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Abstract—In some significant applications such as data forecasting,
the locations of missing entries cannot obey any non-degenerate dis-
tributions, questioning the validity of the prevalent assumption that the
missing data is randomly chosen according to some probabilistic model.
To break through the limits of random sampling, we explore in this
paper the problem of real-valued matrix completion under the setup of
deterministic sampling. We propose two conditions, isomeric condition
and relative well-conditionedness, for guaranteeing an arbitrary matrix
to be recoverable from a sampling of the matrix entries. It is provable
that the proposed conditions are weaker than the assumption of uniform
sampling and, most importantly, it is also provable that the isomeric
condition is necessary for the completions of any partial matrices to
be identifiable. Equipped with these new tools, we prove a collection
of theorems for missing data recovery as well as convex/nonconvex
matrix completion. Among other things, we study in detail a Schatten
quasi-norm induced method termed isomeric dictionary pursuit (IsoDP),
and we show that IsoDP exhibits some distinct behaviors absent in the
traditional bilinear programs.

Index Terms—matrix completion, deterministic sampling, identifiability,
isomeric condition, relative well-conditionedness, Schatten quasi-norm,
bilinear programming.

1 INTRODUCTION

IN the presence of missing data, the representativeness
of data samples may be reduced significantly and the

inference about data is therefore distorted seriously. Given
this pressing circumstance, it is crucially important to de-
vise computational methods that can restore unseen data
from available observations. As the data in practice is often
organized in matrix form, it is considerably significant to
study the problem of matrix completion [1–9], which aims to
fill in the missing entries of a partially observed matrix.
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Fig. 1. The unseen future values of time series are essentially a special
type of missing data.

Problem 1.1 (Matrix Completion). Denote by [·]ij the (i, j)th
entry of a matrix. Let L0 ∈ Rm×n be an unknown matrix of
interest. The rank of L0 is unknown either. Given a sampling of
the entries in L0 and a 2D sampling set Ω ⊆ {1, · · · ,m} × {1,
· · · , n} consisting of the locations of observed entries, i.e., given

Ω and {[L0]ij |(i, j) ∈ Ω},

can we identify the target L0? If so, under which conditions?

In general cases, matrix completion is an ill-posed prob-
lem, as the missing entries can be of arbitrary values. Thus,
some assumptions are necessary for studying Problem 1.1.
Candès and Recht [10] proved that the target L0, with
high probability, is exactly restored by convex optimization,
provided that L0 is low rank and incoherent and the set Ω
of locations corresponding to the observed entries is a set
sampled uniformly at random (i.e., uniform sampling). This
pioneering work provides people several useful tools to
investigate matrix completion and many other related prob-
lems. Its assumptions, including low-rankness, incoherence
and uniform sampling, are now standard and widely used
in the literatures, e.g., [11–18]. However, the assumption of
uniform sampling is often invalid in practice:

• A ubiquitous type of missing data is the unseen
future data, e.g., the next few values of a time series
as shown in Figure 1. It is certain that the (missing)
future data is not randomly selected, not even being
sampled uniformly at random. In this case, as will be
shown in Section 6.1, the theories built upon uniform
sampling are no longer applicable.

• Even when the underlying regime of the missing
data pattern is a probabilistic model, the reasons
for different observations being missing could be
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correlated rather than independent. In fact, most real-
world datasets cannot satisfy the uniform sampling
assumption, as pointed out by [19, 20].

There has been sparse research in the direction of deter-
ministic or nonuniform sampling, e.g., [19–25]. For example,
Negahban and Wainwright [23] studied the case of weighted
entrywise sampling, which is more general than the setup
of uniform sampling but still a special form of random
sampling. In particular, Király et al. [21, 22] treated matrix
completion as an algebraic problem and proposed determin-
istic conditions to decide whether a particular entry of a
generic matrix can be restored. Pimentel-Alarcón et al. [25]
built deterministic sampling conditions for ensuring that,
almost surely, there are only finitely many matrices that agree
with the observed entries. However, strictly speaking, those
conditions ensure only the recoverability of a special kind
of matrices, but they cannot guarantee the identifiability of
an arbitrary L0 for sure. This gap is indeed striking, as the
data matrices arising from modern applications are often
of complicate structures and unnecessary to be generic.
Moreover, the sampling conditions given in [21, 22, 25] are
not so interpretable and thus not easy to use while applying
to the other related problems such as matrix recovery (which
is matrix completion with Ω being unknown) [11].

To break through the limits of random sampling, we
propose in this work two deterministic conditions, isomeric
condition [26] and relative well-conditionedness, for guarantee-
ing an arbitrary matrix to be recoverable from a sampling of
its entries. The isomeric condition is a mixed concept that
combines together the rank and coherence of L0 with the
locations and amount of the observed entries. In general,
isomerism (noun of isomeric) ensures that the sampled sub-
matrices (see Section 2) are not rank deficient1. Remarkably, it
is provable that isomerism is necessary for the identifiability
of L0: Whenever the isomeric condition is violated, there
exist infinity many matrices that can fit the observed entries
not worse than L0 does. Hence, logically speaking, the
conditions given in [21, 22, 25] should suffice to ensure
isomerism. While necessary, unfortunately isomerism does
not suffice to guarantee the identifiability of L0 in a deter-
ministic fashion. This is because isomerism does not exclude
the unidentifiable cases where the sampled submatrices
are severely ill-conditioned. To compensate this weakness,
we further propose the so-called relative well-conditionedness,
which encourages the smallest singular values of the sam-
pled submatrices to be away from 0.

Equipped with these new tools, isomerism and relative
well-conditionedness, we prove a set of theorems pertaining
to missing data recovery [27] and matrix completion. In partic-
ular, we prove that the exact solutions that identify the target
matrix L0 are strict local minima to the commonly used
bilinear programs. Although theoretically sound, the classic
bilinear programs suffer from a weakness that the rank of
L0 has to be known. To fix this flaw, we further consider
a method termed isomeric dictionary pursuit (IsoDP), the

1. In this paper, rank deficiency means that a submatrix does not have
the largest possible rank. Specifically, suppose that M ′ is a submatrix
of some matrix M , then M ′ is rank deficient iff (i.e., if and only if)
rank (M ′) < rank (M). Note here that a submatrix is rank deficient
does not necessarily mean that the submatrix does not have full rank,
and a submatrix of full rank could be rank deficient.
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Fig. 2. Illustrations of the sampled submatrices.

formula of which can be derived from Schatten quasi-norm
minimization [4], and we show that IsoDP is superior to the
traditional bilinear programs. In summary, the main contri-
bution of this work is to establish deterministic sampling
conditions for ensuring the success in completing arbitrary
matrices from a subset of the matrix entries, producing some
theoretical results useful for understanding the completion
regimes of arbitrary missing data patterns.

2 SUMMARY OF MAIN NOTATIONS

Capital and lowercase letters are used to represent (real-
valued) matrices and vectors, respectively, except that some
lowercase letters, such as i, j, k,m, n, l, p, q, r, s and t, are
used to denote integers. For a matrix M , [M ]ij is the (i, j)th
entry of M , [M ]i,: is its ith row, and [M ]:,j is its jth
column. Let ω1 = {i1, i2, · · · , ik} and ω2 = {j1, j2, · · · , js}
be two 1D sampling sets. Then [M ]ω1,: denotes the sub-
matrix of M obtained by selecting the rows with indices
i1, i2, · · · , ik, [M ]:,ω2

is the submatrix constructed by choos-
ing the columns at j1, j2, · · · , js, and similarly for [M ]ω1,ω2

.
For a 2D sampling set Ω ⊆ {1, · · · ,m} × {1, · · · , n},
we imagine it as a sparse matrix and define its “rows”,
“columns” and “transpose” as follows: the ith row Ωi =
{j1|(i1, j1) ∈ Ω, i1 = i}, the jth column Ωj = {i1|(i1, j1) ∈
Ω, j1 = j}, and the transpose ΩT = {(j1, i1)|(i1, j1) ∈ Ω}.
These notations are important for understanding the pro-
posed conditions. For the ease of presentation, we shall call
[M ]ω,: as a sampled submatrix of M (see Figure 2), where ω
is a 1D sampling set.

Three types of matrix norms are used in this paper: 1) the
operator norm or 2-norm denoted by ‖M‖, 2) the Frobenius
norm denoted by ‖M‖F and 3) the nuclear norm denoted
by ‖M‖∗. The only used vector norm is the `2 norm, which
is denoted by ‖ · ‖2. Particularly, the symbol | · | is reserved
for the cardinality of a set.

The special symbol (·)+ is reserved to denote the Moore-
Penrose pseudo-inverse of a matrix. More precisely, for a
matrix M with SVD2 M = UMΣMV

T
M , its pseudo-inverse is

given by M+ = VMΣ−1
M UTM . For convenience, we adopt the

conventions of using span{M} to denote the linear space
spanned by the columns of a matrix M , using y ∈ span{M}
to denote that a vector y belongs to the space span{M}, and
using Y ∈ span{M} to denote that all the column vectors
of a matrix Y belong to span{M}.

2. In this paper, SVD always refers to skinny SVD. For a rank-
r matrix M ∈ Rm×n, its SVD is of the form UMΣMV T

M , where
UM ∈ Rm×r,ΣM ∈ Rr×r and VM ∈ Rn×r .
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3 IDENTIFIABILITY CONDITIONS

In this section, we introduce the so-called isomeric condi-
tion [26] and relative well-conditionedness.

3.1 Isomeric Condition

For the ease of understanding, we shall begin with a concept
called k-isomerism (or k-isomeric in adjective form), which
can be regarded as an extension of low-rankness.

Definition 3.1 (k-isomeric). A matrix M ∈ Rm×l is called k-
isomeric iff any k rows of M can linearly represent all rows in
M . That is,

rank ([M ]ω,:) = rank (M) ,∀ω ⊆ {1, · · · ,m}, |ω| = k,

where | · | is the cardinality of a sampling set and [M ]ω,: ∈ R|ω|×l
is called a “sampled submatrix” of M .

In short, a matrix M is k-isomeric means that the sam-
pled submatrix [M ]ω,: (with |ω| = k) is not rank deficient3.
According to the above definition, k-isomerism has a nice
property; that is, suppose M is k1-isomeric, then M is also
k2-isomeric for any k2 ≥ k1. So, to verify whether a matrix
M is k-isomeric with unknown k, one just needs to find the
smallest k̄ such that M is k̄-isomeric.

Generally, k-isomerism is somewhat similar to Spark [28],
which defines the smallest linearly dependent subset of the
rows of a matrix. For a matrixM to be k-isomeric, it is neces-
sary that rank (M) ≤ k, not sufficient. In fact, k-isomerism
is also somehow related to the concept of coherence [10, 29].
For a rank-r matrix M ∈ Rm×n with SVD UMΣMV

T
M , its

coherence is denoted as µ(M) and given by

µ(M) = max( max
1≤i≤m

m

r
‖[UM ]i,:‖2F , max

1≤j≤n

n

r
‖[VM ]j,:‖2F ).

When the coherence of a matrix M ∈ Rm×l is not too high,
M could be k-isomeric with a small k, e.g., k = rank (M).
Whenever the coherence of M is very high, one may need
a large k to satisfy the k-isomeric property. For example,
consider an extreme case where M is a rank-1 matrix with
one row being 1 and everywhere else being 0. In this case,
we need k = m to ensure that M is k-isomeric. However,
the connection between isomerism and coherence is not
indestructible. A counterexample is the Hadamard matrix
with 2m rows and 2 columns. In this case, the matrix has an
optimal coherence of 1, but the matrix is not k-isomeric for
any k ≤ 2m−1.

While Definition 3.1 involves all 1D sampling sets of
cardinality k, we often need the isomeric property to be
associated with a certain 2D sampling set Ω. To this end, we
define below a concept called Ω-isomerism (or Ω-isomeric).

Definition 3.2 (Ω-isomeric). LetM ∈ Rm×l and Ω ⊆ {1, · · · ,
m}×{1, · · · , n}. Suppose that Ωj 6= ∅ (empty set), ∀1 ≤ j ≤ n.
Then the matrix M is called Ω-isomeric iff

rank
(
[M ]Ωj ,:

)
= rank (M) ,∀j = 1, · · · , n.

Note here that Ωj (i.e., jth column of Ω) is a 1D sampling set and
l 6= n is allowed.

3. Here, the largest possible rank is rank (M). So rank ([M ]ω,:) =
rank (M) gives that the submatrix [M ]ω,: is not rank deficient.

