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Topology-Aware Non-Rigid
Point Cloud Registration
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Abstract—In this paper, we introduce a non-rigid registration pipeline for pairs of unorganized point clouds that may be topologically
different. Standard warp field estimation algorithms, even under robust, discontinuity-preserving regularization, tend to produce erratic
motion estimates on boundaries associated with ‘close-to-open’ topology changes. We overcome this limitation by exploiting backward
motion: in the opposite motion direction, a ‘close-to-open’ event becomes ‘open-to-close’, which is by default handled correctly. At the
core of our approach lies a general, topology-agnostic warp field estimation algorithm, similar to those employed in recently introduced
dynamic reconstruction systems from RGB-D input. We improve motion estimation on boundaries associated with topology changes in
an efficient post-processing phase. Based on both forward and (inverted) backward warp hypotheses, we explicitly detect regions of
the deformed geometry that undergo topological changes by means of local deformation criteria and broadly classify them as ‘contacts’
or ‘separations’. Subsequently, the two motion hypotheses are seamlessly blended on a local basis, according to the type and proximity
of detected events. Our method achieves state-of-the-art motion estimation accuracy on the MPI Sintel dataset. Experiments on a
custom dataset with topological event annotations demonstrate the effectiveness of our pipeline in estimating motion on event
boundaries, as well as promising performance in explicit topological event detection.

Index Terms—non-rigid registration, warp field, dense motion estimation, surface deformation, dynamic topology

1 INTRODUCTION

OTION estimation in 3D is a problem of great im-
Mportance in computer vision, robotics, and computer
graphics, playing a central role in a wide range of appli-
cations that include 3D scene reconstruction/modeling, hu-
man and object pose tracking, robot localization, augmented
reality, human-computer interfaces and deformable shape
manipulation. The advent of affordable, commercial depth
sensors has caused significant research effort on 3D motion
estimation from 3D input, leading to the development of
RGB-D algorithms for fast visual odometry [1], [2], efficient
and accurate scene flow estimation [3], [4], as well as notable
SLAM systems for both static [5], [6] and dynamic [7], [8]
environments.

Given the availability of 3D input, dense non-rigid regis-
tration is the most general motion estimation problem and it
is particularly challenging. In its general form, the problem
can be described as computing a motion field, densely
supported on the surface of a 3D shape, that deforms the
latter in order to geometrically align it to another, fixed
“template” shape. This process of non-rigid 3D registration
shares fundamental similarities with 2D image registration,
known in the computer vision community as optical flow es-
timation: both problems pose similar challenges in deriving
formulations that lead to accurate alignment while encoding
reasonable prior constraints (regularization) to overcome ill-
posedness.

A classical problem variant that is closely related to 3D
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non-rigid registration is that of RGB-D scene flow. Given a
pair of images, scene flow refers to the per-pixel 3D motion
of observed points in space from the first frame to the
second; optical flow refers to the per-pixel 2D projected
motion. There have been a number of successful recent
works on scene flow estimation from RGB-D frame pairs,
following both classical (variational) [3], [4], [9], [10], [11]
and deep learning [12] frameworks. While of great relevance
to a number of motion reasoning tasks, RGB-D scene flow
targets a specific instance of dense 3D motion estimation,
as it inherently registers pairs of 2.5D geometries (depth
maps). This hinders its application in scenarios that require
alignment of arbitrary 3D geometries, such as model-to-frame
registration for dynamic reconstruction or model-to-model
shape deformation.

Recently introduced dynamic reconstruction pipelines
from RGB-D input [7], [8], [13], [14] solve a more general
problem by implementing warp field optimization algo-
rithms for their model-to-frame registration step. Despite
adopting different approaches for their model representa-
tions and surface fusion steps, they all rely on similar, point
cloud based formulations for non-rigid registration. Scenes
with dynamic topology are a challenging case for dynamic
reconstruction systems: [7] and [8] make no provisions at all
for these cases, while [13] and [14] deal with registration er-
rors that occur because of dynamic topology at a subsequent
stage, by discarding problematic regions and reinitializing
model tracking. The fully volumetric approaches of [15]
and [16] do not use point representations for registration,
directly aligning Signed Distance Fields (SDFs) [17] instead.
While they intrinsically handle topological changes, signif-
icant scalability limitations are introduced by relying on
volumetric representations. To the best of our knowledge,
there exists no non-rigid point cloud registration algorithm
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producing warp fields that are error-free on motion bound-
aries induced by dynamic scene topology.

We note that, throughout our discussion, we use the
term ‘point cloud” to refer to a geometry representation
by a discrete point set sample of the underlying surface, as
opposed to a volumetric 3D image. Our broad definition
does not preclude additional per-point attributes. Therefore,
oriented point clouds (point sets equipped with per-point
normals) and surfel clouds (oriented point clouds with per-
point radii) both fall within what we refer to simply as point
cloud based representations.

Contributions. In this paper, we introduce a complete
pipeline for the non-rigid registration of unorganized, ori-
ented 3D point cloud pairs, which explicitly detects topol-
ogy changes between the input point sets and produces
piecewise-smooth warp fields that respect motion bound-
aries that result from these events. At the core of our
approach lies a general warp field estimation algorithm
(Section 3.3), inspired by those employed in recent dy-
namic reconstruction systems from RGB-D input. We im-
prove motion estimation on motion boundaries associated
with topology changes in an efficient post-processing phase
(Section 3.4) that exploits the different properties of warp
fields that are estimated in different directions (i.e. forward
and backward) with respect to different types of topolog-
ical events (i.e. ‘contact’ or ‘separation’, Section 3.2). After
explicitly detecting regions of topology change events by
means of simple, intuitive tests of local deformation, our
method blends the forward and inverted backward motion
hypotheses on a local basis, based on the type and proximity
of detected events, ensuring smooth, seamless hypothesis
transitions on the deformed surface. This stage makes no
assumptions about the underlying registration engine and
can be easily adapted for integration into existing pipelines.
The implementation of our warp field estimation module
(without the topology event handling) is openly available as
part of our point cloud processing library [18]. Furthermore,
the ability to detect and classify motion boundaries associ-
ated with dynamic topology is a byproduct of our pipeline
that may be useful in tasks beyond geometric registration.

After discussing related work, we present our proposed
method in detail in Section 3. In Section 4, we provide an
extensive series of quantitative and qualitative experiments
for the evaluation of our approach in terms of both registra-
tion accuracy and topological event handling.

2 RELATED WORK

RGB-D scene flow estimation. The term ‘scene flow” was
introduced in [19] to refer to “the three-dimensional motion
field of points in the world, just as optical flow is the two-
dimensional motion field of points in an image.” Since then,
significant research focus has shifted towards scene flow
estimation from RGB-D input. The formulation of [9] cou-
ples an L!-norm data term derived from the optical flow and
range flow [20] constraints with weighted TV regularization.
In [10], the authors follow a similar variational approach
but use a rigid motion parameterization of the flow field,
computing 6DoF per-pixel transformations and enforcing a
local rigidity prior on the solution. A 6DoF local parameter-
ization is also used in [21], which introduces a correspon-

dence search mechanism that relies on 3D spheres rather
than image plane patches, and effectively handles large
displacements. In [22], a probabilistic approach for joint
segmentation and motion estimation method is proposed;
a depth-based segmentation is used for motion estimation,
which is in turn regularized based on the mean rigid motion
of each layer. A joint segmentation and scene flow estima-
tion method is also presented in [11], which assumes that
the scene movement can be described by a small number
of latent rigid motions. Starting with a spatial k-means
clustering for the motion label initialization, the algorithm
iterates between motion estimation and segmentation (soft
labeling), merging labels in the process. In [3], the first real-
time RGB-D variational scene flow method is introduced,
achieving state-of-the-art accuracy. An efficient joint odom-
etry and piecewise-rigid scene flow estimation method is
proposed in [4], where the scene is segmented into ‘static’
and ‘moving’ geometric clusters, from which odometry and
independent non-rigid motions are computed.

