.70% to 3.17% and 1.83% respectively. More detailed
investigations into the impact of individual models are made in
Section 5.7.

We further present the results on MTPV62 in Table 3, in which
we again present both the results with 1 to Mmax candidate no. of
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Fig. 4: (a) The classification error on individual sequence of KT3DMoSeg dataset. (b-c) The impact of regularization parameters on
co-regularization and subset constrained clustering performances. (d) The distribution of point number for each sequence.

TABLE 2: Model selection results on Hopkins 155 dataset. Both
mean classification error (%) and correct rate (%) are reported
for comparison. ∗ indicates the candidate no. of motion groups is
from 2 to N . ‘−’ cells indicate not reported or no public code is
available.
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Method
2 Motion 3 Motion All Seqs

Error CorrectRate Error CorrectRate Error CorrectRate

ORK [30] 7.83 67.37 12.62 49.66 8.91 63.37
KO [12] - 82.50 - 48.57 - 74.84
LRR [15] 8.59 84.17 15.51 57.14 10.16 78.06
MB-FLS [64] 9.54 81.67 12.07 71.43 10.04 79.35
BB [60] - - - - 6.09 80.00
GapHeu 8.25 84.17 10.06 54.29 8.66 77.42
S.T. [62] 3.60∗ 89.17∗ 9.88∗ 54.29∗ 5.01∗ 81.29∗
MSSC [4] 2.50∗ 90.00∗ 7.15∗ 71.43∗ 3.55∗ 85.81∗

O
ur

A
pp

ro
ac

he
s

Single-Model

Affine 4.34/2.13∗ 87.50/96.67∗ 6.37/6.23∗ 65.71/65.71∗ 4.80/3.06∗ 82.58/89.68∗
Homo 3.42/2.14∗ 90.00/95.83∗ 5.76/4.60∗ 77.14/80.00∗ 3.95/2.70∗ 87.10/92.26∗
Fund 9.90/3.40∗ 72.50/97.50∗ 11.7/10.85∗ 42.86/45.71∗ 12.31/5.08∗ 65.81/85.81∗

Multi-Model

KerAdd 2.31/2.19∗ 94.17/97.50∗ 7.62/7.71∗ 57.14/60.00∗ 3.51/3.44∗ 85.81/89.03∗
CoReg 2.90/2.35∗ 90.83/95.83∗ 4.09/4.09∗ 74.29/74.29∗ 3.17/2.74∗ 87.10/90.32∗
Subset 2.98/0.43∗ 90.83/100.00∗ 4.77/6.65∗ 71.43/62.86∗ 3.38/1.83∗ 86.45/91.61∗

moving groups and 2 to Mmax candidate no. of moving groups.
We make the following observations from the results. Both our
single-model and multi-model approaches outperform the state-
of-the-arts with large margin. With 2 to Mmax candidate, we
improve the classification error from 5.09% of MSSC to 2.78%
(Affine model) and 3.23% (multi-model, with Subset constraint
clustering). The number of sequence with correctly estimated
cluster also increased to 53 from the previous best of 49 of
MSSC. We show the number of sequence that is correct rather
than the percentage for model selection evaluation here so as to
be consistent with past works on this benchmark. All our multi-
model clustering variants produce the best performance of all in
model selection and segmentation. It is worth noting that the gap
between ALC and ours is the smallest among all other datasets.
This is attributed to the severe degeneracy of Hopkins12 which is
dominated by pure camera rotation, rendering the affine camera
model in ALC adequate.

We finally present the model selection results on KT3DMoSeg
dataset in Table 3. We implement multiple existing approaches on
model selection including ALC [22], GPCA [25], LBF [63], LRR
[15], MSMC [3], SSC [28] and Self-Tuning spectral clustering
[62]. We draw similar conclusions from the results as above.
Both the single-model and multi-model approaches outperform
the existing ones in both mean classification error and estimating
the number of clusters. The significant perspective effect in this
dataset renders the methods with affine projection assumption
ineffective.

