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Deep Differentiable Random Forests for Age
Estimation

Wei Shen, Yilu Guo, Yan Wang, Kai Zhao, Bo Wang, and Alan Yuille, Fellow, IEEE,

Abstract—Age estimation from facial images is typically cast as a label distribution learning or regression problem, since aging is a
gradual progress. Its main challenge is the facial feature space w.r.t. ages is inhomogeneous, due to the large variation in facial
appearance across different persons of the same age and the non-stationary property of aging. In this paper, we propose two Deep
Differentiable Random Forests methods, Deep Label Distribution Learning Forest (DLDLF) and Deep Regression Forest (DRF), for age
estimation. Both of them connect split nodes to the top layer of convolutional neural networks (CNNs) and deal with inhomogeneous
data by jointly learning input-dependent data partitions at the split nodes and age distributions at the leaf nodes. This joint learning
follows an alternating strategy: (1) Fixing the leaf nodes and optimizing the split nodes and the CNN parameters by Back-propagation;
(2) Fixing the split nodes and optimizing the leaf nodes by Variational Bounding. Two Deterministic Annealing processes are introduced
into the learning of the split and leaf nodes, respectively, to avoid poor local optima and obtain better estimates of tree parameters free
of initial values. Experimental results show that DLDLF and DRF achieve state-of-the-art performance on three age estimation
datasets.

Index Terms—Age estimation, random forest, regression, label distribution learning, deterministic annealing.
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1 INTRODUCTION

THere has been a growing interest in age estimation from
facial images, driven by the increasing demands for

a variety of potential applications in forensic research [1],
security control [2], human-computer interaction (HCI) [2]
and social media [3]. In this paper, we focus on estimating
the precise chronological age (i.e., not age group estima-
tion [4]). Although considerable progress has been made
recently [5], [6], [7], estimating ages accurately and reliably
from facial images is still a challenging problem.

To address age estimation, the characteristics of this
task should be considered. First, aging is a slow and grad-
ual progress, thus there is a strong correlation between
close ages of the same individual, e.g., a person’s facial
images taken at close ages are similar. Due to this fact,
age estimation is usually formulated as a label distribution
learning (LDL) [8], [9], [10] or regression [11], [12], [13]
problem rather than a classification problem, because in a
classification problem, class labels are uncorrelated. Unlike
classification, LDL assigns a distribution over the set of
labels to an instance, which can be obtained by fitting a
Gaussian or Triangle distribution whose peak is the label of
this instance and represents the relative importance of each
label involved in the description of an instance; by contrast,
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regression considers labels as continuous numerical values.
Therefore, LDL and regression can explicitly and implicitly
model cross age correlations of the same individual, respec-
tively.

Second, learning the mapping between facial image fea-
tures and ages is challenging. The main difficulty is the facial
feature space w.r.t. ages is inhomogeneous, due to two fac-
tors: 1) there is a large variation in facial appearance across
different persons of the same age (Fig. 1(a)); 2) the human
face matures in different ways at different ages, e.g., bone
growth in childhood and skin wrinkles in adulthood [14]
(Fig. 1(b)). This inhomogeneity suggests applying divide-
and-conquer models, such as Random Forests [15], [16],
[17], to partition the data space and learn multiple local
age estimators [18]. However, traditional Random Forests
make hard data partitions based on heuristics, such as using
a greedy algorithm where locally-optimal hard decisions
are made at each split node [15], thus have limitations in
representation learning, e.g., they can not learn deep facial
features to perform data partition in an end-to-end manner.

To address this issue, we propose two Deep Differen-
tiable Random Forests for age estimation, where one is an
LDL model, named by Deep Label Distribution Learning
Forest (DLDLF), the other is a regression model, named
by Deep Regression Forest (DRF). Our Deep Differentiable
Random Forests are inspired by [19], which introduced dif-
ferentiable decision classification trees and integrated them
with CNNs by connecting the split nodes in trees to a fully
connected layer of a CNN. We extend the differentiable
trees to deal with LDL and regression problems, which
is non-trivial (see the discussion in Sec. 2). Differentiable
trees perform soft data partition at split nodes, so that
an input-dependent partition function can be learned to
handle inhomogeneous data. In addition, the deep facial
features at split nodes (input feature space) and the age

ar
X

iv
:1

90
7.

10
66

5v
2 

 [
cs

.C
V

] 
 2

2 
A

ug
 2

01
9



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 2

Age 3 48 8 12 17 19 18 28 25 32 43 40 6 

Age 50 Age 36 

(a) 

(b) 

Fig. 1. (a) The large variation in facial appearance across different
persons of the same age. (b) Facial images of a person from childhood
to adulthood. Note that, Facial aging effects appear as changes in the
shape of the face during childhood and changes in skin texture during
adulthood, respectively.

distributions at leaf nodes (local estimators) can be learned
jointly, which ensures that the local input-output correlation
is homogeneous at the leaf node.

To jointly learn the deep facial features at split nodes
and the age distributions at leaf nodes in our Deep Dif-
ferentiable Random Forests, we apply an alternating op-
timization strategy: first we fix the leaf nodes parameters
and optimize split node parameters as well as the CNN
parameters (feature learning) by Back-propagation. Then,
we fix split node parameters and optimize the age distri-
butions at leaf nodes by Variational Bounding [20], [21].
These two learning steps are alternatively performed to
jointly optimize feature learning and estimator modeling for
age estimation. Additionally, these two learning steps are
non-convex optimization problems (except for optimizing
the age distributions at leaf nodes in DLDLFs), thus both
Gradient Descent and Variational Bounding require “good”
parameter initializations to avoid converging to poor local
minimal. To address this problem, we introduce two Deter-
ministic Annealing (DA) processes [22], [23], [24] into these
two learning steps, respectively, which can avoid many
poor local optima during optimization and obtain better
estimates of tree parameters free of initializations. Finally,
to learn the ensemble of multiple trees (forest), we explicitly
define the forest loss as the average of the losses of all the
individual trees and allow the split nodes from different
trees to be connected to the same output unit of the feature
learning function. In this way, the split node parameters
of all the individual trees can be learned jointly. Fig. 2
illustrates a sketch chart of our DLDLF and DRF, where each
forest consists of two trees is shown.

We evaluate our algorithms on three standard datasets
for real age estimation methods: MORPH [25], FG-NET [26]
and the Cross-Age Celebrity Dataset (CACD) [27]. Experi-
mental results demonstrate that our algorithms outperform
several state-of-the-art methods on these three datasets.

The contributions of this paper are five folds:
1) We propose Deep Label Distribution Learning Forest

(DLDLF) and Deep Regression Forest (DRF), two end-to-
end models, to deal with inhomogeneous data by jointly
learning input-dependent data partition at split nodes and
age distribution at leaf nodes.

2) Based on Variational Bounding, the convergences of
our update rules for leaf nodes in DLDLFs and DRFs are
mathematically guaranteed.

3) We introduce Deterministic Annealing processes into
the learning of DLDLFs and DRFs, which can avoid many
poor local optima during optimization and obtain better
estimates of tree parameters free of initial parameter values.

4) We propose a strategy to learn the ensemble of mul-
tiple trees, which is different from [19], but we show it is
effective.

5) We apply DLDLFs and DRFs to three standard age
estimation benchmarks, and achieve state-of-the-art results.

This paper summarizes two of our preliminary
works [28], [29] into a unified optimization framework, i.e.,
alternatively learning split nodes by Back-propagation and
learning leaf nodes by Variational Bounding and has follow-
ing extensions: First, we introduce two methodological im-
provements, i.e., the two Deterministic Annealing processes
introduced into the learning of split and leaf nodes, respec-
tively, to avoid poor local optima and obtain better estimates
of tree parameters free of initial parameter values. Second,
we provide more experimental results and discussions, such
as ablation experiments to study the influence of different
designs and variants of our methods and updated state-of-
the-art results on the three age estimation datasets.

2 RELATED WORK

Age Estimation One way to tackle precise facial age es-
timation is to search for a kernel-based global non-linear
mapping, like kernel support vector regression [30] or kernel
partial least squares regression [11]. The basic idea is to
learn a low-dimensional embedding of the aging manifold
[31]. However, global non-linear mapping algorithms may
be biased [13], due to the inhomogeneous properties of the
input data. Another way is to adopt divide-and-conquer
approaches, which partition the data space and learn mul-
tiple local regressors. But hierarchical regression [18] or
tree based regression [32] approaches made hard partitions
according to ages, which is problematic because the subsets
of facial images may not be homogeneous for learning local
regressors. Huang et al. [13] proposed Soft-margin Mixture
of Regressions (SMMR) to address this issue, which found
homogeneous partitions in the joint input-output space, and
learned a local regressor for each partition. But their regres-
sion model cannot be integrated with any deep networks as
an end-to-end model.