Similar to k-isomerism, Ω-isomerism also assumes that
the sampled submatrices, {[M ]Ωj ,:}nj=1, are not rank defi-
cient. The main difference is that Ω-isomerism requires the
rank of M to be preserved by the submatrices sampled
according to a specific sampling set Ω, and k-isomerism
assumes that every submatrix consisting of k rows of M has
the same rank as M . Hence, Ω-isomerism is less strict than
k-isomerism. More precisely, provided that |Ωj | ≥ k, ∀1 ≤
j ≤ n, a matrix M is k-isomeric ensures that M is Ω-
isomeric as well, but not vice versa. In the extreme case
where M is nonzero at only one row, interestingly, M can
be Ω-isomeric as long as the locations of the nonzero entries
are included in Ω. For example, the following rank-1 matrix
M is not 1-isomeric but still Ω-isomeric for some Ω with
|Ωj | = 1,∀1 ≤ j ≤ n:

Ω = {(1, 1), (1, 2), (1, 3)} and M =

 1 1
0 0
0 0

 ,
where it is configured that m = n = 3 and l = 2.

With the notation of ΩT = {(j1, i1)|(i1, j1) ∈ Ω}, the
isomeric property can be also defined on the column vectors
of a matrix, as shown in the following definition.

Definition 3.3 (Ω/ΩT -isomeric). Let M ∈ Rm×n and Ω ⊆
{1, · · · ,m} × {1, · · · , n}. Suppose Ωi 6= ∅ and Ωj 6= ∅, ∀i, j.
Then the matrix M is called Ω/ΩT -isomeric iff M is Ω-isomeric
and MT is ΩT -isomeric as well.

To solve Problem 1.1 without the assumption of missing
at random, as will be shown later, it is necessary to assume
that L0 is Ω/ΩT -isomeric. This condition has excluded the
unidentifiable cases where any rows or columns of L0 are
wholly missing. Moreover, Ω/ΩT -isomerism has partially
considered the cases where L0 is of high coherence: For
the extreme case where L0 is 1 at only one entry and 0
everywhere else, L0 cannot be Ω/ΩT -isomeric unless the
index of the nonzero element is included in Ω. In general,
there are numerous reasons for the target matrix L0 to be
isomeric. For example, the standard assumptions of low-
rankness, incoherence and uniform sampling are indeed
sufficient to ensure isomerism, not necessary.

Theorem 3.1. Let L0 ∈ Rm×n and Ω ⊆ {1, · · · ,m}×{1, · · · ,
n}. Denote n1 = max(m,n), n2 = min(m,n), µ0 = µ(L0)
and r0 = rank (L0). Suppose that Ω is a set sampled uniformly
at random, namely Pr((i, j) ∈ Ω) = ρ0 and Pr((i, j) /∈ Ω) =
1− ρ0. If ρ0 > cµ0r0(log n1)/n2 for some numerical constant c
then, with probability at least 1− n−10

1 , L0 is Ω/ΩT -isomeric.

Notice, that the isomeric condition can be also proven by
discarding the uniform sampling assumption and accessing
only the concept of coherence (see Theorem 3.4). Further-
more, the isomeric condition could be even obeyed in the
case of high coherence. For example,

Ω={(1, 1),(1, 2),(1, 3),(2, 1),(3, 1)} and L0=

1 0 0
0 0 0
0 0 0

, (1)

where L0 is not incoherent and the sampling is not uniform
either, but it can be verified that L0 is Ω/ΩT -isomeric. In
fact, the isomeric condition is necessary for the identifiability
of L0, as shown in the following theorem.
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Theorem 3.2. Let L0 ∈ Rm×n and Ω ⊆ {1, · · · ,m}×{1, · · · ,
n}. If either L0 is not Ω-isomeric or LT0 is not ΩT -isomeric then
there exist infinity many matrices (denoted as L ∈ Rm×n) that
fit the observed entries not worse than L0 does:

L 6= L0, rank (L) ≤ rank (L0) , [L]ij = [L0]ij ,∀(i, j) ∈ Ω.

In other words, for any partial matrix M ′ with sampling
set Ω, if there exists a completion M that is not Ω/ΩT -
isomeric, then there are infinity many completions that are
different fromM and have a rank not greater than that ofM .
In other words, isomerism is also necessary for the so-called
finitely completable property explored in [21, 22, 25]. As a
consequence, logically speaking, the deterministic sampling
conditions established in [21, 22, 25] should suffice to ensure
isomerism. The above theorem illustrates that the isomeric
condition is indeed necessary for the identifiability of the
completions to any partial matrices, no matter how the
observed entries are chosen.

3.2 Relative Well-Conditionedness

While necessary, the isomeric condition is unfortunately
unable to guarantee the identifiability of L0 for sure. More
concretely, consider the following example:

Ω = {(1, 1), (2, 2)} and L0 =

[
1 10

9
9
10 1

]
. (2)

It can be verified that L0 is Ω/ΩT -isomeric. However, there
still exist infinitely many rank-1 completions different than
L0, e.g., L∗ = [1, 1; 1, 1], which is a matrix of all ones. For
this particular example, L∗ is the optimal rank-1 completion
in the sense of coherence. In general, isomerism is only
a condition for the sampled submatrices to be not rank
deficient, but there is no guarantee that the sampled subma-
trices are well-conditioned. To compensate this weakness,
we further propose an additional hypothesis called relative
well-conditionedness, which encourages the smallest singular
value of the sampled submatrices to be far from 0.

Again, we shall begin with a simple concept called ω-
relative condition number, with ω being a 1D sampling set.

Definition 3.4 (ω-relative condition number). Let M ∈
Rm×l and ω ⊆ {1, · · · ,m}. Suppose that [M ]ω,: 6= 0. Then
the ω-relative condition number of the matrix M is denoted as
γω(M) and given by

γω(M) = 1/‖M([M ]ω,:)
+‖2,

where (·)+ and ‖ · ‖ are the pseudo-inverse and operator norm of
a matrix, respectively.

Regarding the bound of the ω-relative condition number
γω(M), simple calculations yield

σ2
min/‖M‖2 ≤ γω(M) ≤ 1,

where σmin is the smallest singular value of [M ]ω,:. Hence,
the sampled submatrix [M ]ω,: has a large minimum singular
value is sufficient for ensuring that γω(M) is large, not
necessary. Roughly, the value of γω(M) measures how much
information of a matrix M is contained in the sampled
submatrix [M ]ω,:. The more information [M ]ω,: contains, the
larger γω(M) is (this will be more clear later). For example,

γω(M) = 1 whenever ω = {1, · · · ,m}. The concept of ω-
relative condition number can be extended to the case of 2D
sampling sets, as shown below.

Definition 3.5 (Ω-relative condition number). Let M ∈
Rm×l and Ω ⊆ {1, · · · ,m} × {1, · · · , n}. Suppose that
[M ]Ωj ,: 6= 0, ∀1 ≤ j ≤ n. Then the Ω-relative condition number
of M is denoted as γΩ(M) and given by

γΩ(M) = min
1≤j≤n

γΩj (M),

where Ωj is a 1D sampling set corresponding to the jth column
of Ω. Again, note here that l 6= n is allowed.

Using the notation of ΩT , we can define the concept of
Ω/ΩT -relative condition number as in the following.

Definition 3.6 (Ω/ΩT -relative condition number). Let M ∈
Rm×n and Ω ⊆ {1, · · · ,m} × {1, · · · , n}. Suppose that
[M ]Ωj ,: 6= 0 and [M ]:,Ωi 6= 0, ∀1 ≤ i ≤ m, 1 ≤ j ≤ n.
Then the Ω/ΩT -relative condition number of M is denoted as
γΩ,ΩT (M) and given by

γΩ,ΩT (M) = min(γΩ(M), γΩT (MT )).

To make sure that an arbitrary matrix L0 is recoverable
from a subset of the matrix entries, we need to assume that
γΩ,ΩT (L0) is reasonably large; this is the so-called relative
well-conditionedness. Under the standard settings of uniform
sampling and incoherence, we have the following theorem
to bound γΩ,ΩT (L0).

Theorem 3.3. Let L0 ∈ Rm×n and Ω ⊆ {1, · · · ,m}×{1, · · · ,
n}. Denote n1 = max(m,n), n2 = min(m,n), µ0 = µ(L0)
and r0 = rank (L0). Suppose that Ω is a set sampled uniformly
at random, namely Pr((i, j) ∈ Ω) = ρ0 and Pr((i, j) /∈ Ω) =
1 − ρ0. For any α > 1, if ρ0 > αcµ0r0(log n1)/n2 for some
numerical constant c then, with probability at least 1 − n−10

1 ,
γΩ,ΩT (L0) > (1− 1/

√
α)ρ0.

The above theorem illustrates that, under the setting of
uniform sampling plus incoherence, the relative condition
number approximately corresponds to the fraction of the
observed entries. Actually, the relative condition number
can be bounded from below without the assumption of
uniform sampling.

Theorem 3.4. Let L0 ∈ Rm×n and Ω ⊆ {1, · · · ,m} ×
{1, · · · , n}. Denote µ0 = µ(L0) and r0 = rank (L0). Denote
by ρ the smallest fraction of the observed entries in each column
and row of L0; namely,

ρ = min( min
1≤i≤m

|Ωi|
n
, min
1≤j≤n

|Ωj |
m

).

For any 0 ≤ α < 1, if ρ > 1− (1− α)/(µ0r0) then the matrix
L0 is Ω/ΩT -isomeric and γΩ,ΩT (L0) > α.

It is worth noting that the relative condition number
could be large even if the coherence of L0 is extremely
high. For the example shown in (1), it can be calculated that
γΩ,ΩT (L0) = 1.

4 THEORIES AND METHODS

In this section, we shall prove some theorems pertaining
to matrix completion as well as missing data recovery. In
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addition, we suggest a method termed IsoDP for matrix
completion, which possesses some remarkable features that
we miss in the traditional bilinear programs.

4.1 Missing Data Recovery
Before exploring the matrix completion problem, we would
like to consider a missing data recovery problem studied
by [27], which is described as follows: Let y0 ∈ Rm be a
data vector drawn form some low-dimensional subspace,
denoted as y0 ∈ S0 ⊂ Rm. Suppose that y0 contains some
available observations in yb ∈ Rk and some missing entries
in yu ∈ Rm−k. Namely, after a permutation,

y0 =

[
yb
yu

]
, yb ∈ Rk, yu ∈ Rm−k. (3)

Given the observations in yb, we seek to restore the unseen
entries in yu. To do this, we consider the prevalent idea that
represents a data vector as a linear combination of the bases
in a given dictionary:

y0 = Ax0, (4)

where A ∈ Rm×p is a dictionary constructed in advance
and x0 ∈ Rp is the representation of y0. Utilizing the same
permutation used in (3), we can partition the rows of A into
two parts according to the locations of the observed and
missing entries:

A =

[
Ab
Au

]
, Ab ∈ Rk×p, Au ∈ R(m−k)×p. (5)

In this way, the equation in (4) gives that

yb = Abx0 and yu = Aux0.

As we now can see, the unseen data yu is exactly restored, as
long as the representation x0 is retrieved by only accessing
the available observations in yb. In general cases, there are
infinitely many representations that satisfy y0 = Ax0, e.g.,
x0 = A+y0, where (·)+ is the pseudo-inverse of a matrix.
Since A+y0 is the representation of minimal `2 norm, we
revisit the traditional `2 program:

min
x

1

2
‖x‖22 , s.t. yb = Abx, (6)

where ‖ · ‖2 is the `2 norm of a vector. The above problem
has a closed-form solution given by A+

b yb. Under some
verifiable conditions, the above `2 program is indeed con-
sistently successful in a sense as in the following: For any
y0 ∈ S0 with an arbitrary partition y0 = [yb; yu] (i.e.,
arbitrarily missing), the desired representation x0 = A+y0

is the unique minimizer to the problem in (6). That is, the
unseen data yu is exactly recovered by firstly computing
x∗ = A+

b yb and then calculating yu = Aux∗.

Theorem 4.1. Let y0 = [yb; yu] ∈ Rm be an authentic sample
drawn from some low-dimensional subspace S0. Denote by k
the number of available observations in yb. Then the convex
program (6) is consistently successful, as long as S0 ⊆ span{A}
and the given dictionary A is k-isomeric.

The above theorem says that, in order to recover an
m-dimensional vector sampled from some subspace deter-
mined by a given k-isomeric dictionary A, one only needs
to see k entries of the vector.

4.2 Convex Matrix Completion

Low rank matrix completion concerns the problem of seek-
ing a matrix that not only attains the lowest rank but also
satisfies the constraints given by the observed entries:

min
L

rank (L) , s.t. [L]ij = [L0]ij ,∀(i, j) ∈ Ω.