As mentioned in our introduction, scene flow solves a
somewhat restricted problem in the context of dense 3D
registration, as the support of the computed motion field
is image bound.

Dynamic scene reconstruction. General non-rigid 3D
registration algorithms have been developed in the context
of online reconstruction of dynamic scenes from RGB-D
input. Most of them are formulated within a non-rigid
Iterative Closest Point (ICP) framework, similar to the one
introduced in [23], with the goal of registering a point cloud
representation of the scene model to the current frame, while
there also exist purely volumetric approaches [15] that align
Signed Distance Field (SDF) geometry representations. Dy-
namicFusion [7] was the first system to achieve high quality,
real-time dense reconstructions from RGB-D input. While it
performs volumetric (SDF) fusion [17], its warp field estima-
tion algorithm is based on oriented point cloud renderings
of the model geometry. The estimated warp field is defined
on a sparse ‘Embedded Deformation” (ED) graph [24], with
a 6DoF transformation attached to each node, and its eval-
uation on arbitrary points is performed via interpolation.
The registration objective consists of a point-to-plane ICP
cost, coupled with an ‘As-Rigid-As-Possible’ (ARAP) [25],
hierarchically defined regularization term, both under ro-
bust loss functions. The non-rigid tracker of VolumeDeform
[8] does not rely on an ED graph and estimates individual
6DoF transformations for every source geometry point. Its
cost function consists of a dense point-to-plane cost, a sparse
point-to-point term derived from SIFT [26] correspondences,
and an ARAP prior based on a ‘flat” neighborhood graph,
with all terms being quadratic. Fusion4D [13] combines the
input of multiple range cameras for the task of dynamic
reconstruction, using an ED warp field parameterization
and following a similar registration objective formulation
that additionally includes a ‘visual hull’ term. CoFusion [27]
and MaskFusion [28] segment, using semantic and motion
cues, and reconstruct multiple moving objects in real-time,
assuming that every object moves rigidly. SurfelWarp [14]
is a purely point (surfel) cloud based approach that also
relies on an ED motion field representation and uses the
same registration costs as DynamicFusion, but under the
quadratic loss function. On the other end of the spectrum,



KillingFusion [15] and SobolevFusion [16] are purely volu-
metric approaches that rely on direct SDF-to-SDF alignment
[29] via variational minimization under novel regularizers
that enforce the motion field to be isometric and preserve
level set geometry.

All of the above systems produce results of remarkable
quality, especially given their real-time budget. However,
with the exceptions of [13], [14], [15], and [16], they cannot
handle scenes with dynamic topology, with the ‘close-to-
open’ case (‘separation’, in our terminology) being partic-
ularly problematic. According to our introductory discus-
sion, [13] and [14] deal with these cases essentially by dis-
carding affected regions, while the volumetric registration
approaches of [15] and [16] are inherently immune to these
events. Our proposed method is the first to tackle dynamic
topology within the context of motion estimation and within
a scalable point-based representation framework.

3 OUR APPROACH
3.1 Problem statement

Given a pair of unorganized 3D point sets, our goal is to
estimate a warping function that non-rigidly deforms the
first point cloud (source geometry) towards the second one
(target) in a piece-wise smooth manner.

Let S = {zi} C R® and D = {z{} C R? be the
source and target geometry point sets, respectively, and
W : R3 — R? be a warping function. In our non-rigid
alignment setting, W is required to have the following
properties:

o The image of point set S via W, W|[S], should be
aligned as close to the target geometry D as possible.
Typically, this is formulated as the minimization of the
sum of residuals between points in W [S] and their
corresponding points (e.g., nearest neighbors) in D.

e Local transformations of neighboring points that lie
on the same moving surface in S should be similar;
i.e. W should be smooth. At the same time, motion
discontinuities should be preserved: neighboring points
in S that lie on independently moving surfaces should
be allowed to have different local transformations. This
combined prior is known as piecewise-smoothness.

In a typical registration objective minimization formulation,
the first property is expressed by the sum of registration
residuals (e.g., point-to-point and/or point-to-plane dis-
tances) over corresponding point pairs in the objective (data
term), while the second one renders the otherwise under-
constrained problem well-posed by introducing terms that
penalize differences in local transformations of neighboring
points (reqularization term).

The loss function used to model the regularization
penalty terms, plays an important role in the behavior
of the warping function in motion boundary regions. For
example, it is well known from the optical flow literature
that quadratic regularization tends to oversmooth motion
boundaries. On the other hand, robust loss functions (e.g.,
L'-norm approximations for the penalty terms) are more
effective in producing piecewise-smooth motion fields that
preserve discontinuities.

In this work, we focus on estimating warp fields that
respect motion boundaries resulting from changes in scene
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(a) Left, middle: color frames (source and target) captured by an RGB-D
camera. Right: warped source frame by the result of a standard non-rigid
registration algorithm.
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(b) Results of our proposed method. Left: detected (red) topological
event regions (Section 3.4.1). Middle: blending weight w{ € [0,1] for
the inverted backward hypothesis using a ‘blue-to-red’ colormap (blue:
forward, red: inverted backward) shown at the bottom (Section 3.4.2).
Right: source frame transformed by our topology-aware warp field.

Fig. 1. Non-rigid registration under a ‘close-to-open’ topology change.

topology. Our notion of topology is directly derived from
object-level connectivity: a change in scene topology can
occur either when two or more separate objects come into
contact or when two or more initially connected objects
separate. We note that we use the term ‘object’ simply to
refer to independently moving scene surface regions, with-
out attaching to them any semantic meaning or assuming
prior knowledge thereof.

In the following, we show that simply adopting a ro-
bust loss function for regularization still produces visible
warping artifacts in motion discontinuity regions that result
from scene topology changes, and we present a complete
registration pipeline that effectively and efficiently solves
this problem.

3.2 Motivation and overview of our approach

Motion estimation errors on motion boundaries typically
manifest as oversmoothing of the warp field because of
excessive regularization and can be suppressed by eliminat-
ing regularization penalty terms for points in S that lie on
different sides of the discontinuity. However, without any
knowledge about S and its motion (e.g., some form of seg-
mentation into independently moving objects), we cannot
obtain a “correct” regularization graph a priori. Instead, the
common choice is to use a k-NN graph of points in S to
define the regularization terms. It is easy to see that this
choice is particularly problematic in cases where connected
objects in S move apart in D, as k-NN regularization over
S will introduce penalty terms that relate points that lie on
different objects, resulting in some amount of motion field
oversmoothing over the separation boundary.

Such a challenging scenario that involves object ‘sepa-
rations’ is depicted in Fig. 1a, where the general, topology-
agnostic warp field estimation algorithm described in Sec-
tion 3.3 was used to non-rigidly align two RGB-D frames.
Despite the fact that the algorithm’s regularization term is
formulated based on the robust, discontinuity-preserving
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Fig. 2. Overview of our topology-aware non-rigid registration pipeline.

