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Parallel and Scalable Heat Methods for
Geodesic Distance Computation

Jiong Tao, Juyong Zhang†, Member, IEEE, Bailin Deng, Member, IEEE,

Zheng Fang, Yue Peng, and Ying He, Member, IEEE

Abstract—In this paper, we propose a parallel and scalable approach for geodesic distance computation on triangle meshes. Our key

observation is that the recovery of geodesic distance with the heat method [1] can be reformulated as optimization of its gradients subject

to integrability, which can be solved using an efficient first-order method that requires no linear system solving and converges quickly.

Afterward, the geodesic distance is efficiently recovered by parallel integration of the optimized gradients in breadth-first order. Moreover,

we employ a similar breadth-first strategy to derive a parallel Gauss-Seidel solver for the diffusion step in the heat method. To further

lower the memory consumption from gradient optimization on faces, we also propose a formulation that optimizes the projected gradients

on edges, which reduces the memory footprint by about 50%. Our approach is trivially parallelizable, with a low memory footprint that

grows linearly with respect to the model size. This makes it particularly suitable for handling large models. Experimental results show that

it can efficiently compute geodesic distance on meshes with more than 200 million vertices on a desktop PC with 128GB RAM,

outperforming the original heat method and other state-of-the-art geodesic distance solvers.

Index Terms—Heat method, heat diffusion, Poisson equation, scalability, parallel algorithm.

✦

1 INTRODUCTION

G EODESIC distance is a commonly used feature of geom-
etry and has a wide range of applications in computer

vision and computer graphics [2]. For example, geodesic
distance provides an expression-invariant representation of
human faces that can be used for 3D face recognition [3].
Other important applications include object segmentation
and tracking [4], [5], [6], shape analysis [7], and texture
mapping [8].

Many algorithms have been proposed to compute
geodesic on polyhedral meshes, like fast matching and fast
sweeping [9], [10], [11], the Mitchell-Mount-Papadimitriou
(MMP) algorithm [12], and the Chen-Han (CH) algo-
rithm [13]. Recently, the heat method (HM) [1], [14] was
proposed to compute geodesic distances on discrete domains,
such as regular grids, point clouds, triangle meshes, and
tetrahedral meshes. It is based on Varadhan’s formula [15]
that relates the heat kernel and geodesic distance:

lim
t→0

−4t log h(t, x, y) = d2(x, y), (1)

where x, y is an arbitrary pair of points on a Riemannian
manifold M , t is the diffusion time, h(t, x, y) and d(x, y)
are the heat kernel and geodesic distance respectively. The
heat method is conceptually simple and elegant. Since the
geodesic distance is a solution to the Eikonal equation

‖∇d‖ = 1, (2)

the heat method first integrates the heat flow u̇ = △u for
a short time and normalizes its gradient to derive a unit
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vector field that approximates the gradient of the geodesic
distance. Afterward, it determines the geodesic distance
by finding scalar field d whose gradient is the closest to
the unit vector field, which amounts to merely solving a
Poisson system. The heat method involves only sparse linear
systems, which can be pre-factorized once and reused to
solve different right-hand-sides in linear time. This feature
makes it highly attractive for applications where geodesic
distances are required repeatedly. However, the Cholesky
factorization used in [1], [14] requires a substantial amount
of computational time and memory for large meshes. As
a result, the heat method does not scale well. Although
we can replace the Cholesky direct solver with iterative
solvers with lower memory consumption such as Krylov
subspace methods, these solvers can still take a large number
of iterations with long computational time.

As technological advances make computational and
imaging devices more and more powerful, we can now
capture and reconstruct 3D models in higher and higher
resolution. Therefore, there will be a growing demand for
algorithms that can efficiently handle such large-scale data.
The goal of this work is to develop a scalable algorithm
for computing geodesic distance on mesh surfaces. Our
method follows a similar approach as the heat method,
first computing approximate gradients via heat diffusion
and then using them to recover the distance. Our main
insight is that instead of solving the Poisson system, we
can perform the second step indirectly with much better
efficiency and scalability. Specifically, we first compute an
integrable gradient field that is closest to the unit vector
field derived from heat diffusion, then integrate this field to
obtain the geodesic distance. We formulate the computation
of gradient field as a convex optimization problem, which
can be solved efficiently using the alternating direction
method of multipliers (ADMM) [16], a first-order method
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Fig. 1. Geodesic distance fields computed using our parallel and scalable heat method (Algorithm 1) on different high-resolution models, visualized
using their level sets. A comparison with other methods on computational time, peak memory consumption and accuracy is provided in Tab. 1.

with fast convergence. Unlike previous ADMM solvers that
optimize function variables to regularize the gradients, our
formulation uses the gradients as variables, such that each
step of the solver only involves a separable subproblem and
is trivially parallelizable. The resulting gradient field can be
efficiently integrated using a parallel algorithm. For the heat
diffusion step, we also propose a parallel Gauss-Seidel solver,
which is more efficient and robust for large meshes than
direct and iterative linear solvers. The resulting method is
both efficient and scalable, and can be run in parallel to gain
speedup on multi-core CPUs and GPUs. We evaluate the
performance of our method using a variety of mesh models
in different sizes. Our method significantly outperforms the
original heat method while achieving similar accuracy (see
Fig. 1 and Tab. 1). Moreover, the computational time and
memory consumption of our approach grow linearly with
the mesh size, allowing it to handle much larger meshes than
the heat method.

Even though our optimization approach for computing
integrable gradients already provides a significant boost to
the computational and memory performance compared to
the original heat method, its memory footprint can be further
reduced. Our key observation is that the closeness between
the geodesic distance gradients and their target values can be
reformulated as the closeness between their projections on

the mesh edges, allowing us to formulate the problem with
many fewer variables. To this end, we propose an edge-based
formulation that optimizes the change of geodesic distance
along the mesh edges, which we solve using a similar ADMM
solver. Such changes along edges encode the directional
derivatives of the geodesic distance, and the optimization
result can be directly used to recover the geodesic distance
by integration. Compared to the approach of computing
integrable face-based gradients, our edge-based solver can
further reduce the memory footprint by about 50%. This
allows us to process a model with over 200 million vertices
on a desktop PC with 128GB RAM, where even the face-
based optimization approach fails due to excessive memory
consumption (see Fig. 10).

1.1 Our Contributions

Our main contribution is new approaches that can compute
geodesic distance on mesh surfaces in an efficient and
scalable way, including:

• A parallel Gauss-Seidel solver for solving short-time
heat diffusion from source vertices, which is more
scalable and numerically more robust than directly
solving the heat diffusion linear system in [1].

• A convex optimization formulation for correcting the
unit vector field derived from heat diffusion into an
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integrable gradient field, and an efficient ADMM solver
for the problem. Our solver is trivially parallelizable,
and has linear time and space complexity.

• A novel edge-based formulation that optimizes the
change of geodesic distance along mesh edges, which
encodes the differential information of geodesic distance
in a compact way and further reduces the memory foot-
print compared to the face-based gradient optimization.

• An efficient parallel integration scheme to recover
geodesic distance from either the face-based gradients
or the edge-based changes.

