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Abstract—

Efficient Nearest Neighbor (NN) search in high-dimensional spaces is a foundation of many multimedia retrieval systems. A common
approach is to rely on Product Quantization, which allows the storage of large vector databases in memory and efficient distance
computations. Yet, implementations of nearest neighbor search with Product Quantization have their performance limited by the many
memory accesses they perform. Following this observation, André et al. proposed Quick ADC with up to 6x faster implementations of
PQ mx4 product quantizers (PQ) leveraging specific SIMD instructions.

Quicker ADC is a generalization of Quick ADC not limited to PQm x4 codes and supporting AVX-512, the latest revision of SIMD
instruction set. In doing so, Quicker ADC faces the challenge of using efficiently 5,6 and 7-bit shuffles that do not align to computer bytes
or words. To this end, we introduce (i) irregular product quantizers combining sub-quantizers of different granularity and (ii) split tables
allowing lookup tables larger than registers. We evaluate Quicker ADC with multiple indexes including Inverted Multi-Indexes and IVF

HNSW and show that it outperforms the reference optimized implementations (i.e., FAISS and polysemous codes) for numerous
configurations. Finally, we release an open-source fork of FAISS enhanced with Quicker ADC.

Index Terms—Image databases; Information Search and Retrieval; Nearest Neighbor Search; Product Quantization; SIMD
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1 INTRODUCTION

The Nearest Neighbor (NN) search problem consists in
finding the closest vector x to a query vector y in a database
of N d-dimensional vectors. Efficient NN search in high-
dimensional spaces is a core building-block in many multi-
media retrieval applications, such as image similarity search,
classification, or object recognition. These problems involve
extracting high-dimensional feature vectors, or descriptors,
and finding the NN of the extracted descriptors in a database
of descriptors. For images, SIFT [26], GIST [31] or Deep-
learning-based [8] descriptors are often used.

Although efficient solutions for exact NN search have
been proposed for low-dimensional spaces, exact NN search
remains challenging in high-dimensional spaces due to the
notorious curse of dimensionality. Hence, much research
work has been devoted to Approximate Nearest Neighbor
(ANN) search. ANN search returns sufficiently close neigh-
bors instead of the exact NN. Product Quantization (PQ) [19]
is an ANN search used in numerous applications [24], [34].
PQ compresses high-dimensional vectors into short codes of
a few bytes, enabling in-memory storage of large databases.

Fast answer is a key feature of PQ. It is enabled by
Asymmetric Distance Computation (ADC), which efficiently
computes distances between query vectors and compressed
database vectors using in-memory lookup tables. Yet, despite
being faster than regular distance computation, ADC remains
bottlenecked by the many memory accesses it performs [1].
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To date, much of the related work has been devoted to
the development of efficient inverted indexes [6], [33],
which reduce the number of ADCs required to answer NN
queries. Recently, there also has been a growing interest in
increasing the performance of the ADC procedure itself with
the introduction of PQ Fast Scan [1], Quick ADC [2], or
polysemous codes [12]. Quick ADC leverages SIMD shuffle
instructions to avoid memory accesses and implement very
fast ADC; yet it is restricted to 4-bit sub-quantizers and has
only been evaluated on simple inverted indexes, thus lacking
performance results for more advanced indexes. Polysemous
codes leverage the freedom to choose code indices to encode
a binary code that is used to prune ADC computations using
a low-cost hamming distance; yet, the use of an hamming
distance affects the precision.

In this paper, we present Quicker ADC, that introduces
two new features to improve performance and accuracy
through the use of the latest revision of SIMD instructions,
namely AVX512: (i) irreqular product quantizers combining
sub-quantizers of different sizes to allow using 5-bit or 6-
bit sub-quantizers, (ii) split tables for lookup tables larger
than registers thus allowing efficient implementation of 8-bit
sub-quantizer from 6-bit or 7-bit shuffles. Quicker ADC is
implemented into the reference library FAISS [18], [21] to
allow comparison to reference optimized implementations.
We released it at https://github.com/nlescoua/faiss-quickeradc in
order to ease comparisons to our schemes, their adoption,
and their evaluation in other settings.

We compare the performance of Quicker ADC to PQ
codes [19] and polysemous codes [12] with multiple index
types (i.e., simple inverted index [19], inverted multi indexes
(IMI) [6], and inverted indexes based on HNSW [27]) for
both the SIFT1000M dataset and the Deep1B dataset. Quicker
ADC consistently outperforms polysemous codes [12], the
state of the art solution for fast response time. For example,
on SIFT1000M, for budget of 0.25ms per query and 128-bit
codes, Quicker ADC (variant 24x{6,6,4} ) achieves R@1 of
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0.23 and R@100 of 0.60 with IMI (K = 40962) and R@1 of
0.24 and R@100 of 0.68 with IVF HNSW (K = 2'®), when
polysemous codes achieve R@1 of 0.23 and R@100 of 0.47
with IMI and R@1 of 0.18 and R@100 of 0.36 with IVF HNSW.