Huber-L! loss function (see Section 4.1 for parameter de-
tails), the registration result (warped source geometry)
shows visible artifacts near the object separation areas.
Quadratic regularization is known to induce even more
excessive smoothing on motion boundaries. Since quadratic
and L!'-norm approximation regularization types are the
most commonly used ones in the literature, most current
non-rigid registration algorithms are expected to exhibit a
very similar behavior on these types of motion boundaries.

At the same time, it is clear that any change in topol-
ogy between S and D will be directly reflected on the
(different) nearest-neighbor graph structures of the source
and target geometries. We exploit this fact in the following
way. Consider the case where two or more objects that are
connected in S become separate in D. As discussed above,
estimating the warp field Wg that aligns S to D using
the source geometry’s k-NN graph to define the regular-
ization penalties is expected to result in some amount of
oversmoothing over the motion boundary of the separation.
However, in the backward motion direction (from D to S), the
same topology change manifests as a connection of separate
objects. Estimating the backward warp field W%, that aligns
D to S using the target (D) geometry’s k-NN graph to
define the regularization penalties should not exhibit any
oversmoothing over the connection boundary, because the
corresponding k-NN graph edges that would define reg-
ularization terms over the discontinuity are not there in
the first place. Inverting the warping function W9 yields
another forward warp field hypothesis, W%, that will be free
of oversmoothing over separation motion boundaries. Of
course, the latter, being derived from W,bj, may suffer from
oversmoothing over motion boundaries that correspond to
object separations in the backward motion direction (from
D to S), or, equivalently, to objects coming into contact from
S to D. These cases are expected to be handled correctly in

Algorithm 1 W = NONRIGIDICP(D, S, W)

LW« W

2: repeat

3: S +— WIS]

4 C < FINDCORRESPONDENCES(D, S”)

5: Witer +— OPTIMIZEWARPFIELD(D, S’,C)
6: W + Witer oW

7: until Wi is close to the identity warp

the first place by the standard forward warp, Wf;

Based on the above observations, the standard forward
warp Wg is expected to exhibit good behavior over contact
boundaries, but to oversmooth separation boundaries. On the
other hand, the inverted backward warp W} is expected to
behave the opposite way, preserving separation discontinu-
ities, but possibly blurring motion estimates in contact areas.
Our proposed registration pipeline builds upon this idea by
first detecting regions in S that are likely to be contact or
separation boundaries, and then locally blending the warp
hypotheses ngc and WY accordingly in a seamless manner.
The final result is a piecewise-smooth warp field that aligns
S to D and respects motion boundaries because of changes
in scene topology.

An overview of our approach is provided in Fig. 2. The
(topology-agnostic) warp field estimation algorithm used to
obtain the initial forward and backward warp hypotheses
is described in detail in Section 3.3. Our topology event de-
tection mechanism, as well as our local hypothesis blending
approach, are presented in Section 3.4.

3.3 Warp field estimation

We implement our warp field estimation algorithm within
a non-rigid Iterative Closest Point (ICP) framework [23],
similarly to the non-rigid trackers used in the recently
introduced dynamic reconstruction pipelines of [7], [8], and
[14].

Given the source and target geometries S and D, repre-
sented as oriented point clouds, as well as an initial estimate
Wy of the unknown warp field W (usually taken as the
identity warp), the algorithm iteratively refines the latter
until convergence has been reached. At the top level, the
process iterates between a point correspondence search step
between the warped source WI[S] (according to the current
W estimate) and D, and a warp field optimization step
that updates V¥ given the established point correspondences
(Algorithm 1). The two algorithm phases are presented in
detail in the following.

3.3.1

Our framework supports two complementary types of point
correspondences between the (warped) source and the tar-
get geometries: dense correspondences that are established
based on spatial point proximity, and sparse correspon-
dences that result from keypoint matching. Each individ-
ual correspondence is represented as a pair of point in-
dices, whose first component indexes a point in S and
its second one a point in D: C = {Ceense; Csparse |, Where
Cdenseacsparse C {17 RN |S|} X {1a R |D|}

Correspondence association



We support two mechanisms to establish dense corre-
spondences. By default, we assume that both S and D are
arbitrary, unorganized point sets and we establish dense
correspondences by finding the nearest-neighbor in D, in
terms of Euclidean distance, of each point in WI[S], with
the search being performed efficiently by parallel kd-tree
queries. For certain applications that only require frame-to-
frame (2.5D-to-2.5D) or model-to-frame (3D-to-2.5D) regis-
tration, we can further speed up the process by obtaining
projective correspondences. This amounts to projecting S
and D onto the target frame image and extracting corre-
spondences based on points that are projected to the same
pixel. This is the mechanism adopted in most real-time
reconstruction pipelines [5], [7], [8].

In many common situations, dense geometric/depth
correspondences alone are not enough to disambiguate the
underlying motion. For example, tracking points on flat
surfaces that lack geometric texture and slide parallel to
each other may exhibit drift. Establishing robust keypoint
correspondences between the source and target geometries
can effectively mitigate this problem. We assume that our
input geometries are equipped with sparse interest points;
our sparse correspondences are established by the interest
point descriptor matches between S and D. In our imple-
mentation, we focus on input geometries that are either
RGB-D frames or 3D reconstructions from RGB-D input.
The availability of regular images along with (registered)
geometry allows us to adopt SIFT keypoint [26] (lifted to
3D) matches for our sparse correspondences.

To make optimization more stable, we discard corre-
spondence candidates from the above mechanisms that do
not meet some basic proximity and local similarity crite-
ria. Let {ni}, {n¢}, and {c;}, {c?} be the surface nor-
mals and colors (e.g.,, RGB value 3-vectors) of the source
and target geometries, indexed in the same way as their
support points in S and D. A correspondence candidate
(i,7) € {1,...,|S|} x {1,...,|D|} is considered valid and
used in the optimization if all of the following hold:

o llzf = 2§z < 04

e arccos (nan‘j) <0,

e PR
In the above, 0, is a point distance threshold, 6,, is a normal
angle threshold, and 6, is a color “distance” threshold.

3.3.2 Warp field optimization

Given a set of dense and sparse point correspondences,
we shall now describe our warp field optimization step.
Modeling the warp field using locally affine [23] or locally
rigid [7] transformations provides better motion estimation
results than adopting a simple translational local model, due
to more effective regularization. In our approach, we adopt
a locally rigid (6DoF) model.

Instead of computing a unique rigid transformation for
each point in S, we use the more efficient embedded de-
formation graph representation [24] for the warp field W,
similarly to [7] and [13]. Let G = {(gi, 04, T;)} be the set of
virtual deformation nodes, where g; € R? is the position
of the ith node, o; is a radius parameter that controls the
ith node’s area of effect, and T; € SE(3) is the 6DoF rigid
transformation attached to the ith node. The deformation
node positions are obtained by downsampling the source
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geometry S by means of a voxel grid of bin size 7. This
allows us to use a uniform radius parameter, o4, for all
deformation nodes, so that o; = oge, for i = 1,...,[G|.
A reasonable choice that ensures sufficient area of effect
overlap among neighboring nodes is cgef = 73/2. As in
[8], each local transformation T; is parameterized during
optimization by a 6D vector §; of 3 Euler angles and 3
translational offsets. The effect of the warp field W, repre-
sented by G, on a point € R? is given by interpolating
the local node deformations in the neighborhood of z.
Let N(z) C {1,...,|G|} be the indices of the k-nearest
neighbors of  in G. The local transformation parameter
vector at x is given by:

Dien (z) Wi(@)0;
0 = =", 1
(z) S s i() 1)

where w;(z) = exp (— |z — gill3 /(202»2)). The image of x
via W is then:

W(z) = Rot(8(z))x + Trans(6(z)), )

where Rot(f) and Trans(f) extract the rotation matrix and
translation vector from our 6D parameterization.