2 RELATED WORK

In the past three decades, various techniques have been
proposed to compute geodesic distance on mesh surfaces. A
classical approach is to maintain wavefront on mesh edges
and propagate it across the faces in a Dijkstra-like sweep.
Seminal works include the MMP algorithm [12] and the CH
algorithm [13], with worst-case running time of O(n2 log n)
and O(n2) respectively on a mesh with n vertices. Although
these two methods work for arbitrary manifold triangle
meshes and can compute exact geodesic distances, they do
not scale well to large models due to their high computational
complexities. Subsequently, various acceleration techniques
have been proposed to achieve more practical performance.
Surazhsky et al. [17] proposed an efficient implementation
of the MMP algorithm, and a fast algorithm for geodesic
distance approximation. Xin and Wang [18] improved the
performance of the CH algorithm by filtering wavefront
windows and maintaining a priority queue. Ying et al. [19]
proposed a parallel CH algorithm that propagates a large
number of wavefront windows at the same time. Similarly,
Xu et al. [20] accelerated the wavefront propagation for both
the MMP algorithm and the CH algorithm by simultaneous
propagation of multiple windows. Qin et al. [21] proposed
a triangle-oriented wavefront propagation algorithm with a
window pruning strategy to improve computational speed.

Another class of algorithms, called graph-based meth-
ods, first pre-computes a sparse graph that encodes the
geodesic information of the surface. Geodesic distance query
is then performed by computing a shortest path on the
graph. Ying et al. [22] proposed the saddle vertex graph
(SVG) for encoding geodesic distance. Constructing the SVG
takes O(nK2 logK) time, whereas computing the geodesic
distance takes O(Kn log n) time, where K is the maximal
degree. Wang et al. [23] proposed the discrete geodesic graph
(DGG) to approximate geodesic distance with given accuracy
and empirically linear computational time. Xin et al. [24] pre-
computed a proximity graph between a set of sample points
on the surface, and augmented the graph with the source and
target vertices to compute the shortest path and approximate
the geodesic distance. For graph-based methods, although
the graph construction can potentially be done in parallel,
the distance query is intrinsically sequential.

As the geodesic distance function u satisfies the Eikonal
equation, various methods have been proposed to solve this
PDE for the geodesic distance. The fast marching method
(FMM) [11] solves the equation by iteratively building the
solution outward from the points with known/smallest
distance values on regular grids and triangulated surfaces,

with a running time of O(n log n) on a triangle mesh with
n vertices. Weber et al. [25] proposed an efficient parallel
FMM on geometry images, which runs in O(n) time. The
heat method proposed by Crane et al. [1] adopts a different
strategy: rather than solving the distance function directly,
it first computes a unit vector field that approximates its
gradient, then integrates this vector field by solving a Poisson
equation; this only requires solving two linear systems and
is highly efficient. This approach was recently generalized to
compute parallel transport vector-valued data on a curved
manifold [26]. Our approach is also based on the heat method,
but using iterative solvers for the linear systems instead of
the direct solvers in [1]. The adoption of iterative solvers
not only reduces the memory footprint and makes it easier
to parallelize the algorithm, but also allows the user to
stop the computation early in cases where lower accuracy
but higher performance is needed; such early termination
is not possible with direct solvers, as they always carry
through the computation exactly. The heat method was
also extended by Belyaev and Fayolle [27] to compute the
general Lp distance to a 2D curve or a 3D surface via
a non-convex constrained optimization, using ADMM as
the numerical solver. Although our method also employs
ADMM to solve an optimization problem, it is fundamentally
different from the approach in [27]. Unlike [27], we solve
a convex optimization problem, for which there is a strong
convergence guarantee with ADMM [16]. Moreover, as the
formulation in [27] optimizes the distance function values,
their ADMM solver still involves linear system solving in
each iteration, thereby suffering from the same limitation
in scalability as the original heat method. Our approach
optimizes the gradient of the geodesic distance instead,
which allows our ADMM solver to avoid linear system
solving and achieve better efficiency and scalability.

3 ALGORITHM

In this paper, we consider geodesic distance computation
on a triangle mesh M = (V, E ,F), where V , E , and F
denote the set of vertices, edges, and faces, respectively.
Given a source vertex vs, we want to compute the geodesic
distance di from each vertex vi to vs by solving the Eikonal
equation with boundary condition d(vs) = 0. Inspired by
the heat method [1], we develop a gradient-based solver
for the Eikonal equation. Similar to the heat method, we
first construct a unit vector {hi} for each face fi using
short-time heat diffusion from the source vertex. Such a
vector field provides a good approximation to the gradient
field of the geodesic distance function, but is in general
not integrable. The geodesic distance is then computed as
a scalar field whose gradient is as close to hi as possible.
Different from the original heat method that computes
heat diffusion and recovers geodesic distance by directly
solving linear systems, we perform these steps using iterative
methods: heat diffusion is done via a Gauss-Seidel iteration
(Section 3.1), whereas the geodesic distance is computed by
first correcting {hi} into an integrable field {gi} with an
ADMM solver (Section 3.2) and then integrating it from the
source vertex (Section 3.3). Algorithm 1 shows the pipeline
of our method. The main benefit of our approach is its
scalability: both the Gauss-Seidel heat diffusion and the
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Algorithm 1 A parallel and scalable heat method via face-
based gradient optimization

Require: M = (V, E ,F): a manifold triangle mesh; vs: the
source vertex; t: heat diffusion time.

1: {ui|i ∈ V} = Diffusion(M, vs, t) ⊲ Heat diffusion from

source vertex

2: H = −∇u/‖∇u‖ ⊲ Face-wise gradient normalization

3: G = Integrable(M,H) ⊲ Optimize an integrable gradient

field

4: {di|i ∈ V} = Recovery(M, vs,G) ⊲ Recover geodesic

distance

geodesic distance integration can be performed in parallel
through breadth-first traversal over the mesh surface; the
correction of {hi} is a simple convex optimization problem
and computed using an ADMM solver where each step is triv-
ially parallelizable. Moreover, both the Gauss-Seidel solver
and the ADMM solver converge quickly to a solution with
reasonable accuracy, resulting in much less computational
time than the original heat method. Finally, our approach
has a low memory footprint that grows linearly with mesh
size and allows it to handle very large meshes, while the
original heat method fails on such models due to the memory
consumption of matrix factorization.

To facilitate presentation, we assume for now that the
triangle mesh M is a topological disk, with only one source
vertex. More general cases, such as meshes of arbitrary
topology and multiple sources, will be discussed in Section 5.

3.1 Heat Diffusion

It is shown in [1] that approximating the geodesic distance
using the Varadhan’s formula (1) directly will yield poor
results due to its high sensitivity to errors in magnitude.
Instead, the heat method exploits its connection with heat
diffusion to approximate the gradient of geodesic distance.
Following this approach, we compute the initial vector field
{hi} by integrating the heat flow u̇ = ∆u of a scalar field u
for a short time t, and taking

hi = − ∇u|fi
‖∇u|fi‖

, (3)

where ∇u|fi is the gradient of u on face fi. The initial value
of the scalar field u is the Dirac delta function at the source
vertex. Integrating the heat flow using a single backward
Euler step leads to a linear system [1]:

(A− tLc)u = u0, (4)

where vector u stores the value of u for each vertex, vector u0

has value 1 for the source vertex and 0 for all other vertices,
A is a diagonal matrix storing the area of each vertex, and
Lc is the cotangent Laplacian matrix. The solution to Eq. (4)
discretizes a scalar multiple of a function vt that is related to
the geodesic distance φ from the source vertex via

lim
t→0

−
√
t

2
log vt = φ (5)

away from the cut locus [1]. As the transformation to vt
in Eq. (5) does not alter its gradient direction, this relation

ensures the validity of Eq. (3) in approximating the gradient
of the true geodesic distance.

In [1], this sparse linear system is solved by prefactorizing
matrix A− tL using Cholesky decomposition. This approach
works well for meshes with up to a few million vertices,
but faces difficulties for larger meshes due to high memory
consumption for the factorization. Alternatively, we can
solve the system using Krylov subspace methods such as
conjugate gradient (CG), which requires less memory and
can be parallelized [28]. However, CG may require a large
number of iterations to converge for large meshes, which
still results in high computational costs.