2 BACKGROUND

In this section, we first review the data-structures and algo-
rithms used for nearest neighbor search with product quanti-
zation. We then discuss the impact of product-quantization
parameters on search speed and recall. Finally, we introduce
the capabilities of the latest processors supporting AVX-512
and their potential for supporting product quantization.

2.1 Nearest neighbor search with PQ

We describe the different steps for building an indexed
database of vectors, and storing compressed representations
of these vectors with product quantization. Such a database
can then be used to search for the nearest neighbor of a
query vector efficiently by identifying a subset of database
vectors for which the distances to the guery vector needs to
be computed, and computing efficiently these distances on
compressed representations using a procedure called ADC.

2.1.1 Index

Computing distances for all 1-billion vectors of a database is
prohibitive. To tackle this issue in high-dimensional spaces,
the common approach is to partition the database using a
coarse indexing structure [6], [19]. The input vector space is
partitionned into K Voronoi cells using a coarse-quantizer
g;. Vectors lying in each cell are stored in an inverted list.
At query time, the inverted index is used to find the closest
cells to the query vector, and distances for vectors in the
inverted lists of these cells are computed. The two most
popular approaches are inverted indexes (IVF) [19], [20] and
multi-indexes [6]. The number of cells is limited in IVF (e.g.,
K = 216) due to the cost of training the IVF and computing
distances to each cell. Multi-indexes [6] push this limit and
allow a more fine-grained index (e.g., K = 22%) at the
price of imbalance in inverted list sizes. Recently, alternative
approaches have leveraged nearest neighbor graphs to allow
faster navigation in the index while avoiding the imbalance
in inverted list sizes (e.g.,, HNSW) [10], [27] for improved
performance. Our work is orthogonal to these and compatible
with any type of index. In addition, we will discuss in the
evaluation the fact that Quicker ADC fits well with the latest
indexes (e.g., HNSW).

In order to fit the complete database into memory, short
codes, which are much more compact, are stored instead
of full vectors. To obtain a short code, the residual r(z) =
x — qi(x) is encoded using a product quantizer described
in the next section. Indexed databases therefore use two
quantizers: a quantizer for the index (q;) and a product
quantizer to encode residuals into short codes. The energy
of residuals r(z) is smaller than the energy of input vectors
z, thus there is a lower quantization error when encoding
residuals rather than input vectors « into short codes. In the
rest of the paper, we will note y = r(x). As a special case,
when product quantization is used without any index, all
vectors are stored in a single list. The short codes represent
the input vectors rather than the residuals (i.e., y = z).
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2.1.2 Short codes with product quantization

Vector quantizers. To encode residual vectors as short codes,
PQ builds on vector quantizers. A vector quantizer ¢ maps
a vector y € RY, to a vector ¢ € C C R?. Vectors c are called
centroids, and the set of centroids C, of cardinality %, is the
codebook. Generally, the quantizer is chosen so that it maps
the vector y to its closest centroid ¢

q(y) = argmin ||y — c||
ceC

The quantizer extends as an encoder e which encodes y into
the index ¢ € {0...k — 1} of the vector ¢; € C it is mapped
onto (i.e., e(y) = 7, such that q(y) = ¢;). The short code 7
only occupies b = [log, (k)] bits, which is typically much
smaller than the d-32 bits occupied by a vector y € R? stored
as an array of d single-precision floats (32 bit each).

To maintain the quantization error sufficiently low for
ANN search, a very large codebook e.g., k = 264 is required.
However, building such codebooks is not tractable both in
terms of processing and memory requirements.

Product quantizers. Product quantizers overcome this
issue by dividing a vector y € R? into m sub-vectors,
y = (4°,...,y™ ). Each sub-vector y/ € R¥™, j ¢
{0,...,m — 1} is quantized independently using a sub-
quantizer ¢/. Each sub-quantizer ¢ has a distinct codebook
C7 = (c])524 of cardinality k. The cardinality of the product
quantizer codebook C = C% x - - - x C™~! is k™. Thus, a prod-
uct quantizer has many centroids £ while only requiring
storing and training m codebooks of cardinality k. A product
quantizer encodes a vector y into a short code, by concatenat-
ing codes produced by sub-quantizers e(y) = (ig . ..%m—1),

such that q(y) = (q°(3°) ...q" H(y™ 1)) = (c?U .. cznill )
The code (i, - - . , im—1) Tequires [log,(k™)] bits of storage.