Unfortunately, this idea is of little practical because the
problem above is essentially NP-hard and cannot be solved
in polynomial time [30]. To achieve practical matrix comple-
tion, Candès and Recht [10, 31] suggested an alternative that
minimizes instead the nuclear norm; namely,

min
L
‖L‖∗, s.t. [L]ij = [L0]ij ,∀(i, j) ∈ Ω, (7)

where ‖ · ‖∗ denotes the nuclear norm, i.e., the sum of the
singular values of a matrix. Under the context of uniform
sampling, it has been proved that the above convex program
succeeds in recovering the target L0.

Although its theory is built upon the assumption of
missing at random, as observed widely in the literatures, the
convex program (7) actually works even when the locations
of the missing entries are distributed in a correlated and
nonuniform fashion. This phenomenon could be explained
by the following theorem, which states that the solution
to the problem in (7) is unique and exact, provided that
the isomeric condition is obeyed and the relative condition
number of L0 is large enough.

Theorem 4.2. Let L0 ∈ Rm×n and Ω ⊆ {1, · · · ,m} ×
{1, · · · , n}. If L0 is Ω/ΩT -isomeric and γΩ,ΩT (L0) > 0.75
then L0 is the unique minimizer to the problem in (7).

Roughly speaking, the assumption γΩ,ΩT (L0) > 0.75
requires that more than three quarters of the information in
L0 is observed. Such an assumption is seemingly restrictive
but technically difficult to reduce in general cases.

4.3 Nonconvex Matrix Completion

The problem of missing data recovery is closely related to
matrix completion, which is actually to restore the missing
entries in multiple data vectors simultaneously. Hence, we
would transfer the spirits of the `2 program (6) to the
case of matrix completion. Following (6), one may consider
Frobenius norm minimization for matrix completion:

min
X

1

2
‖X‖2F , s.t. [AX]ij = [L0]ij ,∀(i, j) ∈ Ω, (8)

where A ∈ Rm×p is a dictionary matrix assumed to be
given. Similar to (6), the convex program (8) can also exactly
recover the desired representation matrix A+L0, as shown
in the theorem below.

Theorem 4.3. Let L0 ∈ Rm×n and Ω ⊆ {1, · · · ,m} ×
{1, · · · , n}. Provided that L0 ∈ span{A} and the given dic-
tionary A is Ω-isomeric, the desired representation X0 = A+L0

is the unique minimizer to the problem in (8).

Theorem 4.3 tells us that, in general, even when the
locations of the missing entries are placed arbitrarily, the
target L0 is restored as long as we have a proper dictionary
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A. This motivates us to consider the commonly used bilinear
program that seeks both A and X simultaneously:

min
A,X

1

2
(‖A‖2F +‖X‖2F ), s.t. [AX]ij =[L0]ij ,∀(i, j)∈Ω, (9)

where A ∈ Rm×p and X ∈ Rp×n. The problem above
is bilinear and therefore nonconvex. So, it would be hard
to obtain a strong performance guarantee as done in the
convex programs, e.g., [10, 29]. What is more, the setup
of deterministic sampling requires a deterministic recovery
guarantee, the proof of which is much more difficult than
a probabilistic guarantee. Interestingly, under the very mild
condition of isomerism, the problem in (9) is proven to in-
clude the exact solutions that identify the target matrix L0 as
the critical points. Furthermore, when the relative condition
number of L0 is sufficiently large, the local optimality of the
exact solutions is guaranteed surely.

Theorem 4.4. Let L0 ∈ Rm×n and Ω ⊆ {1, · · · ,m} ×
{1, · · · , n}. Denote the rank and the SVD of L0 as r0 and
U0Σ0V

T
0 , respectively. Define

A0 = U0Σ
1
2
0 Q

T , X0 = QΣ
1
2
0 V

T
0 ,∀Q ∈ Rp×r0 , QTQ = I.

Then we have the following:

1. If L0 is Ω/ΩT -isomeric then the exact solution, denoted
as (A0, X0), is a critical point to the problem in (9).

2. If L0 is Ω/ΩT -isomeric, γΩ,ΩT (L0) > 0.5 and p = r0

then (A0, X0) is a local minimum to the problem in (9),
and the local optimality is strict while ignoring the differ-
ences among the exact solutions that equally recover L0.

The condition of γΩ,ΩT (L0) > 0.5, roughly, demands
that more than half of the information in L0 is observed.
Unless some extra assumptions are imposed, this condition
is not reducible, because counterexamples do exist when
γΩ,ΩT (L0) < 0.5. Consider a concrete case with

Ω = {(1, 1), (2, 2)} and L0 =

[
1

√
α2 − 1

1√
α2−1

1

]
, (10)

where α >
√

2. Then it can be verified that L0 is Ω/ΩT -
isomeric. Via some calculations, we have (assume p = r0)

γΩ,ΩT (L0) = min(1− 1

α2
,

1

α2
) =

1

α2
< 0.5,

A0 =

[
(α2 − 1)

1
4

1

(α2−1)
1
4

]
and X0 =

[
1

(α2 − 1)
1
4

, (α2 − 1)
1
4

]
.

Now, construct

Aε =

[
(α2−1)

1
4

1+ε

1/(α2 − 1)
1
4

]
and Xε =

[
1 + ε

(α2 − 1)
1
4

, (α2 − 1)
1
4

]
,

where ε > 0. It is easy to see that (Aε, Xε) is a feasible
solution to (9). However, as long as 0 < ε <

√
α2 − 1− 1, it

can be verified that

‖Aε‖2F + ‖Xε‖2F < ‖A0‖2F + ‖X0‖2F ,

which implies that (A0, X0) is not a local minimum to (9).
In fact, for the particular example shown in (10), it can be
proven that a global minimum to (9) is given by (A∗ =
[1; 1], X∗ = [1, 1]), which cannot correctly reconstruct L0.

4.4 Isomeric Dictionary Pursuit
Theorem 4.4 illustrates that program (9) relies on the as-
sumption of p = rank (L0). This is consistent with the
widely observed phenomenon that program (9) may not
work well while the parameter p is far from the true rank
of L0. To overcome this drawback, again, we recall Theo-
rem 4.3. Notice, that the Ω-isomeric condition imposed on
the dictionary matrix A requires that

rank (A) ≤ |Ωj |,∀j = 1, · · · , n.

This, together with the condition of L0 ∈ span{A}, moti-
vates us to combine the formulation (8) with the popular
idea of nuclear norm minimization, resulting in a bilinear
program termed IsoDP, which estimates both A and X by
minimizing a mixture of the nuclear and Frobenius norms:

min
A,X
‖A‖∗+

1

2
‖X‖2F , s.t. [AX]ij=[L0]ij ,∀(i, j)∈Ω, (11)

where A ∈ Rm×p and X ∈ Rp×n. The above formula
can be also derived from the framework of Schatten quasi-
norm minimization [4, 32, 33]. It has been proven in [32, 33]
that, for any rank-r matrix L ∈ Rm×n with singular values
σ1, · · · , σr , the following holds:

1

q
‖L‖qq = min

A,X

1

q1
‖A‖q1q1 +

1

q2
‖X‖q2q2 , s.t. AX = L, (12)

as long as p ≥ r and 1/q = 1/q1 +1/q2 (q, q1, q2 > 0), where
‖L‖q = (

∑r
i=1 σ

q
i )

1/q is the Schatten-q norm. In that sense,
the IsoDP program (11) is related to the following Schatten-q
quasi-norm minimization problem with q = 2/3:

min
L

3

2
‖L‖2/32/3, s.t. [L]ij = [L0]ij ,∀(i, j) ∈ Ω. (13)

Nevertheless, programs (13) and (11) are not equivalent to
each other; this is obvious if p < m (assume m ≤ n). In
fact, even when p ≥ m, the conclusion (12) only implies that
the global minima of (13) and (11) are equivalent, but their
local minima and critical points could be different. More
precisely, any local minimum to (13) certainly corresponds
to a local minimum to (11), but not vice versa4. For the
same reason, the bilinear program (9) is not equivalent to
the convex program (7).

Regarding the recovery performance of the IsoDP pro-
gram (11), we establish the following theorem that repro-
duces Theorem 4.4 without the assumption of p = r0.

Theorem 4.5. Let L0 ∈ Rm×n and Ω ⊆ {1, · · · ,m} ×
{1, · · · , n}. Denote the rank and the SVD of L0 as r0 and
U0Σ0V

T
0 , respectively. Define

A0 = U0Σ
2
3
0 Q

T , X0 = QΣ
1
3
0 V

T
0 ,∀Q ∈ Rp×r0 , QTQ = I.

4. Suppose that L1 is a local minimum to the problem in (13).
Let (A1, X1) = arg minA,X ‖A‖∗ + 0.5 ‖X‖2F , s.t. AX = L1. Then
(A1, X1) has to be a local minimum to (11). This can be proven by
the method of reduction to absurdity. Assume that (A1, X1) is not
a local minimum to (11). Then there exists some feasible solution,
denoted as (A2, X2), that is arbitrarily close to (A1, X1) and satisfies
‖A2‖∗+0.5 ‖X2‖2F < ‖A1‖∗+0.5 ‖X1‖2F . TakingL2 = A2X2, we have
that L2 is arbitrarily close to L1 and 3

2
‖L2‖2/3

2/3
≤ ‖A2‖∗+0.5 ‖X2‖2F <

‖A1‖∗ + 0.5 ‖X1‖2F = 3
2
‖L1‖2/3

2/3
, which contradicts the premise that

L1 is a local minimum to (13). So, a local minimum to (13) also gives a
local minimum to (11). But the converge of this statement may not be
true, and (11) might have more local minima than (13).
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Then we have the following:

1. If L0 is Ω/ΩT -isomeric then the exact solution (A0, X0)
is a critical point to the problem in (11).

2. If L0 is Ω/ΩT -isomeric and γΩ,ΩT (L0) > 0.5 then
(A0, X0) is a local minimum to the problem in (11), and
the local optimality is strict while ignoring the differences
among the exact solutions that equally recover L0.

Due to the advantages of the nuclear norm, the above
theorem does not require the assumption of p = rank (L0)
any more. Empirically, unlike (9), which exhibits superior
performance only if p is close to rank (L0) and the initial
solution is chosen carefully, IsoDP can work well by simply
choosing p = m and using A = I as the initial solution.

4.5 Optimization Algorithm
Considering the fact that the observations in reality are
often contaminated by noise, we shall investigate instead
the following bilinear program that can also approximately
solve the problem in (11):

min
A,X

λ(‖A‖∗+
1

2
‖X‖2F )+

1

2

∑
(i,j)∈Ω

([AX]ij−[L0]ij)
2, (14)

where A ∈ Rm×m (i.e., p = m), X ∈ Rm×n and λ > 0 is
taken as a parameter.

The optimization problem in (14) can be solved by any of
the many first-order methods established in the literatures.
For the sake of simplicity, we choose to use the proximal
methods by [34, 35]. Let (At, Xt) be the solution estimated
at the tth iteration. Define a function gt(·) as

gt(A) =
1

2

∑
(i,j)∈Ω

([AXt+1]ij − [L0]ij)
2.

Then the solution to (14) is updated via iterating the follow-
ing two procedures:

Xt+1 =arg min
X

λ

2
‖X‖2F +

1

2

∑
(i,j)∈Ω

([AtX]ij − [L0]ij)
2, (15)

At+1 =arg min
A

λ

µt
‖A‖∗ +

1

2
‖A− (At −

∂gt(At)

µt
)‖2F ,

where µt > 0 is a penalty parameter and ∂gt(At) is the
gradient of the function gt(A) at A = At. According to [34],
the penalty parameter µt could be set as µt = ‖Xt+1‖2. The
two optimization problems in (15) both have closed-form
solutions. To be more precise, the X-subproblem is a least
square regression problem:

[Xt+1]:,j = (ATj Aj + λI)−1ATj yj ,∀1 ≤ j ≤ n, (16)

where Aj = [At]Ωj ,: and yj = [L0]Ωj ,j . The A-subproblem
is solved by Singular Value Thresholding (SVT) [36]:

At+1 = UHλ/µt
(Σ)V T , (17)

where UΣV T is the SVD of At − ∂gt(At)/µt and Hλ/µt
(·)

denotes the shrinkage operator with parameter λ/µt.
The whole optimization procedure is also summarized

in Algorithm 1. Without loss of generality, assume that m ≤
n. Then the computational complexity of each iteration in
Algorithm 1 is O(m2n) +O(m3).

Algorithm 1 Solving problem (14) by alternating proximal
1: Input: {[L0]ij |(i, j) ∈ Ω}.
2: Output: the dictionary A and the representation X .
3: Initialization: A = I.
4: repeat
5: Update the representation matrix X by (16).
6: Update the dictionary matrix A by (17).
7: until convergence

5 MATHEMATICAL PROOFS

This section shows the detailed proofs of the theorems
proposed in this work.