With scalability in mind, we prefer a method that can
be run in parallel without requiring many iterations to
converge. Therefore, we solve the system (4) with Gauss-
Seidel iteration in breadth-first order, where all vertices with
the same topological distance to the source are updated in
parallel. Specifically, let us define the sets

D0 := {vs},
D1 := N (D0) \ D0,

D2 := N (D1) \ (D0 ∪ D1),

. . .

Di := N (Di−1) \
i−1
⋃

k=0

Dk,

(6)

where N (·) denotes the union of one-ring neighbor vertices.
Intuitively, Di is the set of vertices whose shortest paths to
vs along mesh edges contain exactly i − 1 edges. All such
sets can be determined using breadth-first traversal of the
vertices starting from vs. Then in each outer iteration of
our Gauss-Seidel solver, we update the values at vertex sets
D0,D1, . . . consecutively, whereas the vertices belonging to
the same set are updated simultaneously. When updating
a set Di, we determine the new values for each vertex vj
from the latest values of its neighboring vertices to satisfy its
corresponding equation in (4), resulting in an update rule

ui(vj) =
u0(vj) + t

∑

k∈Nj
θj,k ui−1(vk)

Avj + t
∑

k∈N (j) θj,k
, (7)

where Avj
is the area for

vertex vj , computed as one-
third of the total area of
triangles incident with vj ;
Nj denotes the index set of
neighboring vertices for vj ,
u0(vj) is the initial value of
vj , ui−1(vk) is the value at
vk after the update of Di−1,
and θj,k is the coefficient of
vk for the cotangent Lapla-
cian at vj . Intuitively, each
outer iteration sweeps all vertices in breadth-first order
starting from the source, where all vertices at the current
front are updated simultaneously using the latest values
from their neighbors. Note that unless it is close to the source,
the set Di often contains a large number of vertices. Thus
the update can be easily parallelized with little overhead.
An illustration of our heat diffusion approach is shown in
the inset. Here the green point is the source vertex, the
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#V: 63208

Fig. 2. Our Gauss-Seidel heat diffusion quickly decreases the mean
error of the result, computed based on Eq. (8). As a result, it produces
a solution good enough for subsequent steps with significantly less
computational time than a direct solver or a Krylov subspace method.

yellow area covers vertices that have been updated in the
current outer iteration, and the red front corresponds to
vertices being updated in parallel. In our experiments, the
solver quickly converges to a solution good enough for the
subsequent steps, significantly reducing the computational
time compared with the direct solver and Krylov subspace
methods. An example is provided in Fig. 2, where we plot
the following mean error E of our solver after each outer
iteration compared to the solution from the direct solver:

E =

√

√

√

√

|F|
∑

i=1

Ai‖hi − h∗
i ‖2, (8)

where Ai is the area of face fi normalized by the total surface
area, hi and h∗

i are the normalized face gradient by our
method and by directly solving Eq. (4), respectively. For
this model with 63208 vertices, the direct solver takes 1.671s,
while our method with four threads takes 153 outer iterations
(0.169s) and 185 outer iterations (0.228s) to produce a result
with mean error 1% and 0.1%, respectively.

3.2 Integrable Gradient Field

In general, the unit vector field {hi} is not integrable. To
derive the geodesic distance, the heat method computes a
scalar field whose gradients are as close as possible to {hi},
and shifts its values such that it vanishes at the source vertex.
This is achieved in [1] by solving a Poisson linear system

Ld = b, (9)

where vector d stores the values of the scalar field, and
b stores the integrated divergence of the field {hi} at the
vertices. Similar to heat diffusion, solving this linear system
using Cholesky decomposition or Krylov subspace methods
will face scalability issues. Therefore, we adopt a different
strategy to derive geodesic distance: we first compute an
integrable gradient field {gi} that is the closest to {hi}, and
then integrate it to recover the geodesic distance. In the
following, we will show that both steps can be performed
using efficient and scalable algorithms.

Fig. 3. For a gradient field {gi} to be integrable, the gradients g
e

1
, ge

2
on

a pair of adjacent faces must have the same projection on their common
edge e, resulting in the compatibility condition (11).

Representing {hi} and {gi} as 3D vectors, we compute
{gi} by solving a convex constrained optimization problem:

min
{gi}

∑

fi∈F

Ai‖gi − hi‖2, (10)

s.t. e · (ge
1 − ge

2) = 0, ∀ e ∈ Eint, (11)

where Eint denotes the set of interior edges, e ∈ R
3 is the

unit vector for edge e, and ge
1,g

e
2 are the gradient vectors on

the two incident faces for e. Eq. (11) ensures the integrability
of the gradient variables: the inner product between a face
gradient and an incident edge vector yields the change of
the underlying scalar function along the edge; therefore, if
there exists a scalar function with the given face gradients,
the gradient vectors on any pair of adjacent faces must have
the same projection on their common edge (see Fig. 3), which
is equivalent to condition (11). To solve this problem in a
scalable way, we introduce for each interior edge a pair
of auxiliary variables ye

1,y
e
2 ∈ R

3 for the gradients on its
adjacent faces, and reformulate it as

min
{gi},{(ye

1
,ye

2
)}

∑

fi∈F

Ai‖gi − hi‖2 +
∑

e∈Eint

σe(y
e
1,y

e
2) (12)

s.t. gi = yk, ∀fi ∈ F , ∀yk ∈ Yi. (13)

Here Ai is the face area for gi, and σe(·) is an indicator
function for compatibility between the auxiliary gradient
variables on the two incident faces of edge e:

σe(y
e
1,y

e
2) =

{

0, if e · (ye
1 − ye

2) = 0,
+∞, otherwise.

(14)

Yi denotes the set of auxiliary variables associated with face
fi, such that constraint (13) enforces consistency between
the auxiliary variables and the actual gradient vectors. To
facilitate presentation, we write it in matrix form as

min
G,Y

‖M(G−H)‖2F + σ(Y), (15)

s.t. M(Y − SG) = 0. (16)

where G,H ∈ R
|F|×3 and Y ∈ R

2|Eint|×3 collect the gradient
variables, the input unit vector fields, and the auxiliary
variables, respectively. σ(Y) denotes the sum of indicator
functions for all auxiliary variable pairs. S ∈ R

2|Eint|×|F| is a
selection matrix that chooses the matching gradient variable
for each auxiliary variable. M ∈ R

2|Eint|×2|Eint| is a diagonal
matrix storing the square roots of face areas associated with
the auxiliary variables. Introducing M in the constraints
does not alter the solution, but helps to make the algorithm
robust to the mesh discretization. Indeed, a similar constraint
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reweighting strategy is employed in [29] to improve the
convergence of their ADMM solver for physics simulation.

To solve this problem, ADMM searches for a saddle point
of its augmented Lagrangian

L(G,Y,λ) =‖M(G−H)‖2F + σ(Y)

+ tr
(

λ
TM(Y −GS)

)

+
µ

2
‖M(Y − SG)‖2F ,

where λ ∈ R
2|Eint|×3 collects the dual variables, and µ > 0

is a penalty parameter. We choose µ = 100 in this paper.
The stationary point is computed by alternating between the
updates of Y, G, and λ.

• Y-update. We minimize the augmented Lagrangian
with respect to Y while fixing G and λ, i.e.,

min
Y

σ(Y) +
µ

2

∥

∥

∥

∥

M(Y − SG) +
λ

µ

∥

∥

∥

∥

2

F

.