Interestingly, the order of vectors in the codebook C”
is not constrained. Thus one can choose how vectors of
the codebook are mapped to indexes. This freedom allows
storing additional information and has been used in [1]
to nest a 4-bit product quantizer into the 8-bit product
quantizer and in [12] to encode a binary code onto the
index. In both case, this allows pruning the computation
thanks to the approximation of distance provided by the
nested code. With binary code, the resulting combination
is called polysemous codes [12] and achieves state-of-the-art
performance for approximate nearest neighbor search with
product quantization (and inverted multi-indexes).

2.1.3 Search in the compressed domain

Search for the nearest neighbor computes the distance
between the query vector z and a subset of database vectors.
As a first step, the a closest cells of the index quantizer g;
are determined (typically, @ = 8 to 64 for IVFs). The inverted
lists of these cells correspond to all the candidate vectors
for which the distances must be computed. For efficiency
reasons, the distance is computed directly on the compressed
representation using a procedure called ADC.

ADC works the following way. First, for each cell, the
residual 2’ = r(z) of the query vector is computed (2’ = z if
no index is used). From this residual 2/, a set of m lookup
tables are computed { D’ 7, where m is the number of sub-
quantizers of the product quantizer. The jth lookup table
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TABLE 1
Instruction set capabilities
Instruction set | Instruction Table size Distance | Lookups per operation Latency, Rec. Througput Available since
SSE pshufb 16 = 24 8 bit 16 1,1 2004 (Prescott)
AVX2 pshufb 16 =24 8 bit 32 1,1 2013 (Haswell)
AVX512 BW pshufb 16 = 24 8 bit 64 1,1 2017 (Skylake SP)
AVX512 BW vpermw 32=20" 16 bit 32 4,2 2017 (Skylake SP)
AVX512 BW vpermi2w 64=120" 16 bit 32 7,2 2017 (Skylake SP)
AVX512 VBMI vpermb 64 = 26 8 bit 64 3,1 Exp. 2019 (Cannonlake)
AVX512 VMBI | vpermizb | 128 =27 © 8 bit 64 5,2 Exp. 2019 (Cannonlake)
Neon vtbl 16 =24 8 bit 8 3,2 (Cortex A53, A72) 2009(ARMv?7)
Neon vtbl 32 =25 8 bit 8 6,2 (Cortex A53, A72) 2009(ARMv7)
VMX/ AltiVec vperm 16 =24 8 bit 16 Depend 2006 (PowerISA v2.03)

* Can be used for 16-values (2%) table with 16-bit distances by zeroing the upper half of the table.

comprises the distance between the jth sub-vector of 2’ and
all centroids of the jth sub-quantizer:

Dj:(\

Second all candidates are scanned and the lookup tables are
used to compute the distance between the query vector z
and each short code c as follows:

w—mmfw”

Ik - 1]H2> 1)

m—1
ade(z,¢) = Y DI[c[j]] )

j=0
Thus, ADC computes the distance between a query vector
z and each code ¢ by summing the distances between the
sub-vectors of 2z’ and centroids associated with code c in the
m sub-spaces of the product quantizer. As the number of
codes in inverted lists is large compared to k, the number
of centroids of sub-quantizers, using lookup tables avoids
computing |2’/ — C7[i]||? for the same i multiple times. Also,
lookup tables provide a significant speedup by performing
the computation directly in the compressed domain rather
than reconstructing (i.e., decompressing) database vectors.
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m, the number of sub-quantizers and k, the number of
centroids of each sub-quantizer impact: (1) the memory usage
of codes, (2) the recall of ANN search and (3) search speed.
The first tradeoff is between memory usage and accuracy.
Both the memory usage of codes ([log,(k™)] bits = m - b
bits, where b = [log,(k)]) and accuracy increase with the
total number of centroids of the product quantizer (k™). In
practice, 64-bit or 128-bit codes are used in most cases.

The second tradeoff is between accuracy and search
speed. For a constant memory budget of m - b bits per
code, the respective values of m and b impact accuracy and
speed. Decreasing m, which implies increasing b, increases
accuracy [19]. A detailled analysis of the impact of m and
b on performance is given in [1]. In a nutshell, b impacts
the time for each lookup in the table: if b is too large, the
lookup table does not fit into the fastest memory (i.e., the
processor cache, which is limited in capacity) and lookup
time will increase significantly. m impacts the number of
lookups: thus as long as the table stays in the fastest memory,
the lower the m, the better the performance. In addition, the
cost of computing the lookup tables grows exponentially
with b, thus smaller b also impact performance by reducing

Impact of PQ parameters

** Store the lookup table in two registers.

this cost; this is best seen on fine-grained indexes where the
table computation cost becomes significant.

The standard notation for Product Quantization codes is
mxb which specifies both parameters. The most common
Product Quantization codes are mx8 (e.g., 8x8 or 16x8)
as they ensure that tables fit in the processor cache and are
not too costly to compute while being efficient to compute as
they align well to computer bytes, and allow accessing the
code without shifting nor masking.