Several researchers formulated age estimation as an or-
dinal regression problem [5], [12], [33], because the relative
order among the age labels is also important information.
They trained a series of binary classifiers to partition the
samples according to ages, and estimated ages by summing
over the classifier outputs. Thus, ordinal regression is lim-
ited by its lack of scalability [13]. Some other researchers
formulated age estimation as a label distribution learning
(LDL) problem [34], which paid attention to modeling
the cross-age correlations, based on the observation that
faces at close ages look similar. LDL based age estimation
methods [8], [9], [35] achieved promising results, but these
LDL methods assume that a label distribution should be
represented by a maximum entropy model [36], where the
exponential part of this model restricts the generality of the
distribution form. On the contrary, our method, DLDLF,
expresses a label distribution by a linear combination of
the label distributions of training data, and thus have no
restrictions on the distributions (e.g., no requirement of the
maximum entropy model).
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Fig. 2. Illustration of (a) a deep label distribution learning forest (DLDLF) and (b) a deep regression forest (DRF). Each forest consists of two trees.
The top red circles denote the output units of the function f parameterized by Θ. Here, they are the units of a fully-connected (FC) layer in a CNN.
The blue and green circles are split nodes and leaf nodes, respectively. in each forest, two index functions ϕ1 and ϕ2 are randomly assigned to
the two trees respectively before training and then fixed. The black dash arrows indicate the correspondence between the split nodes of the two
trees and the output units of the FC layer. Note that, one output unit may correspond to the split nodes belonging to different trees. Each tree has
independent leaf node distribution π (denoted by distribution histograms and curves in the leaf nodes of the DLDLF and the DRF, respectively). The
output of the forest is a mixture of the tree predictions. f(·;Θ) and π are learned jointly in an end-to-end manner.

With the rapid development of deep networks, more and
more end-to-end CNN based age estimation methods [3],
[6], [7], [12], [37] have been proposed to address this non-
linear regression problem. But how to deal with inhomoge-
neous data is still an open issue.

Random Forests Random Forests or randomized de-
cision trees [15], [16], [17], [38], are a popular ensemble
predictive model suitable for many machine learning tasks,
such as supervised learning [16], semi-supervised learn-
ing [39] and multiple instance learning [40]. Each decision
tree consists of several split nodes and leaf nodes. Tree
growing is usually based on greedy algorithms which make
locally-optimal hard data partition decisions at each split
node. Thus, this makes it intractable to integrate decision
trees with deep networks in an end-to-end learning man-
ner. Some efforts have been made to combine these two
worlds [19], [41], [42]. The newly proposed Deep Neural
Decision Forests (DNDFs) [19] overcame this problem by
introducing a soft differentiable decision function at the split
nodes and a global loss function defined on a tree, which
ensured that the split node parameters can be learned by
back-propagation and leaf node predictions can be updated
by a discrete iterative function.

Our methods are inspired by Deep Neural Decision
Forests (DNDFs) [19], but differ in their objectives (label dis-
tribution learning/regression vs classification). Extending
differentiable decision trees to deal with label distribution
learning/regression is non-trivial, since there are some tech-
nical difficulties in learning leaf node predictions. Although
a step-size free update function was given in DNDFs to
update leaf node predictions, it was only proved to con-
verge for a classification loss. Consequently, it is unclear
how to obtain such an update function for other objectives,
especially for regression, since the distribution of the output
space for regression is continuous, but the distribution of the
output space for classification is discrete. We show that the
update functions for both the LDL loss and the regression
loss can be derived from Variational Bounding and the one
given in [19] is also a special case of Variational Bounding.
In addition, we introduce two DA processes into the opti-

mization of our Deep Differentiable Random Forests, which
lead to better estimates of tree parameters free of initial
parameter values. Last but not least, the strategies used in
our deep Random Forests and DNDFs to learn the ensemble
of multiple trees (forests) are different: We explicitly define a
loss function for a forest, which allows the split nodes from
different trees to be connected to the same output unit of
the feature learning function (See Fig. 2) and enables that all
trees in a DLDLF or a DRF can be learned jointly; while only
the loss function for a single tree is defined in DNDFs, which
only allows trees in a DNDF to be learned alternatively. As
shown in our experiments (Sec. 6.4.3), our ensemble strategy
can get better results by using more trees, but by using the
ensemble strategy proposed in DNDFs, the results of forests
are even worse than those for a single tree.

One recent work proposed Neural Regression Forest
(NRF) [43] for depth estimation, which is similar to our
DRF, but there are two main differences between an NRF
and a DRF. The first difference is all the split nodes in a
DRF are connected to the top layer of a single CNN, but
every split node in an NRF is connected to a distinct CNN.
Therefore, an NRF can be only connected to very shallow
CNNs (as they did in their experiments), otherwise, the
computational cost is extremely high. But, the representa-
tion learning ability of these shallow CNNs is limited. The
second difference is the convergence of our update rule
for leaf nodes is mathematically guaranteed by Variational
Bounding, but the convergence of the update rule for leaf
nodes used in the NRF was not guaranteed.

3 DIFFERENTIAL DECISION TREES

Since both DLDLFs and DRFs are based on differential
decision trees [19], we introduce this tree model first in this
section.

Let X and Y denote the input and output spaces, re-
spectively. A differential decision tree T consists of a set
of split nodes N and a set of leaf nodes L. Each split
node n ∈ N defines a split function sn(·; Θ) : X → [0, 1]
parameterized by Θ to determine whether a sample is sent
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Fig. 3. The subtree rooted at node n: Tn and its left and right subtrees:
Tnl and Tnr .

to the left or right subtree. Each leaf node ` ∈ L holds
a distribution π` over Y . Following [19], we use a soft
split function sn(x; Θ) = σ(fϕ(n)(x; Θ)), where σ(·) is a
sigmoid function, x ∈ X and f : x → RM is a real-valued
feature learning function depending on the sample x and
the parameter Θ. f can take any forms. In our DLDLFs and
DRFs, it is a CNN and Θ is the network parameter. ϕ(·)
is an index function to specify the correspondence between
the split nodes and output units of f , which is randomly
assigned before tree learning and then fixed. An example to
demonstrate ϕ(·) is shown in Fig. 2 (There are two trees with
index functions in each forest, ϕ1 and ϕ2 for each). Then, the
probability of the sample x falling into leaf node ` is given
by

P (`|x; Θ) =
∏
n∈N

sn(x; Θ)1(`∈Lnl
)(1− sn(x; Θ))1(`∈Lnr ),

(1)
where 1(·) is an indicator function and Lnl

and Lnr
denote

the sets of leaf nodes held by the subtrees Tnl
, Tnr

rooted at
the left and right children nl, nr of node n (shown in Fig. 3),
respectively.

Note that, there are two parameters introduced in this
tree model: 1) the split node parameter Θ and 2) the dis-
tributions π held by the leaf nodes. Tree learning requires
the estimation of these two parameters. Let S be a training
set and R(π,Θ;S) be an objective function for an arbitrary
learning task, e.g., classification, label distribution learning
or regression, then the best parameters (Θ∗,π∗) are deter-
mined by solving

(Θ∗,π∗) = arg min
Θ,π

R(π,Θ;S). (2)

To solve Eq. 2, we consider an alternating optimization strat-
egy: First, we fix π and optimize Θ by Back-propagation;
Then, we fix Θ and optimize π by Variational Bound-
ing [20], [21]. These two learning steps are performed alter-
natively, until convergence or a maximum number of itera-
tions is reached (as described in the experiments). We show
that this optimization framework is unified for learning both
DLDLFs and DRFs in Sec. 4 and Sec. 5, respectively, as well
as for learning the tree models for classification [19] in the
Appendix.

4 AGE ESTIMATION BY DEEP LABEL DISTRIBU-
TION FORESTS

In this section, we describe Deep Label Distribution Learn-
ing Forests (DLDLFs) for age estimation. Since a forest is an
ensemble of decision trees, We first introduce how to learn
a single decision tree by label distribution learning, then
describe the learning of a forest.

4.1 Problem Formulation

We formulate age estimation as an LDL problem: Let
X = Rm denote the input facial image space and Y =
{y1, y2, . . . , yC} denote the complete and order set of
age labels, where C is the number of possible age val-
ues. For a facial image x ∈ X , its chronological age
value is y ∈ Y . To generate a proper label distribution
d = (dy1x , d

y2
x , . . . , d

yC
x )> ∈ RC , where dycx ∈ [0, 1] and∑C

c=1 d
yc
x = 1, for this facial image x, following [9], [37], we

use a Gaussian distribution whose mean is the chronological
age y:

dycx =
pN (yc; y, α)∑C
k=1 pN (yk; y, α)

, (3)

where pN (yc; y, α) = 1√
2πα

exp(− (yc−y)2
2α2 ) and α is a pre-

defined standard deviation. Fig. 4 illustrates an example
of such a label distribution generated for a facial image at
the chronological age of 20 (α = 10). Observed that, this
label distribution explicitly model the cross age correlations,
since both the chronological age 20 and the neighboring
ages 19 and 21 can be used to describe the appearance of
this 20-year-old face, due to the appearance similarity of the
neighboring ages.

Fig. 4. Generated label distribution for a facial image at the chronological
age of 20 (α = 20).