5.5 Dense and Articulated Motion Segmentation
We evaluate the performance on FBMS59 [33] dataset which
was designed for dense motion segmentation. It is worth noting
that many sequences of this dataset are captured by hand-held
cameras with vanishing camera translation. Many sequences also
involve moderate articulated motion. Thus the challenge of this
dataset mainly lie in handling densely tracked feature points and
articulation. We adopt evaluation on the first 10 frame subset, as
proposed by [33], for fair comparison with traditional methods.
The precision (Prec.), recall (Rec.) and F-measure (F-m) are
evaluated as the metric and the density (Dens.) is measured as
the coverage of all labelled pixels, all of which are higher the
better. The feature trajectories are extracted by dense tracking [54]
with the default 8 pixels gap. We compare with ALC [22], SSC
[28], SpectralClustering (Ochs) [33] and MultiCut(MC) [34]. The
hyperparameters of our method is searched over the training set
and fixed for test set. The results are presented in Tab. 4. We
observe very competitive performance of our final fusion model
compared against the existing ones based on translational models
and the improvements is significant on both the training and test
set with particular improvement on the recall measure.
We further evaluate our approach on the ComplexBackground
dataset [57]. We notice that there are many extremely small objects
labelled, e.g. the vehicles in the faraway background of sequence
‘traffic’ in Fig. 8, posing great challenge to existing feature
trajectory based motion segmentation algorithms. For comparison,
we adopted the same evaluation metrics as for FBMS59 and
compared with Ochs [33] and MC [34]. The results are presented
in Tab. 4. We observe superior performance of our algorithm
compared with [33]. The gap between MultiCut and ours is mainly
due to the ground-truth definition favoring over-segmentation. We
shall analyze in more details in the following section.

5.6 Further Analysis
We give insight into the success of our proposed multi-model mo-
tion segmentation and model selection methods and then analyze
the impact of individual models.

5.6.1 Qualitative Study
Motion Segmentation We now present the motion segmenta-
tion results on some sequences from KT3DMoSeg in Fig. 5 to
better understand how different geometric models complement
each other, as well as to illustrate the challenges posed by this
dataset. All these sequences involve strong perspective effects in
the background but the foreground moving objects often have
limited depth reliefs and camera is making significant translation.
Many background objects have non-compact shapes, and thus the
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TABLE 3: Model selection performance on MTPV62, KT3DMoSeg and Hopkins12. The methods and
results with ∗ are based on the candidate no. of clusters from 2 to Mmax. Both mean error (MeanErr)
and correct rate (CorrectRate) are measured in %. The correct number of sequence (Corr. #Seq) counts the
sequences with correctly estimated number of motion.

MTPV62 KT3DMoSeg Hopkins12

MeanErr
MeanErr CorrectRate MeanErr CorrectRateMethod Persp.

9 Clips
Missing
12 Clips

Hopkins
50 Clips

All
62Clips

Corr.
#Seq

ALC [22] 16.18 25.38 22.03 22.67 21 34.72 45.45 4.33 91.67
GPCA [25] 43.66* 39.64* 16.89* 21.29* 33* 47.35* 18.18*
LBF [63] 20.00* 20.17* 15.66* 16.53* 29* 62.86* 18.18* 32.63* 33.33*
LRR [15] 16.31 26.03 9.82 12.98 35 26.94 31.82 18.86 41.67
MSMC [3] 19.17 14.64 14.19 14.27 25 50.17 18.18 24.41 33.33
ORK [30] 22.94 24.11 12.98 15.13 37 - - - -
SSC [28] 26.58* 27.41* 13.09* 15.86* 33* 64.82* 18.18* 49.18* 25.00*
MTPV [2] 8.20 7.71 7.56 7.59 46 - - - -
MSSC [4] - 1.84* 5.87* 5.09* 49* - - - -
S.T. [62] 7.10* 3.12* 8.11* 7.15* 44* 22.01* 50.00* 4.05* 91.67*
GapHeu - - - - - 31.22 27.27 6.16 91.67

Single-Model

Affine 2.68/1.84* 1.28/0.33* 3.59/3.37* 3.14/2.78* 50/53* 24.99/19.08* 36.36/54.55* 3.91/2.82* 83.33/91.67*
Homography 1.76/0.77* 1.25/0.24* 5.08/4.40* 4.34/3.59* 48/52* 29.28/24.63* 50.00/54.55* 6.66/3.55* 75.00/83.33*
Fundamental 12.23/7.65* 20.49/5.19* 13.46/9.22* 14.82/8.92* 23/43* 28.22/10.31* 54.55/63.64* 8.86/4.73* 75.00/83.33*