2.2 ADC computation using SIMD

The common parameterizations of PQ (i.e., mx8 ) already
exploit the fastest memory available on processors (i.e.,
the L1 cache), leaving no room for easy improvement.
A common technique to improve performance is to use
instructions that process a vector of values rather than a
single value at each CPU cycle: this principle called SIMD
Single Instruction Multiple Data allows significant performance
boost for signal processing and matrix operations. Yet, for
PQ, moving to SIMD improves performance for additions
but the implementation remains bottlenecked by the memory
accessed [1]. In [1], the sequential implementation of ADC
is analyzed thoroughly and compared to various approaches
using in-memory lookup tables but with SIMD additions.
The improvement is limited as the bottleneck is the access to
memory and specifically the in-memory lookup tables as the
codes, which are sequentially read, are efficiently handled
by the hardware prefetchers of the processor. Indeed SIMD
does not allow an efficient implementation of in-memory
table lookups, even using gather instructions introduced
in recent processors [1], [15]. While SIMD can add up to 16
floating-point numbers (512 bits) at once, only 2 concurrent
memory accesses can be performed per cycle in each CPU
core. Those memory accesses are the bottleneck.

Thus, previous work [1], [2], [11], [32] moved lookup
tables from memory to SIMD registers and leveraged in-
register shuffles to implement lookups!. Yet, the width
of SIMD registers (128-512 bits) challenges this approach.
Indeed, for common PQ (i.e., mx8 ), each lookup table
occupies 8192 bits (k = 2% = 256 floats). Previous work
worked around this limit by (i) using 4-bit subquantizers and
(ii) quantizing floats to 8-bit integers. The resulting lookup

1. Note that each core includes its own SIMD unit. We leave aside
the use of multiple cores, as this is achieved easily by having multiple
threads processing independent queries in parallel.
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tables are thus small enough (128 bits) to fit SSE or AVX-
2 registers. This has allowed Quick ADC [2] to achieve a
significant performance improvement with a moderate loss
of accuracy. This loss of accuracy comes mainly from the
reduced precision of 4-bit subquantizers when compared to
8-bit subquantizers and to a smaller extent from the use of
quantized distances. Yet, [2], [11], [32] remain limited to m x4
as they follow the initial approach of [1] that use pshufb.

2.3 SIMD capabilities and alternatives

AVX512, introduced in 2017 with Xeon Scalable processors,
is a significant redesign of Intel’s SIMD instruction set. It
provides additional shuffle instructions that support larger
tables as described in Table 1. Available processors allow
lookup tables of 32 or 64 16-bit values, thus 5-bit or 6-bit
indexed lookup tables (i.e., mx5 or mx6 PQ codes). In
addition, the wider registers (4x when compared to SSE
and 2x when compared to AVX2) allow either an improved
parallelism or more precise distances (16-bit instead of 8-
bit). In the next section, we will explore how these new
capabilities can be exploited for improving PQ efficiency.

Interestingly, shuffle instruction pshufb (used in, e.g.,
mx4 PQ codes) can process between 128 (SSE) and 512 (AVX-
512) bits of data per cycle while the popcount instruction
(binary codes) can process only 64 bits of data per cycle. Ham-
ming distance (used in, e.g., polysemous codes) is considered
as much faster than product quantization’s ADC (i.e., with
in-memory lookup tables) thanks to these fast popcount.
Yet, pshufb is even faster’ allowing product quantization
to rival binary codes regarding distance computation speed.
As a side note, our paper focuses on ADC, yet hamming
distance is conceptually closer to SDC [19]; SDC would
trade accuracy for speed by avoiding costs associated to
distance table computation. This could provide small product
quantization codes competing directly with binary codes.

While AVX512 has improved capabilities (larger tables)
and increased parallelism (i.e., number of lookups per
cycle) thanks to wider registers, the gain obtained may be
partially cancelled by the fact that processor cores running
AVX2 or AVX512 code are down-clocked and thus run at a
lower frequency than processor cores running sequential or
SSE code [16]. Thus, an experimental evaluation is needed
to assess the potential of these instructions for PQ-based
applications. This is even more salient for non-exhaustive
search as the overall query time is the result of the index
search, the distance table computation if any, and the ADC-
based scanning of all candidates whose performance change
differently as the code or index is altered.