5.1 Notations
Besides of the notations presented in Section 2, there are
some other notations used throughout the proofs. Letters
U , V , Ω and their variants (complements, subscripts, etc.)
are reserved for left singular vectors, right singular vec-
tors and support set, respectively. For convenience, we
shall abuse the notation U (resp. V ) to denote the linear
space spanned by the columns of U (resp. V ), i.e., the
column space (resp. row space). The orthogonal projection
onto the column space U , is denoted by PU and given
by PU (M) = UUTM , and similarly for the row space
PV (M) = MV V T . Also, we denote by PT the projection
to the sum of the column space U and the row space V ,
i.e., PT (·) = UUT (·) + (·)V V T − UUT (·)V V T . The same
notation is also used to represent a subspace of matrices
(i.e., the image of an operator), e.g., we say that M ∈ PU for
any matrix M which satisfies PU (M) = M . The symbol PΩ

denotes the orthogonal projection onto Ω:

[PΩ(M)]ij =

{
[M ]ij , if (i, j) ∈ Ω,

0, otherwise.

Similarly, the symbol P⊥Ω denotes the orthogonal projection
onto the complement space of Ω; that is, PΩ + P⊥Ω = I ,
where I is the identity operator.

5.2 Basic Lemmas
While its definitions are associated with a certain matrix,
the isomeric condition is actually characterizing some prop-
erties of a space, as shown in the lemma below.

Lemma 5.1. Let L0 ∈ Rm×n and Ω ⊆ {1, · · · ,m} ×
{1, · · · , n}. Denote the SVD of L0 as U0Σ0V

T
0 . Then we have:

1. L0 is Ω-isomeric iff U0 is Ω-isomeric.
2. LT0 is ΩT -isomeric iff V0 is ΩT -isomeric.

Proof. It can be manipulated that

[L0]Ωj ,: = ([U0]Ωj ,:)Σ0V
T
0 ,∀j = 1, · · · , n.

Since Σ0V
T
0 is row-wisely full rank, we have

rank
(
[L0]Ωj ,:

)
= rank

(
[U0]Ωj ,:

)
,∀j = 1, · · · , n.

As a consequence, L0 is Ω-isomeric is equivalent to U0 is
Ω-isomeric. Similarly, the second claim is proven.

The isomeric property is indeed subspace successive, as
shown in the next lemma.
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Lemma 5.2. Let Ω ⊆ {1, · · · ,m} × {1, · · · , n} and U0 ∈
Rm×r be the basis matrix of a subspace embedded in Rm. Suppose
that U is a subspace of U0, i.e., U = U0U

T
0 U . If U0 is Ω-isomeric

then U is Ω-isomeric as well.

Proof. By U = U0U
T
0 U and U0 is Ω-isomeric,

rank
(
[U ]Ωj ,:

)
= rank

(
([U0]Ωj ,:)U

T
0 U

)
= rank

(
UT0 U

)
= rank

(
U0U

T
0 U

)
= rank (U) ,∀1 ≤ j ≤ n.

The following lemma reveals the fact that the isomeric
property is related to the invertibility of matrices.

Lemma 5.3. Let Ω ⊆ {1, · · · ,m} × {1, · · · , n} and U0 ∈
Rm×r be the basis matrix of a subspace of Rm. Denote by uTi the
ith row of U0, i.e., U0 = [uT1 ; · · · ;uTm]. Define δij as

δij =

{
1, if (i, j) ∈ Ω,
0, otherwise. (18)

Then the matrices,
∑m
i=1 δijuiu

T
i , ∀1 ≤ j ≤ n, are all invertible

iff U0 is Ω-isomeric.

Proof. Note that

([U0]Ωj ,:)
T ([U0]Ωj ,:) =

m∑
i=1

(δij)
2uiu

T
i =

m∑
i=1

δijuiu
T
i .

Now, it is easy to see that the matrix
∑m
i=1 δijuiu

T
i is invert-

ible is equivalent to the matrix ([U0]Ωj ,:)
T ([U0]Ωj ,:) is posi-

tive definite, which is further equivalent to rank
(
[U0]Ωj ,:

)
=

rank (U0), ∀j = 1, · · · , n.

The following lemma gives some insights to the relative
condition number.

Lemma 5.4. Let M ∈ Rm×l and ω ⊆ {1, · · · ,m}. Define
{δi}mi=1 with δi = 1 if i ∈ ω and 0 otherwise. Define a dialog
matrix D ∈ Rm×m as D = diag (δ1, δ2, · · · , δm). Denote the
SVD of M as UΣV T . If rank ([M ]ω,:) = rank (M) then

γω(M) = σmin,

where σmin is the the smallest singular value (or eigenvalue) of
the matrix UTDU .

Proof. First note that [M ]ω,: can be equivalently written as
DUΣV T . By the assumption of rank ([M ]ω,:) = rank (M),
DU is column-wisely full rank. Thus,

M([M ]ω,:)
+ = UΣV T (DUΣV T )+ = UΣV T (ΣV T )+(DU)+

= U(DU)+ = U(UTDU)−1UTD,

which gives that

M([M ]ω,:)
+(M([M ]ω,:)

+)T = U(UTDU)−1UT .

As a result, we have ‖M([M ]ω,:)
+‖2 = 1/σmin, and thereby

γω(M) = 1/‖M([M ]ω,:)
+‖2 = σmin.

It has been proven in [37] that ‖L‖∗ = minA,X
1
2 (‖A‖2F +

‖X‖2F ), s.t. AX = L. We have an analogous result, which
has also been proven by [4, 32, 33].

Lemma 5.5. Let L ∈ Rm×n be a rank-r matrix with r ≤ p.
Denote the SVD of L as UΣV T . Then we have the following:

3

2
tr
(

Σ
2
3

)
= min
A∈Rm×p,X∈Rp×n

‖A‖∗ +
1

2
‖X‖2F , s.t. AX = L,

where tr (·) is the trace of a square matrix.

Proof. Denote the singular values of L as σ1 ≥ · · · ≥ σr > 0.
We first consider the case that rank (A) = rank (L) = r.
Since AX = L, the SVD of A must have a form of
UQΣAV

T
A , where Q is an orthogonal matrix of size r × r

and ΣA = diag (α1, · · · , αr) with α1 ≥ · · · ≥ αr > 0. Since
A+L = arg minX ‖X‖2F , s.t. AX = L, we have

‖A‖∗ +
1

2
‖X‖2F ≥ ‖A‖∗ +

1

2
‖A+L‖2F

= tr (ΣA) +
1

2
tr
(

Σ−1
A QTΣ2QΣ−1

A

)
.

It can be proven that the eigenvalues of Σ−1
A QTΣ2QΣ−1

A are
given by {σ2

i /α
2
πi
}ri=1, where {απi

}ri=1 is a permutation of
{αi}ri=1. By rearrangement inequality,

tr
(

Σ−1
A QTΣ2QΣ−1

A

)
=

r∑
i=1

σ2
i

α2
πi

≥
r∑
i=1

σ2
i

α2
i

.

As a consequence, we have

‖A‖∗+
1

2
‖X‖2F ≥

r∑
i=1

(
αi +

σ2
i

2α2
i

)
=

r∑
i=1

(
1

2
αi+

1

2
αi+

σ2
i

2α2
i

)

≥
r∑
i=1

3

2
σ

2
3
i =

3

2
tr
(

Σ
2
3

)
.

Regarding the general case of rank (A) ≥ rank (L), we can
construct A1 = UUTA. By AX = L, A1X = L. Since
rank (A1) = rank (L), we have

‖A‖∗ +
1

2
‖X‖2F ≥ ‖A1‖∗ +

1

2
‖X‖2F

≥ ‖A1‖∗ +
1

2
‖A+

1 L‖2F ≥
3

2
tr
(

Σ
2
3

)
.

Finally, the optimal value of 3
2 tr
(

Σ
2
3

)
is attained by A∗ =

UΣ
2
3HT and X∗ = HΣ

1
3V T , ∀HTH = I.

The next lemma will be used multiple times in the proofs
presented in this paper.

Lemma 5.6. Let Ω ⊆ {1, · · · ,m} × {1, · · · , n} and P be
an orthogonal projection onto some subspace of Rm×n. Then the
following are equivalent:

1. PPΩP is invertible.
2. ‖PP⊥ΩP‖ < 1.
3. P ∩ P⊥Ω = {0}.

Proof. 1→2: Let vec(·) denote the vectorization of a matrix
formed by stacking the columns of the matrix into a single
column vector. Suppose that the basis matrix associated
with P is given by P ∈ Rmn×r, PTP = I; namely,

vec(P(M)) = PPTvec(M),∀M ∈ Rm×n.

Denote δij as in (18) and define a diagonal matrix D as

D = diag(δ11, δ21, · · · , δij , · · · , δmn) ∈ Rmn×mn.
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Notice that

P(M) = P(
∑
i,j

〈M, eie
T
j 〉eieTj ) =

∑
i,j

〈M, eie
T
j 〉P(eie

T
j ),

where ei is the ith standard basis and 〈·〉 denotes the inner
product between two matrices. With this notation, it is easy
to see that

[vec(P(e1e
T
1 )), vec(P(e2e

T
1 )), · · · , vec(P(eme

T
n ))] = PPT .

Similarly, we have

PPΩP(M) =
∑
i,j

〈P(M), eie
T
j 〉(δijP(eie

T
j )),

and thereby

vec(PPΩP(M)) = PPTDvec(P(M))

= PPTDPPTvec(M).

For PPΩP to be invertible, the matrix PTDP must be
positive definite. Because, whenever PTDP is singular,
there exists z ∈ Rmn that satisfies z 6= 0 and PTDPz = 0,
and thus there exists M ∈ P and M 6= 0 such that
PPΩP(M) = 0; this contradicts the assumption that PPΩP
is invertible. Denote the minimal singular value of PTDP
as 0 < σmin ≤ 1. Since PTDP is positive definite, we have

‖PP⊥ΩP(M)‖F = ‖vec(PP⊥ΩP(M))‖2
= ‖(I− PTDP )PTvec(M)‖2 ≤ (1− σmin)‖PTvec(M)‖2
= (1− σmin)‖P(M)‖F ,

which gives that ‖PP⊥ΩP‖ ≤ 1− σmin < 1.
2→3: Suppose that M ∈ P ∩ P⊥Ω , i.e., M = P(M) =

P⊥Ω (M). Then we have M = PP⊥ΩP(M) and thus

‖M‖F = ‖PP⊥ΩP(M)‖F ≤ ‖PP⊥ΩP‖‖M‖F ≤ ‖M‖F .

Since ‖PP⊥ΩP‖ < 1, the last equality above can hold only
when M = 0.

3→1: Consider a nonzero matrix M ∈ P . Then we have

‖M‖2F = ‖P(M)‖2F = ‖PΩP(M) + P⊥ΩP(M)‖2F
= ‖PΩP(M)‖2F + ‖P⊥ΩP(M)‖2F ,

which gives that

‖PP⊥ΩP(M)‖2F ≤ ‖P⊥ΩP(M)‖2F = ‖M‖2F − ‖PΩP(M)‖2F .

By P ∩ P⊥Ω = {0}, PΩP(M) 6= 0. Thus,

‖PP⊥ΩP‖2 ≤ 1− inf
‖M‖F =1

‖PΩP(M)‖2F < 1.

Provided that ‖PP⊥ΩP‖ < 1, I +
∑∞
i=1(PP⊥ΩP)i is well

defined. Notice that, for any M ∈ P , the following holds:

PPΩP(I +
∞∑
i=1

(PP⊥ΩP)i)(M)

= P(I − PP⊥ΩP)(I +
∞∑
i=1

(PP⊥ΩP)i)(M)

= P(I +
∞∑
i=1

(PP⊥ΩP)i − PP⊥ΩP −
∞∑
i=2

(PP⊥ΩP)i)(M)

= P(M) = M.

Similarly, it can be also proven that (I +
∑∞
i=1(PP⊥ΩP)i)

PPΩP(M) = M . Hence, I +
∑∞
i=1(PP⊥ΩP)i is indeed the

inverse operator of PPΩP .

The lemma below is adapted from the arguments in [38].

Lemma 5.7. Let A ∈ Rm×p be a matrix with column space U ,
and let A1 = A+ ∆. If ∆ ∈ U and ‖∆‖ < 1/‖A+‖ then

rank (A1) = rank (A) and ‖A+
1 ‖ ≤

‖A+‖
1− ‖A+‖‖∆‖

.

Proof. By ∆ ∈ U ,

A1 = A+ UUT∆ = A+AA+∆ = A(I +A+∆).