We note that the above 6D parameterization is only used
within optimization (line 5 of Algorithm 1) and that both
the estimated incremental warp Wieer and the final composite
estimate YV have their node transformations 7; expressed
in terms of SE(3) transformation matrices. The fact that
we continuously warp S and compute Wi, starting from
the identity warp, combined with the smoothness prior
imposed on the warp field (shown below), allows us to
overcome any problems associated with Euler angle param-
eterizations of rotation.

Our registration objective, as a function of the unknown
warp field W, which in the context of Algorithm 1 is the
incremental warp Witr, and the point correspondences C
between S and D, which are fixed for this step, is formu-
lated as:

E(D,S,C,W) = E4ata (D, S,C, W) + Astigt Esiee (W) . (3)

Our data term, Egaa (D, S,C, W), is a weighted sum of a
point-to-plane and a point-to-point ICP cost:

Edata (D7 Sa C> W) =

Eplane (D7 Sv Cv W) + )\pointEpoint (Da Sa C7 W) (4)
Pure point-to-plane metric optimization generally con-
verges faster and to better solutions than pure point-to-
point [30], and is the standard trend in recent rigid [5], [6]
and non-rigid [7], [8], [14] registration pipelines. However,
as discussed in Section 3.3.1, integrating a point-to-point
term for robust point matches into the registration cost
can effectively disambiguate motion estimation in cases
where surfaces that lack geometric texture slide parallel to
each other. Similarly to [8], we use our dense geometric
correspondences Cgense to define our point-to-plane cost and
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our sparse keypoint correspondences Csparse for our point-
to-point cost:

Eptane (D, S,C, W) = Z (n?T (W (xF) — x?))z, (5)
(%,7) €Cuense

Epoint(D7S7CuW) = Z W(.’L':)—!Ede (6)

J
(2,3) ECsparse

Our regularization term FEg¢ (V) directly penalizes differ-
ences in transformation parameters of neighboring virtual
nodes of G under the robust Huber-L! loss function. If
N(@) C {1,...,|G]} is the set of indices of the k-nearest
neighbors of g; in G, our regularization term is formulated

as:
4

Esige (W) = Z Z wijs (0; — 65), (7)

i=1jEN(4)

where w;; = exp (— lgs — g;1I” /(2a§ef)) weights the pair-
wise penalties based on node distance, and 15(A#f) denotes
the sum of the Huber loss function values over the 6
parameter residual components. Parameter 6 controls the
point at which the loss function behavior switches from
quadratic (squared L?-norm) to absolute-linear (L!-norm).
Since L!'-norm regularization is known to better preserve
solution discontinuities, we use a small value of § = 10~%.
Given our locally rigid motion model, this regularization
scheme enforces an ‘As-Rigid-As-Possible’ [25] prior to the
estimated warp field.

The registration objective of equation (3) is non-linear
in the 6|G| unknowns. We minimize E (D,S,C,) by
performing a small number of Gauss-Newton iterations. As
in [13], we handle non-quadratic terms using the square-
rooting technique of [31]. At every step, we linearize E
around the current solution 8 € RSS! (vector concatenation
of all node transformation parameters ;) and obtain a solu-
tion increment by solving the system of normal equations
JTJ0 = JTr, where J is the Jacobian matrix of the residual
terms in F and 7 is the vector of (negative) residual values.
We solve this sparse system iteratively, using the Conjugate
Gradient algorithm with a diagonal preconditioner.

3.4 Handling topology changes

In our post-processing phase for handling topology change
motion boundaries, we first explicitly detect likely contact
and separation regions in the source geometry, and proceed
by appropriately blending our (default) forward and inverted
backward warp hypotheses in a local yet seamless manner.
It follows from the discussion in Section 3.2 that, as far as
topology changes are concerned, the forward warp is only
problematic in separation areas. However, instead of only
focusing on and amending separations, it is beneficial to also
explicitly consider contact events. As will become clear in
the following, considering both types of events and treating
them symmetrically robustifies their detection and allows
for a less biased hypothesis blending scheme.

Using the same notation as in Section 3.2, let Wg be
the warp field that aligns S to D and W9 the backward
warp that aligns D to .S, both computed by Algorithm 1. We
will be using the ‘S’ subscript for forward (S — D) motion

Algorithm 2 EXTRACTTOPOLOGYEVENTS

Input: S, STRETCHY, STRETCHY, COMPRESS,,, COMPRESSY
Output: CON, SEP

1: CON <+ @&
2: SEP + @
3 fori=1,...,|5] do

4 stretch + max {STRETCHg(i), STRETCH%(Z')}

5. compress < max {COMPREssg(i), COMPRESS%(Z')}

6: if stretch > 7 and stretch > « - compress then

7: SEP < SEP U {z7}

8: end if

9: if compress > 7 and compress > « - stretch then
10: CON « CoNU {z$}
11: end if
12: end for

entities and the ‘D’ subscript for backward (D — S) ones.
For the needs of the following discussion, we will consider
these motion fields to be represented by the per-point local
rigid transformations of their support geometries, so that:

Wh=1{1i. i=1,...,]9]}, ®)
Wy ={Th,, i=1,...,|D|}. ©)

To invert W% in order to obtain an alternative forward
warp, we appropriately rebase its inverse local transforma-
tions on S. To that end, we first compute the target geome-
try’s image W9 [D] (which should be closely aligned to S)
and, to each point i € S, we assign the transformation
T,%j_l, where j is the index of the nearest neighbor of z; in
the point set W% [ D]. Of course, we assume that the latter is
indexed in the same way as D. The inverted backward warp
is then represented as:

Wg:{Tgi’ i=1,...,[5[} (10)
where T ;= T,%;l and j is the nearest neighbor index of x7
in W% [D]. Analogously, we obtain an alternative backward
warp, by inverting our forward hypothesis:

Wh = {1}, i=1,....|D|}, (11)

-1
where TEf,i = ng and j is the nearest neighbor index of

¢ in Wg [S]. To summarize, we have two forward motion
(S — D) warp hypotheses (Wg and Wg) and two backward
motion (D — S) ones V% and Wg)).

3.4.1 Detecting topology change events

We detect topology change regions in S based on how our
warp estimates affect local neighborhoods of the source
geometry.

Naturally, we expect that if 27 € S'is close to a separation
boundary, its distance to some of its neighbors in S should
increase after applying the correct warp to S. We shall
refer to this effect as neighborhood stretching. The dual case
of a contact event manifests exactly the same way in the
backward motion direction (stretching of neighborhoods of
D), in which the event is perceived as a separation. In



the following, we will use a local measure of stretch over
points in S to detect separation areas, and map the same
measure over D in the backward direction onto S to obtain
a dual measure of “compression” that will allow us to detect
contacts.