This is separable into a set of independent subproblems
for each internal edge e:

min
ye
1
,ye

2

σe(y
e
1,y

e
2) +

µ

2

2
∑

i=1

∥

∥

∥

∥

αe
i (y

e
i − ge

i ) +
λ
e
i

µ

∥

∥

∥

∥

2

,

where αe
i , ge

i , λe
i (i = 1, 2) are the face area square root,

gradient variables, and dual variables corresponding to
ye
i , respectively. This problem has a closed-form solution

ye
1 = qe

1 +
Ae

2

Ae
1 +Ae

2

e (e · (qe
2 − qe

1)) ,

ye
2 = qe

2 −
Ae

1

Ae
1 +Ae

2

e (e · (qe
2 − qe

1)) ,

where qe
i = ge

i − λ
e
i

µαe
i

, and Ae
i is the face area for ye

i , for

i = 1, 2.
• G-update. After updating Y, we fix Y,λ and minimizes

the augmented Lagrangian with respect to G, which
reduces to independent subproblems

min
gi

Ai‖gi − hi‖2 +
µ

2

∑

yk∈Y(i)

∥

∥

∥

∥

αi(yk − gi) +
λk

µ

∥

∥

∥

∥

2

,

(17)

where Y(i) denotes the set of associated auxiliary
variables for gi in Y, and λk denotes the corresponding
components in λ for yk. These subproblems can be
solved in parallel with a closed-form solution

gi =
2hi + µ

∑

yk∈Y(i)(yk + λk

µαi
)

2 + µ|Y(i)| .

• λ-update. After the updates for Y and G, we compute
the new values λ′ for the dual variables as

λ
′ = λ+ µM(Y − SG).

To initialize the solver, on each face fi we set the gradient
variable gi and each auxiliary variable yk ∈ Yi to hi, whereas
all dual variables λ are set to zero. Since our optimization
problem is convex, ADMM converges to a stationary point
of the problem [16]. We measure the convergence using the
primal residual rprimal and the dual residual rdual [16]:

rprimal = M(Y − SG), rdual = µASδG,

#V: 63208

Fig. 4. The ADMM solver quickly decreases the primal and dual residuals
in the initial iterations, as shown here on the same model as in Fig. 2.

where δG is the difference of G between two iterations.
We terminate the algorithm when both of the primal
residual and dual residual are small enough, or if the
iteration count exceeds a user-specified threshold Imax . The
residual thresholds are set to ‖rprimal‖ ≤ ‖M‖F · ǫ1 and
‖rdual‖ ≤ ‖M‖F · ǫ2, where ǫ1, ǫ2 are user-specified values.
We set ǫ1 = ǫ2 = 1 · 10−5 in all our experiments.

The main benefit of ADMM is its fast convergence to
a point close to the final solution [16]. In our experiments,
the algorithm only needs a small number of iterations to
reduce both the primal and dual residuals to small values, as
shown in Fig. 4). As a result, it only takes a small number of
iterations for the ADMM solver to produce a gradient field
with good accuracy compared to the exact solution (see Fig. 5
for an example). Moreover, the updates of Y, G, and λ are
all trivially parallelizable, allowing for significant speedup
on multi-core processors. Finally, the memory consumption
grows linearly with the mesh size, making it feasible to
process very large meshes. Therefore, our method is both
efficient and scalable.

Remark. Our formulation using gradients as variables is a
key factor in achieving efficiency and scalability for ADMM.
In the past, ADMM and other first-order methods have
been used to solve optimization problems that regularize
the gradient of certain functions [20], [30], [31], [32]. These
problems are all formulated with the function values as
variables. For such problems, the solver typically involves a
local step that updates auxiliary gradient variables according
to the regularization, and a global step that updates the
function variables to align with the auxiliary gradients.
The global step requires solving a linear system for all the
function variables, which will eventually become a bottleneck
for large-scale problems. By formulating the problem with
gradient variables instead, our global step reduces to a simple
weighted averaging of a few auxiliary gradients, which is
separable between different faces and can be done in parallel.
From another perspective, for formulations that use function
values as variables, the global step integrates the auxiliary
gradients, which is globally coupled and limits parallelism.
By using gradient variables, we bypass this time-consuming
global integration step, and postpone it to a later stage where
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#Iter 0 (1.60%) #Iter 2 (1.16%) #Iter 4 (0.86%) #Iter 6 (0.75%) #Iter 8 (0.70%) #Iter 10 (0.68%)

Fig. 5. Starting from the unit gradients resulting from heat diffusion, our ADMM solver can produce a geodesic distance gradient field of good
accuracy within a small number of iterations. Here we run the ADMM solver for a prescribed number of iterations, and integrate the resulting gradients
according to Section 3.3. The recovered geodesic distance field is visualized with color coding and level sets. The caption of each image shows the
number of ADMM iterations and the mean relative error of the resulting geodesic distance, computed according to Eq. (29).

the optimized gradients are integrated once to recover the
geodesic distance.

3.3 Integration

After computing an integrable gradient field gi, we de-
termine the geodesic distance d at each vertex by setting
d(vs) = 0 and integrating gi starting from the source vs.
Similar to the heat diffusion process, we determine the
geodesic distance in breadth-first order, processing the vertex
sets D1,D2, . . . consecutively. For a vertex vj ∈ Di (i ≥ 0), its
geodesic distance is determined from a neighboring vertex
vk ∈ Di−1 via

d(vj) = d(vk) +
1

|Tjk|
∑

fl∈Tjk

gl · (pj − pk), (18)

where pj ,pk ∈ R
3 are the positions of vj , vk, and Tjk denotes

the set of faces that contain both vj and vk. The pairing
between vj and vk can be determined using breadth-first
traversal from the source vertex. In our implementation,
we pre-compute the vertex sets {Di} as well as the vertex
pairing using one run of breadth-first traversal, and reuse the
information in the heat diffusion and geodesic distance inte-
gration steps. Like our heat diffusion solver, the integration
step (18) is independent between the different vertices within
Di, and can be performed in parallel with little overhead.

4 EDGE-BASED OPTIMIZATION

For the optimization formulation in Section 3, the gradient
variables and auxiliary variables are 3D vectors defined on
faces. This can lead to redundant memory storage: since a
gradient vector must be orthogonal to the face normal, it
has only two degrees of freedom. This intrinsic property is
disregarded by the 3D vector representation that encodes
the gradients with respect to the ambient space. To reduce
memory footprint, we may encode a gradient vector and its
associated auxiliary variables as 2D local coordinates its the
face. However, this would make the compatibility conditions
between two neighboring gradients more complicated, as we
must first transform them into a common frame. This not

only makes the update of auxiliary variables more involved,
but also requires additional storage for the transformation.

In this section, we propose a new formulation for the
gradient optimization problem that comes with a smaller
memory footprint while maintaining the simplicity of the
solver steps. The key idea is that if a face-based gradient
g is the same as its target value h, then their projections
onto the three triangle edges must be the same as well.
Moreover, the inner product between the gradient g and
an edge vector e = v1 − v2 encodes the change of the
underlying scalar function d between its two vertices v1
and v2, i.e., g · e = d(v1) − d(v2). Furthermore, given a
non-degenerate triangle, any vector orthogonal to its normal
can be uniquely recovered from the inner products between
the vector and its three edge vectors. Therefore, we can
encode the geodesic distance gradients {gi} and their targets
{hi} using their inner products with their respective triangle
edges. And instead of penalizing the difference between gi

and hi directly, we can penalize the difference between their
inner products with edge vectors.

