
ar
X

iv
:1

90
9.

02
85

6v
1

 [
cs

.C
V

]
 5

 S
ep

 2
01

9
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Discriminative Video Representation Learning
Using Support Vector Classifiers

Jue Wang Anoop Cherian

Abstract—Most popular deep models for action recognition in videos generate independent predictions for short clips, which are then

pooled heuristically to assign an action label to the full video segment. As not all frames may characterize the underlying

action—indeed, many are common across multiple actions—pooling schemes that impose equal importance on all frames might be

unfavorable. In an attempt to tackle this problem, we propose discriminative pooling, based on the notion that among the deep features

generated on all short clips, there is at least one that characterizes the action. To identify these useful features, we resort to a negative

bag consisting of features that are known to be irrelevant, for example, they are sampled either from datasets that are unrelated to our

actions of interest or are CNN features produced via random noise as input. With the features from the video as a positive bag and the

irrelevant features as the negative bag, we cast an objective to learn a (nonlinear) hyperplane that separates the unknown useful

features from the rest in a multiple instance learning formulation within a support vector machine setup. We use the parameters of this

separating hyperplane as a descriptor for the full video segment. Since these parameters are directly related to the support vectors in a

max-margin framework, they can be treated as a weighted average pooling of the features from the bags, with zero weights given to

non-support vectors. Our pooling scheme is end-to-end trainable within a deep learning framework. We report results from experiments

on eight computer vision benchmark datasets spanning a variety of video-related tasks and demonstrate state-of-the-art performance

across these tasks.

Index Terms—video representation, video data mining, discriminative pooling, action recognition, deep learning.

✦

1 INTRODUCTION

W E are witnessing an astronomical increase of video data

around us. This data deluge has brought out the problem of

effective video representation – specifically, their semantic content

– to the forefront of computer vision research. The resurgence

of convolutional neural networks (CNN) has enabled significant

progress to be made on several problems in computer vision [1],

[2] and is now pushing forward the state-of-the-art in action

recognition and video understanding as well [3], [4], [5], [6]. Even

so, current solutions for video representation are still far from

being practically useful, arguably due to the volumetric nature of

this data modality and the complex nature of real-world human

actions.

Using effective architectures, CNNs are often found to extract

features from images that perform well on recognition tasks.

Leveraging this know-how, deep learning solutions for video

action recognition have so far been straightforward extensions

of image-based models [6], [7], [8]. However, applying such

models directly on video data is not an easy task as the video

can be arbitrarily long, to address which a CNN may need to be

scaled up by yet another dimension of complexity, which could

increase the number of parameters sharply. This demands more

advanced computational infrastructures and greater quantities of

clean training data [3], [9]. To overcome this problem, the trend

has been on converting the video data to short temporal segments

consisting of one to a few frames, on which the existing image-

based CNN models are trained. For example, in the popular two-

• Jue Wang is with the Research School of Engineering, The Australian

National University, ACT 2601, Australia. E-mail: jue.wang@anu.edu.au

• Anoop Cherian is with Mistubishi Electric Research Labs (MERL),

Cambridge, MA, E-mail: cherian@merl.com

Fig. 1. A illustration of our discriminative pooling scheme. Our main idea
is to learn a representation for the positive bag (left) of CNN features
from the video of interest. To extract useful features from this video, we
use a negative bag (right) of features from videos that are known to
contain irrelevant/noise features. The representation learning problem
is cast as a binary (non)-linear classification problem in an SVM setting;
the hyperplane found via the optimization (which is a linear combination
of support vectors) is used as the representation of the positive bag,
which we call the SVM pooled descriptor.

stream model [7], [10], [11], [12], [13], the CNNs are trained to

independently predict actions from short video clips (consisting

of single frames or stacks of about ten optical flow frames) or a

snippet of about 64 frames as in the recent I3D architecture [3];

these predictions are then pooled to generate a prediction for

the full sequence – typically using average/max pooling. While

average pooling gives equal weights to all the predictions, max

pooling may be sensitive to outliers. There have also been recent

approaches that learn representations over features produced by,

say a two-stream model, such as the temporal relation networks of

http://arxiv.org/abs/1909.02856v1

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Zhou et al. [6], the rank pooling and its variants Bilen et al., [14],

Fernando et al., [15], and Cherian et al., [16], [17] that capture the

action dynamics, higher-order statistics of CNN features Cherian

et al., [18], [19], CNN features along motion trajectories Wang

et al., [12] and temporal segments Wang et al., [20], to name a

few. However, none of these methods avoid learning meaningless

information from the noise/background within the video, explicitly

modeling which and demonstrating its benefits, are the main

contributions of this paper.

To this end, we observe that not all predictions on the short

video snippets are equally informative, yet some of them must

be [21]. This allows us to cast the problem in a multiple instance

learning (MIL) framework, where we assume that some of the

features in s given sequence are indeed useful, while the rest are

not. We assume all the CNN features from a sequence (containing

both the good and the bad features) to represent a positive bag,

while CNN features from unrelated video frames or synthetically

generated random noise frames as a negative bag. We would ide-

ally want the features in the negative bag to be correlated well to

the uninformative features in the positive bag. We then formulate a

binary classification problem of separating as many good features

as possible in the positive bag using a discriminative classifier

(we use a support vector machine (SVM) for this purpose). The

decision boundary of this classifier thus learned is then used as

a descriptor for the entire video sequence, which we call the

SVM Pooled (SVMP) descriptor. To accommodate the fact that

we are dealing with temporally-ordered data in the positive bag,

we also explore learning our representations with partial ordering

relations. An illustration of our SVMP scheme is shown in the

Figure 1.

Our SVMP scheme/descriptor shares several properties of

standard pooled descriptors, however also showcases several im-

portant advantages. For example, similar to other pooling schemes,

SVM pooling results in a compact and fixed length representation

of videos of arbitrary length. However differently, our pooling

gives different weights to different features, and thus may be seen

as a type of weighted average pooling, by filtering out features that

are perhaps irrelevant for action recognition. Further, given that

our setup uses a max-margin encoding of the features, the pooled

descriptor is relatively stable with respect to data perturbations

and outliers. Our scheme is agnostic to the feature extractor part

of the system, for example, it could be applied to the intermediate

features from any CNN model or even hand-crafted features.

Moreover, the temporal dynamics of actions are explicitly encoded

in the formulation. The scheme is fast to implement using publicly

available SVM solvers, and also could be trained in an end-to-end

manner within a CNN setup.

To evaluate our SVMP scheme, we provide extensive experi-

ments on various datasets spanning a diverse set of tasks, namely

action recognition and forecasting on HMDB-51 [22], UCF-

101 [23], Kinetics-600 [24] and Charades [25]; skeleton-based

action recognition on MSR action-3D [26], and NTU-RGBD [27];

image-set verification on the PubFig dataset [28], and video-

texture recognition on the YUP++ dataset [29]. We outperform

standard pooling methods on these datasets by a significant margin

(between 3–14%) and demonstrate superior performance against

state-of-the-art results by 1–5%.

Before moving on, we summarize below the main contribu-

tions of this paper:

• We introduce the concept of multiple instance learning

(MIL) into a binary SVM classification problem for learn-

ing video descriptors.

• We propose SVM pooling that captures and summarizes

the discriminative features in a video sequence while

explicitly encoding the action dynamics.

• We explore variants of our optimization problem and

present progressively cheaper inference schemes, includ-

ing a joint pooling and classification objective, as well as

an end-to-end learnable CNN architecture.

• We demonstrate the usefulness of our SVMP descriptor by

applying it on eight popular vision benchmarks spanning

diverse input data modalities and CNN architectures.

2 RELATED WORK

The problem of video representation learning has received sig-

nificant interest over the past decades. Thus, we restrict our

literature review to some of the more recent methods, and defer the

interested reader to excellent surveys on the topics such as [30],

[31], [32].

2.1 Video Representation Using Shallow Features

Traditional methods for video action recognition typically use

hand-crafted local features, such as dense trajectories, HOG, HOF,

etc. [33], which model videos by combining dense sampling

with feature tracking. However, the camera motion, as one of

the video natures, usually result in non-static video background

and hurt the quality of features. To tackle this problem, Wang

et al. [34] improved the performance of dense trajectories by

removing background trajectories and warping optical flow. Based

on the improved dense trajectories, high-level representations are

designed via pooling appearance and flow features along these

trajectories, and have been found to be useful to capture human

actions. For example, Sadanand et al. [35] propose Action Bank,

which converts the individual action detector into semantic and

viewpoint space. Similarly, Bag of words model [36], Fisher

vector [37], and VLAD [38] representations are mid-level rep-

resentations built on such hand-crafted features with the aim of

summarizing local descriptors into a single vector representation.