The work presented in this paper extends to ARM (Neon)
and PowerPC (VMX) processors. Even if they have different
instruction sets, they have similar limitations regarding the
maximum number of concurrent memory accesses. They
feature SIMD units with a 4-bit shuffle equivalent to pshufb
and saturated arithmetics necessary to support Quicker
ADC’s mx4 codes. Beyond CPUs, the tradeoff between

2. Mula et al. [29] also noticed that popcount is relatively inefficient
when compared to vectorized instructions and thus designed algorithms
to replace popcount by a few vectorized instructions including one or
two pshufb for long-enough bit vectors. Yet, this does not allow any
accuracy improvement contrary to Quicker ADC.
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lookup tables in memory and registers should be taken
into account when designing programs for GPUs or FPGAs
because of fundamental hardware design tradeoffs between
memory size and access speed/parallelism.

3 QuUICKER ADC

In this section, we describe Quicker ADC, a generalization of
Quick ADC [2] that aims at improving accuracy through the
use of the latest AVX-512 SIMD instructions. Interestingly,
AVX-512 provides shuffles indexed by 5 or 6 bits, thus
allowing a more precise quantization of vectors. Yet, their
use for ADC is not straightforward as practical constraints
prevent the use of mx5 or mx6 PQ codes.

Product quantizers mx8 or mx16, that are commonly
used, are composed of 8-bit or 16-bit sub-quantizers. This
choice stems from the fact that manipulating byte-aligned or
word-aligned values is both simpler and faster. Earlier work
on using SIMD for PQ departs from these choices by relying
on mx4 PQ codes yet benefits from the fact that 4-bit values
naturally align to bytes as 2x4 = 8 bits. Unfortunately, m x5
or mx6 PQ codes rely on 5-bit or 6-bit values, neither of
which align well to computer words (16 bits) or bytes (8 bits).
This prevents a computationally efficient implementation of
such PQ codes which is the purpose of using SIMD.

A naive approach could be to add padding by storing
3 x5 bits of PQ codes in each 16-bit word and leaving one
unused bit in each word. Our initial experiments with this
approach on an exhaustive search in the SIFT1IM dataset
show that a 16x4 PQ (R@1° of 0.159) outperforms a 12x5
PQ codes (R@1 of 0.153). Our hypothesis is that using only
60 bits out of 64 bits outweights the benefits of using 5-bit
subquantizers in place of 4-bit subquantizers.

To this end, we explore two solutions to avoid padding.
The first solution, relying on new Irregular PQ codes, is
presented in Section 3.1. The second solution combines
multiple large shuffles to implement each lookup for 8-
bit subquantizers; it anticipates the availability of AVX512
VBMI 7-bit shuffle in a near future. Both solutions require
an SIMD-compatible memory layout similar to the one of
Quick ADC [2] and described in Section 3.3. Finally, Quicker
ADC improves the distance quantization of Quick ADC [2] in
order to allow using all 8 bits and not just 7 bits for improved
accuracy as explained in Section 3.4.

3.1

As a first solution to alleviate the alignement issue, we
propose Irregular Product Quantization which combines
subquantizers of different sizes (4,5 and 6 bits) that can
all be implemented in SIMD, such that their combination
aligns well to words (16-bits). A first variant groups one
6-bit subquantizer with two 5-bit subquantizers for a total of
16-bits and a second variant groups two 6-bit subquantizers
with one 4-bit subquantizers also for a total of 16 bits.
Multiple such groups are combined to form the complete
Product Quantizer. We will use the notation mx{a, b, ¢} for

Irregular PQ

3. R@1 designates the recall of the closest vector when considering
only the top vector returned by the algorithm. R@10 or R@100 are
relaxed versions where the closest vector is considered as recalled if
found in the top 10 vectors or top 100 vectors returned by the algorithm.
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TABLE 2 loaded (compressed) vectors components
SIMD operations required to perform 8-bit lookups >
W[ W[ W[ - [ a
Native Op. count Values per | Ops per = =
Instruction set | Shuffle | Shuffle | Blend | register value g al ‘bg ‘cg ‘ ‘ 28 ‘ §_
AVX2 / SSE4 4-bit 16 15 32 /16 0.97 / 1.94 : %
AVX512 BW 6-bit 4 3 32 0.21 I =
AVX512 VBMI | 7-bit 2 1 64 0.05 | o | pny | b | p°y H £y
3 | p°s] | p°W6s] | D67 | | D°[2s) }E
an Irregular Product Quantiz.er formed Qf m st%b-quantizgrs | ’ D] ‘ EEn ‘ D] ‘ ‘ Diod] ‘
grouped by three sub-quantizers of a bits, b bits and c bits. ‘
For example, the rest of the paper will often consider the 64- | ’ D'[65] ‘ D'[66] ‘ D'[67] ‘ ‘ D'[128] ‘
bit product quantizer 12x{6,6,4} that has the following }
subquantizers [6,6,4, 6,6,4, 6,6,4, 6,6,4]. We note ¢ o H Dlad ] ‘ DO} ] ‘ DOcd 7] ‘ - ‘ DOz 7] }(_
the number of sub-quantizers grouped (e.g.,, g = 3 for g — — — —
mx{6,6,4} and g = 2 for mx{4,4} ); so that m/gis =[] P l% ‘ Db "] ‘ D [eg] ‘ ‘ D' zg"] ‘
the number of groups. DB [ad-T] | DBT] | D[] ‘ng 7]