In the following, we first present the optimization for-
mulation and its solver based on this idea. Afterward, we
analyze its memory consumption in Section 4.2, to show
that it is indeed more memory-efficient than the face-based
optimization approach.

4.1 Formulation

To compute a geodesic distance function d on a triangle mesh,
we define for each edge e a scalar variable xe that represents
the difference of d on its two vertices. It corresponds to the
change of d along one of the halfedges of e. We call this
halfedge its orientation halfedge ηe. As mentioned previously,
xe = g · e, where g is the gradient of d on an incident faces
f of e, and e is the vector for the orientation halfedge ηe. Let
h be the target normalized gradient on f , and denote

he = h · e. (19)

Then we can penalize the deviation between g and h using
their squared difference along edge e, resulting in an error
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Fig. 6. The integrability condition for the edge variables within a triangle
depends on the direction of their orientation halfedges, shown using
arrows in this figure. The dashed arcs show the orientation for each
triangle. For this particular example, the integrability conditions are xe1

+

xe2
+ xe3

= 0 and −xe1
+ xe4

− xe5
= 0, respectively.

term (xe − he)
2. Thus we compute the geodesic distance

function across the whole mesh via an optimization problem

min
X

1

2

∑

e∈E

∑

h∈He

(xe − he)
2, (20)

s.t.
3

∑

k=1

sfk · x
e
f

k

= 0, ∀f ∈ F . (21)

Here E is the set of mesh edges; F is the set of mesh faces;
X ∈ R

|E| collects the edge variables; He denotes the set of
target gradients on incident faces of e, such that |He| is either
1 or 2 for any edge that is not isolated. The constraint (21)
is an integrability condition for the variables {xe}, so that
the total change of function d along an edge loop must

vanish. Here ef1 , e
f
2 , e

f
3 are the three edges incident with a

face f , and sf1 , s
f
2 , s

f
3 ∈ {−1, 1} are their signs relative to

the edge loop of f (see Fig. 6 for an example). Note that
for orientable 2-manifold meshes represented using halfedge
data structures [33], [34], the halfedges incident with a face

must form an oriented loop. and the value of sfk (k = 1, 2, 3)
can be easily determined from the orientation halfedge η

e
f

k

:

sfk = 1 if η
e
f

k

is incident with face f , otherwise sfk = −1.

To solve this optimization problem, we first introduce
for each face f three auxiliary scalar variables w

e
f
1

, w
e
f
2

, w
e
f
3

corresponding to the edge variables x
e
f
1

, x
e
f
2

, x
e
f
3

. Then we

can reformulate the problem in a matrix form as

min
X,W

1

2
‖RX− Z‖2 + σ(W),

s.t. W −RX = 0.

Here X collects all edge variables {xe}; Z ∈ R
3|F| collects

all target difference values {he}, arranged in triplets each
induced by the target gradient on a face; R ∈ R

3|F|×|E| is
a sparse selection matrix that chooses the edge variables
according to its target difference values; W ∈ R

3|F| collects
the auxiliary variables arranged in the same order as Z; σ is
an indicator function for the integrability condition (21):

σ(W) =

{

0 if
∑3

k=1 s
f
k · w

e
f

k

= 0 ∀f ∈ F ,

+∞ otherwise.

Similar to the face-based method, we solve this problem
using ADMM. Its augmented Lagrangian function is

L(X,W,λ) =
1

2
‖Z−RX‖2 + σ(W)

+ λ · (W −RX) +
µ

2
‖W −RX‖2,

where λ ∈ R
3|F| and µ > 0 are the dual variables and the

penalty parameter, respectively. We choose µ = 100 in this
paper. ADMM finds a stationary point of L(X,W,λ) by
alternating between three steps:

• Fix X,λ, update W. This reduces to separable subprob-
lems for each face f :

min
wf

∥

∥

∥

∥

wf − xf +
λf

µ

∥

∥

∥

∥

2

s.t. qf ·wf = 0,

where wf ∈ R
3 are the components of W corresponding

to face f , qf ∈ {1,−1}3 stores the signs for the
components of wf in the integrability condition, and
xf ,λf are the corresponding components of X and λ

respectively. The problem has a closed-form solution

wf = (I3 −
1

3
qfq

T
f )(xf − λf

µ
),

where I3 is the 3× 3 identity matrix.
• Fix W,λ, update X. This leads to independent subprob-

lems for each edge e:

min
xe

∑

h∈He

(xe − he)
2 + µ(we

h − xe +
λe
h

µ
)2,

where we
h is the component of W for edge e induced

by a target gradient h, and λe
h is the corresponding

component of λ. It has closed-form solution

xe =

∑

h∈He
(he + λe

h + µwe
h)

|He|(1 + µ)
. (22)

• Fix X,W, update λ. The updated dual variables λ′ are
computed as

λ
′ = λ+ µ(W −RX).

To initialize the solver, λ is set to zero, each edge variable xe

is set to the average of its associated target values, and the
three auxiliary variables on each face f are set to the target
values induced on its three edges by the target gradient on f .
The convergence of the solver is indicated by small norms of
the primal and dual residuals:

rprimal = W −RX, rdual = µRδX,

where δX is the difference of X in two consecutive iterations.

4.2 Analysis

Compared with the face-based formulation in Section 3.2, our
edge-based formulation has a much lower memory footprint.
Let NE and NF be the number of vertices, edges, and faces in
the mesh, respectively. The face-based formulation requires
at least the following storage:

• For each face: two 3D vectors for the gradient variable
and the target gradient, respectively.

• For each internal edge: two 3D vectors for the auxiliary
gradient variables, two 3D vectors for the dual variables,
and one 3D vector for the edge direction used in the
Y-update.

Therefore, for a mesh with no boundary, the face-based
formulation requires at least a storage space of (6NF +
15NE) ·M bytes, where M is the width of a floating point



9

value. Accordingly, the edge-based formulation requires the
following storage:

• For each edge: one scalar for the variable xe, and one
scalar for a pre-computed value

∑

h∈He
he used in the

update equation (22).
• For each face: three scalars for auxiliary variables, three

flags of their signs in the integrability condition, and
three scalars for the dual variables.

Thus the edge-based formulation requires storage of (6NF +
2NE) · M + 3NF · K bytes, where K is the width of a
sign flag. As the sign only takes two possible values, we
can store it with as little storage as a single bit. Even if
we store it using an integral data type, we can still ensure
K ≤ M/2. Moreover, for a mesh without boundary, we
have NE = 3

2NF . Thus the edge-based formulation can at
least reduce the storage by 12NE · M bytes, which can be
significant for large models. In our experiments, the edge-
based solver can reduce the peak memory consumption by
about 50% compared to the face-based solver. A detailed
comparison is provided in Table 1.
Remark. There is an interesting interpretation of our edge-
based formulation from the perspective of discrete exterior
calculus [35], [36]. The edge difference variables, being scalars
defined on the edges, can be considered as a discrete 1-form. If
the edge difference variables satisfy the condition (21), then
they are a closed 1-form. On a simply-connected mesh surface
(i.e., a topological disk), any closed 1-form is also an exact
1-form, meaning that it corresponds to the derivative of a
scalar function. Thus condition (21) ensures the integrability
of our edge difference variables. This relationship also holds
in the smoothing setting: any closed 1-form on a simply-
connected domain is also exact. This may help to generalize
our formulation to other domains without a triangulated
structure such as point clouds.

5 EXTENSIONS

Our methods can be extended to handle surfaces with
complex topologies, multiple sources, and poor triangulation.
In this paper, these extensions are only applied to the
examples shown in this section. Moreover, in practice our
methods work well for complex topologies and multiple
sources even without the extensions.