In Peng et al. [39], a detailed survey of these ideas is presented. In

comparison to these classic representation learning schemes, our

proposed setup is grounded on discriminatively separating useful

data from the rest.

2.2 Video Representation Using Deep Features

With the resurgence of deep learning methods for object recog-

nition [40], there have been several attempts to adapt these

models to action recognition. Recent practice is to feed the video

data, including RGB frames, optical flow subsequences, and 3D

skeleton data into a deep (recurrent) network to train it in a

supervised manner. Successful methods following this approach

are the two-stream models and their extensions [4], [7], [29], [41],

[42]. As apparent from its name, it has two streams, spatial stream

is to capture the appearance information from RGB frames and

temporal stream is to learn the motion dynamics from stacked

optical flow. And then, they apply early or late fusion strategy to

predict the final label. Although the architecture of these networks

are different, the core idea is to split the video into short clips

and embed them into a semantic feature space, and then recognize

the actions either by aggregating the individual features per clip

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

using some statistic (such as max or average) or directly training

a CNN based end-to-end classifier [4]. While the latter schemes

are appealing, they usually need to store the feature maps from

all the frames in memory which may be prohibitive for longer

sequences. Moreover, this kind of training strategy may fail to

capture the long-term dynamics in the video sequence. To tackle

this problem, some recurrent models [43], [44], [45], [46], [47],

[48] are proposed, which use long-short term memory (LSTM)

or gate recurrent unit (GRU) to embed the temporal relationship

among frames by using logistic gates and hidden states. However,

the recurrent neural networks are usually hard to train [49] due to

the exploding and vanishing gradient problem. Temporal Segment

Network (TSN) [20] and Temporal Relation Network (TRN) [6]

provide alternative solutions that are easier to train.

Another promising solution is to use 3D convolutional fil-

ters [3], [50], [51], [52], [53]. Compared to 2D filters, 3D filters

can capture both spatial and temporal video structure. However,

feeding the entire video into the CNNs may be computationally

prohibitive. Further, 3D kernels bring more parameters into the

architecture; as a result, may demand large and clean data for

effective training [3]. While, an effective CNN architecture that

can extract useful action-related features is essential to make

progress in video understanding, we focus on the other aspect

of the problem – that is, given a CNN architecture how well

can we summarize the features it produces for improving action

recognition. To this end, our efforts in this paper can be seen as

complimentary to these recent approaches.

2.3 Video Representation Using Pooling Schemes

Typically, pooling schemes consolidate input data into compact

representations based on some data statistic that summarizes the

useful content. For example, average and max pooling captures

zero-th and first order statistics. There are also works that use

higher-order pooling, such as Cherian and Gould [54] using

second-order, Cherian et al. [19] using third-order, and Girdhar

et al., [55] proposing a video variant of the VLAD encoding

which is approximately a mixture model. A recent trend in

pooling schemes, which we also follow in this paper, is to use

the parameters of a data modeling function, as the representation.

For example, rank pooling [15] proposes to use the parameters

of a support vector regressor as a video representation. In Bilen

et al., [14], rank pooling is extended towards an early frame-level

fusion, dubbed dynamic images; Wang et al. [56], extends this idea

to use optical flow, which they call dynamic flow representation.

Cherian et al. [17] generalized rank pooling to include multiple

hyperplanes as a subspace, enabling a richer characterization of

the spatio-temporal details of the video. This idea was further

extended to non-linear feature representations via kernelized rank

pooling in [16]. However, while most of these methods optimize

a rank-SVM based regression formulation, our motivation and

formulation are different. We use the parameters of a binary SVM

to be the video level descriptor, which is trained to classify the

frame level features from a pre-selected (but arbitrary) bag of

negative features. Similar works are Exemplar-SVMs [57], [58],

[59], that learn feature filters per data sample and then use these

filters for feature extraction. However, in this paper, we use the

decision boundary of the SVM to be the video level descriptor,

that separate as many discriminative features as possible in each

sequence while implicitly encoding the temporal order of these

features.

2.4 Multiple Instance Learning

An important component of our algorithm is the MIL scheme,

which is a popular data selection technique [60], [61], [62], [63],

[64]. In the context of video representation, schemes similar in

motivation have been suggested before. For example, Satkin and

Hebert [65] explore the effect of temporal cropping of videos

to regions of actions; however, it assumes these regions are

continuous. Nowozin et al. [66] represent videos as sequences

of discretized spatiotemporal sets and reduces the recognition task

into a max-gain sequence finding problem on these sets using an

LPBoost classifier. Similar to ours, Li et al. [67] propose an MIL

setup for complex activity recognition using a dynamic pooling

operator – a binary vector that selects input frames to be part

of an action, which is learned by reducing the MIL problem

to a set of linear programs. Chen and Nevatia [68] propose a

latent variable based model to explicitly localize discriminative

video segments where events take place. Vahdat et al. present

a compositional model in [69] for video event detection, which

is presented using a multiple kernel learning based latent SVM.

While all these schemes share similar motivations as ours, we cast

our MIL problem in the setting of normalized set kernels [70]

and reduce the formulation to standard SVM setup which can be

solved rapidly. In the ∝-SVMs of Yu et al., [71], [72], the positive

bags are assumed to have a fixed fraction of positives, which is a

criterion we also assume in our framework. However, the negative

bag selection, optimization setup and our goals are different;

specifically, our goal is to learn a video representation for any

subsequent task including recognition, anticipation, and detection,

while the framework in [71] is designed for event detection. And

we generate the negative bag by using CNN features generated via

inputing random noise images to the network.

The current paper is an extension of our published conference

paper [73] and differs in the following ways. Apart from the more

elaborate literature survey we present, we also provide extensions

of our pooling scheme, specifically by incorporating temporal-

ordering constraints. We provide detailed derivations of our end-

to-end pooling variant. We further present elaborate experiments

on five more datasets in addition to the three datasets that we used

in [73], including a large scale action recognition experiment using

the recently proposed Kinetics-600 dataset.

3 PROPOSED METHOD

In this section, we first describe the problem of learning SVMP

descriptors and introduce three different ways to solve it. Before

proceeding, we provide a snapshot of our main idea and problem

setup graphically in Figure 2. Starting from frames (or flow

images) in positive and negative bags, these frames are first passed

through some CNN model for feature generation. These features

are then passed to our SVMP module that learns (non-linear)

hyperplanes separating the features from the positive bag against

the ones from the negative bag, the latter is assumed fixed for all

videos. These hyperplane representations are then used to train an

action classifier at the video level. In the following, we formalize

these ideas concretely.

3.1 Problem Setup

Let us assume we are given a dataset of N video sequences

X+ =
{

X+
1 , X+

2 , ..., X+
N

}

, where each X+
i is a set of frame

level features, i.e., X+
i =

{

x
i+
1 ,xi+

2 , ...,xi+
n

}

, each x
i+
k ∈ R

p.

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Fig. 2. Illustration of our SVM Pooling scheme. (i) Extraction of frames from videos, (ii) Converting frames f into feature x, (iii) Learning decision
boundary w from feature x, and (iv) Using w as video descriptor.

We assume that each X+
i is associated with an action class label

y+i ∈ {1, 2, ..., d}. Further, the + sign denotes that the features

and the sequences represent a positive bag. We also assume that

we have access to a set of sequences X− =
{

X−
1 , X−

2 , ...X−
M

}

belonging to actions different from those in X+, where each

X−
j =

{

x
j−
1 ,x

j−
2 , ...,xj−

n

}

are the features associated with

a negative bag, each x
j−
k ∈ R

p. For simplicity, we assume all

sequences have same number n of features. Further note that our

scheme is agnostic to the type of features, i.e., the feature may be

from a CNN or are hand-crafted.

Our goals are two-fold, namely (i) to learn a classifier decision

boundary for every sequence in X+ that separates a fraction η
of them from the features in X− and (ii) to learn video level

classifiers on the classes in the positive bags that are represented

by the learned decision boundaries in (i). In the following, we will

provide a multiple instance learning formulation for achieving (i),

and a joint objective combining (i) and learning (ii). However,

before presenting our scheme, we believe it may be useful to gain

some insights into the main motivations for our scheme.

As alluded to above, given the positive and negative bags, our

goal is to learn a linear (or non-linear) classification boundary

that could separate the two bags with a classification accuracy

of η% – this classification boundary is used as the descriptor

for the positive bag. Referring to the conceptual illustration in

Figure 3(a), when no negative bag is present, there are several

ways to find a decision hyperplane in a max-margin setup that

could potentially satisfy the η constraint. However, there is no

guarantee that these hyperplanes are useful for action recognition.

Instead, by introducing a negative bag, which is almost certainly

to contain irrelevant features, it may be easier for the decision

boundary to identify useless features from the rest; the latter

containing useful action related features, as shown in Figure 3(b).