We have formulated age estimation as an LDL problem,
then our goal is to learn a mapping function g : x → d be-
tween an facial image x and its corresponding label distribu-
tion d by a decision tree based model T described in Sec. 3.
Since our target, label distribution, is a discrete distribution,
accordingly each leaf node ` ∈ L in the LDL tree T holds a
probability mass distribution π` = (π`1 , π`2 , . . . , π`C )T over
Y , i.e., π`c ∈ [0, 1] and

∑C
c=1 π`c = 1. Then the output of the

tree T w.r.t. x, i.e., the mapping function g, is given by

g(x; Θ, T ) =
∑
`∈L

P (`|x; Θ)π`. (4)
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4.2 Tree Optimization
Given a training set S = {(xi,di)}Ni=1, our goal is to learn
a LDL tree T described in in Sec. 4.1 which can output a
distribution g(xi; Θ, T ) similar to di for each sample xi. To
this end, a straightforward way is to minimize the Kullback-
Leibler (K-L) divergence between each g(xi; Θ, T ) and di,
or equivalently to minimize the following cross-entropy
loss:

R(π,Θ;S) = − 1

N

N∑
i=1

C∑
c=1

dycxi
log(gc(xi; Θ, T ))

= − 1

N

N∑
i=1

C∑
c=1

dycxi
log
(∑
`∈L

P (`|xi; Θ)π`c

)
,

(5)

where π denotes the distributions held by all the leaf nodes
L and gc(xi; Θ, T ) is the c-th output unit of g(xi; Θ, T ).

Learning the tree T requires the estimation of two pa-
rameters: 1) the split node parameter Θ and 2) the dis-
tributions π held by the leaf nodes. Next we introduce
the optimization process in detail following the framework
described in Sec. 3.

4.2.1 Learning split nodes w/ Deterministic Annealing by
Gradient Descent
In this section, we describe how to learn the parameter
Θ for split nodes, when the distributions held by the leaf
nodes π are fixed. We found that, empirically (also shown
in [19]) minimization of R(π,Θ;S) w.r.t. Θ would grad-
ually produce almost hard data partitions, i.e., P (`|xi; Θ)
approaches 0 or 1. But it is better to enforce P (`|xi; Θ) to be
uniform for all ` ∈ L, i.e., maintain more uncertainty, at the
beginning of minimization. Inspired by [22], we introduce
a Deterministic Annealing (DA) process into this optimiza-
tion, which minimizesR(π,Θ;S) subject to a specified level
of uncertainty. The level of uncertainty is measured by the
Shannon entropy:

H(Θ;S) = − 1

N

N∑
i=1

∑
`∈L

P (`|xi; Θ) logP (`|xi; Θ). (6)

Then we reformulate the original loss function Eq. 5 to be

E(π,Θ;S, T ) = R(π,Θ;S)− TH(Θ;S), (7)

where T is the temperature parameter. During the DA
process, E(π,Θ;S, T ) is then gradually deformed to its
original form, i.e., R(π,Θ;S), by decreasing the temper-
ature T → 0. From the DA viewpoint, minimization the
original loss function corresponds to a “zero temperature”
system, where each input sample must make a hard decision
about which leaf node it would fall into. This is hard at the
beginning of the minimization. On the other hand, starting
at high T smoothes the loss function E(π,Θ;S, T ) making
it easier to get a good minimum, which can be traced by
slowly decreasing T (“cooling” the system). By introducing
this DA process, we start with each input sample equally in-
fluencing all leaf nodes and gradually localize the influence.
This gives us some intuition as to how the system searches
for a better optimum [22]. We use a simple cooling schedule
to decrease T during optimization: T ← ηT , where η is a
constant less than 1.

We compute the gradient of the loss E(π,Θ;S, T ) w.r.t.
Θ by the chain rule:

∂E(π,Θ;S, T )

∂Θ
=

N∑
i=1

∑
n∈N

∂E(π,Θ;S, T )

∂fϕ(n)(xi; Θ)

∂fϕ(n)(xi; Θ)

∂Θ
,

(8)

where only the first term depends on the tree. The second
term depends on the specific type of the function fϕ(n). The
first term is given by

∂E(π,Θ;S, T )

∂fϕ(n)(xi; Θ)
=

∂R(π,Θ;S)

∂fϕ(n)(xi; Θ)
− T ∂H(Θ;S)

∂fϕ(n)(xi; Θ)

=
1

N

(
sn(xi; Θ)

(
Dnr
i − TS

nr
i

)
−
(
1− sn(xi; Θ)

)(
Dnl
i − TS

nl
i

))
, (9)

where for a generic node n ∈ N

Dn
i =

C∑
c=1

dycxi

gc(xi; Θ, Tn)

gc(xi; Θ, T )
=

C∑
c=1

dycxi

∑
`∈Ln

P (`|xi; Θ)π`c∑
`∈L P (`|xi; Θ)π`c

,

(10)

and

Sni =
∑
`∈Ln

(
P (`|xi; Θ) + P (`|xi; Θ) logP (`|xi; Θ)

)
. (11)

Both Dn
i and Sni can be efficiently computed for all nodes n

in the tree T by a single pass over the tree. Observing that
Dn
i = Dnl

i +Dnr
i and Sni = Snl

i + Snr
i , the computation for

Dn
i and Sni can be started at the leaf nodes and conducted

in a bottom-up manner. Following Eq. 9, the split node
parameters Θ can be learned by standard Back-propagation.

4.2.2 Learning leaf nodes by Variational Bounding

Note that, since the entropy term introduced in Eq. 7 is
constant w.r.t. to π, thus it does not influence the learning of
leaf nodes. By fixing the parameter Θ, we show how to learn
the distributions at the leaf nodes π, which is a constrained
convex optimization problem:

min
π
R(π,Θ;S), s.t.,∀`,

C∑
c=1

π`c = 1. (12)

We address this constrained convex optimization problem
by Variational Bounding [20], [21]. In Variational Bounding,
the original objective function to be minimized gets replaced
by tight upper bounds in an iterative manner. A tight upper
bound for the loss function R(π,Θ;S) can be obtained by
Jensen’s inequality:

R(π,Θ;S) = − 1

N

N∑
i=1

C∑
c=1

dycxi
log
(∑
`∈L

P (`|xi; Θ)π`c

)
≤ − 1

N

N∑
i=1

C∑
c=1

dycxi

∑
`∈L

ρ(`|π̄`c ,xi) log
(P (`|xi; Θ)π`c
ρ(`|π̄`c ,xi)

)
,

(13)

where ρ(`|π`c ,xi) =
P (`|xi;Θ)π`c

gc(xi;Θ,T ) and it has the property
that ρ(`|π`c ,xi) ∈ [0, 1] and

∑
`∈L ρ(`|π`c ,xi) = 1. Note
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that when π = π̄, the equality holds, which indicates this
upper bound is tight. We define

φ(π, π̄) = − 1

N

N∑
i=1

C∑
c=1

dycxi

∑
`∈L

ρ(`|π̄`c ,xi) log
(P (`|xi; Θ)π`c
ρ(`|π̄`c ,xi)

)
.

(14)

Then φ(π, π̄) is a tight upper bound for R(π,Θ;S), which
has the properties that for any π and π̄, φ(π, π̄) ≥
φ(π,π) = R(π,Θ;S) and φ(π̄, π̄) = R(π̄,Θ;S). These
two properties hold the conditions for Variational Bounding.

Assume that we are at a point π(t) corresponding to
the t-th iteration, then φ(π,π(t)) is a tight upper bound
for R(π,Θ;S). In the next iteration, π(t+1) is chosen
such that φ(π(t+1),π(t)) ≤ R(π(t),Θ;S), which implies
R(π(t+1),Θ;S) ≤ R(π(t),Θ;S). Consequently, we can
minimize φ(π, π̄) instead of R(π,Θ;S) after ensuring that
R(π(t),Θ;S) = φ(π(t), π̄), i.e., π̄ = π(t). So we have

π(t+1) = arg min
π
φ(π,π(t)), s.t.,∀`,

C∑
c=1

π`c = 1, (15)

which leads to minimizing the Lagrangian defined by

ϕ(π,π(t)) = φ(π,π(t)) +
∑
`∈L

λ`(
C∑
c=1

π`c − 1), (16)

where λ` is the Lagrange multiplier. By setting ∂ϕ(π,π(t))
∂π`c

=
0, we have

λ` =
1

N

N∑
i=1

C∑
c=1

dycxi
ρ(`|π(t)

`c
,xi),

π
(t+1)
`c

=

∑N
i=1 d

yc
xi
ρ(`|π(t)

`c
,xi)∑C

c=1

∑N
i=1 d

yc
xiρ(`|π(t)

`c
,xi)

. (17)

Note that, π
(t+1)
`c

satisfies that π
(t+1)
`c

∈ [0, 1] and∑C
c=1 π

(t+1)
`c

= 1. Eq. 17 is the update scheme for distri-
butions held by the leaf nodes. The starting point π(0)

` can
be simply initialized by the uniform distribution: π(0)

`c
= 1

C .