We quantify the above intuition by defining a local
“stretch” operator for point z; € X C R* under the warp W
as the maximum ratio of the distance to its neighbors before
and after applying W:

W) = W)l

[z =zl

Stretch (i, X, W) = max

, 12
JEN (1) (12)

where N (i) C {1,...,|X|} indexes the neighbors of z;
in X that lie within p, distance from it. The choice of the
neighborhood radius value ps depends on the scale and res-
olution of the input geometries. For close-range point clouds
acquired with Kinect-like cameras, we use p; = 1.5cm.

To each point in S, we associate one stretch value for
each of our two forward warp hypotheses, according to

definition (12). For i = 1, ..., |S|, we have:
STRETCH (i) = Stretch (z s, wg) Jand  (13)
STRETCHY (i) = Stretch (i, S, Wg) . (14)

We also compute the local stretch of the target geometry D
under each of the two backward warps:

STRETCH, (i) = Stretch (z D, W};) ,and  (15)

STRETCHY, (i) = Stretch (z’, D, W%) , (16)

which we subsequently map onto S, interpreting them as a
compression measure (contact indicator), according to:

COMPREssg(z') = STRETCH% (NN (Wg (x3) ,D)) , (17)
COMPRESSY (i) = STRETCHY, (NN (wg (xF) ,D)) , (18)

where NN(z, X) € {1,...,|X|} is the index of the nearest
neighbor of point 2 in point set X.

Using the above point-wise stretch/compress values
on S, we extract subsets of the source geometry that are
likely to lie on topology change motion boundaries. Let
SEP, CON C S be the sets of candidate separation and con-
tact boundary points, respectively. According to the above
discussion, points on a separation boundary are expected to
have high stretch scores, while points on a contact boundary
should exhibit high local compression. To decide whether
a point in S is a boundary candidate, we perform two
symmetric tests per case that rely on two threshold values,
an absolute score threshold 7, and a relative (ratio) threshold
a. A point of S is a member of SEP (CON) if and only if
the maximum of its two stretch (compress) scores is greater
than 7 and also greater than « times its maximum compress
(stretch) score. The process is summarized in Algorithm 2.
A sample output is shown in Fig. 1b (left), marked in red;
note that CON = @ in this case.

As we will show in Section 4.3, the above proce-
dure is very effective at detecting and classifying topology
changes, but, because of the continuous nature of our lo-
cal stretch/compression measures and depending on the
selected threshold values, it may produce “false positives”

Algorithm 3 LOCALHYPOTHESISBLENDING

Input: S, Wg,Wg,CON = {c;},SEP = {5}, pe
Output: Wg = {Ts;, i =1,...,|5]|}

1. 04 Pe/3

2: fori=1,...,|S|do

3: N + RADIUSSEARCH (zf, CON, p,)

4: W 1

5: for j € N do

6: Wy < wyr + exp (—Hazf —cj||2/(202))
7: end for

8: N + RADIUSSEARCH (zf, SEP, p.)

9: wp < 0

10: for j € N do

11: Wy — Wy + exp (— s — s, /(202))
12: end for

13: W = Wy + Wy

14: W wf/w

15: Wy < wb/w

16 Ts;« SE3 (wy TS, +w,T%,)

17: end for

(e.g., in areas of actual deforming surface stretching or
compression but constant topology). However, under the
assumption that our two forward warp hypotheses behave
similarly in the false positive areas and, as will become
clear in the next section, this does not affect our final warp
estimate.

3.4.2 Local hypothesis blending

Our blending scheme produces a topology-aware warp field
Ws by combining the forward warp hypotheses Wg and
WS on a per-point basis. Our objective is to assign a higher
weight to WY (inverted backward warp) near separation
areas, and ensure that Wg (forward warp) has a stronger
weight near contact areas. At the same time, it is desirable
that point weights vary smoothly on S, so that our warp
blending does not introduce seam artifacts on Wg[S] due to
differences in our original warp hypotheses.

We achieve the above by attaching a smoothly decaying
kernel on each of our detected event points in CON and
SEP and locally computing the weight for each event class.
Assuming a maximum radius of effect p. (free parameter)
for our event points, we model the influence of each event
with an RBF kernel of bandwidth o = p, /3. The weights w’
and w; of Wg and W for the source point z are computed
by accumulating influences of the event points in CON =
{¢;} and SEP = {s;} respectively that are within a p.-radius
from x5

i 1 .
=gz |\t > exp (_ 5 — 511 /(202)) ,and (19)
JENC(3)
1
wp, = 7 Z exp (‘ ||l — 3jH2 /(202)> , (20)
JENs (i)

where Z is a normalizing constant ensuring that w; +w) =
1, and N¢ (i), Ns(i) index the p.-radius neighbors of z§ in
CON and SEP respectively. In the absence of any topology



TABLE 1
Evaluation on the MPI Sintel Dataset
Frame-wise EPE over entire sequence Frame-wise AE over entire sequence

Sequence PD-Flow F-Warp FB-Warp PD-Flow F-Warp FB-Warp
Median Mean | Median Mean | Median Mean || Median Mean | Median Mean | Median Mean
alley_1 0.774 0.964 0.485  0.519 0.485  0.516 7.005 7.319 8.256 8.379 8.285 8.361
ambush_5 12.651 21.172 1714  7.017 1.639  6.411 30.435  29.505 5.558 6.920 5.262 6.386
ambush_6 25467 28981 4.409  7.535 5106  8.028 37.813  39.470 7.165 7.520 7.083 7.457
ambush_7 1.861 4.969 0.633 0925 0.584  0.891 11517  27.146 11.377  10.885 11.270  10.763
bamboo_1 1.104 1.221 0.677  0.712 0.677  0.713 8.159 8.560 5.517 5.705 5.517 5.713
bamboo_2 0.889 2.628 0.687  1.027 0.686 1.014 7134 11.924 8.315 8.729 8.357 8.669
bandage_1 1.683 2.160 0973 0957 0.936  0.935 15201 15.244 10.111 9.829 9.862 9.681
bandage_2 0.769 1.062 0329  0.334 0.330  0.331 9.035 10.754 6.525 6.554 6.523 6.542
shaman_2 0.286 0.317 0294  0.284 0.292  0.284 5.571 5.643 7.801 7.838 7.779 7.831
shaman_3 0.485 0.552 0178  0.291 0.179  0.298 8.125 8.115 3.155 4.559 3.153 4.604
sleeping_1 0.502 0.514 0.149  0.541 0149  0.541 5.939 6.110 1.954 6.487 1.954 6.488
sleeping_2 0.146 0.143 0170  0.171 0170  0.171 2.508 2.520 3.352 3.335 3.352 3.335
Overall 0.701 4122 0488  1.379 0.487  1.336 7.899  13.009 6.826 7.213 6.815 7.136

event influence (e.g., for z; at least p. from any event
point), the above defaults to w} = 1 and wj = 0, giving
full weight to the standard forward hypothesis Wg The
local transformation of our final, topology-aware warp field
estimate Wg = {Ts,;, i = 1,...,|5]|} at location z¢ is then
given by:

Ts; = SE3 (w;zg s nggi) ) @1)
where SE3(-) converts the linear blend of the two trans-
formation matrices back to a valid SE(3) transformation
matrix. The complete blending process is summarized in
Algorithm 3 (see also equations (8) and (10)). A visualiza-
tion of the blending weights is given in Fig. 1b (middle),
where each source geometry point is colored according to
its inverted backward warp hypothesis weight w}.