This is precisely our intuitions for proposing this scheme.

3.2 Learning Decision Boundaries

As described above, our goal in this section is to generate a

descriptor for each sequence X+ ∈ X+; this descriptor we define

to be the learned parameters of a hyperplane that separates the

features x
+ ∈ X+ from all features in X−. We do not want to

warrant that all x+ can be separated from X− (since several of

them may belong to a background class), however we assume that

at least a fixed fraction η of them are classifiable. Mathematically,

!

(a)

!
"

! #

$

(b)

Fig. 3. An illustration of our overall idea. (a) the input data points,
and the plausible hyperplanes satisfying some η constraint, (b) when
noise X

− is introduced (green dots), it helps identify noisy features/data
dimensions, towards producing a hyperplane w that classifies useful
data from noise, while satisfying the η constraint.

suppose the tuple (wi, bi) represents the parameters of a max-

margin hyperplane separating some of the features in a positive

bag X+
i from all features in X−, then we cast the following

objective, which is a variant of the sparse MIL (SMIL) [74],

normalized set kernel (NSK) [70], and ∝-SVM [72] formulations:

argmin
wi∈Rp,bi∈R,ζ≥0

P1(wi, bi) :=
1

2
‖wi‖

2
+ C1

(M+1)n
∑

k=1

ζk (1)

subject to θ(x; η)
(

wT
i x+ bi

)

≥ 1− ζk (2)

θ(x; η) = −1, ∀x ∈
{

X+
i

⋃

X−
}

\X̂+
i (3)

θ(x̂; η) = 1, ∀x̂ ∈ X̂+
i (4)

∣

∣

∣X̂+
i

∣

∣

∣ ≥ η
∣

∣X+
i

∣

∣ . (5)

In the above formulation, we assume that there is a subset X̂+
i ⊂

X+
i that is classifiable, while the rest of the positive bag need not

be, as captured by the ratio in (5). The variables ζ capture the non-

negative slacks weighted by a regularization parameter C1, and

the function θ provides the label of the respective features. Unlike

SMIL or NSK objectives, that assumes the individual features x

are summable, our problem is non-convex due to the unknown set

X̂+. However, this is not a serious deterrent to the usefulness of

our formulation and can be tackled as described in the sequel and

supported by our experimental results.

As our formulation is built on an SVM objective, we call

this specific discriminative pooling scheme as SVM pooling and

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

formally define the descriptor for a sequence as:

Definition 1 (SVM Pooling Desc.). Given a sequence X of

features x ∈ R
p and a negative datasetX−, we define the SVM

Pooling (SVMP) descriptor as SVMP(X) = [w, b]T ∈
R
p+1, where the tuple (w, b) is obtained as the solution of

problem P1 defined in (1).

3.3 Optimization Solutions

The problem P1 could be posed as a mixed-integer quadratic

program (MIQP), which is unfortunately known to be in NP [75].

The problem P1 is also non-convex due to the proportionality

constraint η, and given that the labels θ(x; η) are unknown.

Towards a practically useful approximate solution circumventing

these difficulties, we present three optimization strategies below.

3.3.1 Exhaustive Enumeration

A naı̈ve way to solve problem P1 could be to enumerate all the

possible θ(x; η) that meet a given η constraint, which reduces

solving the problem P1 to the classical SVM problem for each

instantiation of the plausible θ assignments. In such a setting, for

a given sequence, we can rewrite (1) as:

argmin
wi∈Rp,bi∈R,ζ≥0

1

2
‖wi‖

2
+ C1

(M+1)n
∑

k=1

ζk

+max(0, 1− ζk − θ(x; η)(wT
i x+ bi)), (6)

where the constraints are included via the hinge loss. Once these

subproblems are solved, we could compare the optimal solutions

for the various subsets of the positive bag, and pick the best

solution with smallest objective value. As is apparent, this naı̈ve

strategy becomes problematic for longer sequences or when η is

not suitably chosen.

3.3.2 Alternating algorithm

This is a variant of the scheme proposed in [72]. Instead of

enumerating all possible θ(x; η) as above, the main idea here

is to fix θ(x; η) or [w, b] alternately and optimize the other. The

detailed algorithm is shown in the Alg. 1.

Input: X+, X−, η
Initialize θ according to η;

repeat

Fix θ to solve [w, b]← SVM(X+, X−, θ);
Fix [w, b] to solve θ :
Reinitialize θi ← −1, ∀i ∈ (i, n);
for i = 1 → n do
Set θi ← 1;
record the reduction of Objective

end

Sort and select the top R reductions, R = ηn;

Get θ according to the sorting;
until Reduction is smaller than a threshold (10−4);
return [w, b]

Algorithm 1: Alternating solution to the MIL problem P1

In the Algorithm 1, fixing θ to solve [w, b] is a standard

SVMP problem as in the enumeration algorithm above. When

fixing [w, b] to solve θ, we apply a similar strategy as in [72];

i.e., to initialize all labels in θ as −1, and then to turn each θi to

+1 and record the reduction in the objective. Next, we sort these

reductions to get the top R best reductions, where R = ηn. A

higher reduction implies it may lead to a smaller objective. Next,

these top R θi will be set to +1 in θ. While, there is no theoretical

guarantee for this scheme to converge to a fixed point, empirically

we observe a useful convergence, which we limit via a suitable

threshold.

3.3.3 Parameter-tuning algorithm

As is clear, both the above schemes may be computationally

expensive in general. We note that the regularization parameter

C1 in (1) controls the positiveness of the slack variables ζ, thereby

influencing the training error rate. A smaller value of C1 allows

more data points to be misclassified. If we make the assumption

that useful features from the sequences are easily classifiable

compared to background features, then a smaller value of C1

could help find the decision hyperplane easily (further assuming

the negative bag is suitably chosen). However, the correct value

of C1 depends on each sequence. Thus, in Algorithm (2), we

propose a heuristic scheme to find the SVMP descriptor for a

given sequence X+ by iteratively tuning C1 such that at least

a fraction η of the features in the positive bag are classified as

positive.

Input: X+, X−, η
C1 ← ǫ, λ > 1;

repeat

C1 ← λC1;

[w, b]← argminw,b SVM(X+, X−, C1);

X̂+ ←
{

x ∈ X+ | wT
x+ b ≥ 0

}

;

until
|X̂+|
|X+| ≥ η;

return [w, b]

Algorithm 2: Parameter-tuning solution for MIL problem

P1

A natural question here is how optimal is this heuristic? Note

that, each step of Algorithm (2) solves a standard SVM objective.

Suppose we have an oracle that could give us a fixed value C for

C1 that works for all action sequences for a fixed η. As is clear,

there could be multiple combinations of data points in X̂+ that

could satisfy this η (as we explored in the Enumeration algorithm

above). If X̂+
p is one such X̂+. Then, P1 using X̂+

p is just the

SVM formulation and is thus convex. Different from previous

algorithms, in Alg. 2, we adjust the SVM classification rate to

η, which is easier to implement. Assuming we find a C1 that

satisfies the η-constraint using P1, then due to the convexity of

SVM, it can be shown that the optimizing objective of P1 will be

the same in both cases (exhaustive enumeration and our proposed

regularization adjustment), albeit the solution X̂+
p might differ

(there could be multiple solutions).

3.4 Nonlinear Extensions

In problem P1, we assume a linear decision boundary generating

SVMP descriptors. However, looking back at our solutions in

Algorithms (1) and (2), it is clear that we are dealing with standard

SVM formulations to solve our relaxed objectives. In the light

of this, instead of using linear hyperplanes for classification, we

may use nonlinear decision boundaries by using the kernel trick

to embed the data in a Hilbert space for better representation.

Assuming X = X+ ∪ X−, by the Representer theorem [76], it

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

is well-known that for a kernel K : X × X → R+, the decision

function f for the SVM problem P1 will be of the form:

f(.) =
∑

x∈X+∪X−

αxK(.,x), (7)

where αx are the parameters of the non-linear decision boundaries.

However, from an implementation perspective, such a direct ker-

nelization may be problematic, as we will need to store the training

set to construct the kernel. We avoid this issue by restricting

our formulation to use only homogeneous kernels [77], as such

kernels have explicit linear feature map embeddings on which a

linear SVM can be trained directly. This leads to exactly the same

formulations as in (1), except that now our features x are obtained

via a homogeneous kernel map. In the sequel, we call such a

descriptor a nonlinear SVM pooling (NSVMP) descriptor.