4.3 Learning an LDL Forest
An LDL forest is an ensemble of LDL decision trees
F = {T 1, . . . , T K}. In the training stage, all trees in the
forest F use the same parameters Θ for feature learning
function f(·; Θ) (but correspond to different output units of
f assigned by ϕ, see Fig. 2), but each tree has independent
leaf node predictions π. The loss function for a forest is
given by averaging the loss functions for all individual trees:

EF =
1

K

K∑
k=1

ET k , (18)

where ET k is the loss function for tree T k defined by Eq. 7.
To learn Θ by fixing the leaf node predictions π of all the
trees in the forest F , based on the derivation in Sec. 4.2 and
referring to Fig. 2, we have

∂EF
∂Θ

=
1

K

N∑
i=1

K∑
k=1

∑
n∈Nk

∂ET k

∂fϕk(n)(xi; Θ)

∂fϕk(n)(xi; Θ)

∂Θ
,

(19)

where Nk and ϕk(·) are the split node set and the index
function of T k, respectively, and the first term of the right
side ∂ET k

∂fϕk(n)(xi;Θ) is computed by Eq. 9. Note that, the index
function ϕk(·) for each tree is randomly assigned before
tree learning, and thus split nodes correspond to a subset
of output units of f . This strategy is similar to the random
subspace method [44], which increases the randomness in
training to reduce the risk of over-fitting. For the temper-
ature parameter T introduced in each ET k , we initialize it
as a large value T0 (T0 > 0) and decrease it by the simple
cooling schedule described in Sec. 4.2.1: T ← ηT , where η
is a constant cooling factor less than 1.

As for π, since each tree in the forest F has its own
leaf node predictions π, we can update them independently
by Eq. 17. For implementational convenience, we do not
conduct this update scheme on the whole dataset S but on
a set of mini-batches B. The training procedure of an LDLF
is shown in Algorithm. 1.

Algorithm 1 The training procedure of a DLDLF.
Require: S : training set
Require: nB : the number of mini-batches to update π,
Require: T0: a starting temperature parameter
Require: η: a constant cooling factor

Initialize Θ randomly and π uniformly
Set B = {∅} and T = T0
while Not converge do

while |B| < nB do
Randomly select a mini-batch B from S
Update Θ by Gradient Descent (Eq. 19, Eq. 9) on B
B = B

⋃
B

end while
Update π by iterating Eq. 17 on B
B = {∅}
if T ≥ 0 then
T ← ηT

end if
end while

In the testing stage, the output of the forest F is given
by averaging the predictions from all the individual trees:

g(x; Θ,F) =
1

K

K∑
k=1

g(x; Θ, T k). (20)

Then the predicted age value is given by ŷ = yc∗ , where
c∗ = arg minc gc(x; Θ,F).

5 AGE ESTIMATION BY DEEP REGRESSION
FORESTS

In this section, we describe Deep Regression Forests (DRFs)
for age estimation. Similar to the previous section, we first
introduce how to learn a single differentiable regression tree,
then describe how to learn tree ensembles to form a forest.

5.1 Problem Formulation

We formulate age estimation as a regression problem, where
we regard age as a continues numerical value: Let X = Rm
denote the input facial image space and Y = R denote the
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output age space. For a facial image x ∈ X , its chronological
age value is y ∈ Y . The objective of regression is to find a
mapping function g : x→ y between an input sample x and
its output target y. A standard way to address this problem
is to model the conditional probability function p(y|x), so
that the mapping is given by

ŷ = g(x) =

∫
yp(y|x)dy. (21)

We propose to model this conditional probability by a
decision tree based structure T described in Sec. 3. Each
leaf node ` ∈ L in the regression tree T holds a probability
density distribution π`(y) over Y , i.e,

∫
π`(y)dy = 1. The

conditional probability function p(y|x; T ) given by the tree
T is

p(y|x; T ) =
∑
`∈L

P (`|x; Θ)π`(y). (22)

Then the mapping between x and y modeled by tree T is
given by ŷ = g(x; T ) =

∫
yp(y|x; T )dy.

5.2 Tree Optimization

Given a training set S = {(xi, yi)}Ni=1, learning a regres-
sion tree T leads to minimizing the following negative log
likelihood loss:

R(π,Θ;S) = − 1

N

N∑
i=1

log(p(yi|xi, T ))

= − 1

N

N∑
i=1

log
(∑
`∈L

P (`|xi; Θ)π`(yi)
)
, (23)

where π denotes the density distributions contained by all
the leaf nodes L. To optimize R(π,Θ;S) w.r.t. the split
node parameter Θ and the density distributions π held
by leaf nodes, we also follow the optimization framework
described in Sec. 3, i.e., alternating the following two steps:
(1) fixing π and optimizing Θ; (2) fixing Θ and optimizing
π, until convergence or a maximum number of iterations is
reached.

5.2.1 Learning split nodes w/ Deterministic Annealing by
Gradient Descent

Now, we discuss how to learn the parameter Θ for split
nodes, when the density distributions held by the leaf nodes
π are fixed. We introduce the same DA process described
in Sec. 4.2.1 into the optimization for split node parameter
Θ, which reformulates the original regression loss Eq. 23 as
the same form as Eq. 7, i.e., E(π,Θ;S, T ) = R(π,Θ;S) −
TH(Θ;S). We use the same cooling schedule in Sec. 4.2.1
to decrease T during optimization: T ← ηT . Similarly, we
compute the gradient ∂E(π,Θ;S,T )

∂Θ by the chain rule, and we
have

∂E(π,Θ;S, T )

∂fϕ(n)(xi; Θ)
=

∂R(π,Θ;S)

∂fϕ(n)(xi; Θ)
− T ∂H(Θ;S)

∂fϕ(n)(xi; Θ)

=
1

N

(
sn(xi; Θ)

(
Γnr
i − TS

nr
i

)
−
(
1− sn(xi; Θ)

)(
Γnl
i − TS

nl
i

))
, (24)

where for a generic node n ∈ N

Γni =
p(yi|xi; Tn)

p(yi|xi; T )
=

∑
`∈Ln

P (`|xi; Θ)π`(yi)

p(yi|xi; T )
, (25)

and Sni is computed by Eq. 11. Γni can be also efficiently
computed for all nodes n in the tree T by a single pass over
the tree. Observing that Γin = Γinl

+ Γinr
, the computation

for Γin can be started at the leaf nodes and conducted
in a bottom-up manner. Based on Eq. 24, the split node
parameters Θ can be learned by standard Back-propagation.

5.2.2 Learning leaf nodes by Variational Bounding
By fixing the split node parameters Θ, learning the leaf
nodes parameters π becomes a constrained optimization
problem:

min
π
R(π,Θ;S), s.t.,∀`,

∫
π`(y)dy = 1. (26)

For efficient computation, we represent each density distri-
bution π`(y) by a parametric model. Since ideally each leaf
node corresponds to a compact homogeneous subset, we
assume that the density distribution π`(y) in each leaf node
is a Gaussian distribution, i.e.,

π`(y) =
1√

2πσ`
exp

(
− (y − µ`)2

2σ2
`

)
, (27)

where µ` and σ` are the mean and the covariance matrix
of the Gaussian distribution. Based on this assumption,
Eq. 26 is equivalent to minimizing R(π,Θ;S) w.r.t. µ` and
σ`. We also propose to address this optimization problem
by Variational Bounding [20], [21]. To obtain a tight upper
bound of R(π,Θ;S), we apply Jensen’s inequality to it:

R(π,Θ;S) = − 1

N

N∑
i=1

log
(∑
`∈L

P (`|xi; Θ)π`(yi)
)

= − 1

N

N∑
i=1

log
(∑
`∈L

ρ(`|π̄, yi,xi)
P (`|xi; Θ)π`(yi)

ρ(`|π̄, yi,xi)

)
≤ − 1

N

N∑
i=1

∑
`∈L

ρ(`|π̄, yi,xi) log
(P (`|xi; Θ)π`(yi)

ρ(`|π̄, yi,xi)

)
= R(π̄,Θ;S)− 1

N

N∑
i=1

∑
`∈L

ρ(`|π̄, yi,xi) log
(π`(yi)
π̄`(yi)

)
, (28)

where ρ(`|π, yi,xi) = P (`|xi;Θ)π`(yi)
p(yi|xi;T ) and it has the property

that ρ(`|π, yi,xi) ∈ [0, 1] and
∑
`∈L ρ(`|π, yi,xi) = 1. Note

that, when π = π̄, the equality holds, which indicates this
upper bound is tight. Let us define

φ(π, π̄) = R(π̄,Θ;S)− 1

N

N∑
i=1

∑
`∈L

ρ(`|π̄, yi,xi) log
(π`(yi)
π̄`(yi)

)
.

(29)

Then φ(π, π̄) is a tight upper bound for R(π,Θ;S), which
has the properties that for any π and π̄, φ(π, π̄) ≥
φ(π,π) = R(π,Θ;S) and φ(π̄, π̄) = R(π̄,Θ;S). These
two properties give the conditions for Variational Bounding.