With subquantizers of different precisions, the allocation
of input dimensions to subquantizers cannot be uniform.
With product quantizers [19], the input vector is split in
sub-vectors of equal dimension which are then quantized
independently. With irregular product quantizers, however,
the input vector is not split in sub-vectors of equal di-
mensions so as to leverage the improved representation
capabilities of finer subquantizers. We map input dimensions
proportionally to the bit-width of the subquantizer. Let us
consider a 128-dimension SIFT vector quantized by an irreg-
ular product quantizer 12x{6, 6,4}. Each of the 4 groups of
sub-quantizers is associated to 32 dimensions. Thus within
each group, 6-bit sub-quantizers quantize sub-vectors of 12
dimensions and 4-bit subquantizers quantize sub-vectors of
8 dimensions. Note that as long as m/g is a multiple of 2,
Irregular Product Quantizers remain compatible with multi-
indexes which requires the two subquantizers of the index to
be aligned with the subquantizers of the product quantizer.

If the number of input dimension cannot be divided
exactly, the remaining dimensions are added one by one to
the subquantizers. Yet, this alters performance and should
be avoided: one should always ensure that allocation can
be proportional. More specifically, when vectors are pre-
processed by a PCA or a rotation (like in OPQ), the pre-
processed vectors should be of a dimension which can be
divided exactly. This implies that for a mx{6,6,4}, the
number of dimensions of the pre-processed vectors must be
divisible by (3 + 3 + 2)m/3 = 8m/3, and for a mx{6,5,5}
the number of dimension of the pre-processed vector must
be divisible by (6 + 5 + 5)m/3 = 16m/3. For example, 128-
dimension SIFT vectors can be encoded optimally by both
12x{6,6,4} or 12x{6, 5,5} irregular PQ codes.

To validate this first solution, we compare the different 64-
bit codes using an exhaustive search in the SIFT1M dataset.
Both 12x{6,6,4} (R@1 of 0.179) and 12x{6,5,5} (R@1 of
0.174) outperform a 16 x4 PQ code (R@1 of 0.158). Additional
results are given in the evaluation in Table 3.

3.2 Split tables

AVX-512 brings 6-bit vpermi2w and 7-bit vpermi2b shuf-
fles. These are only 2-bit away and 1-bit away from the
very common 8-bit sub-quantizers. Rather than relying on
highly-imbalanced irregular product quantizers, in particular
amx{7,1} that would perform poorly, it becomes interesting

partial distances for the loaded components
8 bits 512 bits (=0, g=1)
Fig. 1. Shuffle-blend lookup for 8 x {8} (AVX-512 VBMI)

to consider that each 8-bit lookup table can be split into 4
6-bit lookup tables or 2 7-bit lookup tables. As an example,
we show an 8-bit lookup built from two 7-bit shuffles on
Figure 1. The distance table D is split in two halves (D° and
D!, each of which occupies 2 registers). Two shuffles (each
having 3 registers as inputs) are performed to get values
indexed by the low 7-bits (e.g., aj~7)). The final values are
selected through a blend indexed by the 8-th bit (e.g., af).

This approach cannot be built on 4-bit shuffle (pshufb
from SSE4/AVX2) as it would require too many shuffles and
blends. As shown in Table 2, performing an 8-bit lookup for
16 values using SSE4 requires 16 shuffles and 15 blends, an
average of 1.94 operations/value. In comparison, when using
AVX512 VBMI, only 0.05 operations/value are necessary.
Due to the lack of available processors with AVX512 VBMI,
we will evaluate performance only for AVX512 BW (0.21
operations/value); yet, it is clear that vpermi2b from
AVX512 VBMI will provide significant gains*.

Quicker ADC codes implemented with this approach
require more instructions per lookup than irregular product
quantizers, yet, they come with almost no compromises
on accuracy when compared to PQmx8 PQ codes. In the
evaluation, we'll see that in some context they outperform
the alternative approach already, but they will become
particularly interesting as AVX512 VBMI-capable processors
become available in the near future.

3.3 Memory layout

Similarly to Quick ADC, Quicker ADC requires a transposed
memory layout. Indeed, an SIMD in-register shuffle performs
multiple lookups at once, but in a single lookup table e.g., D°.
Therefore, shuffles must operate on a single component of
multiple codes (e.g., ao, . .., po) at once, and not on multiple
components of a single code (e.g., ao,...,a15). Hence, to
allow efficient loads from memory, all values of the SIMD

4. The software we release already includes an implementation
supporting AVX512 VBMI even if it couldn’t be evaluated yet.
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Fig. 2. Inverted list memory layouts. Each table cell represents a byte or a word.

register ao, . . ., po must be contiguous in memory, which is
not the case with the memory layout of inverted lists (Figure
2a) used in common PQ implementations [12], [19].