3.5 Temporally-Ordered Extensions

In the formulations we proposed above, there are no explicit

constraints to enforce the temporal order of features in the SVMP

descriptor. This is because, in the above formulations, we assume

the features themselves capture the temporal order already. For

example, the temporal stream in a two-stream model is already

trained on a densely-sampled stack of consecutive optical flow

frames. However, motivated by several recent works [14], [15],

[17], [56], we extend our Equation (1) by including ordering

constraints as:

wT
x
i+
j + δ ≤ wT

x
i+
k , ∀j < k;xi+

j ,xi+
k ∈ X̂+

i (8)

where we reuse the notation defined above and define δ > 0
as a margin enforcing the order. In the sequel, we use this

temporally-ordered variant of SVMP for our video representation.

Note that with the ordering constraints enforced, it is difficult to

use the enumerative or alternating schemes for finding the SVMP

descriptors, instead we use Alg. 2 by replacing the SVM solver by

a custom solver [78].

4 END-TO-END CNN LEARNING

In this section, we address the problem of training a CNN end-

to-end with SVM pooling as an intermediate layer – the main

challenge is to derive the gradients of SVMP for efficient back-

propagation. This challenge is amplified by the fact that we use

the parameters of the decision hyperplane to generate our pooling

descriptor, this hyperplane is obtained via a non-differentiable

argmin function (refer to (1)). However, fortunately, there is well-

developed theory addressing such cases using the implicit function

theorem [79], and several recent works towards this end in the

CNN setting [80]. We follow these approaches and derive the

gradients of SVMP below.

4.1 Discriminative Pooling Layer

In Figure 4, we describe two ways to insert the discriminative

pooling layer into the CNN pipeline, namely (i) inserting SVMP at

some intermediate layer and (ii) inserting SVMP at the end of the

network just before the final classifier layer. While the latter pools

smaller dimensional features, computing the gradients will be

faster (as will be clear shortly). However, the last layer might only

have discriminative action features alone, and might miss other

spatio-temporal features that could be useful for discriminative

pooling. This is inline with our observations in our experiments in

Section 5 that suggest that applying discriminative pooling after

pool5 or fc6 layers is significantly more useful than at the end of

the fc8 layer. This choice of inserting the pooling layer between

some intermediate layers of the CNN leads to the first choice.

Figure 4 also provides the gradients that need to be computed

for back-propagation in either case. The only new component of

this gradient is that for the argmin problem of pooling, which we

derive below.

4.2 Gradients Derivations for SVMP

Assume a CNN f taking a sequence S as input. Let fL denote

the L-th CNN layer and let XL denote the feature maps generated

by this layer for all frames in S. We assume these features go

into an SVMP pooling layer and produces as output a descriptor

w (using a precomputed set of negative feature maps), which is

then passed to subsequent CNN layers for action classification.

Mathematically, let g(z) = argminw SVMP(XL−1) define the

SVM pooling layer, which we re-define using hinge-loss in the

objective f(z, w) as:

SVMP(XL−1) =
1

2
‖w‖

2
+
λ

2

∑

z∈XL−1

max
(

0, θ(z; η)wT z − 1
)2

.

As is by now clear, with regard to a CNN learning setup,

we are dealing with a bilevel optimization problem here – that

is, optimizing for the CNN parameters via stochastic gradient

descent in the outer optimization, which requires the gradient of

an argmin inner optimization with respect to its optimum, i.e., we

need to compute the gradient of g(z) with respect to the data z.

By applying Lemma 3.3 of [80], this gradient of the argmin at an

optimum SVMP solution w∗ can be shown to be the following:

∇zg(z)|w=w∗ = −∇ww SVMP(XL−1)
−1∇zw SVMP(XL−1),

where the first term captures the inverse of the Hessian evaluated
at w∗ and the second term is the second-order derivative wrt z
and w. Substituting for the components, we have the gradient at
w = w∗ as:

−



I+λ
∑

∀j:θjw
T zj>1

(θjzj)(θjzj)
T





−1

λ

∑

∀j:θjw
T zj>1

D (θ2jw
T
zj−θj)+θ

2
jwz

T
j





(9)

where for brevity, we use θj = θ(zj ; η), and D is a diagonal

matrix, whose i-th entry as Dii = θ2iw
T zi − θi.

5 EXPERIMENTS

In this section, we explore the utility of discriminative pooling

on several vision tasks, namely (i) action recognition using video

and skeletal features, (ii) localizing actions in videos, (iii) image

set verification, and (iv) recognizing dynamic texture videos. We

introduce the respective datasets and experimental protocols in the

next.

5.1 Datasets

HMDB-51 [22] and UCF-101 [23]: are two popular benchmarks

for video action recognition. Both datasets consist of trimmed

videos downloaded from the Internet. HMDB-51 has 51 action

classes and 6766 videos, while UCF-101 has 101 classes and

13320 videos. Both datasets are evaluated using 3-fold cross-

validation and mean classification accuracy is reported. For these

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Fig. 4. Two possible ways to insert SVM pooling layer within a standard CNN architecture. In the first option (top), we insert the SVMP layer
between fully connected layers, while in the latter we include it before the final classifier layer. The choice of L− 1 layer for the former is arbitrary.
We also show the corresponding partial gradients with respect to weights of the layer penultimate to the SVM pooling layer. Except for the gradients
∂SV MP (X)

∂X
, other gradients are the standard ones. Here Zℓ represents the weights of the ℓ-th layer of the network.

datasets, we analyze different combinations of features on multiple

CNN frameworks.

Charades [25]: is an untrimmed and multi-action dataset, contain-

ing 11,848 videos split into 7985 for training, 1863 for validation,

and 2,000 for testing. It has 157 action categories, with several

fine-grained categories. In the classification task, we follow the

evaluation protocol of [25], using the output probability of the

classifier to be the score of the sequence. In the detection task,

we follow the ‘post-processing’ protocol described in [81], which

uses the averaged prediction score of a small temporal window

around each temporal pivot. Using the provided two-stream fc7

feature1, we evaluate the performance on both tasks using mean

average precision (mAP) on the validation set.

Kinetics-600 [24]: is one of the largest dataset for action recog-

nition. It consists of 500K trimmed video clips over 600 action

classes with at least 600 video clips in each class. Each video clip

is at least 10 seconds long with a single action class label. We

apply our SVMP scheme on the CNN features (2048-D) extracted

from the I3D network [3].

MSR Action3D [26] and NTU-RGBD [27]: are two popular

action datasets providing 3D skeleton data. Specifically, MSR

Action3D has 567 short sequences with 10 subjects and 20 actions,

while NTU-RGBD has 56,000 videos and 60 actions performed

by 40 people from 80 different view points. NTU-RGBD is by far

the largest public dataset for depth-based action recognition. To

analyze the performance of SVMP on non-linear features, we use

a lie-algebra encoding of the skeletal data as proposed in [82] for

the MSR dataset. As for NTU-RGBD, we use a temporal CNN as

in [42], but uses SVMP instead of their global average pooling.

Public Figures Face Database (PubFig) [28]: contains 60,000

real-life images of 200 people. All the images are collected

directly from the Internet without any post-processing, which

make the images in each fold have large variations in lighting,

backgrounds, and camera views. Unlike video-based datasets,

PubFig images are non-sequential. To generate features, we fine-

tune a ResFace-101 network [83] on this dataset and follow the

evaluation protocol of [41].

YUP++ dataset [29]: is recent dataset for dynamic scene un-

derstanding. It has 20 scene classes, such as Beach, Fireworks,

Waterfall, Railway, etc. There are 60 videos in each class. Half of

1. http://vuchallenge.org/charades.html

the videos are recorded by a static camera and the other half by a

moving camera. Accordingly, it is divided into two sub-datasets,

YUP++ moving camera and YUP++ static camera. We use the

latest Inception-ResNet-v2 model [84] to generate features (from

last dense layer) from RGB frames and evaluate the performance

according to the setting in [29], which use a 10/90 train-test ratio.

0 50 100

A
cc

ur
ac

y
(%

)

0

20

40

60

80

ActivityNet
UCF101
THUMOS 2015
White Noise

(a)

Number of instance in the Pos/Neg Bag
5 10 20 30 40 50

A
cc

ur
ac

y
(%

)

59

60

61

62

63

64

Positive Bag
Negative Bag

(b)

Log10(C)
-4 -3 -2 -1 0 1 2 3 4

A
cc

ur
ac

y
(%

)

40

50

60

70

ActivityNet
UCF101
Thumos 2015
White Noise

(c)

Number of frames in sequence
0 500 1000 1500 2000

T
im

e
(s

ec
on

d)

0

10

20

30

40
Decision Boundary
Rank Pooling
Fisher Vector
Dynamic Image

(d)

Fig. 5. Analysis of the parameters used in our scheme. All experiments
use VGG features from fc6 dense layer. See text for details.

5.2 Parameter Analysis

In this section, we analyze the influence of each of the parameters

in our scheme.

Selecting Negative Bags: An important step in our algorithm is

the selection of the positive and negative bags in the MIL problem.