Recall that we parameterize π`(y) by two parame-
ters: the mean µ` and the covariance matrix σ`. Let µ
and σ denote these two parameters held by all the leaf
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nodes L. We define ψ(µ, µ̄) = φ(π, π̄), then ψ(µ, µ̄) ≥
φ(π,π) = ψ(µ,µ) = R(π,Θ;S), which indicates that
ψ(µ, µ̄) is also a tight upper bound for R(π,Θ;S). As-
sume that we are at a point µ(t) corresponding to the
t-th iteration, then ψ(µ,µ(t)) is a tight upper bound
for R(π,Θ;S). In the next iteration, µ(t+1) is chosen
such that ψ(µ(t+1),µ) ≤ R(π(t),Θ;S), which implies
R(π(t+1),Θ;S) ≤ R(π(t),Θ;S). Therefore, we can min-
imize ψ(µ, µ̄) instead of R(π,Θ;S) after ensuring that
R(π(t),Θ;S) = ψ(µ(t), µ̄), i.e., µ̄ = µ(t). Thus, we have

µ(t+1) = arg min
µ
ψ(µ,µ(t)). (30)

The partial derivative of ψ(µ,µ(t)) w.r.t. µ` is computed by

∂ψ(µ,µ(t))

∂µ`
=
∂φ(π,π(t))

∂µ`

= − 1

N

N∑
i=1

ρ(`|π(t), yi,xi)σ
−1
` (yi − µ`). (31)

By setting ∂ψ(µ,µ(t))
∂µ`

= 0, we have

µ
(t+1)
` =

∑N
i=1 ρ(`|π(t), yi,xi)yi∑N
i=1 ρ(`|π(t), yi,xi)

. (32)

Similarly, we define ν(σ, σ̄) = φ(π, π̄), then

σ(t+1) = arg min
σ
ν(σ,σ(t)). (33)

The partial derivative of ν(σ,σ(t)) w.r.t. σ` is obtained by

∂ν(σ,σ(t))

∂σ`
=
∂φ(π,π(t))

∂σ`

= − 1

N

N∑
i=1

ρ(`|π(t), yi,xi)
[
− 1

2
σ−1` +

1

2
σ−2` (yi − µ(t+1)

` )2
]

(34)

By Setting ∂ν(σ,σ(t))
∂σ`

= 0, we have

σ
(t+1)
` =

∑N
i=1 ρ(`|π(t), yi,xi)(yi − µ(t+1)

` )2∑N
i=1 ρ(`|π(t), yi,xi)

. (35)

Eq. 32 and Eq. 35 are the update functions for the density
distribution π held by all leaf nodes, which are step-size free
and fast-converged.

5.2.3 Learning leaf nodes w/ Deterministic Annealing w/o
initialization
One issue remained is how to initialize the starting point
µ(0) and σ(0). Note that R(π,Θ;S) is convex w.r.t. π,
but is non-convex w.r.t. µ and σ. Consequently, based on
the update functions Eq. 32 and Eq. 35, R(π,Θ;S) may
converge to a poor local minimum, if µ(0) and σ(0) are
not well initialized. In our previous work [29], we did k-
means clustering on {yi}Ni=1 to obtain |L| subsets, then
initialized µ(0) and σ(0) according to cluster assignment.
Here, inspired by [23], [24] we propose a deterministic
annealing algorithm for the above optimization problem,
which leads to an initialization free solution to avoid poor
local minimum. In [23], [24], a deterministic annealing
Expectation-Maximization (EM) algorithm was presented
for Maximum Likelihood Estimation (MLE) problems to

obtain better estimates free of the initial parameter values,
in which a new posterior parameterized by “temperature”
is derived by using the principle of maximum entropy and
is used for controlling the annealing process. To apply this
strategy to our optimization problem, we first rewrite Eq. 28
in the form of Neal and Hinton’s free energy [45]:

J(ρ,π) =

− 1

N

N∑
i=1

(
Eρ
[

log
(
P (`|xi; Θ)π`(yi)

)]
− Eρ[log ρ]

)
, (36)

where Eρ[·] denotes the expectation w.r.t. conditional prob-
ability ρ(`|π, yi,xi). For a fixed π, when ρ(`|π, yi,xi) =
P (`|xi;Θ)π`(yi)
p(yi|xi;T ) , J(ρ,π) achieves its minimum, i.e., J(ρ,π) ≡

R(π,Θ;S). ρ(`|π, yi,xi) is the posterior in this MLE prob-
lem, which plays an important role in the optimization
(see Eq. 32 and Eq. 35). However, since initial values µ(0)

and σ(0) are not guaranteed to be near the true ones,
ρ(`|π, yi,xi) may be unreliable at early stages of optimiza-
tion. Ideally, the influence of this conditional probability
should be weakened at the beginning, and as the opti-
mization proceeds, the effect should be strengthened. To
this ends, we want to seek another conditional probability
%(`|π, yi,xi) to replace ρ(`|π, yi,xi) by extending Eq. 36 to
a deterministic annealing variant:

J ′(%,π, τ) =

− 1

N

N∑
i=1

(
E%
[

log
(
P (`|xi; Θ)π`(yi)

)]
− 1

τ
E%[log %]

)
, (37)

where 1
τ is the temperature parameter. Note that, when

τ = 1, J ′ ≡ J . According to Neal and Hinton’s theory [45],
the minimization of J ′(%,π, τ) can be performed by the
following Coordinate Descent iterations:

• Set %(t+1) to % that minimizes J ′(%,π(t), τ)
• Set π(t+1) to π that minimizes J ′(%(t+1),π, τ)

Given π(t), %(t+1) is obtained by minimizing
J ′(%,π(t), τ) w.r.t. % under the constraint

∑
`∈L % = 1:

∂J ′(%,π(t), τ)

∂%
=

− log
(
P (`|xi; Θ)π

(t)
` (yi)

)
+

1

τ
(log %+ 1) + λ = 0, (38)

where λ is a Lagrange multiplier. Thus, we have

%(t+1)(`|π(t), yi,xi) =

(
P (`|xi; Θ)π

(t)
` (yi)

)τ∑
`∈L

(
P (`|xi; Θ)π

(t)
` (yi)

)τ . (39)

Then, by fixing %(`|π(t), yi,xi) = %(t+1)(`|π(t), yi,xi), min-
imizing J ′(%(t+1),π, τ) w.r.t. π leads to

µ
(t+1)
` =

∑N
i=1 %(`|π(t), yi,xi)yi∑N
i=1 %(`|π(t), yi,xi)

, (40)

and

σ
(t+1)
` =

∑N
i=1 %(`|π(t), yi,xi)(yi − µ(t+1)

` )2∑N
i=1 %(`|π(t), yi,xi)

. (41)

Comparing the two groups of update functions for leaf
nodes, i.e., Eq. 32 vs. Eq. 40 and Eq. 35 vs. Eq. 41, the only
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difference between them is that the posterior is changed
from ρ(`|π, yi,xi) to %(`|π, yi,xi). When τ → 0, the
posterior %(`|π, yi,xi) becomes uniform distribution, i.e.,
%(`|π, yi,xi) ← 1

|L| . Thus, for a small enough τ , no matter
how µ(0) and σ(0) are initialized, %(`|π, yi,xi) does not
influence the optimization, since J ′(%,π, τ) always has the
minimum: µ` = 1

N

∑N
i=1 yi, σ` = 1

N

∑N
i=1(yi − µ`)2. Then,

by gradually increasing τ (decreasing the temperature),
%(`|π, yi,xi) gradually becomes nonuniform, and the in-
fluence of %(`|π, yi,xi) in the optimization is increasedly
strengthened. In this annealing process, we also start with
each input sample equally influencing all leaf nodes and
gradually localize the influence, which is a well-known
strategy to obtain better optima [22].

5.3 Learning a Regression Forest
We use the same strategies in Sec. 4.3 to learn a regression
forest. A regression forest is an ensemble of regression trees
F = {T 1, . . . , T K}, where all trees can possibly share the
same parameters in Θ, but each tree can have a different
set of split functions (assigned by ϕ, as shown in Fig. 2),
and independent leaf node distribution π. The loss func-
tion for a regression forest is also defined as the averaged
loss functions of all individual trees (Eq. 18). Learning the
forest F also follows the alternating optimization strategy
described in Sec. 5.2. To learn Θ, we have the gradient of
the forest loss given in Eq. 18, but the first term of the right
side is computed by Eq. 24. For the temperature param-
eter T introduced when optimizing Θ, we use the same
initialization and cooling schedule described in Sec. 4.3.
The leaf node distribution π of each tree in the forest F
is updated independently according to Eq. 40 and Eq. 41.
For the temperature parameter τ introduced in optimizing
π, we initialize it as a small value τ0 (τ0 < 1) and gradually
increase it by τ ← τ/η until τ = 1, where η is a constant
cooling factor less than 1. The training procedure of a DRF
is shown in Algorithm. 2.