Multi-Model

KerAdd 2.30/0.63* 1.85/0.26* 5.13/5.16* 4.49/4.21* 48/53* 10.21/7.51* 50.00/68.18* 6.63/1.51* 75.00/91.67*
CoReg 4.10/0.34* 3.37/0.41* 3.93/4.45* 3.82/3.67* 48/52* 14.61/11.33* 50.00/63.64* 5.91/2.26* 83.33/91.67*
Subset 4.10/4.96* 3.28/3.60* 3.93/3.14* 3.81/3.23* 45/52* 11.90/14.74* 50.00/68.18* 5.46/4.47* 91.67/91.67*

TABLE 4: Comparisons on
the first 10-frame subset of
FBMS59 and the ComplexBack-
ground dataset. All measures are
in %.

FBMS59 - TrainingSet

Model Dens. Prec. Rec. F-m.

ALC [22] 0.12 54.31 54.80 54.56
SSC [28] 0.89 80.59 63.32 67.70
Ochs [33] 0.95 92.77 65.44 76.75
MC [34] 1.01 91.09 67.78 77.72
Subset(Ours) 0.89 90.35 73.57 81.10

FBMS59 - TestSet

Model Dens. Prec. Rec. F-m.

ALC [22] 0.12 53.11 56.40 54.70
SSC [28] 0.88 91.67 50.57 65.18
Ochs [33] 0.97 87.44 60.77 71.71
MC [34] 1.01 89.05 61.81 72.97
Subset(Ours) 0.90 84.41 72.87 78.22

ComplexBackground

Model Dens. Prec. Rec. F-m.

Ochs [33] 0.86 83.77 48.76 61.64
MC [34] 0.90 93.54 64.28 76.20
Subset(Ours) 0.90 90.03 59.67 71.77

slicing effect induced by the homography/affine model is less
likely to relate all the background points together due to the lower
connectivity. Therefore the background tends to split in the affine
and homography models, e.g. the traffic sign in Fig. 5 (a), the wall
in (e), the bush in (f) and the ground in (g). While fundamental
matrix is more likely to discover a seamless background in theory,
it is plagued by a greater susceptibility to subspace overlap in
practice. In (g), the fundamental matrix model identifies the whole
background; however it fails to separate the white SUV from the
background. In both (a), (e) and (g), the fusion schemes manage
to correct these errors. There are also some challenges that remain
in this dataset. Clearly, when the motion of the foreground object
(e.g. the person in the middle of Fig. 5 (c), indicated by red points
in GroundTruth) is small or intermittent compared to that of the
camera, it can be difficult to detect. Coupled with the large depth
range in the background, the algorithm can be fooled to split the
background instead of segmenting the foreground. Lastly, scenes
like Fig. 5 (b) and (d) still pose serious challenge. It is well known
that the epipolar constraint allows a freedom to translate along the
epipolar line. This allows an independent motion that is moving
with respect to the background but consistent with the epipolar
constraint to go undetected. In the figure (d), the car in front can
be interpreted as a background object on the horizon, and thus
the algorithm ends up splitting the big truck instead. The fusion
scheme occasionally fails, as in (f) and (h), where the incorrect
split in affine/fundamental matrix model is propagated to the final
result and cause unexpected segmentation results.
Model Selection We have discussed in Section 4 how the recon-
struction error term and the normalized cut term can be viewed as
a precision-complexity trade-off. In particular, the normalized cut
criteria can be viewed in information-theoretic terms [47] as model
complexity. In Fig. 6, we demonstrate qualitatively the interplay of
this fundamental precision-complexity trade-off with an example
sequence from Hopkins155. The original affinity matrix is pre-
sented in Fig. 6 (a) and the reconstructed affinity as explained in
Eq (8) from (b) to (h). The red rectangles indicate the ground-truth