By ‖∆‖ < 1/‖A+‖, I + A+∆ is invertible and thus
rank (A1) = rank (A).

To prove the second claim, we denote by V1 the row
space of A1. Then we have

V1V
T
1 = A+

1 A1 = A+
1 A(I +A+∆),

which gives that A+
1 A = V1V

T
1 (I+A+∆)−1. Since A1 ∈ U ,

we have

A+
1 = A+

1 UU
T = A+

1 AA
+ = V1V

T
1 (I +A+∆)−1A+,

from which the conclusion follows.

5.3 Critical Lemmas
The following lemma has a critical role in the proofs.

Lemma 5.8. Let L0 ∈ Rm×n and Ω ⊆ {1, · · · ,m} ×
{1, · · · , n}. Let the SVD of L0 be U0Σ0V

T
0 . Denote PU0

(·) =
U0U

T
0 (·) and PV0

(·) = (·)V0V
T
0 . Then we have the following:

1. PU0
PΩPU0

is invertible iff U0 is Ω-isomeric.
2. PV0

PΩPV0
is invertible iff V0 is ΩT -isomeric.

Proof. The above two claims are proven in the same way,
and thereby we only present the proof of the first one. Since
the operator PU0

PΩPU0
is linear and PU0

is a linear space of
finite dimension, the sufficiency can be proven by showing
that PU0

PΩPU0
is an injection. That is, we need to prove

that the following linear system has no nonzero solution:

PU0PΩPU0(M) = 0, s.t. M ∈ PU0 .

Assume that PU0
PΩPU0

(M) = 0. Then we have

UT0 PΩ(U0U
T
0 M) = 0.

Denote the ith row and jth column of U0 and UT0 M as
uTi and bj , respectively; that is, U0 = [uT1 ;uT2 ; · · · ;uTm] and
UT0 M = [b1, b2, · · · , bn]. Define δij as in (18). Then the jth
column of UT0 PΩ(U0U

T
0 M) is given by (

∑m
i=1 δijuiu

T
i )bj .

By Lemma 5.3, the matrix
∑m
i=1 δijuiu

T
i is invertible. Hence,

UT0 PΩ(U0U
T
0 M) = 0 implies that

bj = 0,∀j = 1, · · · , n,

i.e., UT0 M = 0. By the assumption of M ∈ PU0 , M = 0.
It remains to prove the necessity. Assume U0 is not Ω-

isomeric. By Lemma 5.3, there exists j1 such that the matrix∑m
i=1 δij1uiu

T
i is singular and therefore has a nonzero null

space. So, there exists M1 6= 0 such that UT0 PΩ(U0M1) = 0.
Let M = U0M1. Then we have M 6= 0, M ∈ PU0 and

PU0
PΩPU0

(M) = 0.
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This contradicts the assumption that PU0
PΩPU0

is invert-
ible. As a consequence, U0 must be Ω-isomeric.

The next four lemmas establish some connections be-
tween the relative condition number and the operator norm.

Lemma 5.9. Let L0 ∈ Rm×n and Ω ⊆ {1, · · · ,m} ×
{1, · · · , n}, and let the SVD of L0 be U0Σ0V

T
0 . Denote

PU0
(·) = U0U

T
0 (·) and PV0

(·) = (·)V0V
T
0 . If L0 is Ω/ΩT -

isomeric then

‖PU0
P⊥ΩPU0

‖ = 1− γΩ(L0), ‖PV0
P⊥ΩPV0

‖ = 1− γΩT (LT0 ).

Proof. We only need to prove the first claim. Denote δij
as in (18) and define a set of diagonal matrices {Dj}nj=1

as Dj = diag(δ1j , δ2j , · · · , δmj) ∈ Rm×m. Denote the jth
column of PU0(M) as bj . Then we have

‖[PU0P⊥ΩPU0(M)]:,j‖2 = ‖U0U
T
0 bj − U0(UT0 DjU0)UT0 bj‖2

= ‖(I− UT0 DjU0)UT0 bj‖2 ≤ ‖(I− UT0 DjU0)‖‖UT0 bj‖2.

By Lemma 5.3, UT0 DjU0 is positive definite. As a conse-
quence, σjI 4 UT0 DjU0 4 I, where σj > 0 is the minimal
eigenvalue of UT0 DjU0. By Lemma 5.4 and Definition 3.5,
σj ≥ γΩ(L0), ∀1 ≤ j ≤ n. Thus,

‖PU0
P⊥ΩPU0

(M)‖2F ≤
n∑
j=1

(1− σj)2‖bj‖22

≤ (1− γΩ(L0))2‖PU0
(M)‖2F ,

where gives that ‖PU0P⊥ΩPU0‖ ≤ 1− γΩ(L0).
It remains to prove that the value of 1 − γΩ(L0) is

attainable. Without loss of generality, assume that j1 =
arg minj σj , i.e., σj1 = γΩ(L0). Construct a r0× r0 matrix B
with the j1th column being the eigenvector corresponding
to the smallest eigenvalue of UT0 Dj1U0 and everywhere else
being zero. Let M1 = U0B. Then it can be verified that
‖PU0

P⊥ΩPU0
(M1)‖F = (1− γΩ(L0))‖M1‖F .

Lemma 5.10. Let L0 ∈ Rm×n and Ω ⊆ {1, · · · ,m} ×
{1, · · · , n}. Let the SVD of L0 be U0Σ0V

T
0 . Denote PU0

(·) =
U0U

T
0 (·) and PV0

(·) = (·)V0V
T
0 . If L0 is Ω/ΩT -isomeric then:

‖(PU0PΩPU0)−1PU0PΩP⊥U0
‖ =

√
1

γΩ(L0)
− 1,

‖(PV0PΩPV0)−1PV0PΩP⊥V0
‖ =

√
1

γΩT (LT0 )
− 1.

Proof. We shall prove the first claim. LetM ∈ Rm×n. Denote
the jth column of M and (PU0

PΩPU0
)−1PU0

PΩP⊥U0
(M)

as bj and yj , respectively. Denote δij as in (18) and
define a set of diagonal matrices {Dj}nj=1 as Dj =
diag(δ1j , δ2j , · · · , δmj) ∈ Rm×m. Then we have

yj = [(PU0
PΩPU0

)−1PU0
PΩP⊥U0

(M)]:,j

= U0(UT0 DjU0)−1UT0 Dj(I− U0U
T
0 )bj .

It can be calculated that

‖yj‖22 ≤ ‖(UT0 DjU0)−1UT0 Dj(I− U0U
T
0 )‖2‖bj‖22 =

‖(UT0 DjU0)−1UT0 Dj(I− U0U
T
0 )DU0(UT0 DjU0)−1‖‖bj‖22

= ‖(UT0 DjU0)−1 − I‖‖bj‖22 ≤
(

1

γΩ(L0)
− 1

)
‖bj‖22,

which gives that

‖(PU0PΩPU0)−1PU0PΩP⊥U0
‖ ≤

√
1

γΩ(L0)
− 1.

Using a similar argument as in the proof of Lemma 5.9,
it can be proven that the value of

√
1/γΩ(L0)− 1 is at-

tainable. To be more precise, assume without loss of gen-
erality that j1 = arg minj σj , where σj is the smallest
singular value of UT0 DjU0. Denote by σ∗ and v∗ the largest
singular value and the corresponding right singular vec-
tor of (UT0 DjU0)−1UT0 Dj(I − U0U

T
0 ), respectively. Then

the above justifications have already proven that σ∗ =√
1/γΩ(L0)− 1. Construct an m × n matrix M with the

j1th column being v∗ and everywhere else being zero. Then
it can be verified that ‖(PU0

PΩPU0
)−1PU0

PΩP⊥U0
(M)‖F =√

1/γΩ(L0)− 1‖M‖F .

Lemma 5.11. Let L0 ∈ Rm×n and Ω ⊆ {1, · · · ,m} ×
{1, · · · , n}, and let the SVD of L0 be U0Σ0V

T
0 . Denote

PT0(·) = U0U
T
0 (·)+(·)V0V

T
0 −U0U

T
0 (·)V0V

T
0 . If L0 is Ω/ΩT -

isomeric then

‖PT0
P⊥ΩPT0

‖ ≤ 2(1− γΩ,ΩT (L0)).

Proof. Using the same arguments as in the proof of
Lemma 5.6, it can be proven that ‖PP⊥ΩP‖ = ‖PP⊥Ω ‖2, with
P being any orthogonal projection onto a subspace of Rm×n.
Thus, we have the following

‖PT0
P⊥ΩPT0

‖ = ‖PT0
P⊥Ω ‖2 = sup

‖M‖F =1

‖PT0
P⊥Ω (M)‖2F

= sup
‖M‖F =1

‖PU0
P⊥Ω (M) + P⊥U0

PV0
P⊥Ω (M)‖2F

= sup
‖M‖F =1

(‖PU0
P⊥Ω (M)‖2F + ‖P⊥U0

PV0
P⊥Ω (M)‖2F )

≤ sup
‖M‖F =1

‖PU0P⊥Ω (M)‖2F + sup
‖M‖F =1

‖PV0P⊥Ω (M)‖2F

= ‖PU0P⊥Ω ‖2 + ‖PV0P⊥Ω ‖2,

which, together with Lemma 5.9, gives that

‖PT0
P⊥ΩPT0

‖ ≤ ‖PU0
P⊥ΩPU0

‖+ ‖PV0
P⊥ΩPV0

‖
= 1− γΩ(L0) + 1− γΩT (LT0 ) ≤ 2(1− γΩ,ΩT (L0))

Lemma 5.12. Let L0 ∈ Rm×n and Ω ⊆ {1, · · · ,m} ×
{1, · · · , n}, and let the SVD of L0 be U0Σ0V

T
0 . Denote

PT0
(·) = U0U

T
0 (·) + (·)V0V

T
0 −U0U

T
0 (·)V0V

T
0 . If the operator

PT0
PΩPT0

is invertible, then we have

‖(PT0
PΩPT0

)−1PT0
PΩP⊥T0

‖ =

√
1

1− ‖PT0P⊥ΩPT0‖
− 1.

Proof. We shall use again the two notations, vec(·) and
D, defined in the proof of Lemma 5.6. Let P ∈
Rmn×r be a column-wisely orthonormal matrix such that
vec(PT0(M)) = PPTvec(M), ∀M . Since PT0PΩPT0 is in-
vertible, it follows that PTDP is positive definite. Denote
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by σmin(·) the smallest singular value of a matrix. Then we
have the following:

‖(PT0
PΩPT0

)−1PT0
PΩP⊥T0

‖2

= ‖P (PTDP )−1PTD(I− PPT )‖2

= ‖P (PTDP )−1PTD(I− PPT )DP (PTDP )−1PT ‖

= ‖(PTDP )−1 − I‖ =
1

σmin(PTDP )
− 1

=
1

1− ‖PT (I−D)P‖
− 1 =

1

1− ‖PT0
P⊥ΩPT0

‖
− 1.

The following lemma is more general than Theorem 4.3.

Lemma 5.13. Let L0 ∈ Rm×n and Ω ⊆ {1, · · · ,m} ×
{1, · · · , n}. Consider the following convex problem:

min
X
‖X‖UI , s.t. PΩ(AX − L0) = 0, (19)

where ‖·‖UI generally denotes a convex unitary invariant norm
and A ∈ Rm×p is given. If L0 ∈ span{A} and A is Ω-
isomeric then X0 = A+L0 is the unique minimizer to the convex
optimization problem in (19).

Proof. Denote the SVD of A as UAΣAV
T
A . Then it follows

from PΩ(AX − L0) = 0 and L0 ∈ span{A} that

PUA
PΩPUA

(AX − L0) = 0.

By Lemma 5.1 and Lemma 5.8, PUA
PΩPUA

is invertible and
thus AX = L0. Hence, PΩ(AX − L0) = 0 is equivalent to
AX = L0. Notice, that Theorem 4.1 of [14] actually holds
for any convex unitary invariant norms. That is,

A+L0 = arg min
X
‖X‖UI , s.t. AX = L0,

which implies that A+L0 is the unique minimizer to the
problem in (19).

5.4 Proofs of Theorems 3.1, 3.2 and 3.3
We need to use some notations as follows. Let the SVD of L0

be U0Σ0V
T
0 . Denote PU0

(·) = U0U
T
0 (·), PV0

(·) = (·)V0V
T
0

and PT0
(·) = PU0

(·) + PV0
(·)− PU0

PV0
(·).

Proof. (proof of Theorem 3.1) Define an operator H in the
same way as in [10]:

H = PT0
− 1

ρ0
PT0
PΩAPT0

.