In the testing stage, the output of the forest F is given
by averaging the predictions from all the individual trees:

ŷ = g(x;F) =
1

K

K∑
k=1

g(x; T k)

=
1

K

K∑
k=1

∫
yp(y|x; T k)dy

=
1

K

K∑
k=1

∫
y
∑
`∈Lk

P (`|x; Θ)π`(y)dy

=
1

K

K∑
k=1

∑
`∈Lk

P (`|x; Θ)µ`, (42)

where Lk is the leaf node set of the k-th tree. Here, we take
the fact that the expectation of the Gaussian distribution
π`(y) is µ`.

6 EXPERIMENTS

In this section, we first introduce our experimental setup
including the datasets, evaluation metrics, and implemen-
tation details. Then we compare our results with others

Algorithm 2 The training procedure of a DRF.
Require: S : training set
Require: nB : the number of mini-batches to update π
Require: T0, τ0: two starting temperature parameters
Require: η: a constant cooling factor

Initialize Θ and π randomly.
Set B = {∅}, T = T0 and τ = τ0
while Not converge do

while |B| < nB do
Randomly select a mini-batch B from S
Update Θ by Gradient Descent (Eq. 19, Eq. 24) on B
B = B

⋃
B

end while
Update π by iterating Eq. 40 and Eq. 41 on B
B = {∅}
if T ≥ 0 then
T ← ηT

end if
if τ < 1 then
τ ← τ/η

end if
end while

to show the effectiveness of our algorithms. After that,
we conduct elaborate ablation experiments to study the
influence of different designs and variants of our methods.
Finally, we discuss the comparison between our DLDLF and
DRF, visualizations of the learned leaf nodes, the hyper-
parameters and performance variance brought by random
assignment ϕ(·).

6.1 Experimental setup

6.1.1 Datasets

We conduct our experiments on three standard benchmarks:
MORPH [25], FG-NET [26] and the Cross-Age Celebrity
Dataset (CACD) [27]. Some examples of these three datasets
are illustrated in Fig. 5.

MORPH. MORPH is the most popular dataset for age
estimation, which contains more than 55,000 images from
about 13,000 people of different races. Each of the facial
image is annotated with a chronological age. The ethnicity
of MORPH is very unbalanced, as more than 96% of the
facial images are from African or European people.

Existing methods adopted different experimental setups
on MORPH. The first setup (Setup I) is introduced in [3],
[6], [31], [33], [46], [47], [48], which selects 5,492 images
of Caucasian people from the original MORPH dataset, to
reduce the cross-ethnicity effects. In Setup I, these 5,492
images are randomly partitioned into two subsets: 80% of
the images are selected for training and others for testing.
The random partition is repeated 5 times, and the final
performance is averaged over these 5 different partitions.

The second setup (Setup II) is used in [8], [34], [37], under
which all of the images in MORPH are randomly split into
training/testing (80%/20%) sets. The random splitting is
performed 5 times repeatedly and the final performance is
obtained by averaging the performances of these 5 different
splits.
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FGNET 

MORPH 

CACD 

2 30 45 8 23 63 

18 36 19 39 55 53 

61 31 43 53 25 16 

Fig. 5. Some examples of MORPH [25], FG-NET [26] and CACD [27].
The number below each image is the chronological age of each subject.

There are also several methods [11], [49], [50] using the
third setup (Setup III), which randomly selected a subset
(about 21,000 images) from MORPH and restricted the ratio
between Black and White and the one between Female and
Male are 1:1 and 1:3, respectively.

FG-NET. FG-NET [26] is also a widely used dataset
for age estimation. It contains 1002 facial images of 82
individuals, in which most of them are white people. Each
individual in FG-NET has more than 10 photos taken at
different ages. The images in FG-NET have a large variation
in lighting conditions, poses and expressions.

Following the experimental setup used in [3], [31], [46],
[51], [52], we perform “leave one out” cross validation on
this dataset, i.e., we leave images of one person for testing
and take the remaining images for training.

CACD. CACD [27] is a large dataset which has around
160,000 facial images of 2,000 celebrities collected from the
Internet. These celebrities are divided into three subsets: the
training set, the testing set and the validation set which
consist of 1,800 celebrities, 120 celebrities and 80 celebrities,
respectively. The validation and testing sets are clean but the
training set is noisy.

For evaluation we adopt the setup used in [3]. They
report results on the testing set obtained by using the
models trained on the training set and the validation set,
respectively.

6.1.2 Evaluation metric
The performance of age estimation is evaluated in terms
of mean absolute error (MAE) as well as Cumulative Score
(CS). MAE is the average absolute error over the testing set,
and the Cumulative Score is calculated by CS(l) = Kl

K ·100%,
where K is the total number of testing images and Kl is
the number of testing facial images whose absolute error
between the estimated age and the ground truth age is not
greater than l years. Here, we set the same error level 5
as in [33], [46], [53], i.e., l = 5. Note that, since not all the
methods reported the Cumulative Score, we are only able to
give CS values for some competitors.

6.1.3 Implementation details
Our realizations of DLDLFs and DRFs are based on the
public available “caffe” [54] framework. Following recent
deep learning based age estimation methods [3], [6], [37],
[48], we use the VGG-16 Net [55] as the CNN part of the
proposed DLDLFs and DRFs.

Method MAE CS
Human workers [18] 6.30 51.0 %*
AGES [58] 8.83 46.8 %*
MTWGP [59] 6.28 52.1%*
CA-SVR [46] 5.88 57.9%
SVR [31] 5.77 57.1%
DLA [47] 4.77 63.4 %*
Rank [60] 6.49 49.5%
Rothe [48] 3.45 N/A
DEX [3] 3.25 N/A
ARN [6] 3.00 N/A
DLDLF (ours) 2.94 84.7%
DRF (ours) 2.80 85.6%

TABLE 1
Performance comparison on MORPH [25] (Setup I)(*: the value is read

from the CS curve shown in the reference).

Parameters Setting. The forest model related hyper-
parameters (and the default values we used) are: number
of trees (5), tree depth (6), number of output units produced
by the feature learning function (128), iterations to update
leaf-node predictions (20), number of mini-batches used to
update leaf node predictions (50).

The age distribution generation related hyper-parameter
(and the default value we used) is: the pre-defined standard
deviation α in Eq. 3 (2.0).

The network training related hyper-parameters (and the
values we used) are: initial learning rate (0.05), mini-batch
size (16), maximal iterations (30k). We decrease the learning
rate (×0.5) every 10k iterations.

We fixed the values for the temperature parameters
introduced in our DA processes: T0 = 1, τ0 = 0.5 and
η = 0.9.

Preprocessing. Face alignment is a common preprocess-
ing operation for age estimation [3], [5], [6], [12], [37], [50].

Following these previous methods, we perform face
alignment to guarantee all eyeballs stay at the same position
in the image: Faces are firstly detected by using a standard
face detectior [56] and facial landmarks are localized by
AAM [57].

6.2 Performance Comparison

In this section we compare our LDLF and DRF with other
state-of-the-art age estimation methods on the three stan-
dard benchmarks: MORPH [25], FG-NET [26] and the Cross-
Age Celebrity Dataset (CACD) [27].

MORPH. We first compare the proposed LDLF and
DRF with other state-of-the-art age estimation methods on
MORPH. As we described before, there are three experimen-
tal setups used on this dataset. For a fair comparison, we test
the proposed LDLF and DRF on MORPH under all these
three setups. The quantitative results of the three settings
are summarized in Table 1, Table 2 and Table 3, respectively.
As can be seen from these tables, our DRF and LDLF achieve
the best and the second best performance on all of the se-
tups, respectively, and outperform the current state-of-the-
arts with a clear margin. This result shows the effectiveness
of jointly learning input-dependent data partition and data
distributions in local partitions for age estimation.

FG-NET. We then conduct experiments on FG-NET [26].
The quantitative comparisons on FG-NET dataset are shown
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Method MAE CS
IIS-LDL [8] 5.67 71.2%*
CPNN [9] 4.87 N/A
Huerta [53] 4.25 71.2%
BFGS-LDL [34] 3.94 N/A
OHRank [33] 6.07 56.3%
OR-SVM [60] 4.21 68.1%*
CCA [61] 4.73 60.5%*
LSVR [30] 4.31 66.2%*
OR-CNN [12] 3.27 81.5%
SMMR [13] 3.24 N/A
Ranking-CNN [5] 2.96 85.2%
DLDL [37] 2.42 N/A
Mean-Variance Loss [7] 2.41 91.2%
DLDLF (ours) 2.19 93.0%
DRF (ours) 2.14 91.3%

TABLE 2
Performance comparison on MORPH [25] (Setup II)(*: the value is read

from the CS curve shown in the reference).

Method MAE CS
KPLS [11] 4.18 N/A
Guo and Mu [49] 3.92 N/A
CPLF [50] 3.63 N/A
DLDLF (ours) 2.99 85.6%
DRF (ours) 2.90 82.7%

TABLE 3
Performance comparison on MORPH [25] (Setting III).

in Table 4. As can be seen, DRF and DLDLF outperform
other methods significantly. Note that, they are the only two
methods that have a MAE below 4.0. The age distribution
of FG-NET is strongly biased, moreover, the “leave one out”
cross validation policy further aggravates the bias between
the training set and the testing set. The ability of overcoming
the bias between training and testing sets indicates that the
proposed LDLF and DRF can handle inhomogeneous data
well.