5.1 Complex Topology

On a mesh surface of genus zero, the
compatibility condition (11) ensures that
the face gradients are globally integrable.
This is no longer true for other topologies.
One example is shown in the inset. For
this cylindrical mesh we can construct a
unit vector field that is consistently ori-
ented along the directrix and satisfies the
compatibility condition (11). This vector
field is not the gradient field of a scalar
function, however, because integrating
along a directrix will result in a different
value when coming back to the starting
point. In general, for a tangent vector field on a surface of
arbitrary topology to be a gradient field, we must ensure its

No topology constraint With topology constraint

Fig. 7. Geodesic distance on a surface of genus eight, computed using
our face-based method with and without the constraint (23), and its mean
relative error ε compared to the ground truth as defined in Eq. (29).

line integral along any closed curve vanishes. On a mesh
surface of genus g, such a closed curve can be generated from
a cycle basis that consists of 2g independent non-contractible
cycles [37]. Therefore, in addition to the compatibility con-
dition (11), we enforce an integrability condition of the field
{gi} on each cycle in the basis.

Specifically, for the face-based
method, we follow [37] and com-
pute a cycle basis for the dual
graph of the mesh, using the tree-
cotree decomposition from [38].
Each cycle is a closed loop C of
faces. Connecting the mid-points
of edges that correspond to the
dual edges on C, we obtain a
closed polyline P lying on the
mesh surface, with each segment lying on one face of the
loop (see inset). Then the integrability condition on this cycle
can be written as

∑

fi∈CF

gi · vP
i = 0, (23)

where CF is the set of faces on the cycle, and vP
i ∈ R

3 is the
vector of polyline segment on face fi in the same orientation
as the cycle. Adding these conditions to the optimization
problem (10)-(11), we derive a new formulation that finds a
globally integrable gradient field closest to {hi}.

For the edge-based method, we compute a cycle basis
on the mesh itself, with each cycle being a closed loop of
edges. Then for each such edge cycle we add the following
constraint to the optimization problem:

∑

ei∈CE

sCE

i · xei = 0, (24)

where CE is the set of edges on the cycle, and sCE

i ∈ {−1, 1}
indicates the orientation of edge ei with respect to the cycle.

After adding the constraints (23) or (24), the new opti-
mization problem is still convex and can be solved using
ADMM similar to the original methods. Fig. 7 shows an
example of geodesic distance on non-zero genus surfaces
computed using the face-based solver with the new formu-
lation. The addition of global integrability conditions leads
to more accurate geodesic distance, but the improvement is
minor. In fact, in all our experiments, the original formulation
already produces results that are close to the exact geodesic
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With multi-source constraintNo multi-source constraint

Fig. 8. Geodesic distance from multiple sources, computed using our
face-based method with and without the constraint (25), and its mean
relative error ε compared to the ground truth as defined in Eq. (29).

distance even for surfaces of complex topology, leaving little
room of improvement. Although without a formal proof,
we believe this is because the unit vector fields derived
from heat diffusion are already close to the gradients of
exact geodesic distance [1]. Therefore, in practice the simple
compatibility conditions (11) or (21) are often enough to
prevent pathological cases such as the cylinder example.
Unless stated otherwise, all our results are generated using
only constraints (11) or (21) to enforce integrability.

5.2 Multiple Sources

Our method can be easily extended to the case of multiple
sources. Following [1], we compute an initial unit vector
field via heat diffusion from a generalized Dirac over the
source set. This leads to a linear system with the same
matrix as (4) and a different right-hand-side. To adapt
our single-source heat diffusion solver to this new linear
system, we first construct the breadth-first vertex sets {Di}
by including all source vertices into D0 and collecting Dj

(j ≥ 1) according to the same definitions as in Eq. (6);
then the Gauss-Seidel iteration proceeds exactly the same as
Section 3.1. Afterward, we find the closest integrable gradient
field {gi} and integrate it to recover the geodesic distance, in
the same way as Sections 3.2 and 3.3. Strictly speaking, when
computing {gi} we need to enforce an additional constraint:
since all source vertices have the same geodesic distance, the
line integral of {gi} along any path connecting two source
vertices must vanish. To do so, we find the shortest path S
along edges from one source to each of the other sources,
and introduce one of the following constraints for S :

• For the face-based method, we require
∑

ej∈S

ej · gej = 0, (25)

where ej is an edge on the path, ej is its vector in the
same orientation as the path, and gej is the gradient
variable on a face adjacent to ej .

• For the edge-based method, we enforce
∑

ej∈S

sSej · xej = 0, (26)

where sSej ∈ {−1, 1} indicates the orientation of edge ei
with respect to the path.

Input Mesh Without iDT With iDT

Fig. 9. Given three input meshes with the same underlying geometry and
different triangulation quality, using our edge-based method together with
the intrinsic Delaunay triangulation helps to retain the accuracy of the
computed geodesic distance even if the input mesh is poorly triangulated.
Here the triangulation quality τ is defined in Eq. (27), and the mean
relative error ε compared to the ground truth as defined in Eq. (29).

The new optimization problem remains convex and is solved
using ADMM. In our experiments, however, adding such
constraints only makes a slight improvement to the accuracy
of the results compared to the original formulation (see
Fig. 8 for an example with the face-based method). Again,
this is likely because the unit vector field derived from
heat diffusion is already close to the gradient of the exact
geodesic distance. Moreover, our method for recovering
geodesic distance always sets the distance at source vertices
to zero, which ensures correct values at the sources even if
the constraints (25) or (26) are violated.

5.3 Intrinsic Delaunay Triangulation

Like the original heat method, our methods are less accu-
rate on meshes with triangulations of lower quality. The
robustness and accuracy of heat methods can be improved
by building the linear systems with respect to the intrinsic
Delaunay triangulation (iDT) [39] of the given mesh [26]. Our
methods also benefit from using iDT instead of the original
mesh triangulation. The idea of intrinsic triangulation is that
an edge connecting two vertices is a straight path on along
the exact mesh surface instead of the ambient Euclidean
space [40]. Such intrinsic triangulation is represented using
the vertex connectivity and the length of each edge, rather
than the 3D coordinates of the vertices (i.e., their extrinsic
embedding in the ambient space). Using such edge lengths,
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TABLE 1
Comparison of computational time (in seconds), peak memory consumption (in MB), and accuracy between VTP [21], heat method [14], variational
heat method [27], and our methods (face-based and edge-based), on a PC with an octa-core CPU and 128GB memory. The accuracy is measured
with the mean relative error ε defined in Eq. (29) using the VTP result as ground truth. For the heat method and its variants, we search for each model

the optimal smoothing factor m (see Eq. 28) that produces results with the best accuracy.