We randomly sample the required number of frames (say, 50) from

each sequence/fold in the training/testing set to define the positive

bags. In terms of the negative bags, we need to select samples

that are unrelated to the ones in the positive bags. We explored

four different negatives in this regard to understand the impact

of this selection. We compare our experiments on the HMDB-

51 (and UCF101) datasets. Our considered the following choices

for the negative bgs: clips from (ithe ActivityNet dataset [85]

unrelated to HMDB-51, (ii) the UCF-101 dataset unrelated to

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

HMDB-51, (iii) the Thumos Challenge background sequences2,

and (iv) synthesized random white noise image sequences. For (i)

and (ii), we use 50 frames each from randomly selected videos,

one from every unrelated class, and for (iv) we used 50 synthesized

white noise images, and randomly generated stack of optical flow

images. Specifically, for the latter, we pass white noise RGB

images to the same CNN models and extract the feature from

the last fully-connected layer. As for hand-crafted or geometry

features used in our other experiments (such as action recognition

on human pose sequences), we directly use the white noise as the

negative bag. As shown in Figure 5(a), the white noise negative

is seen to showcase better performance for both lower and higher

value of η parameter.

To understand this trend, in Figure 6, we show TSNE plots

visualizing the deep CNN features for the negative bag variants.

Given that the CNNs are trained on real-world image data and

we extract features from the layer before the last linear layer, it

is expected that these features be linearly separable (as seen in

Figure 6(a) and 6(b)). However, we believe using random noise

inputs may be activating combinations of filters in the CNN that

are never co-activated during training, resulting in features that are

highly non-linear (as Figure 6(c) shows). Thus, when requiring

SVMP to learn linear/non-linear decision boundaries to classify

video features against these “noise” features perhaps forces the

optimizer to select those dimensions in the inputs (positive bag)

that are more correlated with actions in the videos, thereby

empowering the descriptor to be more useful for classification.

In Figure 7, we show the TSNE visualizations of SVMP

descriptors comparing to average pooling and max pooling on data

from 10-classes of HDMB-51 dataset. The visualization shows

that SVMP leads to better separated clusters, substantiating that

SVMP is learning discriminative representations.

(a) Thumos (b) UCF101 (c) White Noise

Fig. 6. T-SNE plots of positive (blue) and negative bags (red) when using
negatives from: (a) Thumos, (b) UCF101, and (c) white noise.

Choosing Hyperparameters: The three important parameters

in our scheme are (i) the η deciding the quality of an SVMP

descriptor, (ii) C1 = C used in Algorithm 2 when finding SVMP

per sequence, and (iii) sizes of the positive and negative bags. To

study (i) and (ii), we plot in Figures 5(c) and 5(a) for HMDB-

2. http://www.thumos.info/home.html

Fig. 7. T-SNE visualizations of SVMP and other pooling methods on
sequences from the HMDB51 dataset (10 classes used). From left to
right, Average Pooling, Max Pooling, and SVMP.

51 dataset, classification accuracy when C is increased from

10−4 to 104 in steps and when η is increased from 0-100% and

respectively. We repeat this experiment for all the different choices

of negative bags. As is clear, increasing these parameters reduces

the training error, but may lead to overfitting. However, Figure 5(b)

shows that increasing C increases the accuracy of the SVMP

descriptor, implying that the CNN features are already equipped

with discriminative properties for action recognition. However,

beyond C = 10, a gradual decrease in performance is witnessed,

suggesting overfitting to bad features in the positive bag. Thus, we

use C = 10 (and η = 0.9) in the experiments to follow. To decide

the bag sizes for MIL, we plot in Figure 5(b), performance against

increasing size of the positive bag, while keeping the negative bag

size at 50 and vice versa; i.e., for the red line in Figure 5(b), we fix

the number of instances in the positive bag at 50; we see that the

accuracy raises with the cardinality of the negative bag. A similar

trend, albeit less prominent is seen when we repeat the experiment

with the negative bag size, suggesting that about 30 frames per

bag is sufficient to get a useful descriptor.

Running Time: In Figure 5(d), we compare the time it took on

average to generate SVMP descriptors for an increasing number

of frames in a sequence on the UCF101 dataset. For comparison,

we plot the running times for some of the recent pooling schemes

such as rank pooling [14], [15] and the Fisher vectors [34]. The

plot shows that while our scheme is slightly more expensive than

standard Fisher vectors (using the VLFeat3), it is significantly

cheaper to generate SVMP descriptors than some of the recent

popular pooling methods. To be comparable, we use publicly

available code of SVM in SVMP as well as in rank pooling.

5.3 Experiments on HMDB-51 and UCF-101

Following recent trends, we use a two-stream CNN model in two

popular architectures, the VGG-16 and the ResNet-152 [10], [11].

For the UCF101 dataset, we directly use publicly available models

from [10]. For the HMDB dataset, we fine-tune a two-stream

VGG/ResNet model trained for the UCF101 dataset.

SVMP Optimization Schemes: We proposed three different opti-

mization strategies for solving our formulation (Section 3.3). The

enumerative solution is trivial and non-practical. Thus, we will

only compare Algorithms 1 and 2 in terms of the performance and

efficiency. In Table 1, we show the result between the two on fc6

features from a VGG-16 model. It is clear that the alternating so-

lution is slightly better than parameter-tuning solution; however, is

also more computationally expensive. Considering the efficiency,

especially for the large-scale datasets, we use parameter-tuning

solution in the following experiments.

SVMP on Different CNN Features: We generate SVMP descrip-

tors from different intermediate layers of the CNN models and

compare their performance. Specifically, features from each layer

are used as the positive bags and SVMP descriptors computed

using Alg. 1 against the chosen set of negative bags. In Table 2,

we report results on split-1 of the HMDB dataset and find that

the combination of fc6 and pool5 gives the best performance for

the VGG-16 model, while pool5 features alone show good perfor-

mance using ResNet. We thus use these feature combinations for

experiments to follow.

Linear vs Non-Linear SVMP: We analyze the complementary

nature of SVMP and its non-linear extension NSVMP (using a ho-

mogeneous kernel) on HMDB-51 and UCF-101 split1. The results

3. http://www.vlfeat.org/

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

TABLE 1
Comparison between Algorithms 1 and 2 in HMDB-51 split-1.

Method Accuracy Avg. Time (sec)/Video

Alternating Algorithm (Alg. 1) 69.8% 2.4
Parameter-tuning Algorithm (Alg. 2) 69.5% 0.2

TABLE 2
Comparison of SVMP descriptors using various CNN Features on

HMDB split-1.

Feature/ Accuracy Accuracy when
model independently combined with:

pool5 (vgg-16) 57.9% 63.8% (fc6)
fc6 (vgg-16) 63.3% -
fc7 (vgg-16) 56.1% 57.1% (fc6)
fc8 (vgg-16) 52.4% 58.6% (fc6)
softmax (vgg-16) 41.0% 46.2% (fc6)

pool5 (ResNet-152) 69.5% -
fc1000 (ResNet-152) 61.1% 68.8% (pool5)

are provided in Table 3, and clearly show that the combination

leads to significant improvements consistently on both datasets.

End-to-End Learning and Ordered-SVMP: In Table 44, we

compare to the end-to-end learning setting as described in Sec-

tion 4. For end-to-end learning, we insert our discriminative pool-

ing layer after the ’fc6’ layer in VGG-16 model and the ’pool5’

layer in ResNet model. We also present results when using the

temporal ordering constraint (TC) into the SVMP formulation to

build the ordered-SVMP. From the results, it appears that although

the soft-attention scheme performs better than average pooling, it

is inferior to SVMP itself; which is unsurprising given it does not

use a max-margin optimization. Further, our end-to-end SVMP

layer is able to achieve similar (but slightly inferior) performance

to SVMP, which perhaps is due to the need to approximate the

Hessian. As the table shows, we found that the temporal ranking

is indeed useful for improving the performance of naı̈ve SVMP.

Thus, in the following experiments, we use SVMP with temporal

ranking for all video-based tasks.

SVMP Image: In Figure 8, we visualize SVMP descriptor when

applied directly on raw video frames. We compare the resulting

image against those from other schemes such as the dynamic

images of [14]. It is clear that SVMP captures the essence of action

dynamics in more detail. To understand the action information

present in these images, we trained an action classifier directly on

these images, as is done on Dynamic images in [14]. We use the

BVLC CaffeNet [87] as the CNN – same the one used in [14].

The results are shown in the Table 5 on split-1 of JHMDB (a

subset of HMDB-51, containing 21 classes) and UCF-101. As is

clear, SVMP images are seen to outperform [14] by a significant

margin, suggesting that SVMP captures more discriminative and

useful action-related features. Howeer, we note that in contrast

4. All experiments in Table 4 use the same input features.

TABLE 3
Comparison between SVMP and NSVMP on split-1.