Method MAE CS
Human workers [18] 4.70 69.5%*
Rank [60] 5.79 66.5%*
DIF [18] 4.80 74.3%*
AGES [58] 6.77 64.1%*
IIS-LDL [8] 5.77 N/A
CPNN [9] 4.76 N/A
MTWGP [59] 4.83 72.3%*
CA-SVR [46] 4.67 74.5%
LARR [31] 5.07 68.9%*
OHRank [33] 4.48 74.4%
DLA [47] 4.26 N/A
CAM [62] 4.12 73.5%*
Rothe [48] 5.01 N/A
DEX [3] 4.63 N/A
Mean-Variance Loss [7] 4.10 78.5%*
DLDLF (Ours) 3.71 84,8%
DRF (Ours) 3.47 87.3%

TABLE 4
Performance comparison on FG-NET [26](*: the value is read from the

CS curve shown in the reference).

CACD. Finally, we conduct our experiments on
CACD [27]. The detailed comparisons are shown in Table .5.
The proposed DLDLF and DRF perform better than the
competitor DEX [3], no matter which set they are trained
on. It’s worth noting that, the improvements of DLDLF

Trained on Dex [3] DLDLF (Ours) DRF (Ours)
CACD (train) 4.785 4.679 4.610
CACD (val) 6.521 6.162 5.630

TABLE 5
Performance comparison on CACD (measured by MAE) [27].

and DRF to DEX are much more significant when they
are trained on the validation set than the training set. This
result can be explained as follow: As described earlier,
the inhomogeneous data is the main challenge for training
age estimation models. This challenge can be alleviated by
enlarging the number of the training samples. Therefore,
DEX, DLDLF and DRF achieve comparable results when
they are trained on the training set. But when they are
trained on the validation set, which is much smaller than the
training set, DLDLF and DRF, especially DRF, outperform
DEX significantly, because DLDLF and DRF directly address
the inhomogeneity challenge. Therefore, DLDLF and DRF
are capable of handling inhomogeneous data even when
learned from a small set.

6.3 Ablation Study
We conduct some ablation experiments on the MORPH
dataset (Setup I), to analyze the influence of different de-
signs and components for our methods. We want to answer
these questions from the ablation study: (1) Since we argue
that age estimation is usually formulated as an LDL or
regression problem rather than a classification problem,
what the result would be if we addressed age estimation by
a deep classification forest model [19]? (2) Since we argue
that our forest structure is important for age estimation,
what the result would be if we replaced our forest structure
by an `2 regression loss function? (3) Since we argue that the
convergence of the update functions for leaf nodes used in
NRF [43] is not guaranteed, what the result would be if we
changed our update functions in DRFs to them? (4) What the
result would be if the DA process for learning split nodes
was not used (T = 0)? (5) What would the result be if the
DA process for learning leaf nodes in DRFs was not used
(τ = 1), especially when leaf nodes are not initialized by
kmeans clustering (w/o kmeans initialization)? To answer
these questions, we consider these variants of our methods
in the ablation experiments:

• DLDLF (T = 0): the DLDLF without the DA process
for learning split nodes, i.e., the baseline DLDLFs
proposed in our previous work [28].

• DLDLF (full model): the DLDLF with the DA process
for learning split nodes, i.e., the method described in
Sec. 4.

• DRF (T = 0, τ = 1, w/ kmeans initialization): the
DRF without the two DA processes for learning split
and leaf nodes and with kmeans initialization for
leaf nodes, i.e., the baseline DRF proposed in our
previous work [29].

• DRF (T = 0, τ = 1): the DRF without the two DA
processes for learning split and leaf nodes and also
without kmeans initialization for leaf nodes.

• DRF (τ = 1, w/ kmeans initialization): the DRF with
the DA process for learning split nodes, without the
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two DA processes for leaf nodes, and with kmeans
initialization for leaf nodes.

• DRF (T = 0): the DRF without the DA process for
learning split nodes, with the two DA processes for
leaf nodes, and without kmeans initialization for leaf
nodes.

• DRF (full model): the DRF with the two DA pro-
cesses for learning split and leaf nodes and without
kmeans initialization for leaf nodes, i.e., the method
described in Sec. 5.

The results of the ablation experiments are summarized in
Table 6.

6.3.1 Age estimation by classification

To formulate age estimation as a classification problem, we
treat each age value as a class. We apply a deep classification
forest model, deep neural decision forests (DNDFs) [19],
to address this problem. As shown in Table 6, the age
estimation result obtained by DNDFs is much worse than
the results obtained by our baseline DLDLF and DRF, i.e.,
DLDLF (T = 0) and DRF (T = 0, τ = 1, w/ kmeans
initialization), which evidences that age estimation is not
suitable to be formulated as a classification problem.

6.3.2 Age estimation w/o forest structure

To verify whether our forest structure is important for age
estimation, we replace our forest structure by an `2 norm
(Euclidean) loss function and denote this method by Deep
Regression. As shown in Table 6, the age estimation result
obtained by Deep Regression is even worse than the result
obtained by our baseline DRF, i.e., DRF (T = 0, τ = 1, w/
kmeans initialization), which evidences the importance of
our forest structure.

6.3.3 The update functions for leaf nodes

The method which replaces the update functions for leaf
nodes in a NRF by those in a DRF is denoted by DRF-
NRF. For fair comparison, we also initialize leaf node dis-
tributions in DRF-NRF by kmeans. As can be seen, using
NRF’s leaf node update functions leads to a much worse
result than our baseline DRF, i.e., DRF (T = 0, τ = 1, w/
kmeans initialization), which agrees with our concern about
the convergence of NRF’s leaf node update rule.

6.3.4 The DA process for learning split nodes

By comparing DLDLF (full model), DRF (full model) and
DRF (τ = 1, w/ kmeans initialization) with DLDLF (T = 0),
DRF (T = 0) and DRF (T = 0, τ = 1, w/ kmeans initial-
ization), respectively, we see that using the DA process for
learning split nodes always leads to better performances. We
also show the dynamics of the averaged entropy H(Θ;S)
over the training set S at the beginning of tree learning
in Fig. 6, where we see for both DLDLF (full model) and
DRF (full model), the averaged entropies H(Θ;S) of them
are lager and decrease more slowly than those of DLDLF
(T = 0) and DRF (T = 0). This result is consistent with
our intuition about the DA process for learning split nodes
described in Sec. 4.2.1.

Fig. 6. The dynamics of the averaged entropy H(Θ;S) over the training
set S for DLDLFs (left) and DRFs (right) at the beginning of tree learning.

6.3.5 The DA process for learning leaf nodes
We first compare DRF (T = 0, τ = 1, w/ kmeans initial-
ization) with DRF (T = 0, τ = 1, w/o kmeans initial-
ization). The result obtained by DRF (T = 0, τ = 1, w/o
kmeans initialization) is much worse than the one obtained
by DRF (T = 0, τ = 1, w/ kmeans initialization). This
comparison shows that without the DA process for learning
leaf nodes, the leaf node update may converge to a poor
local minimum, if the leaf node parameters are not well
initialized. We then compare DRF (full model) with DRF
(τ = 1, w/ kmeans initialization), where we see that using
the DA process for learning leaf nodes, even without well
initializing the leaf node parameters, can lead to a better
performance. This comparison indicates that the proposed
DA process for learning leaf nodes can avoid poor local
optima and obtain better estimates of tree parameters free
of initial parameter values.

Method MAE CS
DNDF [19] 3.32 80.7%
Deep Regression 3.21 81.1%
DRF-NRF (w/ kmeans initialization) [43] 3.51 75.4%
DLDLF (T = 0) 3.02 81.3%
DLDLF (full model) 2.94 84.7%
DRF (T = 0, τ = 1, w/ kmeans initialization) 2.91 82.9%
DRF (T = 0, τ = 1) 6.91 47.8%
DRF (τ = 1, w/ kmeans initialization) 2.85 83.9%
DRF (T = 0) 2.85 84.1%
DRF (full model) 2.80 85.6%

TABLE 6
Ablation study on MORPH [43] (Setup I).

6.4 Discussion

6.4.1 Comparison between DLDLFs and DRFs
Although DLDLFs and DRFs formulate age estimation as
different problems, both of them take the strong correlation
between close ages of the same individual into account. The
difference is DLDLFs explicitly model cross age correlations
of the same individual, while DRFs do this implicitly. The
experimental results in Sec. 6.2 show that DRFs always
achieve lower (better) MAE than DLDLFs. The reason might
be that DRFs directly approach the precise chronological
ages. However, an interesting result is, for both Setup II
and Setup III of the MORPH dataset, that DLDLFs obtain
a worse MAE than DRFs, but a better CS. This is because
the CS metric tolerates small prediction errors, and DLDLFs



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2019 13

learn an age distribution, which benefits fuzzy prediction.
Another reason for the worse MAEs achieved by DLDLFs
is that we generate age distributions by a fixed α for
different individuals, which might be inflexible in adapting
to complex face data domains with diverse cross-age corre-
lations [10]. Our future work is to learn the age distributions
adaptive to different individuals [7].