Model Triomphe Connector ChineseLion Tricep WelshDragon Lucy HappyGargoyle Cyvasse TwoHeadedBunny MalteseFalcon ThunderCrab

Number of Vertices 997,635 2,002,322 3,979,442 7,744,320 9,884,764 16,092,674 19,860,482 39,920,642 40,103,938 79,899,650 98,527,234

VTP
Time 17.66 224.82 235.78 178.41 568.54 1320.15 5060.72 12363.21 16681.46 28309.32 22298.76

RAM 1,218 2,502 4,849 9,664 12,394 18,670 23,464 46,976 47,258 93,127 114,610

HM

Precompute 10.22 26.17 54.69 115.97 153.34 281.97 388.87 Out of Memory

Solve 0.69 1.54 3.07 5.71 7.24 12.69 16.46 Out of Memory

RAM 2,951 6,160 12,207 23,945 30,677 51,144 65,545 Out of Memory

ε 0.31% 0.15% 0.73% 0.84% 1.21% 0.46% 0.29% Out of Memory

m 1.0 2.3 3.1 12.6 11.1 13.0 15.7 Out of Memory

Variational-HM

Precompute 11.7 29.34 61.31 129.07 171.24 310.01 424.81 Out of Memory

Solve 5.55 11.69 23.78 48.61 63.67 113.99 149.45 Out of Memory

RAM 3,265 6,805 13,426 26,377 33,720 56,186 71,644 Out of Memory

ε 0.44% 0.14% 0.52% 0.59% 0.91% 0.29% 0.21% Out of Memory

m 1.0 2.3 3.4 13.4 11.8 13.9 16.6 Out of Memory

Ours (Face)

Time 3.44 11.29 20.29 50.24 65.20 148.65 171.73 355.42 343.07 834.52 1174.45

RAM 1,071 1,974 3,828 7,417 9,420 15,370 18,957 38,027 38,202 76,106 93,850

ε 0.48% 0.59% 0.46% 0.50% 0.50% 0.50% 0.55% 0.86% 0.83% 0.82% 1.24%

GS Iters 300 800 800 1000 1200 1500 2000 2000 2000 2000 2000

m 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Ours (Edge)

Time 2.06 5.60 10.13 33.37 37.32 80.15 87.86 311.33 298.25 1283.56 1657.98

RAM 543 983 1,942 3,777 4,819 7,872 9,704 19,476 19,566 38,933 48,009

ε 0.77% 0.81% 0.96% 0.84% 1.00% 0.86% 1.05% 0.93% 0.94% 0.94% 1.41%

GS Iters 200 400 400 700 700 800 1000 1900 1800 4000 4000

m 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10.0 10.0

the intrinsic angles within each triangle can be easily com-
puted by isometrically unfolding the triangle into the plane
(i.e., preserving its edge lengths) and applying standard
Euclidean formulas [40]. An iDT is an intrinsic triangulation
where each pair of neighboring triangles satisfy the intrinsic
Delaunay property about their angles [39], [40]. It can be
computed using the edge-flipping algorithm proposed in [39].
Despite its high worst-case complexity in theory, the edge-
flipping algorithm is surprisingly efficient in practice and its
computational cost often grows approximately linearly with
respect to the mesh size [40].

Using iDT, the heat diffusion step still amounts to solving
the linear system (4), with the vertex areas and the cotangent
values in the system matrix computed from the intrinsic edge
lengths. Our Gauss-Seidel heat diffusion can be easily applied
on the iDT of a mesh, with the breadth-first vertex sets set
up using the vertex connectivity from the iDT, and with
the update formula (7) evaluated using the intrinsic vertex
areas and cotangent values. Using the heat diffusion solution
u, we isometrically unfold each triangle f to evaluate the
gradient of ∇u|f on the triangle, and represent ∇u|f using
2D coordinates with respect to a local frame defined on the
unfolded triangle. From this local representation we apply
the normalization in Eq. (3) to derive the target gradients for
the geodesic distance.

Our edge-based optimization approach can be easily
extended to the iDT setting. From the target gradient on each
triangle, we isometrically unfold the triangle to evaluate its
target edge differences according to Eq. (19). Then the solver
proceeds exactly the same as in Section (4.1).

To apply our face-based method, we need to represent

the gradient variables and the auxiliary variables using
local 2D coordinates within each triangle, and rewrite the
integrability constraint in (11) as a linear condition that
involves transformation between the local frames on the two
adjacent triangles. A similar ADMM solver can be derived
for this intrinsic formulation.

Fig. 9 compares the results using our edge-based method
with and without iDT. The triangulation quality of the origi-
nal mesh M is evaluated using the following measure [41]:

τ(M) =
1

|F|
∑

f∈F

2
√
3 ·Rf

lf
, (27)

where Rf and lf are the inradius and the maximum edge
length of a triangle f . A larger value of τ indicates better
quality of the triangulation. We can see that as the triangula-
tion quality worsens, iDT helps to retain the accuracy of the
computed geodesic distance. In this paper, we do not employ
iDT other than in Fig. 9.

6 EXPERIMENTAL RESULTS & DISCUSSIONS

We implement our algorithm in C++ and use OpenMP
for parallelization. The source code is available at https:
//github.com/bldeng/ParaHeat. Following [14], we set the
heat diffusion time as

t = m · h2, (28)

where h is the average edge length and m is a smoothing
factor. In our experiments, setting m to a value between 1
and 10 leads to good results. For the maximal iteration of
the ADMM solver Imax , we observe a good balance between
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Ours (edge-based)

VTP

#V: 150,722

#V: 154,337,282

Time: 4265s

RAM: 73.44GB

#V: 9,884,764

#V: 158,156,284

Time: 6436s

RAM: 75.26GB

#V: 1,064,954

#V: 272,628,224

Time: 12652s

RAM: 124.78GB

Fig. 10. We repeatedly subdivide some meshes (bottom row) to obtain very high-resolution models (top row). On such models, even our face-based
method runs out of memory, while our edge-based method can still work on a PC with 128GB RAM and an octa-core CPU at 3.6 GHz. The numbers
on the top row show the performance and accuracy of our edge-based method on each model. The bottom row shows the VTP results on the original
models for comparison.

speed and accuracy by setting Imax = 10, and use it as the
setting in all our experiments.

6.1 Performance Comparison

In the following, we evaluate the performance of our
algorithm (including the face-based method and edge-based
method), and compare it with the state-of-the-art methods,
including the original heat method (HM) with Cholesky
decomposition [14], the variational heat method (Variational-
HM) [27], and the VTP method [22]. Tab. 1 reports the
running time, peak memory consumption and accuracy of
each method, for the models in Fig. 1. All examples are run
on a desktop PC with an Intel Core i7 octa-core CPU at
3.6GHz and 128GB of RAM. For the original heat method,
we show its pre-computation time for matrix factorization
and the solving time for back substitution separately. For our
method, we show the computational time using eight threads.
For a fair comparison, for both HM and Variational-HM the
linear system matrix factorization is done using the MA87
routine from the HSL library [42], which is a multi-core
sparse Cholesky factorization method [43]. Following [17],
we measure the accuracy of each method using its mean
relative error ε defined as

ε =
1

|V|
∑

v∈V\S

|d(v)− d∗(v)|
|d∗(v)| , (29)

where V is the set of mesh vertices, S is the set of source
vertices, and d∗(v), d(v) are the ground truth geodesic
distance and the distance computed by the method at vertex
v, respectively. Since VTP computes the exact geodesic
distance, we use its result as the ground truth. From Tab. 1

we can see that our methods consume less memory than
all other methods, and take the least computational time
while achieving similar accuracy as the heat method. The
difference is the most notable on the largest models with
more than 39 million vertices: both the heat method and
the variational heat method run out of memory, while our
methods are more than an order of magnitude faster than
VTP and produce results with mean relative errors no more
than 1.41%. Between our two approaches, the edge-based
method consumes about 50% less memory than the face-
based method.