HMDB-51 UCF-101

VGG ResNet VGG ResNet

linear-SVMP 63.8% 69.5% 91.6% 92.2%
nonlinear-SVMP 64.4% 69.8% 92.0% 93.1%
Combination 66.1% 71.0% 92.2% 94.0%

TABLE 4
Comparison to standard pooling methods on split-1. TC is short for

Temporal Constraint, E2E is short for end-to-end learning.

HMDB-51 UCF-101

VGG ResNet VGG ResNet

Spatial Stream-AP [10], [86] 47.1% 46.7% 82.6% 83.4%
Spatial Stream-SVMP 58.3% 57.4% 85.7% 87.6%
Spatial Stream-SVMP(E2E) 56.4% 55.1% 83.2% 85.7%
Spatial Stream-SVMP+TC 59.4% 57.9% 86.6% 88.9%

Temporal Stream-AP [10], [86] 55.2% 60.0% 86.3% 87.2%
Temporal Stream-SVMP 61.8% 65.7% 88.2% 89.8%
Temporal Stream-SVMP(E2E) 58.3% 63.2% 87.1% 87.8%
Temporal Stream-SVMP+TC 62.6% 67.1% 88.8% 90.9%

Two-Stream-AP [10], [86] 58.2% 63.8% 90.6% 91.8%
Two-Stream-SVMP 66.1% 71.0% 92.2% 94.2%
Two-Stream-SVMP(E2E) 63.5% 68.4% 90.6% 92.3%
Two-Stream-SVMP+TC 67.2% 71.3% 92.5% 94.8%

Fig. 8. Visualizations of various pooled descriptors.

to dynamic images, our SVMP images do not intuitively look

like motion images; this is perhaps because our scheme captures

different information related to the actions, and we do not use

smoothing (via running average) when generating them. The use

of random noise features as the negative bag may be adding

additional artifacts.

5.4 Action Recognition at Large Scale

Kinetics-600 is one the largest state-of-the-art dataset for action

recognition on trimmed videos. For this experiment, we use

the I3D network [3] (using the Inception-V3 architecture), as

the baseline for feature generator. This model is pre-trained on

ImageNet dataset [40] and stacks 64 continuous frames as inputs.

Specifically, we extract the CNN features from the second last

layer (Mix5c) and apply average pooling to reshape the feature

from 4 x 7 x 7 x 1024 into 1024-D vector for each 64-chunk of

RGB frames. For each video clip, we use a sliding window to

generate a sequence of such features with a window size of 64

TABLE 5
Recognition rates on split-1 of JHMDB and UCF-101.

Datasets JHMDB UCF-101

Mean image 31.3% 52.6%
Max image 28.6% 48.0%
Dynamic image [14] 35.8% 57.2%
SVMP image 45.8% 65.4%

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

TABLE 6
Comparisons on Kinetics-600 dataset using I3D feature.

Method Accuracy

AP [88] 71.9%
MP 67.8%
SVMP 73.5%

TABLE 7
Comparisons on Charades dataset.

Tasks AP MP SVMP

Classification (mAP) 14.2% 15.3 26.3%
Detection (mAP) 10.9% 9.2 15.1%

and a temporal stride of 8 frames. Then, we apply our proposed

SVMP to generate video descriptors for action recognition. In

Table 6, we make comparisons with the baseline result on the

validation set of Kinetics-600, and indicates that SVMP can bring

clear improvements even on the large-scale setting.

5.5 Action Recognition/Detection in untrimmed videos

We ues the Charades untrimmed dataset for this task. We use the

publicly available two-stream VGG features from the fc7 layer

for this dataset. We trained our models on the provided training

set (7985 videos), and report results (mAP) on the provided vali-

dation set (1863 videos) for the tasks of action classification and

detection. In the classification task, we concatenate the two-stream

features and apply a sliding window pooling scheme to create

multiple descriptors. Following the evaluation protocol in [25], we

use the output probability of the classifier to be the score of the

sequence. In the detection task, we consider the evaluation method

with post-processing proposed in [81], which uses the averaged

prediction score of a temporal window around each temporal

pivots. Instead of average pooling, we apply the SVMP. From

Table 7, it is clear that SVMP improves performance against other

pooling schemes by a significant margin; the reason for this is per-

haps the following. During training, we use trimmed video clips,

however, when testing, we extract features from every frame/clip

in the untrimmed test video. As the network has seen only

action-related frames during training, features from background

frames may result in arbitrary predictions; and average pooling

or max pooling on those features would hurt performance. When

optimizing the binary classification problem between positive and

negative bags for SVMP, the decision boundary would capture the

most discriminative data support, leading to better summary of the

useful features and leading to improved performance.

5.6 SVMP Evaluation on Other Tasks

In this section, we provide comprehensive evaluations justify-

ing the usefulness of SVMP on non-video datasets and non-

action tasks. We consider experiments on images sets recognition,

skeleton-sequence based action recognition, and dynamic texture

understanding.

MSR Action3D: In this experiment, we explore the usefulness

of SVMP on non-linear geometric features. Specifically, we chose

the scheme of Vemulapilli et al. [82] as the baseline that generates

Lie algebra based skeleton encodings for action recognition. While

they resort to a dynamic time warping kernel for the subsequent

encoded skeleton pooling, we propose to use SVMP instead. We

TABLE 8
Accuracy comparison on different subsets of HMDB-51(H) and

UCF-101(U) split-1 using I3D+ features.

Min # of frames 1 80 140 180 260

of classes (H) 51 49 27 21 12

of classes (U) 101 101 95 82 52

I3D (H) 79.6% 81.8% 84.1% 78.0% 77.3%

SVMP (H) 80.0% 82.9% 84.8% 85.1% 86.8%

I3D (U) 98.0% 98.0% 98.0% 95.9% 93.8%

SVMP (U) 98.4% 98.9% 99.3% 98.5% 97.3%

use the random noise with the dataset mean and deviation as the

negative bag, which achieve better performance.

NTU-RGBD: On this dataset, we apply our SVMP scheme on

the skeleton-based CNN features. Specifically, we use [42] as the

baseline, which applies a temporal CNN with residual connections

on the vectorized 3D skeleton data. We swap the global average

pooling layer in [42] by SVM pooling layer. For the evaluation, we

adopt the official cross-view and cross-subject protocols. What’s

interesting here is we try to explore whether the dimension of

the feature point would affect the SVMP performance. During

the SVMP, we use feature points with dimension from 150 to

4096. It seems only the number of data points would affect the

performance of SVMP (from Charades dataset experiment), and it

is not sensitive for the dimensionality.

PubFig: In this task, we evaluate the use of SVMP for image

set representation. We follow the evaluation setting in [41] and

create the descriptor for the training and testing by applying

SVMP over ResFace-101 [83] features from every image in the

PubFig dataset. Unlike the video-based tasks, all input features in

this setting are useful and represent the same person; however their

styles vary significantly, which implies the CNN features may be

very different even if they are from the same person. This further

demands that SVM pooling would need to find discriminative

dimensions in the features that are correlated and invariant to the

person identity.

YUP++: To investigate our SVMP scheme on deeper archi-

tectures, we use features from the latest Inception-ResNet-v2

model [84], which has achieved the state-of-the-art performance

on the 2015 ILSVRC challenge. Specifically, we extract the RGB

frames from videos and divide them into training and testing split

according to the setting in [29] (using a 10/90 train test ratio).

Like the standard image-based CNNs, the clip level label is used

to train the network on every frame.

5.7 Comparisons to the State of the Art

In Table 9, we compare our best results against the state-of-the-art

on each dataset using the standard evaluation protocols. For a fair

comparison, we also report on SVMP combined with hand-crafted

features (IDT-FV) [95] for HMDB-51. Our scheme outperforms

other methods on all datasets by 1–4%. For example, on HMDB-

51, our results are about 2-3% better than the next best method

without IDT-FV. On Charades, we outperform previous methods

by about 3% while faring well on the detection task against [81].

We also demonstrate significant performance (about 3-4%) im-

provement on NTU-RGBD and marginally better performance on

MSR datasets on skeleton-based action recognition. Our results

are superior (by 1-2%) on the PubFig and YUP++ datasets.

We further analyze the benefits of combining I3D+ with

SVMP (instead of their proposed average pooling) on both

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

TABLE 9
Comparison to the state of the art in each dataset, following the official

evaluation protocol for each dataset.