We note that, for source points close to topology events,
one of w’ and wj, will dominate the other, effectively render-
ing the blending of (21) a binary selection. As we move far-
ther from topology events, it is possible that the two weights
assume comparable values (e.g., at points lying between two
events of different type). For our blended output (21) to
be seamless and error-free in that case, it is expected that
Wg and WY do not differ significantly in areas that are “far
enough” from event points. This highlights the importance
of parameter p., which should be of adequate magnitude to
cover event regions; we have found that values p. > 3ry
work well in practice, where 7, is the resolution of our
virtual deformation graph (Section 3.3.2).

As a concluding remark, we observe that the most costly
operation of our post-processing phase is the calculation,
based on radius-neighborhoods, of the stretch/compress
values of Section 3.4.1. Algorithm 3 also performs radius
queries on point sets CON and SEP, but the latter are
typically very small in size. In our experience, the overall
running time of the entire phase is significantly smaller than
a single warp field estimation. Furthermore, in the case of
RGB-D input, image structure can be easily exploited in
order to accelerate the extraction of point neighborhoods.

4 EXPERIMENTS

We conduct three sets of experiments for the evaluation
of our registration pipeline. The first one is performed

on a public optical flow evaluation dataset and examines
our algorithm’s motion estimation accuracy, both with and
without the topology handling phase (Section 4.2). For the
second one, we use a custom dataset with topology event
annotations and evaluate our event detection performance,
as well as our estimated warp field quality in the presence of
separation events (Section 4.3). In our third set, we provide
qualitative results in long-term model-to-frame registration
scenarios on public RGB-D sequences that feature dynamic
scene topology (Section 4.4).

4.1 General setup details

The input to all series of experiments is RGB-D data, either
synthetic (first set) or captured by a Kinect-like RGB-D
camera (second and third sets).

Point cloud generation. RGB-D frames are converted to
point clouds equipped with surface normal and color infor-
mation, as well as a sparse set of interest points derived from
SIFT features. In all cases, the full resolution of the input
depth map is used, which is 1024 x 436 for the synthetic
sequences and 640 x 480 for the camera data. We use a
fixed maximum depth of 5m for all sequences in the first
set, and vary the cut-off value in the range of 0.8m to 2.0m
for the camera data, depending on the sequence. For normal
estimation, we use k-NN neighborhoods with £ = 30 in our
first set of experiments, and p-radius neighborhoods with
p = L.5cm in our second and third sets. SIFT keypoints are
extracted from the RGB images and lifted to 3D, discarding
the ones that lie on depth boundaries.

Warp field estimation. In the correspondence association
step (Section 3.3.1) of our non-rigid ICP algorithm, we set
the maximum correspondence distance to 03 = 15cm for
our first set of experiments and 6; = 5cm for the other sets,
while we use common values 6,, = 15° and 6, = 0.4 for
the maximum normal angle and color difference (colors are
RGB triplets in [0, 1]3). The embedded deformation graph
G for our warp field parameterization (Section 3.3.2) has a
resolution of 7, = 2.5cm, with each node’s area of effect
being controlled by ogef = 73,/2. To evaluate the local trans-
formation for each point in the source geometry (equation
(1)), we use its 4 nearest neighbors in G. The point-to-point
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Fig. 3. Topological event detections on our dataset. Each row corre-
sponds to a different sequence. First column: source color frame with
event mask overlays (blue for contact, red for separation). Second col-
umn: target color frame. Third column: our topological event detections
overlaid on the source geometry (blue for contact, red for separation).

weight in our data term (4) is set to Apoint = 2. To favor L-
norm behavior by our regularization term (7), we use a small
Huber loss parameter value of § = 10~%, while we set the
term’s weight to Asir = 200 (equation (3)). Regularization
topology is given by the 6 nearest neighbor nodes of G. We
perform a maximum of 10 top-level ICP iterations, while the
process typically converges in less. Within each optimization
step, we perform a maximum of 5 Gauss-Newton iterations.

Dynamic topology handling. In all experiments, local
stretch is computed on neighborhoods of radius p; = 1.5cm
(Section 3.4.1). To detect and classify topology change
events, we use an asbsolute score threshold of 7 = 2.2 and
a relative ratio of & = 1.5. For our blending step (Section
3.4.2), we assume that every detected event has a radius of
effect equal to p. = 7.5cm.

4.2 Motion estimation accuracy evaluation

Due to the lack of publicly available datasets with ground
truth dense 3D motion, we perform our accuracy assess-
ments on MPI Sintel [32], a synthetic optical flow evaluation
dataset. The dataset contains multiple sequences of (typi-
cally) 50 frames that capture motions ranging from slow,
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almost rigid to very large, highly non-rigid ones. In addition
to ground truth optical flow, metric ground truth depth and
camera intrinsics are provided, which we use to emulate
RGB-D input.

We base our evaluation on two classical optical flow
performance measures, the endpoint error (EPE) and the
angular error (AE) [33]. If f = (,?) is an optical flow
estimate at a given pixel whose ground truth value is
f = (u,v), EPE is computed as:

can (1) =[],

The angular error AE is defined as the angle between the 3D

space-time vectors h(f) = (4,7, 1) and h(f) = (u,v,1), as:

B TR
DGIANGIS

effectively enabling evaluation at pixels of zero flow. We
convert 3D motion estimates to optical flow by first warp-
ing the source points in 3D and then computing the 2D
point/pixel displacements as differences of the projected
endpoints onto the image plane.

We evaluate and compare three methods: PD-Flow [3],
a state-of-the-art scene flow algorithm, F-Warp, our general
warp field estimation algorithm defined in Section 3.3 (with-
out the topology change handling phase), and FB-Warp, our
complete topology-aware warp field estimation pipeline. We
run the three algorithms on the entire duration of 12 Sintel
sequences and compute the average EPE and AE values per
consecutive frame pair. We report the median and mean
frame-level average errors over each sequence in Table 1.
Median values are not easily affected by extreme values,
often providing a better picture of how accurate estimation
is “half of the time”. We also report overall mean and
median error values for each method, computed over the
total number of frames from all sequences.

Our FB-Warp method overall achieves the highest accu-
racy in terms of both error metrics, followed closely by our
baseline, F-Warp. PD-Flow is very accurate in estimating
slow motions (e.g., in the sleeping_2 sequence), but falls
behind in most cases, producing particularly large errors in
sequences that contain very fast motions, such as ambush_5
and ambush_6. We also refer the reader to the Sintel-based
evaluation of MC-Flow [11] (Table 2 of that paper), another
state-of-the-art scene flow algorithm with significantly bet-
ter performance than PD-Flow in estimating large motions.
We were unable to evaluate MC-Flow ourselves, because
its implementation has not been released. While 6 of the
Sintel sequences in our experiments and the ones in [11]
are common, there are significant differences between our
evaluation setups: 1) their reported EPE and AE values are
computed on one specific frame pair per sequence, not over
whole sequences as in here, 2) they downsample their input
to half its original resolution per dimension (to 512 x 218),
whereas we use full resolution images, and 3) they consider
only non-occluded pixels, while we compute errors on all
valid ones. The above prohibit reaching definitive conclu-
sions. However, the fact that we adopt an arguably more
difficult evaluation strategy (at full resolution, which means
smaller pixel size for EPE interpretation, and evaluating
over whole sequences) and still obtain comparable EPE and