clusters. The reconstructed affinity matrices in Fig. 6 (b) to (h) are
based on clustering the data into 1 to 7 clusters respectively. It is
observed from the illustrations that a correct estimate of cluster
number results in a good denoising of the raw affinity matrix, as
shown in (d). By deviating from the correct model complexity,
the resulting models (the reconstructed affinities) suffer from a
significant level of deviations from the original affinity matrix.
We also plot the normalized cut cost, reconstruction error and
the combined final residual against different number of clusters
in (i). The normalized cut cost (blue line) goes up monotonically
with increasing number of cluster, with increasing speed from 3
clusters onward. This echoes our foregoing analysis in Section 4.2
that the normalized cut cost serves as the complexity penalty
term for model selection. We further note that the data fidelity
term of reconstruction error (orange line) experiences a steep drop
from 1 to 3 clusters and then stays relatively stable when the
number of cluster further increases (Fig. 6(e) to (h)). Given a
good combination of the data fidelity and model complexity terms
(the final residual as the yellow line), a local minimal is found at
number of cluster= 3, balancing the precision-complexity trade-
off.
Dense & Articulated Motion Segmentation We present motion
segmentation examples on the FBMS59 dataset in Fig. 7. We
compare with the results obtained by SpectralClustering (Ochs)
[33] and MultiCut [34] on the first frame of 6 selected sequences.
We observe consistently better motion segmentation results by
our multi-view fusion approach. For the ‘dogs01’, ‘farm01’ and
’lion01’ sequences, our algorithm detects the whole foreground
objects while the Ochs [33] and MultiCut [34] more or less over-
segment the articulated foregrounds. For the ‘bear02’, ‘meerkat01’
and ‘duck01’ sequences, we observe consistently higher recall, i.e.
more coverage of the foreground objects, by our algorithm. This
observation coincides with the quantitative results (Tab. 4) that our
algorithm is on average higher in recall. It is worth noting that for
many sequences, all algorithms miss some objects, e.g. the horse
in the stable of ‘farm01’ and the wood piece in ‘lion01’, or fail to



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

(a) Seq059 Clip01

(c) Seq038 Clip02

(b) Seq009 Clip01

(d) Seq095 Clip01

(e) Seq071 Clip01 (f) Seq038 Clip01

(g) Seq009 Clip03 (h) Seq005 Clip01

Fig. 5: Examples of motion segmentation on KT3DMoSeg sequences.
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(i) Residuals of Model Select. Criteria(a) Original Affinity Matrix (b) Estimate 1 Cluster (c) Estimate 2 Clusters (d) Estimate 3 Clusters

(e) Estimate 4 Clusters (f) Estimate 5 Clusters (g) Estimate 6 Clusters (h) Estimate 7 Clusters
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(j) Example Frame with Grount-Truth

Fig. 6: Original affinity matrix v.s. reconstructed affinity and
residuals of model selection criteria.

further separate individual ducks of ‘duck01’ due to insufficient
motion difference. In general, our multi-view clustering approach
delivers very competitive results on the challenging FBMS59
motion segmentation task, achieving the best overall performance
(i.e., F-measure) rather than being top in precision or recall.
We further compare the motion segmentation results on the
ComplexBackground dataset in Fig. 8. For each sequence, we
attach the Precision(P), Recall(R) and F-measure(F) for the three
approaches, Ochs [33], MultiCut [34] and Ours. We observe good
precision for each sequence by our method, while the recalls for
‘store’ and ‘traffic’ are particularly low for all methods. This is
due to the large number of small objects missed by all methods.
We believe that most of these tiny objects fail to be picked up by
these geometric methods as there are not even sufficient feature
points lying on the objects. We also notice that both [33] and [34]
tend to over-segment the scene, e.g. ‘forest’ and ‘traffic’, due to
the underlying translational motion model. And occasionally, such
over-segmentation could lead to higher precision measure, e.g., in
the ‘forest’ scene.

5.7 Individual Models

In this section, we investigate the impact of each individual model
by looking into the fusion impact on individual models and the
importance of including certain models on the final results.
Fusion Impact on Individual Models As a result of the co-
regularization, each of the geometric models has their views
modified; we call these the F-view, H-view, and A-view. We
now analyze the performance gain experienced by these models.
In particular, we investigate the performance of motion segmen-
tation with the spectral embedding of these models after co-
regularization. This is equivalent to using just a single U = Uv

for k-means clustering in the last step of Algorithm 1. The
classification error over all KT3DMoSeg sequences v.s. λ and γ
are presented in Fig. 4 (b-c). We observe from this evaluation that
while the F-view (purple line) does not necessarily produce the
best result compared with the H-view, under certain range of λ
(corresponding to different coerciveness of the co-regularization),
the F-view can be corrected so that its full potential is realized,
producing the best of all results.
Importance of Individual Models The importance of each indi-
vidual model in motion segmentation is determined by the nature
of the scene, e.g. perspective effect and camera motion. As we
have pointed out, both the affine and homography models have the
ability to model weak perspective scenes and rotation-dominant
camera motion, whereas the fundamental matrix has the advantage
in modeling strong perspective scene. We investigate here if
certain models are preferred by each dataset. In particular, we
compare the following two-model fusion approaches, affine model