HMDB-51 & UCF-101 (accuracy over 3 splits)

Method HMDB-51 UCF-101

Temporal segment networks [20] 69.4% 94.2%
AdaScan [89] 54.9% 89.4%
AdaScan + IDT + C3D [89] 66.9% 93.2%
ST ResNet [86] 66.4% 93.4%
ST ResNet + IDT [86] 70.3% 94.6%
ST Multiplier Network [4] 68.9% 94.2%
ST Multiplier Network + IDT [4] 72.2% 94.9%
Hierarchical rank pooling [90] 65.0% 90.7%
Two-stream I3D [3] 66.4% 93.4%
Two-stream I3D+ (Kinetics 300k) [3] 80.7% 98.0%

Ours (SVMP) 71.3% 94.6%
Ours (SVMP+IDT) 72.6% 95.0%
Ours (I3D+) 81.8% 98.5%

Kinetics-600

Method Accuracy

I3D RGB [88] 71.3%
Second-order Pooling [18] 54.7%

Ours (SVMP) 73.5%

Charades (mAP)

Method Classification Detection

Two-stream [91] 14.3% 10.9%
ActionVlad + IDT [92] 21.0% -
Asynchronous Temporal Fields [81] 22.4% 12.8%

Ours (SVMP) 26.3% 15.1%
Ours (SVMP+IDT) 27.4% 16.3%

MSR-Action3D

Method Accuracy

Lie Group [82] 92.5%
ST-LSTM + Trust Gate [93] 94.8%

Ours (SVMP) 95.5%

NTU-RGBD

Method Cross-Subject Cross-View

Res-TCN [42] 74.3% 83.1%
ST-LSTM + Trust Gate [93] 69.2% 77.7%

Ours (SVMP) 79.4% 87.6%

PubFig

Method Accuracy

Deep Reconstruction Models [41] 89.9%
ESBC [94] 98.6%

Ours (SVMP) 99.3%

YUP++

Method Stationary Moving

Temporal Residual Networks [29] 92.4% 81.5%

Ours (SVMP) 92.9% 84.0%

HMDB-51 and UCF-101 datasets using the settings in [3]. How-

ever, we find that the improvement over average pooling in I3D+

is not significant; which we believe is because learning the SVMP

descriptor needs to solve a learning problem implicitly, requiring

sufficient number of training samples, i.e., number of frames in the

sequence. The I3D network uses 64-frame chunks as one sample,

thereby reducing the number of samples for SVMP, leading to

sub-optimal learning. We analyze this hypothesis in Table 8; each

column in this table represents performances on a data subset,

filtered as per the minimum number of frames in their sequences.

As is clear from the table, while SVMP performs on par with

I3D+ when the sequences are shorter, it demonstrates significant

benefits on subsets having longer sequences.

6 CONCLUSION

In this paper, we presented a simple, efficient, and powerful pool-

ing scheme – SVM pooling – for video representation learning.

We cast the pooling problem in a multiple instance learning

framework, and seek to learn useful decision boundaries on video

features against background/noise features. We provide an effi-

cient scheme that jointly learns these decision boundaries and the

action classifiers on them. Extensive experiments were showcased

on eight challenging benchmark datasets, demonstrating state-

of-the-art performance. Given the challenging nature of these

datasets, we believe the benefits afforded by our scheme is a

significant step towards the advancement of recognition systems

designed to represent sets of images or videos.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[2] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in ICCV.
IEEE, 2017.

[3] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in CVPR, July 2017.

[4] C. Feichtenhofer, A. Pinz, and R. Wildes, “Spatiotemporal multiplier
networks for video action recognition,” in CVPR, 2017.

[5] J.-F. Hu, W.-S. Zheng, J. Pan, J. Lai, and J. Zhang, “Deep bilinear
learning for rgb-d action recognition,” in ECCV, September 2018.

[6] B. Zhou, A. Andonian, A. Oliva, and A. Torralba, “Temporal relational
reasoning in videos,” ECCV, 2018.

[7] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for
action recognition in videos,” in NIPS, 2014.

[8] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks for
human action recognition,” PAMI, vol. 35, no. 1, pp. 221–231, 2013.

[9] M. Monfort, B. Zhou, S. A. Bargal, A. Andonian, T. Yan, K. Ramakrish-
nan, L. Brown, Q. Fan, D. Gutfruend, C. Vondrick et al., “Moments in
time dataset: one million videos for event understanding,” 2018.

[10] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream
network fusion for video action recognition,” in CVPR, 2016.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[12] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-
pooled deep-convolutional descriptors,” in CVPR, 2015.

[13] Y. Wang, J. Song, L. Wang, L. Van Gool, and O. Hilliges, “Two-stream
sr-cnns for action recognition in videos,” in BMVC, 2016.

[14] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould, “Dynamic
image networks for action recognition,” in CVPR, 2016.

[15] B. Fernando, E. Gavves, J. M. Oramas, A. Ghodrati, and T. Tuytelaars,
“Modeling video evolution for action recognition,” in CVPR, 2015.

[16] A. Cherian, S. Sra, S. Gould, and R. Hartley, “Non-linear temporal
subspace representations for activity recognition,” in CVPR, 2018.

[17] A. Cherian, B. Fernando, M. Harandi, and S. Gould, “Generalized rank
pooling for activity recognition,” in CVPR, 2017.

[18] A. Cherian and S. Gould, “Second-order temporal pooling for action
recognition,” arXiv preprint arXiv:1704.06925, 2017.

[19] A. Cherian, P. Koniusz, and S. Gould, “Higher-order pooling of cnn
features via kernel linearization for action recognition,” in WACV, 2017.

[20] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks: Towards good practices for deep action
recognition,” in ECCV, 2016.

[21] K. Schindler and L. Van Gool, “Action snippets: How many frames does
human action recognition require?” in CVPR, 2008.

[22] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb: a
large video database for human motion recognition,” in ICCV, 2011.

[23] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101
human actions classes from videos in the wild,” 2012.

[24] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev et al., “The kinetics
human action video dataset,” arXiv preprint arXiv:1705.06950, 2017.

[25] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and
A. Gupta, “Hollywood in homes: Crowdsourcing data collection for
activity understanding,” in ECCV, 2016.

[26] W. Li, Z. Zhang, and Z. Liu, “Action recognition based on a bag of 3d
points,” in CVPRW, 2010.

[27] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “Ntu rgb+ d: A large scale
dataset for 3d human activity analysis,” in CVPR, 2016.

[28] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, “Attribute and
simile classifiers for face verification,” in ICCV, 2009.

[29] C. Feichtenhofer, A. Pinz, and R. Wildes, “Temporal residual networks
for dynamic scene recognition,” in CVPR, 2017.

[30] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action recog-
nition: A survey,” Image and vision computing, vol. 60, pp. 4–21, 2017.

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

[31] R. Poppe, “A survey on vision-based human action recognition,” Image

and vision computing, vol. 28, no. 6, pp. 976–990, 2010.

[32] J. K. Aggarwal and M. S. Ryoo, “Human activity analysis: A review,”
ACM Computing Surveys (CSUR), vol. 43, no. 3, p. 16, 2011.

[33] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Action recognition by
dense trajectories,” in CVPR, 2011.

[34] H. Wang and C. Schmid, “Action recognition with improved trajectories,”
in ICCV, 2013.

[35] S. Sadanand and J. J. Corso, “Action bank: A high-level representation
of activity in video,” in CVPR, 2012.

[36] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to
object matching in videos,” in ICCV, 2003, p. 1470.

[37] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel
for large-scale image classification,” in ECCV, 2010.

[38] H. Jegou, F. Perronnin, M. Douze, J. Sánchez, P. Perez, and C. Schmid,
“Aggregating local image descriptors into compact codes,” TPAMI,
vol. 34, no. 9, pp. 1704–1716, 2012.

[39] X. Peng, L. Wang, X. Wang, and Y. Qiao, “Bag of visual words and
fusion methods for action recognition: Comprehensive study and good
practice,” Computer Vision and Image Understanding, vol. 150, pp. 109–
125, 2016.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[41] M. Hayat, M. Bennamoun, and S. An, “Deep reconstruction models for
image set classification,” PAMI, vol. 37, no. 4, pp. 713–727, 2015.

[42] T. S. Kim and A. Reiter, “Interpretable 3D human action analysis with
temporal convolutional networks,” 2017.

[43] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt, “Sequen-
tial deep learning for human action recognition,” in Human Behavior

Understanding, 2011, pp. 29–39.

[44] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in CVPR, 2015.

[45] Y. Du, W. Wang, and L. Wang, “Hierarchical recurrent neural network
for skeleton based action recognition,” in CVPR, 2015.

[46] Q. Li, Z. Qiu, T. Yao, T. Mei, Y. Rui, and J. Luo, “Action recognition
by learning deep multi-granular spatio-temporal video representation,” in
ICMR, 2016.

[47] N. Srivastava, E. Mansimov, and R. Salakhutdinov, “Unsupervised learn-
ing of video representations using lstms.” in ICML, 2015, pp. 843–852.