The size of the blocks transposed depends on the shuffle
used. With 4-bit shuffles (pshufb in SSE4/AVX2/AVX512)
operating on lanes of 128 bits composed of 16 values, we
transpose blocks of 16 codes (a—p) as shown on Figure 2b.
With 5-bit and 6-bit shuffles (vpermw and vpermi2w in
AVX512) operating on a single lane of 512 bits composed of
32 values, we transpose blocks of 32 codes (a—z) as shown
on Figure 2c. With 7-bit shuffles (vpermi2b from AVX512)
operating on 64 values, we transpose blocks of 64 codes. A
more straightforward approach would transpose to blocks
of the size of a register (rather than the size of a lane), but
this would hinder performance due to increased register
pressure. Also for smaller sets of vectors encountered in
inverted indexes, this would require additional padding
resulting in lower performance.

In addition, values have a fixed width that depends on
the shuffle instruction used: pshufb and vpermb operate
on bytes (8 bits) while vpermw and vpermi2w operate on
words (16 bits). Hence, multiple subcodes must be packed
together to form bytes or words. We use the notation of
irregular product quantizers to specify the packing applied
(e.g., mx{6,6,4} packs 3 subcodes to form a 16-bit word
(6 + 6 +4 = 16) as shown on Figure 2c). This notation
extends to regular product quantizers (e.g., Quick ADC [2]'s
mx{4,4} packs 2 4-bit subcodes to form an 8-bit byte
(4 + 4 = B8) as shown on Figure 2b). Split-table-based
mx{8,8} packs two 8-bit subcodes to form a word for
use with vpermi2w, and split-table-based mx{8} packs a
single 8-bit subcode to form a byte for use with vpermiZ2b.
Subcodes can be extracted from the packed values efficiently
in SIMD through shift and mask. Note that the number
of rows in the transposed layout on Figure 2 corresponds
exactly to the number of groups in irregular PQ codes.

3.4 Quantization of distances

In standard ADC, lookup tables store partial distances as
32-bit floats. As subquantizer precision is key to accuracy, we
seek to store partial distances as 8-bit or 16-bit integers so
as to allow lookup tables of the same size, yet storing twice
or four times as much values. The representation (8-bit or
16-bit integers) depends on whether the type of shuffle we
use operates on bytes (e.g., pshufb, vpermi2b) or words
(e.g, vpermw, vpermi2w).

As we are interested only in the top-k nearest neighbors,
our distance quantization scheme must represent as precisely
as possible the smallest distances, but can ignore (ie.,

quantize to oo) large distances. Thus, to perform distance
computations (additions, ...), we rely on saturated integer
arithmetics that handles oo through saturation. The approach
is thus similar to that of Quick ADC but provides a tighter
distance quantization as explained hereafter.

First, we use 8-bit and 16-bit unsigned integers whereas
Quick ADC uses only the 7-bit positive range of signed
integers: this doubles the precision. Note that AVX2 lacks
straigtforward instructions for unsigned comparisons [23].

Second, we perform a tighter evaluation of the minimum
and maximum values than in Quick ADC [2] in order to
allow a more precise quantization. For each of the m lookup
tables, we evaluate the smallest partial distance pmin(i) to
represent, which is the smallest partial distance in the ¢-th
table. This also gives us the smallest distance to represent
dmin = YieoPmin(?). Then, we scan ¢ vectors to find a
candidate set of IR nearest neighbor candidates, where R
is the number of nearest neighbors requested by the user
(e.g., R=100 when R@100 is evaluated) and ¢ is larger than R
but much smaller than the total number of vectors. We use
the distance of the query vector to the R-th nearest neighbor
candidate i.e., the farthest candidate, as the d., bound. All
subsequent candidates have to be closer to the query vector,
thus dmax is the maximum distance we need to represent.