with homography (A + H) and homography with fundamental
matrix (H + F), for model selection task on three datasets, Hop-
kins155, MTPV62 and KT3DMoSeg. The results are presented in
Table 6. It is observed from these results that for Hopkins155
and MTPV 62 3 where either the perspective effect is weak
and/or camera mainly undergoes a rotation-dominant motion, the
combination of A + H outperforms H + F while the difference
between A + H and combining all three models are smaller. The
situation for KT3DMoSeg is reversed: we observe that combining
H and F is optimal, owing to the strong perspective effect and the
greater depth complexity in the dataset. In general, choosing the
most appropriate models to fuse can make a difference; however,
without prior knowledge on the nature of the scene and camera
motion, our three-model fusion scheme is still very robust and
produces very competitive performances.

5.8 Runtime Evaluation

Finally, we evaluate the runtime of our algorithms. Specifi-
cally, we separately evaluate the three parts of our model, hypoth-
esis generation, kernel computation and single-model/multi-model
clustering. We implement the code in Matlab R2015b and evaluate
on a server with two 10 core CPUs (E5-2640) and 128GB memory.
Both the mean and standard deviation of the time consumed over
all 22 sequences are reported in Tab. 5. The overall average
times for completing motion segmentation with single motion
model are 5.4, 8.0 and 9.2 seconds for Affine, Homography and
Fundamental Matrix respectively. The average times for multi-
model motion segmentation are 22.2, 24.9 and 23.0 seconds for
Kernel Addition (K.A.), Co-Regularization (CoReg) and Subset
Constrained Clustering (Subset), respectively. The average number
of frames is 17.5 for all 22 sequences at 10 fps. Though the un-
optimized code cannot achieve real-time performance, we believe
that a more efficient hypothesis generation can significantly reduce
the whole processing time.

TABLE 5: Evaluation of runtime on each component of our
pipeline. Time is in seconds.

Steps Hypothesis Kernel Clustering

Model Affine Homo Fund A/H/F A/H/F K.A. CoReg Subset

Time 4.3±1.2 6.9±1.9 8.1±4.2 0.9±1.0 0.2±0.1 0.2±0.1 2.9±1.0 1.0±1.4

TABLE 6: The impact of different combinations of multi-model
fusion schemes on model selection task. The correct rate (%) and
mean error (%) are separated by a slash.

Correct Rate / Mean Error (%)

Dataset Models KerAdd CoReg Subset

Hopkins155
A+H 90.32 / 2.24 90.32 / 2.19 90.32 / 2.31
H+F 80.65 / 4.54 80.00 / 4.40 80.00 / 4.46
A+H+F 89.03 / 3.44 91.61 / 1.95 91.61 / 1.83

MTPV62
A+H 83.87/ 3.80 87.10/ 2.91 87.10/ 4.75
H+F 85.48 / 3.90 72.58 / 6.63 72.58 / 6.51
A+H+F 85.48 / 4.21 83.87 / 4.87 83.87 / 3.23

KT3DMoSeg
A+H 40.91 / 35.32 40.91 / 31.74 31.82 / 34.18
H+F 63.64 / 9.61 63.64 / 6.91 68.18 / 8.67
A+H+F 68.18 / 7.51 63.64 / 11.33 68.18 / 14.74

3. Though a small subset of MTPV62 has stronger perspective effect with
camera translation, we observe most of the sequences are captured by hand-
held camera with camera rotation being dominant.
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Fig. 7: Qualitative examples of 6 sequences selected from FBMS59.
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Fig. 8: Qualitative examples of all 5 sequences of the Com-
plexBackground dataset.