[48] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici, “Beyond short snippets: Deep networks for
video classification,” in CVPR, 2015.

[49] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in ICML, 2013.

[50] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3D convolutional networks,” in ICCV, 2015.

[51] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,”
in CVPR, 2018.

[52] Y. Zhou, X. Sun, Z.-J. Zha, and W. Zeng, “Mict: Mixed 3d/2d convolu-
tional tube for human action recognition,” in CVPR, 2018.

[53] L. Wang, W. Li, W. Li, and L. Van Gool, “Appearance-and-relation
networks for video classification,” 2017.

[54] A. Cherian and S. Gould, “Second-order temporal pooling for action
recognition,” IJCV, 2018.

[55] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell, “Action-
VLAD: Learning spatio-temporal aggregation for action classification,”
in CVPR, 2017.

[56] J. Wang, A. Cherian, and F. Porikli, “Dynamic pooling for complex event
recognition,” in WACV, 2017.

[57] T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exemplar-svms
for object detection and beyond,” in ICCV, 2011.

[58] G. Willems, J. H. Becker, T. Tuytelaars, and L. J. Van Gool, “Exemplar-
based action recognition in video.” in BMVC, 2009.

[59] J. Zepeda and P. Perez, “Exemplar svms as visual feature encoders,” in
CVPR, 2015.

[60] R. G. Cinbis, J. Verbeek, and C. Schmid, “Weakly supervised object
localization with multi-fold multiple instance learning,” PAMI, vol. 39,
no. 1, pp. 189–203, 2017.

[61] W. Li and N. Vasconcelos, “Multiple instance learning for soft bags via
top instances,” in CVPR, 2015.

[62] J. Wu, Y. Yu, C. Huang, and K. Yu, “Deep multiple instance learning for
image classification and auto-annotation,” in CVPR, 2015.

[63] Y. Yi and M. Lin, “Human action recognition with graph-based multiple-
instance learning,” Pattern Recognition, vol. 53, pp. 148–162, 2016.

[64] D. Zhang, D. Meng, C. Li, L. Jiang, Q. Zhao, and J. Han, “A self-
paced multiple-instance learning framework for co-saliency detection,”
in ICCV, 2015.

[65] S. Satkin and M. Hebert, “Modeling the temporal extent of actions,” in
ECCV, 2010.

[66] S. Nowozin, G. Bakir, and K. Tsuda, “Discriminative subsequence
mining for action classification,” in ICCV, 2007.

[67] W. Li, Q. Yu, A. Divakaran, and N. Vasconcelos, “Dynamic pooling for
complex event recognition,” in ICCV, 2013.

[68] C. Sun and R. Nevatia, “Discover: Discovering important segments for
classification of video events and recounting,” in CVPR, 2014.

[69] A. Vahdat, K. Cannons, G. Mori, S. Oh, and I. Kim, “Compositional
models for video event detection: A multiple kernel learning latent
variable approach,” in ICCV, 2013.

[70] T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola, “Multi-instance
kernels.” in ICML, 2002.

[71] K.-T. Lai, F. X. Yu, M.-S. Chen, and S.-F. Chang, “Video event detection
by inferring temporal instance labels,” in CVPR, 2014.

[72] F. X. Yu, D. Liu, S. Kumar, T. Jebara, and S.-F. Chang, “propto svm for
learning with label proportions,” arXiv preprint arXiv:1306.0886, 2013.

[73] J. Wang, A. Cherian, F. Porikli, and S. Gould, “Video representation
learning using discriminative pooling,” in CVPR, 2018.

[74] R. C. Bunescu and R. J. Mooney, “Multiple instance learning for sparse
positive bags,” in ICML, 2007.

[75] R. Lazimy, “Mixed-integer quadratic programming,” Mathematical Pro-

gramming, vol. 22, no. 1, pp. 332–349, 1982.
[76] A. J. Smola and B. Schölkopf, Learning with kernels. Citeseer, 1998.
[77] A. Vedaldi and A. Zisserman, “Efficient additive kernels via explicit

feature maps,” PAMI, vol. 34, no. 3, pp. 480–492, 2012.
[78] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Manopt, a Matlab

toolbox for optimization on manifolds,” Journal of Machine Learning

Research, vol. 15, pp. 1455–1459, 2014.
[79] A. L. Dontchev and R. T. Rockafellar, “Implicit functions and solution

mappings,” Springer Monogr. Math., 2009.
[80] S. Gould, B. Fernando, A. Cherian, P. Anderson, R. S. Cruz, and E. Guo,

“On differentiating parameterized argmin and argmax problems with
application to bi-level optimization,” 2016.

[81] G. A. Sigurdsson, S. Divvala, A. Farhadi, and A. Gupta, “Asynchronous
temporal fields for action recognition,” in CVPR, 2017.

[82] R. Vemulapalli, F. Arrate, and R. Chellappa, “Human action recognition
by representing 3d skeletons as points in a lie group,” in CVPR, 2014.

[83] I. Masi, A. Tran, T. Hassner, J. T. Leksut, and G. Medioni, “Do We Really
Need to Collect Millions of Faces for Effective Face Recognition?” in
ECCV, 2016.

[84] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning.” in
AAAI, 2017.

[85] F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Carlos Niebles, “Activ-
itynet: A large-scale video benchmark for human activity understanding,”
in CVPR, 2015.

[86] C. Feichtenhofer, A. Pinz, and R. Wildes, “Spatiotemporal residual
networks for video action recognition,” in NIPS, 2016.

[87] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding.” ACM, 2014.

[88] J. Carreira, E. Noland, A. Banki-Horvath, C. Hillier, and A. Zisserman,
“A short note about kinetics-600,” 2018.

[89] A. Kar, N. Rai, K. Sikka, and G. Sharma, “Adascan: Adaptive scan pool-
ing in deep convolutional neural networks for human action recognition
in videos,” in CVPR, 2017.

[90] B. Fernando, P. Anderson, M. Hutter, and S. Gould, “Discriminative
hierarchical rank pooling for activity recognition,” in CVPR, 2016.

[91] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
2013.

[92] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell, “Actionvlad:
Learning spatio-temporal aggregation for action classification,” in CVPR,
2017.

[93] J. Liu, A. Shahroudy, D. Xu, A. C. Kot, and G. Wang, “Skeleton-based
action recognition using spatio-temporal lstm network with trust gates,”
2017.

[94] M. Hayat, S. H. Khan, and M. Bennamoun, “Empowering simple binary
classifiers for image set based face recognition,” IJCV, pp. 1–20, 2017.

[95] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Dense trajectories and
motion boundary descriptors for action recognition,” IJCV, vol. 103,
no. 1, pp. 60–79, 2013.

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Jue Wang is a PhD student with the Research
School of Engineering at the Australian National
University since 2016. He is also associated with
CSIRO’s Data61 in Australia. From 2010-2014,
he received his double bachelor degree (hon-
ors) in Electronic Engineering from Australian
National University and Beijing Institute of Tech-
nology. His research interest are in the area of
computer vision and machine learning.

Anoop Cherian is a Research Scientist with
Mitsubishi Electric Research Labs (MERL) Cam-
bridge, MA and an Adjunct Researcher affili-
ated to the Australian Centre for Robotic Vision
(ACRV) at the Australian National University.
Previously, he was a Postdoctoral Researcher
in the LEAR team at INRIA at Grenoble. He
received his B.Tech (honors) degree in computer
science and Engineering from the National In-
stitute of Technology, Calicut, India in 2002, his
M.S. and Ph.D. degrees in computer science

from the University of Minnesota, Minneapolis in 2010 and 2013 re-
spectively. His research interests lie in the areas of computer vision and
machine learning.

	1 Introduction
	2 Related Work
	2.1 Video Representation Using Shallow Features
	2.2 Video Representation Using Deep Features
	2.3 Video Representation Using Pooling Schemes
	2.4 Multiple Instance Learning

	3 Proposed Method
	3.1 Problem Setup
	3.2 Learning Decision Boundaries
	3.3 Optimization Solutions
	3.3.1 Exhaustive Enumeration
	3.3.2 Alternating algorithm
	3.3.3 Parameter-tuning algorithm

	3.4 Nonlinear Extensions
	3.5 Temporally-Ordered Extensions

	4 End-to-End CNN Learning
	4.1 Discriminative Pooling Layer
	4.2 Gradients Derivations for SVMP

	5 Experiments
	5.1 Datasets
	5.2 Parameter Analysis
	5.3 Experiments on HMDB-51 and UCF-101
	5.4 Action Recognition at Large Scale
	5.5 Action Recognition/Detection in untrimmed videos
	5.6 SVMP Evaluation on Other Tasks
	5.7 Comparisons to the State of the Art

	6 Conclusion
	References
	Biographies
	Jue Wang
	Anoop Cherian