6.4.2 Visualization of learned leaf nodes
To better understand DLDLF and DRF, we visualize the
distributions at the leaf nodes learned on MORPH [25]
(Setup I) in Fig. 7(b) and Fig. 7(c), respectively. For reference,
we also display the histogram of data samples (the vertical
axis) with respect to age (the horizontal axis). Each leaf node
in our DLDLF contains a discrete probability distribution,
which is represented by a colored histogram in Fig. 7(b).
Each leaf node in our DRF contains a Gaussian distribu-
tion, as visualized in in Fig. 7(c). The horizontal axes in
both Fig. 7(b) and Fig. 7(c) represent age and the vertical
axes in them represent probability and probability density,
respectively (we rescale some very sharp distributions in
Fig. 7(c) for better visualization, since the peak densities
of them are too large). According to Fig. 7(a), the age
data in MORPH was sampled mostly below age 60, and
densely concentrated around 20’s and 40’s. As shown in
Fig. 7(b) and Fig. 7(c), both of the distributions learned
by DLDLF and DRF fit the age data well: The discrete
distributions around 60 are more uniform than those spread
in the interval between 20 and 50; The Gaussian distribution
centered around 60 has much larger variance than those
centered in the interval between 20 and 50, but has smaller
probability density. Note that, although these learned distri-
butions represent homogeneous local partitions, the number
of samples is not necessarily uniformly distributed among
partitions. Another phenomenon is these distributions are
heavily overlapped, which accords with the fact that differ-
ent people with the same age but have quite different facial
appearances.

6.4.3 Sensitivity of hyper-parameters
Now we discuss three important hyper-parameters: the tree
number, the tree depth and the standard deviation α in Eq. 3
used for age distribution generation. We vary each of them
and fix the other one to the default value to see how the
performance changes on MORPH (Setup I).

Tree number. As we stated in Sec. 1, the ensemble
strategy to learn a forest proposed in DNDFs [19] is different
from ours. Therefore, it is necessary to see which ensemble
strategy is better to learn a forest. Towards this end, we
replace our ensemble strategy by the one used in DNDFs,
and name the methods DLDLF-DNDF and DRF-DNDF,
accordingly. As shown in Fig. 8(a), our ensemble strategy
can improve the performance by using more trees, as we
expected, while the one used in DNDFs leads to an even
worse performance than one for a single tree.

Tree depth. Tree depth is another important parame-
ter for decision trees. As shown in Fig. 8 (b), for both
DLDLF and DRF, with the tree depth increase, the MAE
first becomes lower and then stable. One concern about the
tree depth is that a very deep tree may lead to underflow
due to the continued product form of Eq. 1. However, this

will not happen in practice. First, according to Fig. 8 (b),
the performance of our method becomes saturated when
the tree depth is larger than 6, thus it is unnecessary to
use very deep trees. Second, there is an implicit constraint
between tree depth h and unit number m of the FC layer f :
m ≥ 2h−1 − 1. The maximum unit number of the FC layers
in a typical CNN architecture, e.g., AlexNet [63] and VGG-16
Net [55], is 4096, which implies that the tree depth should
not be larger than 13.

Standard deviation α. Fig. 8 (c) shows that how the MAE
of our DLDLF changes by using Gaussian distributions with
different standard deviation α to generate age distributions.
Note that, when α = 0, the generated age distributions are
one-hot, i.e., the LDL problem becomes a standard classi-
fication problem, which leads to a significant performance
reduction. When α is larger, the generated age distributions
are dispersive, which also leads to performance decrease.
This is consistent with our intuition that neighboring ages
can help to describe the face appearance of a given age but
should not change the priority of the original given age.

6.4.4 Performance variance brought by random assign-
ment ϕ(·)
In our forests, CNN features are randomly selected and
assigned to split nodes for forest training, as defined by the
function ϕ(·). In order to to check whether this randomness
will seriously affect performance, we train 50 DRFs on
MORPH (Setup I) and find that the standard derivation
of the results obtained by the 50 DRFs is only 0.01 MAE.
Therefore, the random feature selection and assignment pro-
cess does not seriously affect the performance. This result
is plausible, since CNN features are first initialized by the
values computed by random weights, or weights from a pre-
trained model trained for classification on Imagenet, which
is a very different task than age estimation, and then the
selected CNN features used in the forest will be learned and
optimized for age estimation during forest training.

7 CONCLUSION

We proposed two Deep Differentiable Random Forests,
i.e., Deep Label Distribution Forest (DLDLF) and Deep
Regression Forest (DRF) for age estimation, which learn
nonlinear mapping between inhomogeneous facial feature
space and ages. In these two forests, by performing soft
data partition at split nodes, the forests can be connected
to a deep network and learned in an end-to-end manner,
where data partition at split nodes is learned by Back-
propagation and age distribution at leaf nodes is optimized
by iterating a step-size free and fast-converged update
rule derived from Variational Bounding. In addition, two
Deterministic Annealing processes are introduced into the
learning of split and leaf nodes, respectively, to avoid poor
local optima and obtain better estimates of tree parameters
free of initial parameter values. The end-to-end learning of
split and leaf nodes ensures that partition function at each
split node is input-dependent and the local input-output
correlation at each leaf node is homogeneous. Experimental
results showed that DLDLF and DRF achieved state-of-
the-art results on three age estimation benchmarks. Our
Deep Differentiable Random Forests are also applicable to
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Fig. 7. (a) Histogram of data samples with respect to age on MORPH [25] (Setup I). (b) Visualization of the learned leaf node distributions in our
DLDLF. (c) Visualization of the learned leaf node distributions in our DRF. The distributions held by different leaf nodes are in different (gradually
varied) colors, which are best viewed in color.
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Fig. 8. Performance changes by varying (a) tree number, (b) tree depth and (c) standard deviation α on MORPH [25] (Setup I).

other problems with inhomogeneous data, which will be
investigated in our future work.

APPENDIX

In the appendix, we give a re-derivation of tree optimization
in DNDFs [19] from our perspective, i.e., to reproduce the
update functions for leaf nodes in DNDFs by Variational
Bounding. For a sample x ∈ X , its class label is y ∈ Y , then
the output of the tree is given by averaging leaf predictions
by the probability of reaching the leaf:

p(y|x; T ) =
∑
`∈L

P (`|x; Θ)π`y . (43)

where π`y is the probability for class y assigned by π`. Given
a training set S = {(xi, yi)}Ni=1, the classification loss is
defined by

R(π,Θ;S) = − 1

N

N∑
i=1

log(p(yi|xi, T ))

= − 1

N

N∑
i=1

log
(∑
`∈L

P (`|xi; Θ)π`yi
)
. (44)

By fixing Θ, we can obtain a tight upper bound of
R(π,Θ;S) by Jensen’s inequality:

R(π,Θ;S) = − 1

N

N∑
i=1

log
(∑
`∈L

P (`|xi; Θ)π`yi
)

≤ − 1

N

N∑
i=1

∑
`∈L

ρ(`|π̄,xi) log
(P (`|xi; Θ)π`yi

ρ(`|π̄,xi)

)
(45)

where ρ(`|π,x) =
P (`|x;Θ)π`y∑

`∈L P (`|xi;Θ)π`y
and when π = π̄

the equality holds. This tight upper bound for R(π,Θ;S)
indicates the optimization of parameter π by Variational
Bounding [20], [21]. Let us rewrite the upper bound in Eq. 45
as

φ(π, π̄) = − 1

N

N∑
i=1

∑
`∈L

ρ(`|π̄,xi) log
(P (`|xi; Θ)π`yi

ρ(`|π̄,xi)

)
.

(46)

Note that, φ(π, π̄) has the properties that for any π and
π̄, φ(π, π̄) ≥ φ(π,π) = R(π,Θ;S) and φ(π̄, π̄) =
R(π̄,Θ;S). These two properties satisfy the conditions
for Variational Bounding. According to Variational Bound-
ing, an original objective function (e.g., R(π,Θ;S)) to be
minimized gets replaced by its bound (e.g., φ(π, π̄)) in
an iterative manner. Assume that we are at a point π(t)

corresponding to the t-th iteration, then φ(π,π(t)) is a tight
upper bound for R(π,Θ;S). In the next iteration, π(t+1)

is chosen such that φ(π(t+1),π) ≤ R(π(t),Θ;S), which
implies R(π(t+1),Θ;S) ≤ R(π(t),Θ;S). Consequently, we
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can minimize φ(π, π̄) instead of R(π,Θ;S) after ensuring
that R(π(t),Θ;S) = φ(π(t), π̄), i.e., π̄ = π(t). Thus, we
have

π(t+1) = arg min
π
φ(π,π(t)), s.t.,∀`,

∑
y

π`y = 1, (47)

which leads to an update function for π:

π
(t+1)
`y

=

∑N
i=1 1(yi = y)ρ(`|π(t)

`yi
,xi)∑N

i=1 ρ(`|π(t)
`yi
,xi)

. (48)

Eq. 48 is the same as the update function for leaf nodes given
in [19].
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