According to Theorem 4.1 of [10], there exists some numeri-
cal constant c > 0 such that the inequality,

‖H‖ ≤

√
cµ0r0 log n1

ρ0n2
,

holds with probability at least 1 − n−10
1 provided that the

right hand side is smaller than 1. So, ‖H‖ < 1 provided that

ρ0 >
cµ0r0 log n1

n2
.

When ‖H‖ < 1, we have

‖PT0P⊥ΩPT0‖ = ‖ρ0H+ (1− ρ0)PT0‖
≤ ρ0‖H‖+ (1− ρ0)‖PT0‖ < 1.

Since PU0
(·) = PU0

PT0
(·) = PT0

PU0
(·), we have

‖PU0P⊥ΩPU0‖ = ‖PU0PT0P⊥ΩPT0PU0‖ ≤ ‖PT0P⊥ΩPT0‖ < 1.

Due to the virtues of Lemma 5.6, Lemma 5.8 and Lemma 5.1,
it can be concluded that L0 is Ω-isometric with probability
at least 1−n−10

1 . In a similar way, it can be also proven that
LT0 is ΩT -isometric with probability at least 1− n−10

1 .

Proof. (proof of Theorem 3.2) When L0 is not Ω-isomeric,
Lemma 5.1 and Lemma 5.8 give that PU0

PΩPU0
is not

invertible. By Lemma 5.6, PU0
∩P⊥Ω 6= {0}. Thus, there exists

∆ 6= 0 that satisfies ∆ ∈ PU0
and ∆ ∈ P⊥Ω . Now construct

L = L0 + ∆. Then we have L 6= L0, PΩ(L) = PΩ(L0)
and rank (L) = rank (PU0

(L0 + ∆)) ≤ rank (L0). Since
PU0

∩ P⊥Ω is a nonempty linear space, there are indeed
infinitely many choices for L.

Proof. (proof of Theorem 3.3) Using the same arguments as
in the proof of Theorem 3.1, we conclude that the following
holds with probability at least 1− n−10

1 :

‖PU0P⊥ΩPU0
‖ < 1− ρ0 +

ρ0√
α
,

which, together with Lemma 5.9, gives that γΩ(L0) > (1 −
1/
√
α)ρ0. Similarity, it can be also proven that γΩT (LT0 ) >

(1− 1/
√
α)ρ0 with probability at least 1− n−10

1 .

5.5 Proof of Theorem 3.4
Let the SVD of L0 be U0Σ0V

T
0 . Denote the ith row of U0

as uTi , i.e., U0 = [uT1 ;uT2 ; · · · ;uTm]. Define δij as in (18),
and define a collection of diagonal matrices {Dj}nj=1 as
Dj = diag(δ1j , δ2j , · · · , δmj) ∈ Rm×m. With these nota-
tions, we shall show that the operator norm of PU0P⊥ΩPU0

can be bounded from above. Considering the jth column of
PU0P⊥ΩPU0(X),∀X, j, we have

[PU0P⊥ΩPU0(X)]:,j = U0U
T
0 (I−Dj)U0U

T
0 [X]:,j ,

which gives that

‖[PU0P⊥ΩPU0(X)]:,j‖2 ≤ ‖U0U
T
0 (I−Dj)U0U

T
0 ‖‖[X]:,j‖2.

Since the diagonal of Dj has at most (1− ρ)m zeros,

‖U0U
T
0 (I−Dj)U0U

T
0 ‖ = ‖

m1∑
i=1

(1− δij)uiuTi ‖

≤
m∑
i=1

(1− δij)‖uiuTi ‖ ≤ (1− ρ)µ0r0,

where the last inequality follows from the definition of
coherence. Thus, we have

‖PU0
P⊥ΩPU0

‖ ≤ (1− ρ)µ0r0.

Similarly, based on the assumption that at least ρn entries in
each row of L0 are observed, we have

‖PV0
P⊥ΩPV0

‖ ≤ (1− ρ)µ0r0.

By the assumption ρ > 1− (1− α)/(µ0r0),

‖PU0
P⊥ΩPU0

‖ < 1− α and ‖PV0
P⊥ΩPV0

‖ < 1− α.

By Lemma 5.6 and Lemma 5.8, L0 is Ω/ΩT -isomeric. In
addition, it follows from Lemma 5.9 that γΩ,ΩT (L0) > α.
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5.6 Proofs of Theorems 4.1 and 4.3

Theorem 4.3 is indeed an immediate corollary of
Lemma 5.13. So we only prove Theorem 4.1.

Proof. By y0 ∈ S0 ⊆ span{A}, y0 = AA+y0 and therefore
yb = AbA

+y0. That is, x0 = A+y0 is a feasible solution to
the problem in (6). Provided that yb ∈ Rk and the dictionary
matrix A is k-isomeric, Definition 3.1 gives that rank (Ab) =
rank (A), which implies that

span{ATb } = span{AT }.

On the other hand, it is easy to see that A+y0 ∈ span{AT }.
Hence, there exists a dual vector w ∈ Rp that obeys

ATb w = A+y0, i.e., ATb w ∈ ∂
1

2
‖A+y0‖22.

By standard convexity arguments [39], x0 = A+y0 is an
optimal solution to the problem in (6). Since the squared
`2 norm is a strongly convex function, it follows that the
optimal solution to (6) is unique.

5.7 Proof of Theorem 4.2

Proof. Let the SVD of L0 be U0Σ0V
T
0 . Denote PT0

(·) =
U0U

T
0 (·)+(·)V0V

T
0 −U0U

T
0 (·)V0V

T
0 . Since γΩ,ΩT (L0) > 0.5,

it follows from Lemma 5.11 that ‖PT0
P⊥ΩPT0

‖ is strictly
smaller than 1. By Lemma 5.6, PT0

PΩPT0
is invertible and

T0 ∩ Ω⊥ = {0}. Given γΩ,ΩT (L0) > 0.75, Lemma 5.12 and
Lemma 5.11 imply that

‖(PT0
PΩPT0

)−1PT0
PΩP⊥T0

‖ =

√
1

1− ‖PT0
P⊥ΩPT0

‖
− 1

≤
√

1

2γΩ,ΩT (L0)− 1
− 1 < 1.

Next, we shall consider a feasible solution L = L0 + ∆ and
show that the objective strictly increases unless ∆ = 0. By
PΩ(∆) = 0, PΩPT0

(∆) = −PΩP⊥T0
(∆). Since the operator

PT0
PΩPT0

is invertible, we have

PT0(∆) = −(PT0PΩPT0)−1PT0PΩP⊥T0
(∆).

By ‖(PT0PΩPT0)−1PT0PΩP⊥T0
‖ < 1, ‖PT0(∆)‖∗ <

‖P⊥T0
(∆)‖∗ holds unless P⊥T0

(∆) = 0. By the convexity of
the nuclear norm,

‖L0 + ∆‖∗ − ‖L0‖∗ ≥ 〈∆, U0V
T
0 +W 〉,

where W ∈ P⊥T0
and ‖W‖ ≤ 1. Due to the duality between

the nuclear norm and operator norm, we can construct a W
such that 〈∆,W 〉 = ‖P⊥T0

(∆0)‖∗. Thus,

‖L0 + ∆‖∗ − ‖L0‖∗ ≥ ‖P⊥T0
(∆)‖∗ − ‖PU0

PV0
(∆)‖∗

≥ ‖P⊥T0
(∆)‖∗ − ‖PT0

(∆)‖∗.

Hence, ‖L0 + ∆‖∗ is strictly greater than ‖L0‖∗ unless ∆ ∈
T0. Since T0 ∩ Ω⊥ = {0}, it follows that L0 is the unique
minimizer to the problem in (7).

5.8 Proof of Theorem 4.4

Proof. Since A0 = U0Σ
1
2
0 Q

T and X0 = QΣ
1
2
0 V

T
0 , we have

the following: 1) A0X0 = L0; 2) L0 ∈ span{A0} and A0

is Ω-isomeric; 3) LT0 ∈ span{XT
0 } and XT

0 is ΩT -isomeric.
Hence, according to Lemma 5.13, we have

X0 = A+
0 L0 = arg min

X
‖X‖2F , s.t. PΩ(A0X − L0) = 0,

A0 = L0X
+
0 = arg min

A
‖A‖2F , s.t. PΩ(AX0 − L0) = 0.

Hence, (A0, X0) is a critical point to the problem in (9).
It remains to prove the second claim. Suppose that (A =

A0 + ∆0, X = X0 + E0) with ‖∆0‖ ≤ ε and ‖E0‖ ≤ ε is a
feasible solution to (9). We want to prove that

1

2
(‖A‖2F + ‖X‖2F ) ≥ 1

2
(‖A0‖2F + ‖X0‖2F )

holds for some small ε, and show that the equality can hold
only if AX = L0. Denote

PU0(·) = U0U
T
0 (·),PV0(·) = (·)V0V

T
0 , (20)

P1 = (PU0
PΩPU0

)−1PU0
PΩP⊥U0

,

P2 = (PV0PΩPV0)−1PV0PΩP⊥V0
.

Define

Ā0 = A0 + PU0(∆0) and X̄0 = X0 + PV0(E0). (21)

Provided that ε < min(1/‖A+
0 ‖, 1/‖X

+
0 ‖), it follows from

Lemma 5.7 that

rank
(
Ā0

)
= rank

(
X̄0

)
= r0, (22)

‖Ā+
0 ‖ ≤

‖A+
0 ‖

1− ‖A+
0 ‖ε

and ‖X̄+
0 ‖ ≤

‖X+
0 ‖

1− ‖X+
0 ‖ε

.

By PΩ(AX − L0) = 0,

PΩ(A0E0 + ∆0X0 + ∆0E0) = 0.

Then it can be manipulated that

PΩ(Ā0E0)

= −PΩ(∆0X̄0 − PU0PV0(∆0E0) + P⊥U0
P⊥V0

(∆0E0)).

Since PU0PΩPU0 is invertible, we have

P⊥V0
(Ā0E0) = −P⊥V0

(PU0PΩPU0)−1PU0PΩ(∆0X̄0 (23)

− PU0
PV0

(∆0E0) + P⊥U0
P⊥V0

(∆0E0))

= −P⊥V0
P1P⊥U0

(∆0X̄0)− P⊥V0
P1P⊥U0

P⊥V0
(∆0E0)

Similarly, by the invertibility of PV0PΩPV0 ,

P⊥U0
(∆0X̄0) (24)

= −P⊥U0
P2P⊥V0

(Ā0E0)− P⊥U0
P2P⊥U0

P⊥V0
(∆0E0).

The combination of (23) and (24) gives that

P⊥V0
(Ā0E0) = P⊥V0

P1P2P⊥V0
(Ā0E0)+

P⊥V0
(P1P2 − P1)P⊥U0

P⊥V0
(∆0E0).

By rank
(
Ā0

)
= r0 = p,

P⊥U0
P⊥V0

(∆0E0) = P⊥U0
P⊥V0

(∆0Ā
+
0 Ā0E0).
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By Lemma 5.10 and the assumption of γΩ,ΩT (L0) > 0.5,
‖P1‖ < 1 and ‖P2‖ < 1. Thus,

‖P⊥V0
(Ā0E0)‖ ≤ ‖P1P2‖‖P⊥V0

(Ā0E0)‖
+ ε(‖P1P2‖+ ‖P1‖)‖Ā+

0 ‖‖P⊥V0
(Ā0E0)‖

≤
(

1

γΩ,ΩT (L0)
− 1 +

2ε‖A+
0 ‖

1− ‖A+
0 ‖ε

)
‖P⊥V0

(Ā0E0)‖.

Let

ε < min

(
1

2‖A+
0 ‖
,

2γΩ,ΩT (L0)− 1

4‖A+
0 ‖γΩ,ΩT (L0)

)
.

Then we have that ‖P⊥V0
(Ā0E0)‖ < ‖P⊥V0

(Ā0E0)‖ strictly
holds unless P⊥V0

(Ā0E0) = 0. Since rank
(
Ā0

)
= r0 = p,

P⊥V0
(Ā0E0) = 0 simply leads to E0 ∈ PV0

. Hence,

A0E0 + ∆0X0 + ∆0E0 ∈ PV0
∩ P⊥Ω = {0},

which implies that AX = L0. Thus, we finally have

1

2
(‖A‖2F + ‖X‖2F ) ≥ ‖L0‖∗ =

1

2
(‖A0‖2F + ‖X0‖2F ),

where the inequality follows from ‖AX‖∗ =
minA,X

1
2 (‖A‖2F + ‖X‖2F ) [37].