(22)

EAE (f, f) = arccos (23)
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TABLE 2
Topology Change Event Detection
Number of events Ground truth to detected mapping | Detected to ground truth mapping
GTTODET DETTOGT
Sequence
Ground Matched Mean Mean Matched Mean Mean
Detected . .
truth fraction %  overlap delay fraction %  overlap delay
clap 11 32 100.00 0.832 1.000 78.12 0.633 0.800
drum 21 63 100.00 0.763 -0.190 76.19 0.616 -0.042
stack 4 15 100.00 0.820 -0.250 40.00 0.713 0.000
unstack 4 20 100.00 0.689 -0.250 40.00 0.527 0.000
separate 5 17 100.00 0.661 -0.400 70.59 0.527 -0.583
top_drawer 4 11 100.00 0.951 0.000 54.55 0.819 -0.667
bot_drawer 3 12 100.00 0.882 0.000 66.67 0.757 -0.375
Overall: 52 170 100.00 0.788 0.058 66.47 0.630 0.035

AE absolute values to the ones reported in [11] (averages
of 1.203 and 6.559, respectively), leads us to argue that FB-
Warp compares favorably to MC-Flow.

4.3 Dynamic topology event handling

To evaluate the performance of the topology-handling phase
of our pipeline, we collected, using a Kinect-like camera, an
RGB-D dataset of 7 sequences that contain changes in scene
topology. The regions of visible topology changes were
manually annotated on the color image as binary masks,
drawn in freehand mode, and classified as either contacts or
separations. Our collected sequences capture the following
diverse set of actions:

o Hand-clapping (clap sequence)

o Fast hand-drumming on a desk (drum sequence)

o Two pick-and-place actions on objects lying on a flat
surface or on top of each other (stack and unstack
sequences)

« A separation of two touching objects using both hands
(separate sequence)

o Two drawer opening action sequences (top_drawer
and bot_drawer)

The annotated ground truth events capture all visible in-
stances of hand-hand, hand-object, and object-object inter-
action. Snapshots of our sequences are shown in Fig. 3 (first
two columns).

Our evaluation of this phase is twofold. First, we as-
sess how well our detected event points in CON and SEP
(Section 3.4.1) relate to the ground truth events. Second,
we qualitatively and quantitatively evaluate our topology-
aware motion estimate (FB-Warp), including comparisons
with our baseline algorithm (F-Warp), as well as two scene
flow estimation methods.

4.3.1

We uniformly represent topology change events as triplets
ei = (I;,t;, X;), where [; € {0, 1} is a binary label indicating
contact or separation, t; € N is the time (frame index) of
the event, and X; C R3 is the subset of points in the source
geometry that lie very close to event motion boundaries. We
use the superscript ‘gt’ to denote ground truth event entities,
and ‘det’ to denote the ones associated with detections by
our algorithm. Let £8t = {e8'} and £9¢t = {edet} denote the
sets of ground truth and detected events, respectively. Given

Topology event detection

an annotated sequence, these are populated according to the
following;:

o Labels and timestamps for events in £8' come directly
from the annotation data. Ground truth event point
clouds X f’t are obtained by the image annotation binary
masks, which directly mask regions of the ¢;-th frame’s
point cloud (input color and depth maps are registered).

o Detected events £ are derived from the per-frame
outputs of Algorithm 2. At time k (frame pair index),
we interpret the connected components, in the Euclidean
sense, of point sets CON and SEP as separate, mean-
ingful events. We insert all triplets (0, %k, CON;) and
(1, k, SEP;) into £9¢t, where {CON;} and {SEP;} denote
the respective connected component sets. We use a dis-
tance threshold of 2cm for the Euclidean segmentation;
to avoid noisy detections, we discard components that
contain less than 75 points.

Adopting a 3D point set based representation for the spatial
extent of topology events enables reasoning about event
similarity in terms of metric distances.

Our assessments on spatial overlap of events will be
based on the ‘p-overlap” metric, defined for a pair of point
clouds X7 and X5 as:

|55 (X1)| + 557 (X2)]

OVERLAP, (X1, X5) = bAEE ,

(24)

where SP(A) C A contains exactly the points in A that
lie within distance p from their nearest neighbor in set B.
Clearly, OVERLAP, (X1, X5) € [0, 1]. It is easy to verify that
this metric is simply the intersection-over-union ratio for the
sets X US?1 (X5) and XgUSf2 (X1). We use a radius value
of p = 3cm.

We derive a many-to-many matching between sets £8'
and €%t by associating events in the two sets that have a
significant spatiotemporal overlap. A ground truth event
e}’ is matched to a detected event ¢ if and only if they
both belong to the same class (contact or separation), their
timestamps are very close, and they share a substantial
spatial overlap. If M = {(4, )} is the set of event matches,
then M contains all pairs (i,j), for i = 1,...,|E%| and
j=1,...,|€%, that satisfy all three conditions:

o I8 =qdet
o [t —tdet| <2
o OVERLAP,(XF, Xd) > 0.2
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Fig. 4. Warping results on our dynamic topology dataset, with focus given to separation events. Each row corresponds to a different sequence. First
column: our topological event detections overlaid on the source geometry (same as last column of Fig. 3, but rendered from a different viewpoint).
Columns 2-5: warped source geometry under VO-SF, PD-Flow, F-Warp (our topology-agnostic baseline algorithm), and FB-Warp (our proposed

approach).

Based on the set of all valid spatiotemporal matches M, we
derive two interesting event mappings: one that maps each
ground truth event to a single detected one, and an ‘inverse’
one that maps each detected event to a ground truth one.
Both our ‘ground truth to detected” and ‘detected to ground
truth” mappings associate an event in the first set with its
match in the second one that maximizes overlap:

GTTODET(i) = arg max OVERLAP,(X§', X¢),  (25)
j:(i,7)EM

DETTOGT(j) = arg max OVERLAP, (X}, X9).  (26)
i:(4,5)EM

Of course, the above are only defined for events (ground
truth/detected) that have valid matches, i.e. (i,7) € M.

We present our detection results on our custom dataset
in Table 2. On average, our pipeline extracts three times
more events than the annotated ones (columns 2-3). This
is normal, as topology changes may manifest gradually in
continuous video sequences, while our annotation process
treats them as being instantaneous. In columns 4-6 and 7-9,
we evaluate each of the mappings GTTODET and DETTOGT
in terms of event coverage (fraction of £8' and £9, re-
spectively, that was matched), average spatial overlap, and
average detection delay (signed difference #¥' — tdt). All
ground truth events are covered by our detections (column
4), while an average of 66.47% of the detected events have
a valid ground truth match (column 7). These coverage
fractions directly correspond to recall and precision, yielding
an F-score of 0.8. At the same time, the spatial overlap of
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Initial state (color)

Initial state (model)

Final state (color)

Final state (F-Warp) Final state (FB-Warp)
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hat

alex

Fig. 5. Long-term model-to-frame registration. The boxing sequence (first row) is from [8]. The hat and alex sequences (second and third rows)
are from [15]. First column: color image at initial scene state. Second column: scene model in its initial state. Third column: color image at final
scene state. Fourth and fifth columns: scene model in its final state after continuous model-to-frame deformation by our F-Warp (baseline) and
FB-Warp (proposed) algorithms, respectively. The models for the alex sequence are rendered from a different viewpoint to better visualize the

artifacts introduced by F-Warp (see Section 4.4).

matched events is high (almost 80% on average for the
covered ground truth events) and within the error margins
of our freehand annotation, while average detection delays
are very small. A small number of our detections (mostly
separations) are depicted in the third column of Fig. 3,
with the respective ground truth events shown in the first
column.