To further verify the memory effi-
ciency of our edge-based method, we
apply it to models with even higher
resolution than those in Tab. 1. One
challenge for such tests is to measure
the accuracy, because VTP will also run
out of memory on such models and
cannot provide the ground truth. To
overcome this problem, we take some
high-resolution meshes where VTP is
applicable, and repeatedly subdivide
them to increase their resolution. Each
subdivision step splits each triangle into
four triangles, by adding a new vertex at the midpoint of each
edge and then connecting these new vertices, as shown in the
inset. Note that such operation does not alter the metric on
the mesh surface, as the four new triangles coincide with the
original triangle. Therefore, if we take a vertex vs that exists
in the initial mesh M0 as the source vertex, then for any
other vertex v that also exists in M0, their geodesic distance
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Fig. 11. Time and space complexity. We show how the computational time (top row) and peak memory consumption (bottom row) change along with
different mesh resolutions on three test models, using our methods, VTP [21], the heat method [14] and the variational heat method [27], respectively.

on the initial mesh and on a subdivided mesh has the same
value. Therefore, to measure the accuracy, we select a vertex
from M0 as the source to compute the geodesic distance on
the subdivided mesh, and evaluate its mean relative error
using only the vertices that exist in the initial mesh, with
the VTP solution on M0 as the ground truth. Fig. 10 shows
some examples of such models, where even our face-based
method runs out of memory, while our edge-based method
can produce results with good accuracy.

6.2 Space and Time Complexity

Fig. 11 compares the growth of computational time and
peak memory consumption between VTP, the original heat
method, and our methods, on meshes with the same under-
lying geometry in different resolutions. The graphs verify
the O(n2) time complexity of VTP as well as the fast growth
of memory footprint for the original heat method, which
cause scalability issues for both methods. In comparison, our
methods achieve nearly linear growth in both computational
time and peak memory consumption, allowing them to
handle much larger meshes.

6.3 Parallelization

To evaluate the speedup from parallelization, we re-run our
face-based method on the same model using one, two, four,
and eight threads, respectively. We fix the Gauss-Seidel itera-
tion count to 600 in the experiments. Fig. 12 shows the timing
for each configuration and the percentage spent on each of
the following four steps: initialization of data structures, heat
diffusion, gradient optimization, and gradient integration.
We observe that the total timing is approximately inversely
proportional to the number of threads, indicating a high level

of parallelism and low overhead of our method. Although
some initialization steps such as breadth-first traversal of
vertices are performed sequentially, they only contribute a
small percentage of the total timing and incur no bottleneck
to the overall performance. As our edge-based method
follows the same algorithmic principle, its parallelization
performance is similar to the face-based method.

6.4 Comparison with Iterative Linear Solver

The original heat method does not scale well because it
adopts a direct linear solver that is known to have high
memory footprints for large-scale problems. It is worth
noting that the sparse linear systems in the original heat
method can also be handled using iterative linear solvers
with better memory efficiency for large problems. To evaluate
the effectiveness of such approaches compared with our
methods, we replace the direct linear solver in the original
heat method with the conjugate gradient (CG) method, a
popular iterative solver for sparse positive definite linear
systems. As the Poisson system in the heat method is only
positive semi-definite, we fix the solution components at the
source vertices to zero and reduce the system to a positive
definite one that can be solved using CG. We adopt the
CG solver from the EIGEN library [44] using the diagonal
preconditioner. In Fig. 13, we show the relation between
accuracy and computational time using the CG solver for
heat diffusion and geodesic distance recovery, and compare
it with our Gauss-Seidel (GS) heat diffusion and face-based
ADMM gradient solver. For heat diffusion, we measure the
accuracy of a solution u using the ℓ2-norm of its residual
with respect to the heat diffusion equation (4):

E1(u) = ‖(A− tLc)u− u0‖2. (30)
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Fig. 12. Timings for the four steps of our face-based method: initialization
of data structures, heat diffusion, gradient optimization, and gradient
integration. The numbers on top of each column show the percentage
of timing spent on each step. The timings are measured on four models
using one, two, four, and eight threads, respectively. All examples are
tested with 600 Gauss-Seidel iterations and 10 ADMM iterations.

For geodesic distance recovery, we measure the accuracy
of a solution d using the ℓ2-norm of its difference with the
solution d∗ from a direct solver:

E2(d) =
1

n
‖d− d∗‖2, (31)

where n is the number of components in d. We compute
d∗ using the LDLT solver from EIGEN. For the ADMM
solver, we integrate the resulting gradients according to
Section 3.3 to obtain the solution d. For reference, we also
include the computational time and accuracy of the EIGEN

LDLT solver in the comparison. Fig. 13 shows that both our
GS heat diffusion and our ADMM gradient solver improves
the accuracy faster than CG, making our approach a more
suitable choice for handling large models.

7 DISCUSSION & FUTURE WORK

In this paper, we develop a scalable approach to compute
geodesic distance on mesh surfaces. We adopt a similar ap-
proach as the heat method, first approximating the geodesic
distance gradients via heat diffusion, and then recovering the
distance by integrating a corrected gradient field. Unlike the
heat method that directly solves two linear systems, we pro-
pose novel algorithms that can be easily parallelized and with
fast convergence. Our approach significantly outperforms
the heat method while producing results with comparable
accuracy. Moreover, its memory consumption grows linearly
with respect to the mesh size, allowing it to handle much
larger models. We perform extensive experiments to evaluate
its speed, accuracy, and robustness. The results verify the
efficiency and scalability of our methods.

Our method can be improved and extended in several
aspects. First, although ADMM converges quickly to a
solution of moderate accuracy, it can take a large number of

GS vs CG: Triomphe ADMM vs CG: Triomphe

GS vs CG: HappyGargoyle ADMM vs CG: HappyGargoyle

Fig. 13. Comparison between our face-based method and the original
heat method using a conjugate gradient solver. The graphs show the
change of solution accuracy with respect to computational time. The
solution accuracy for the heat diffusion and the geodesic distance
recovery is computed according to Eqs. (30) and (31), respectively.

iterations to converge to a highly accurate solution [16]. One
possible way to tackle this issue is to employ the accelerated
ADMM solver proposed in [45], which often converges
faster but at the cost of higher memory consumption and
extra computation per iteration for checking the decrease of
residuals. Another potential approach is to switch to another
solver with faster local convergence when the ADMM
convergence slows down. One such candidate is L-BFGS,
which maintains the history of m previous iterations so that
its memory consumption also grows linearly with respect
to the mesh size. On the other hand, each L-BFGS iteration
involves line search that is potentially time-consuming, and
fast convergence may require a large value of m that can still
incur high memory footprint. A more in-depth investigation
of these approaches will be performed in the future.

The convergence speed of our ADMM solvers is also
affected by the penalty parameter, as well as the scaling of
linear side constraints that serves as pre-conditioning (e.g.,
the matrix M in constraint (16)). Although our current choice
of such parameters works well, it is possible to find better
parameter values that can further improve the convergence.
However, existing methods for selecting such optimal param-
eters either only work for simple problems [46], or involve
time-consuming computation that potentially negates the
benefit of faster convergence [47]. A practical approach for
choosing optimal parameters is worth further investigation.

For the original heat method, we have shown that solving
the linear systems with conjugate gradient suffers from slow
convergence. This issue can potentially be resolved using
multigrid methods. However, such methods bring additional
costs in computational time and memory consumption for
building the multigrid hierarchy, as well as the question
of how to build a good hierarchy on unstructured meshes.
Finding a suitable multigrid method is an interesting topic
for future work. Also worth investigating is how our ADMM
solver can be adapted to benefit from multigrid hierarchies.

Despite experiments showing that our formulation can
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handle surfaces of non-zero topology and multiple sources
using only local compatibility of the gradients, we do not
have a formal proof of this property. An interesting avenue
for future research is how the accuracy of heat flow gradients
affects the effectiveness of our formulation.

Our approach is currently limited to triangle meshes
because of its reliance on a well-defined discrete gradient
operator. As an extension, we would like to explore its
application on other geometric representations such as point
clouds and implicit surfaces.

Finally, Although we only implement our method on
CPUs using OpenMP, its massive parallelism allows it to be
easily ported to GPUs, which we will leave as future work.
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