5.9 Proof of Theorem 4.5

Proof. Since A0 = U0Σ
2
3
0 Q

T and X0 = QΣ
1
3
0 V

T
0 , we have

the following: 1) A0X0 = L0; 2) L0 ∈ span{A0} and A0

is Ω-isomeric; 3) LT0 ∈ span{XT
0 } and XT

0 is ΩT -isomeric.
Due to Lemma 5.13, we have

X0 = A+
0 L0 = arg min

X
‖X‖2F , s.t. PΩ(A0X − L0) = 0,

A0 = L0X
+
0 = arg min

A
‖A‖∗, s.t. PΩ(AX0 − L0) = 0.

Hence, (A0, X0) is a critical point to the problem in (11).
Regarding the second claim, we consider a feasible so-

lution (A = A0 + ∆0, X = X0 + E0), with ‖∆0‖ ≤ ε and
‖E0‖ ≤ ε. Define PU0

, PV0
, P1, P2, Ā0 and X̄0 in the same

way as in (20) and (21). Note that the statements in (22) still
hold in the general case of p ≥ r0. Denote the SVD of X̄0 as
Q̄Σ̄V̄ T0 . Then we have V0V

T
0 = V̄0V̄

T
0 . Denote

PQ̄ = Q̄Q̄T and P⊥Q̄ = I− Q̄Q̄T .

Denote the condition number of X0 as τ0. With these nota-
tions, we shall finish the proof by exploring two cases.

5.9.1 Case 1: ‖P⊥U0
(∆0)P⊥

Q̄
‖∗ ≥ 2τ0‖P⊥U0

(∆0)PQ̄‖∗
Denote the SVD of L0X̄

+
0 as Ũ0Σ̃Q̃T . Then we have

Ũ0Ũ
T
0 = U0U

T
0 and Q̃Q̃T = Q̄Q̄T .

By the convexity of the nuclear norm,

‖A‖∗ − ‖L0X̄
+
0 ‖∗ = ‖A0 + ∆0‖∗ − ‖L0X̄

+
0 ‖∗ (25)

≥ 〈A0 + ∆0 − L0X̄
+
0 , Ũ0Q̃

T +W 〉,

where W ∈ Rm×p, ŨT0 W = 0, WQ̃ = 0 and ‖W‖ ≤ 1. Due
to the duality between the nuclear norm and operator norm,
we can construct a W such that

〈∆0,W 〉 = ‖P⊥U0
(∆0)P⊥Q̄ ‖∗. (26)

We also have

〈A0 +∆0−L0X̄
+
0 , Ũ0Q̃

T 〉= 〈∆0 +A0E0X̄
+
0 , Ũ0Q̃

T 〉
= 〈∆0X̄0X̄

+
0 +A0E0X̄

+
0 , Ũ0Q̃

T 〉,

which gives that

abs(〈A0 + ∆0 − L0X̄
+
0 , Ũ0Q̃

T 〉) ≤ ‖X̄+
0 ‖‖PU0

PV0
(27)

(∆0X̄0 +A0E0)‖∗ ≤ ‖X̄+
0 ‖‖∆0X̄0 + PV0

(A0E0)‖∗,

where we denote by abs(·) the absolute value of a real
number. By PΩ(A0E0 + ∆0X0 + ∆0E0) = 0,

∆0X̄0 + PV0
(A0E0) = −P2P⊥V0

(A0E0)− P2P⊥V0
(∆0E0)

= −P2(−P⊥V0
P1(∆0X0 + ∆0E0)− P⊥V0

PU0(∆0E0))

− P2P⊥V0
(∆0E0) = P2P1(∆0X0 + ∆0E0)− P2P⊥U0

(∆0E0)

= P2P1(∆0X̄0) + P2P1P⊥V0
(∆0E0)− P2P⊥U0

(∆0E0).

By Lemma 5.10 and the assumption of γΩ,ΩT (L0) > 0.5,
‖P1‖ < 1 and ‖P2‖ < 1. As a result, we have

‖∆0X̄0 + PV0
(A0E0)‖∗ (28)

≤ ‖P⊥U0
(∆0X̄0)‖∗ + 2‖P⊥U0

(∆0E0)‖∗.

Let

ε < min

(
0.1‖X0‖
1 + 1.1τ0

,
0.175

‖X+
0 ‖

)
.

Due to (27), (28) and the assumption of ‖P⊥U0
(∆0)P⊥

Q̄
‖∗ ≥

2τ0‖P⊥U0
(∆0)PQ̄‖∗, it can be calculated that

abs(〈A0 + ∆0 − L0X̄
+
0 , Ũ0Q̃

T 〉) (29)

≤ ‖X̄+
0 ‖‖P⊥U0

(∆0X̄0)‖∗ + 2‖X̄+
0 ‖‖P⊥U0

(∆0(PQ̄ + P⊥Q̄ )E0)‖∗
≤ ‖X̄+

0 ‖‖X̄0‖‖P⊥U0
(∆0)PQ̄‖∗ + 2ε‖X̄+

0 ‖‖P⊥U0
(∆0)PQ̄‖∗

+ 2ε‖X̄+
0 ‖‖P⊥U0

(∆0)P⊥Q̄ ‖∗ ≤ 1.1τ0‖P⊥U0
(∆0)PQ̄‖∗

+ 0.2τ0‖P⊥U0
(∆0)PQ̄‖∗ + 0.35‖P⊥U0

(∆0)P⊥Q̄ ‖∗
≤ (0.65 + 0.35)‖P⊥U0

(∆0)P⊥Q̄ ‖∗ = ‖P⊥U0
(∆0)P⊥Q̄ ‖∗.

Now, combining (25), (26) and (29), we have

‖A‖∗ − ‖L0X̄
+
0 ‖∗ ≥ ‖P⊥U0

(∆0)P⊥Q̄ ‖∗
− abs(〈A0 + ∆0 − L0X̄

+
0 , Ũ0Q̃

T 〉) ≥ 0,

which, together with Lemma 5.5, simply leads to

‖A‖∗ +
1

2
‖X‖2F = (‖A‖∗ − ‖L0X̄

+
0 ‖∗)

+ (‖L0X̄
+
0 ‖∗ +

1

2
‖X‖2F ) ≥ ‖L0X̄

+
0 ‖∗ +

1

2
‖X̄0‖2F

≥ 3

2
tr
(

Σ
2
3
0

)
= ‖A0‖∗ +

1

2
‖X0‖2F .

For the equality of ‖A‖∗ + 0.5‖X‖2F = ‖A0‖∗ + 0.5‖X0‖2F
to hold, at least, ‖X‖F = ‖X̄0‖F must be obeyed, which
implies that E0 ∈ PV0 . Hence, we have A0E0 + ∆0X0 +
∆0E0 ∈ PV0 ∩ P⊥Ω = {0}, which gives that AX = L0.
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Fig. 3. Left: The relative condition number γΩ,ΩT (L0) vs the missing
rate 1 − ρ0 at m = 500. Middle: The relative condition number vs
the matrix size m. Right: Plotting the recovery performance of convex
optimization as a function of the missing rate.

5.9.2 Case 2: ‖P⊥U0
(∆0)P⊥

Q̄
‖∗ ≤ 2τ0‖P⊥U0

(∆0)PQ̄‖∗
Using a similar manipulation as in the proof of Theorem 4.4,
we have

P⊥U0
(∆0X̄0) = P⊥U0

P2P1P⊥U0
(∆0X̄0)+

P⊥U0
(P2P1 − P2)P⊥U0

P⊥V0
(∆0E0) = P⊥U0

P2P1P⊥U0
(∆0X̄0)

+ P⊥U0
(P2P1 − P2)P⊥U0

P⊥V0
(∆0PQ̄E0 + ∆0P

⊥
Q̄E0).

Due to Lemma 5.10 and the assumption of γΩ,ΩT (L0) > 0.5,
we have ‖P1‖ < 1 and ‖P2‖ < 1. By the assumption of
‖P⊥U0

(∆0)P⊥
Q̄
‖∗ ≤ 2τ0‖P⊥U0

(∆0)PQ̄‖∗,

‖P⊥U0
(∆0X̄0)‖∗ ≤ ‖P2P1‖‖P⊥U0

(∆0X̄0)‖∗
+ (4τ0 + 2)ε‖P⊥U0

(∆0)PQ̄‖∗ = ‖P2P1‖‖P⊥U0
(∆0X̄0)‖∗

+ (4τ0 + 2)ε‖P⊥U0
(∆0)X̄0X̄

+
0 ‖∗

≤
(

1

γΩ,ΩT (L0)
− 1 +

(4τ0 + 2)ε‖X+
0 ‖

1− ‖X+
0 ‖ε

)
‖P⊥U0

(∆0X̄0)‖∗.

Let

ε < min

(
1

2‖X+
0 ‖

,
2γΩ,ΩT (L0)− 1

(8τ0 + 4)‖X+
0 ‖γΩ,ΩT (L0)

)
.

Then ‖P⊥U0
(∆0X̄0)‖∗ < ‖P⊥U0

(∆0X̄0)‖∗ strictly holds unless
P⊥U0

(∆0X̄0) = 0. That is,

P⊥U0
(∆0)PQ̄ = 0 and thus P⊥U0

(∆0)P⊥Q̄ = 0.

Hence, we have P⊥U0
(∆0) = 0, which simply leads to

A0E0 + ∆0X0 + ∆0E0 ∈ PU0
∩ P⊥Ω = {0},

and which gives that AX = L0. By Lemma 5.5,

‖A‖∗ +
1

2
‖X‖2F ≥

3

2
tr
(

Σ
2
3
0

)
= ‖A0‖∗ +

1

2
‖X0‖2F .

6 EXPERIMENTS

6.1 Investigating the Relative Condition Number
To study the properties of the relative condition number,
we generate a vector x ∈ Rm according to the model
[x]t = sin(2tπ/m), t = 1, · · · ,m. That is, x is a univariate
time series of dimension m. We consider the forecasting
tasks of recovering x from a collection of l observations,
{[x]t}lt=1, where l = ρ0m varies from 0.1m to 0.9m with
step size 0.1m. Let y ∈ Rm be the mask vector of the
sampling operator, i.e., [y]t is 1 if [x]t is observed and 0
otherwise. In order to recover x, it suffices to recover its

nonuniform uniform

Fig. 4. Visualizing the configurations of Ω used in our simulations. The
white points correspond to the locations of the observed entries. In these
two examples, 90% entries of the matrix are missing.

convolution matrix [40]. Thus, the forecasting tasks here can
be converted to matrix completion problems, with

L0 = A(x) and Ω = supp(A(y)),

where A(·) is the convolution matrix of a tensor5, and
supp(·) is the support set of a matrix. In this example,
L0 ∈ Rm×m is a circulant matrix that is perfectly incoherent
and low rank; namely, rank (L0) ≡ 2 and µ(L0) ≡ 1,
∀m > 2. Moreover, each column and each row of Ω have
exactly a cardinality of ρ0m. We use the convex program (7)
to restore L0 from the given observations.

The results are shown in Figure 3. It can be seen that
the relative condition number is independent of the matrix
sizes and monotonously deceases as the missing rate grows.
As we can see from the right hand side of Figure 3, the
recovery performance visibly declines when the missing
rate exceeds 30% (i.e., ρ0 < 0.7), which approximately
corresponds to γΩ,ΩT (L0) < 0.55. When ρ0 < 0.3 (which
corresponds approximately to γΩ,ΩT (L0) < 0.15), matrix
completion totally breaks down. These results illustrate that
relative well-conditionedness is important for guaranteeing
the success of matrix completion in practice. Of course, the
lower bound on γΩ,ΩT (L0) would depend on the character-
istics of data, and the condition γΩ,ΩT (L0) > 0.75 proven
in Theorem 4.2 is just a universal bound for guaranteeing
exact recovery in the worst case. In addition, the estimate
given in Theorem 3.4 is accurate only when the missing rate
is low, as shown in the left part of Figure 3.

Among the other things, it is worth noting that the
sampling complexity does not decrease as the matrix size
m grows. This phenomenon is in conflict with the uniform
sampling based matrix completion theories, which prove
that a small fraction of O((logm)2/m) entries should suffice
to recover L0 [41], and which implies that the sampling
complexity should decrease to zero when the matrix size
m goes to infinity. Hence, as aforementioned, the theories
built upon uniform sampling are no longer applicable when
applying to the deterministic missing data patterns.