We note that, in our context of non-rigid registration,
high recall is more important than high accuracy, because
missing a topology change event is very likely to result in
motion estimation errors. At the same time, as discussed in
the concluding remarks of Section 3.4.1, a small number of
false positive detections have essentially no impact on mo-
tion estimation under reasonable assumptions. Therefore,
our topology change detection mechanism has desirable
properties from a motion estimation perspective, while, at
the same time, being able to detect contacts and separations
with reasonable accuracy.

4.3.2 Registration under dynamic topology

We now evaluate our registration accuracy in the presence
of dynamic topology. As discussed before, object separa-
tion events tend to induce warp field artifacts when not
accounted for, while standard ‘forward’ warp estimates
properly handle contacts. Therefore, we focus our assess-
ments on areas of separation events. For each ground truth
separation event, we compute the average point-to-point
distance between points in the warped source geometry and
their nearest neighbors in the target frame. More specifically,
the source geometry is given by the RGB-D frame associated
with the annotated separation event, while the target one is
given by its next frame in the sequence. In order to avoid
obscuring the differences between the two estimates in the
areas of interest, instead of averaging over the whole source

TABLE 3

Registration Under Close-To-Open Topology

Sequence Registration error (in mm)
VO-SF  PD-Flow F-Warp FB-Warp
clap 4.652 1.155 1.326 1.135
drum 2.678 1.006 1.608 1.207
stack 3.209 1.565 1.996 1.452
unstack 6.457 2.371 3.138 2.192
separate 2.249 1.735 2418 1.985
top_drawer 1.995 1.383 2.305 1.325
bot_drawer 5.680 1.773 2.380 1.222
Overall: 3.846 1.570 2.167 1.503

(event) frame, we only consider points within our ground
truth annotation masks, which provide reasonable approx-
imations of the true motion boundaries. Furthermore, we
discard occluded warped points using a simple depth test
against the target geometry’s depth map, with a tolerance
threshold of Az, = lem.

In our comparisons, we include four different motion
field estimation algorithms: VO-SF [4], PD-Flow [3], F-Warp
(our baseline), and FB-Warp (our proposed method). We
report per-sequence average registration errors (in mm)
over separation areas in Table 3. FB-Warp is more accurate
in most sequences, achieving an average error reduction
of about 30% over our F-Warp baseline, with PD-Flow
being a very close second. VO-SF produces significantly
less accurate results, because of the coarse pre-segmentation
step on which its piecewise-rigid model is based. We also
provide qualitative registration results for a subset of our
ground truth separation events in Fig. 4. VO-SF introduces
seam artifacts to the warped geometry, as a result of its pre-
segmentation step. As the latter is highly unlikely to align



with separation boundaries, the algorithm does not preserve
motion discontinuities. F-Warp, as expected, significantly
oversmooths separation motion boundaries. FB-Warp and
PD-Flow exhibit the best performance, with the former
producing appreciably cleaner surface separations.

4.4 Long-term model-to-frame registration

In our last set of experiments, we qualitatively evaluate the
behavior of our proposed approach in long-term non-rigid
model-to-frame tracking scenarios. As input, we use some
of the public RGB-D videos that accompany the dynamic
reconstruction systems [8] (boxing sequence) and [15] (hat
and alex sequences) and exhibit dynamic scene topology.
We focus our attention on sequence intervals that capture
topological events. In particular, we initialize and fix a
scene model that captures the scene state shortly before
the topological events manifest and then continuously warp
it towards each subsequent RGB-D frame. Every time step
involves registering the scene model (in its deformed state
that aligns it to the previous frame) to the current frame.
Other than model-to-frame alignment, we perform no other
updates on the scene model throughout the interval dura-
tion (e.g., no points are added, removed, or fused with more
recent observations).

We show the results of our continuous model-to-frame
deformation during our time intervals of interest in Fig. 5,
where we compare the final state scene models produced
by our F-Warp baseline and our FB-Warp proposed method.
The final states correspond to time points well after the
topological events completely manifested. In the boxing
sequence, we focus on the hand-head separation event. We
initialize our scene model using the partial reconstruction
provided by the dataset (fusion of the first 101 frames), in
which the hand is in contact with the head, and track the
model for the 51 subsequent frames. In the hat sequence,
we focus on the hand-hat separation when the actor drops
the hat and track our initial model for 16 frames. In the alex
sequence, we focus on a 27 frame interval towards the end
of the sequence, where the actor first touches his torso with
both hands (2 contacts) and then lifts them (2 separations).
For both hat and alex, the scene model was initialized
from a single RGB-D frame at the beginning of our interval
of interest.

As can be seen in the last columns of Fig. 5, FB-Warp
properly preserves motion discontinuities and introduces
virtually no visible artifacts in the warped model geome-
try over the separation boundaries. At the same time, the
oversmoothing behavior of F-Warp is clearly visible, as
objects tend to remain connected and there are no clean
separations. Standard non-rigid registration modules used
in current dynamic reconstruction systems are expected
to demonstrate a behavior similar to our F-Warp baseline
(e.g., [7]) or potentially introduce even more severe warping
artifacts if they rely on quadratic loss regularization (e.g.,
[8], [13], [14]). On that note, although we have performed
no relevant experiments, we believe that our proposed
registration pipeline would significantly simplify building
dynamic reconstruction systems, as it effectively suppresses
the need to perform laborious regularization graph mainte-
nance (initialization and updates), as in [7] and [8], or handle
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dynamic topology in a post-registration stage that discards
problematic regions and and reinitializes model tracking, as
in [13] and [14].

5 CONCLUSIONS

We presented a complete pipeline for the non-rigid regis-
tration of arbitrary, unorganized point clouds that may be
topologically different. Building upon a general warp field
estimation algorithm, we introduced an efficient topology
event handling post-processing phase that detects and clas-
sifies object contact and separation events, and, by exploit-
ing the different qualities of forward and backward motion
estimates with respect to different event types, locally selects
the most appropriate one, in a seamless manner. We evalu-
ated the motion estimation accuracy of our method on the
MPI Sintel dataset, achieving state-of-the-art performance.
Our evaluation on a custom dataset with sequences of
highly dynamic scene topology demonstrated the success
of our method in estimating motion on topological event
boundaries, and showed promising performance in event
detection. To the best of our knowledge, this is the first
approach to handle dynamic topology in the context of raw
point cloud registration. Furthermore, we openly release
the implementation of our baseline warp field estimation
algorithm as part of our point cloud processing library [18].

In this work, we focused on improving dense motion
estimation on separation boundaries by reasoning about
two specific types of dynamic topology: ‘open-to-close” and
‘close-to-open’. There exist, however, object interactions that
induce different types of topological changes, which our
method is not equipped to handle. One such interesting
example is the case of an object sliding on its supporting
surface. In this case, while our deformation criteria might
give us some hints regarding the problematic areas, our
inverted backward estimate is expected to share similar
oversmoothing properties as a standard, forward warp field.
We are currently investigating insights that would allow us
to efficiently tackle those situations, ideally without attack-
ing the more general and (possibly) much harder problem
of joint motion estimation and motion segmentation.
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