6 CONCLUSION

In this paper, we have contributed to an understanding of the
strengths and drawbacks of homography and fundamental ma-
trices as a geometric model for motion segmentation, not only
in the extant datasets such as Hopkins155, but also for real-
world sequences in KT3DMoSeg. Not only do we account for
the unexpected success of the homography approach when the
affinities are accumulated to over all slicing planes, we also reveal
its real limitation in real-world scenes. The geometrical exactness
of the fundamental matrix approach is theoretically appealing; we
show how its potential can be harnessed in a multi-model spectral
clustering fusion scheme. Given kernels induced from multiple
types of geometric models, we evaluate several techniques to
synergistically fuse them. For model selection, we propose to
tradeoff the data fidelity and model complexity in our NCRE
scheme. Finally, we carry out experiments on Hopkins155, Hop-
kins12, MTPV62, FBMS59 and ComplexBackground, on most
of which achieving state-of-the-art performances for both motion
segmentation and model selection. In light of the demand for real-
world motion segmentation, we further propose a new dataset, the
KT3DMoSeg dataset, to reflect and investigate real challenges in
motion segmentation in the wild.

7 ACKNOWLEDGEMENT

This work was supported by the Singapore PSF grant 1521200082.

REFERENCES

[1] H. Jung, J. Ju, and J. Kim, “Rigid Motion Segmentation Using Random-
ized Voting,” in CVPR, 2014.

[2] Z. Li, J. Guo, L. F. Cheong, and S. Z. Zhou, “Perspective motion
segmentation via collaborative clustering,” in ICCV, 2013.

[3] R. Dragon, B. Rosenhahn, and J. Ostermann, “Multi-scale clustering
of frame-to-frame correspondences for motion segmentation,” in ECCV,
2012.

[4] T. Lai, H. Wang, Y. Yan, T. J. Chin, and W. L. Zhao, “Motion Segmentation
Via a Sparsity Constraint,” IEEE Transactions on Intelligent Transporta-
tion Systems, 2017.

[5] L. Goshen and I. Shimshoni, “Guided sampling via weak motion models
and outlier sample generation for epipolar geometry estimation,” Interna-
tional Journal of Computer Vision, 2008.

[6] Y. Sugaya and K. Kanatani, “Geometric structure of degeneracy for multi-
body motion segmentation,” in In Workshop on Statistical Methods in
Video Processing, 2004.

[7] P. Torr, A. Zisserman, and S. Maybank, “Robust Detection of Degenerate
Configurations while Estimating the Fundamental Matrix,” Computer
Vision and Image Understanding, 1998.

[8] R. Tron and R. Vidal, “A Benchmark for the Comparison of 3-D Motion
Segmentation Algorithms,” in CVPR, 2007.

[9] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge university press, 2003.

[10] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research, 2013.

[11] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of
clusters in a data set via the gap statistic,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 2001.

[12] T. J. Chin, D. Suter, and H. Wang, “Multi-structure model selection via
kernel optimisation,” in CVPR, 2010.

[13] Z. Li, L.-F. Cheong, S. Yang, and K.-C. Toh, “Simultaneous Clustering
and Model Selection: Algorithm, Theory and Applications,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2017.

[14] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, 2007.

[15] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of
subspace structures by low-rank representation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2013.

[16] Z. Li, L. F. Cheong, and S. Z. Zhou, “SCAMS: Simultaneous clustering
and model selection,” in CVPR, 2014.

[17] T. E. Boult and L. G. Brown, “Factorization-based segmentation of
motions,” in Visual Motion, 1991., Proceedings of the IEEE Workshop
on, 1991.

[18] J. P. Costeira and T. Kanade, “A multibody factorization method for
independently moving objects,” International Journal of Computer Vision,
1998.

[19] C. W. Gear, “Multibody grouping from motion images,” International
Journal of Computer Vision, 1998.

[20] A. Gruber and Y. Weiss, “Multibody factorization with uncertainty and
missing data using the em algorithm,” in CVPR, 2004.

[21] C. Tomasi and T. Kanade, “Shape and motion from image streams under
orthography: a factorization method,” International Journal of Computer
Vision, 1992.

[22] S. Rao, R. Tron, R. Vidal, and Y. Ma, “Motion segmentation in the pres-
ence of outlying, incomplete, or corrupted trajectories,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2010.

[23] R. Vidal and R. Hartley, “Motion segmentation with missing data using
powerfactorization and gpca,” in CVPR, 2004.

[24] R. Vidal, Y. Ma, and S. Sastry, “Generalized principal component
analysis (gpca),” IEEE transactions on pattern analysis and machine
intelligence, 2005.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[25] R. Vidal, R. Tron, and R. Hartley, “Multiframe motion segmentation with
missing data using PowerFactorization and GPCA,” International Journal
of Computer Vision, 2008.
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