6.2 Results on Randomly Generated Matrices

To evaluate the performance of various matrix completion
methods, we generate a collection of m × n (m = n = 100)
target matrices according to L0 = BC , where B ∈ Rm×r0
and C ∈ Rr0×n are N (0, 1) matrices. The rank of L0,

5. Unlike [40], we adopt here the circulant boundary condition. Thus,
the jth column of A(x) is simply the vector obtained by circularly
shifting the elements in x by j − 1 positions.
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Fig. 5. Comparing IsoDP with convex optimization and LRFD. The
numbers plotted on the above figures are the success rates within 20
random trials. The white and black areas mean “succeed” and “fail”,
respectively. Here, the success is in a sense that PSNRdB ≥ 40.
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Fig. 6. Visualizing the regions in which the isomeric condition holds.

i.e., r0, is configured as r0 = 1, 5, 10, · · · , 90, 95. Regard-
ing the sampling set Ω consisting of the locations of the
observed entries, we consider two settings: One is to cre-
ate Ω by using a Bernoulli model to randomly sample a
subset from {1, · · · ,m} × {1, · · · , n} (referred to as “uni-
form”), the other is to let the locations of the observed
entries be centered around the main diagonal of a matrix
(referred to as “nonuniform”). Figure 4 shows how the
sampling set Ω looks like. The observation fraction is set
as |Ω|/(mn) = 0.01, 0.05, · · · , 0.9, 0.95. To show the advan-
tages of IsoDP, we include for comparison two prevalent
methods: convex optimization [10] and Low-Rank Factor
Decomposition (LRFD) [29]. The same as IsoDP, these two
methods do not assume that rank of L0 either. When p = m
and the identity matrix is used to initialize the dictionary
A, the bilinear program (9) does not outperform convex
optimization, thereby we exclude it from the comparison.

The accuracy of recovery, i.e., the similarity between
L0 and L̂0, is measured by Peak Signal-to-Noise Ratio
(PSNRdB). Figure 5 compares IsoDP to convex optimization
and LRFD. It can be seen that IsoDP works distinctly better
than the competing methods. Namely, while handling the
nonuniformly missing data, the number of matrices suc-
cessfully restored by IsoDP is 102% and 71% more than
convex optimization and LRFD, respectively. While dealing
with the missing entries chosen uniformly at random, in

Fig. 7. An example image from the Oxford dinosaur sequence and the
locations of the observed entries in the data matrix of trajectories. In this
dataset, 74.29% entries of the trajectory matrix are missing.

(a) input (b) convex

(c) LRFD (d) IsoDP

Fig. 8. Some examples of the originally incomplete and fully restored
trajectories. (a) The original incomplete trajectories. (b) The trajectories
restored by convex optimization [10]. (c) The trajectories restored by
LRFD [29]. (d) The trajectories restored by IsoDP.

terms of the number of successfully restored matrices, IsoDP
outperforms both convex optimization and LRFD by 44%.
These results verify the effectiveness of IsoDP. Figure 6
plots the regions where the isometric condition is valid.
By comparing Figure 5 to Figure 6, it can be seen that the
recovery performance of IsoDP has not reached the upper
limit defined by isomerism. That is, there is still some room
left for improvement.

6.3 Results on Motion Data
We now consider the Oxford dinosaur sequence6, which
contains in total 72 image frames corresponding to 4983
track points observed by at least 2 among 36 views. The
values of the observations range from 8.86 to 629.82. We
select 195 track points which are observed by at least 6 views
for experiment, resulting in a 72 × 195 trajectory matrix
74.29% entries of which are missing (see Figure 7). The
tracked dinosaur model is rotating around its center, and
thus the true trajectories should form complete circles [42].

The results in Theorem 4.5 imply that our IsoDP may
possess the ability to attain a solution of strictly low rank.
To confirm this, we evaluate convex optimization, LRFD
and IsoDP by examining the rank of the restored trajectory
matrix as well as the fitting error on the observed entries.
Table 1 shows the evaluation results. It can be seen that,

6. Available at http://www.robots.ox.ac.uk/∼vgg/data1.html

http://www.robots.ox.ac.uk/~vgg/data1.html
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TABLE 1
Mean square error (MSE) on the Oxford dinosaur sequence. Here, the

rank of a matrix is estimated by #{i|σi ≥ 10−4σ1}, where
σ1 ≥ σ2 ≥ · · · are the singular values of the matrix. The regularization
parameter in each method is manually tuned such that the rank of the

restored matrix meets a certain value. Here, the MSE values are
evaluated on the training data (i.e., observed entries).

rank of the
restored matrix convex optimization LRFD IsoDP

6 426.1369 28.4649 0.6140
7 217.9963 21.6968 0.4682
8 136.7643 17.2269 0.1480
9 94.4673 13.954 0.0585
10 53.9864 6.3768 0.0468
11 43.2613 5.9877 0.0374
12 29.7542 4.5136 0.0302

TABLE 2
MSE on the MovieLens dataset. The regularization parameters of the
competing methods have been manually tuned to the best. Here, the

MSE values are evaluated on the testing data.

methods MSE
random 3.7623
average 1.6097

convex optimization 0.9350
LRFD 0.9213

IsoDP (λ = 0.0005) 0.8412
IsoDP (λ = 0.0008) 0.8250
IsoDP (λ = 0.001) 0.8228
IsoDP (λ = 0.002) 0.8295
IsoDP (λ = 0.005) 0.8583

while the restored matrices have the same rank, the fitting
error produced by IsoDP is much smaller than the compet-
ing methods. The error of convex optimization is quite large,
because the method cannot produce a solution of exactly
low rank unless a biased regularization parameter is chosen.
Figure 8 shows some examples of the originally incomplete
and fully restored trajectories. Our IsoDP method can ap-
proximately recover the circle-like trajectories.

6.4 Results on Movie Ratings

We also consider the MovieLens [43] datasets that are
widely used in research and industry. The dataset we use
is consist of 100,000 ratings (integers between 1 and 5) from
943 users on 1682 movies. The distribution of the observed
entries is severely imbalanced: The number of movies rated
by each user ranges from 20 to 737, and the number of users
who have rated for each movie ranges from 1 to 583. We
remove the users that have less than 80 ratings, and so for
the movies. Thus the final dataset used for experiments is
consist of 14,675 ratings from 231 users on 206 movies. For
the sake of quantitative evaluation, we randomly select 1468
ratings as the testing data, i.e., those ratings are intentionally
set unknown to the matrix completion methods. So, the
percentage of the observed entries used as inputs for matrix
completion is only 27.75%.

Despite convex optimization and LRFD, we also con-
sider two “trivial” baselines: One is to estimate the unseen
ratings by randomly choosing an integer from the range of
1 to 5, the other is to simply use the average rating of 3 to
fill the unseen entries. The comparison results are shown in
Table 2. As we can see, all the considered matrix completion
methods outperform distinctly the trivial baselines, illustrat-
ing that matrix completion is beneficial on this dataset. In
particular, IsoDP with proper parameters performs much

better than convex optimization and LRFD, confirming the
effectiveness of IsoDP on realistic datasets.

7 CONCLUSION

This work studied the identifiability of real-valued matrices
under the convex of deterministic sampling. We established
two deterministic conditions, isomerism and relative well-
conditionedness, for ensuring that an arbitrary matrix is
identifiable from a subset of the matrix entries. We first
proved that the proposed conditions can hold even if the
missing data pattern is irregular. Then we proved a series of
theorems for missing data recovery and convex/nonconvex
matrix completion. In general, our results could help to
understand the completion regimes of arbitrary missing
data patterns, providing a basis for investigating the other
related problems such as data forecasting.
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[22] F. Király, L. Theran, and R. Tomioka, “The algebraic
combinatorial approach for low-rank matrix comple-
tion,” J. Mach. Learn. Res., vol. 16, no. 1, pp. 1391–1436,
Jan. 2015.

[23] S. Negahban and M. J. Wainwright, “Restricted strong
convexity and weighted matrix completion: Optimal
bounds with noise,” Journal of Machine Learning Re-
search, vol. 13, pp. 1665–1697, 2012.

[24] Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward,
“Completing any low-rank matrix, provably,” Journal of
Machine Learning Research, vol. 16, pp. 2999–3034, 2015.

[25] D. L. Pimentel-Alarcón, N. Boston, and R. D. Nowak,
“A characterization of deterministic sampling patterns
for low-rank matrix completion,” J. Sel. Topics Signal
Processing, vol. 10, no. 4, pp. 623–636, 2016.

[26] G. Liu, Q. Liu, and X.-T. Yuan, “A new theory for matrix
completion,” in Neural Information Processing Systems,
2017, pp. 785–794.

[27] Y. Zhang, “When is missing data recoverable?” CAAM
Technical Report TR06-15, 2006.

[28] D. L. Donoho and M. Elad, “Optimally sparse repre-
sentation in general (nonorthogonal) dictionaries via
`1 minimization,” Proceedings of the National Academy

of Sciences, vol. 100, no. 5, pp. 2197–2202, 2003.
[29] G. Liu and P. Li, “Low-rank matrix completion in the

presence of high coherence,” IEEE Transactions on Signal
Processing, vol. 64, no. 21, pp. 5623–5633, 2016.

[30] A. L. Chistov and D. Grigoriev, “Complexity of quan-
tifier elimination in the theory of algebraically closed
fields,” in Proceedings of the Mathematical Foundations of
Computer Science, 1984, pp. 17–31.

[31] B. Recht, W. Xu, and B. Hassibi, “Necessary and suffi-
cient conditions for success of the nuclear norm heuris-
tic for rank minimization,” CalTech, Tech. Rep., 2008.

[32] F. Shang, Y. Liu, and J. Cheng, “Scalable algorithms for
tractable schatten quasi-norm minimization,” in AAAI
Conference on Artificial Intelligence, 2016, pp. 2016–2022.

[33] C. Xu, Z. Lin, and H. Zha, “A unified convex surro-
gate for the schatten-p norm,” in AAAI Conference on
Artificial Intelligence, 2017, pp. 926–932.

[34] H. Attouch and J. Bolte, “On the convergence of the
proximal algorithm for nonsmooth functions involving
analytic features,” Mathematical Programming, vol. 116,
no. 1-2, pp. 5–16, 2009.

[35] J. Bolte, S. Sabach, and M. Teboulle, “Proximal al-
ternating linearized minimization for nonconvex and
nonsmooth problems,” Mathematical Programming, vol.
146, no. 1, pp. 459–494, 2014.

[36] J. Cai, E. Candes, and Z. Shen, “A singular value
thresholding algorithm for matrix completion,” SIAM
J. on Optimization, vol. 20, no. 4, pp. 1956–1982, 2010.

[37] B. Recht, M. Fazel, and P. Parrilo, “Guaranteed
minimum-rank solutions of linear matrix equations via
nuclear norm minimization,” SIAM Review, vol. 52,
no. 3, pp. 471–501, 2010.

[38] G. W. Stewart, “On the continuity of the generalized
inverse,” SIAM Journal on Applied Mathematics, vol. 17,
no. 1, pp. 33–45, 1969.

[39] R. Rockafellar, Convex Analysis. Princeton, NJ, USA:
Princeton University Press, 1970.

[40] G. Liu, S. Chang, and Y. Ma, “Blind image deblurring
using spectral properties of convolution operators,”
IEEE Transactions on Image Processing, vol. 23, no. 12,
pp. 5047–5056, 2014.

[41] Y. Chen, “Incoherence-optimal matrix completion,”
IEEE Transactions on Information Theory, vol. 61, no. 5,
pp. 2909–2923, 2015.

[42] Y. Zheng, G. Liu, S. Sugimoto, S. Yan, and M. Okutomi,
“Practical low-rank matrix approximation under robust
l1-norm,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2012, pp. 1410–1417.

[43] F. M. Harper and J. A. Konstan, “The movielens
datasets: History and context,” ACM Transactions on
Interactive Intelligent Systems, vol. 5, no. 4, pp. 1901–
1919, 2015.


	1 Introduction
	2 Summary of Main Notations
	3 Identifiability Conditions
	3.1 Isomeric Condition
	3.2 Relative Well-Conditionedness

	4 Theories and Methods
	4.1 Missing Data Recovery
	4.2 Convex Matrix Completion
	4.3 Nonconvex Matrix Completion
	4.4 Isomeric Dictionary Pursuit
	4.5 Optimization Algorithm

	5 Mathematical Proofs
	5.1 Notations
	5.2 Basic Lemmas
	5.3 Critical Lemmas
	5.4 Proofs of Theorems ??, ?? and ??
	5.5 Proof of Theorem ??
	5.6 Proofs of Theorems ?? and ??
	5.7 Proof of Theorem ??
	5.8 Proof of Theorem ??
	5.9 Proof of Theorem ??
	5.9.1 Case 1: "026B30D PU0(0)P"026B30D *20"026B30D PU0(0)P"026B30D *
	5.9.2 Case 2: "026B30D PU0(0)P"026B30D *20"026B30D PU0(0)P"026B30D *


	6 Experiments
	6.1 Investigating the Relative Condition Number
	6.2 Results on Randomly Generated Matrices
	6.3 Results on Motion Data
	6.4 Results on Movie Ratings

	7 Conclusion