We determine the size of quantization bins A = M
Partial distance p in the ¢-th table can thus be quantlzed as

D _pmin(i)
1= 7A

To unquantize the sum X¢, one can use:
d = (2q)A + dmin

Note that similarly to [1], [2], we learn our distance quantizer
at query time on summed distances from the top-k rather
than at training time on partial distances (i.e., values in
the distance tables) [11]: the required evaluation of a few
distances has a negligible impact on performance yet allows
consistently increased accuracy. Also, contrary to [11], we
limit distortion only for the shortest distances, whereas
in [11], the distortion is limited for all partial distances,
but all the shortest distances (i.e., below the first quantile)
are quantized into a single bin resulting in higher distortion
for these. Finally, as our g, bound is determined from
summed distances, we can perform the accumulation on
the same integer width as the lookups (i.e., no need to
upcast 8-bit distances to 16-bit to avoid saturation) and
preserve the semantic of gyn.x (i.e., too large distance) during
accumulation.
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Fig. 3. SIMD Lookup-add in AVX-512 for 12x{6, 5,4}

3.5 SIMD distance computation

Quicker ADC supports several combinations of sub-
quantizers: (i) those operating on 128-bit lanes for 4-bit
subquantizers with 8-bit distances (SSE, AVX2 and AVX512),
(if) those operating on 512 bits lanes for 4,5 and 6-bit
subquantizers with 16-bit distances, and (iii) those operating
on 512 bits lanes for 8-bit subquantizers with 8 or 16-bit
distances implemented using multiple shuffles and blends as
described in Section 3.2 and Figure 1. While implementation
details vary, the overall principle is the same.

Once cells are selected and distance tables are computed,
as explained in the background, each invert list is scanned
block by block. The distances for vectors of the block are
computed in the following way. We depict the processing
applied to each group of components (i.e., each row of
Figure 2b and 2c) in Figure 3. First, the subcodes are
unpacked using shifts and masks. For each set of subcodes,
the partial distances are looked up in the distance table using
either a native shuffle, as explained in Section 3.1 or a lookup
implemented through a combination of shuffle and blends,
as explained in Section 3.2 and depicted in Figure 1. The
distances are summed using saturated arithmetic. Note that
distance tables may occupy half, one or multiple registers
depending on the type of lookup. Figure 3 presents an
hypothetical 12x{6,5,4} code in which distance tables
for 6-bit, 5-bit and 4-bit subquantizers fit in respectively 2,
1 and half a register. This process is repeated for all m/g
groups that form the complete code and partial distances are
summed to obtain the distances. The distances are compared
to the worst candidate vector, and vectors for which distances
are smaller are added to the binary heap of candidates.

The 8-bit shuffles (pshufb) in AVX2 or AVX-512 BW
operate on two or four independent 128-bit lanes. Hence,
they do not allow 32 or 64-element lookup tables. Yet, they
can increase the throughput by processing more elements

per cycle (see Table 1). We use this property in Quicker ADC
(mx{4,4}) by processing multiple groups (i.e., rows) per
shuffle instruction (2 for AVX2, 4 for AVX512) rather than
just one per call as in SSE. The number of iterations in the
computation is thus reduced from m/g to m/g/2 (AVX2)
or m/g/4 (AVX-512). This also reduces register pressure as
fewer registers are needed to store distance tables.

4 EVALUATION

We implemented Quicker ADC in C++ (4K lines of code)
and release it as open-source’. The implementation contains
numerous variants: mx{4,4}, mx{6,6,4}, mx{6,5,5},
mx{5,5,5}, mx{8,8}, mx{8}°. Note that, to allow further
experimentation, the released code is highly generic thanks to
templates so that adding a mx{6,6,2} operating on signed
arithmetics requires a single line of code. Training, exhaustive
search and non-exhaustive search (IVF, multi-indexes) rely
on the implementation of FAISS.

We carry our experiments on Skylake-based servers,
which are m5 AWS instances, built around Intel Xeon
Platinum 8175 (2.5 GHz, supporting AVX512) with default
settings from Amazon. We use g++ compiler version 7.3
with option -03 and enable SSE, AVX, AVX2 and AVX512.
For BLAS, we use the Intel MKL 2018. We focus our
evaluation on Intel’s processors as they power almost all
servers. Given that optimized implementations are key to
relevant evaluations, we also release our source code, to ease
evaluation of SIMD schemes on future processors and newer
micro-architectures, and for improved quantization schemes.

Our evaluation relies on the publicly available datasets
SIFTIM [19] and SIFT1000M [20] of 128-dimension SIFT
vectors, Deep1M [7] of 256-dimension of Deep features, and
Deep1B [8] of 96-dimension Deep features. We use the 1-
million vectors datasets for the evaluation of exhaustive
search, and the 1 billion vectors datasets for the evaluation
of non-exhaustive search (i.e., with an index).

Our metrics are Recall@1 (R@1), which is the fraction
of queries for which the true neighbor is the one returned
during search, and Recall@100 (R@100), which is the fraction
of queries for which the true neighbor is among the top-
100 returned during search. R@100 reflects the performance
for visual search applications where the user is presented a
collection of images rather than a single image (e.g., Google
Image). To evaluate the computational efficiency, we report
the average time per query. Note that a query time of 0.5ms
translates to a throughput of 2,000 queries/second (/core).

4.1

We first focus on evaluating the performance of Quicker
ADC in isolation. We thus consider exhaustive search on the
SIFTIM and Deepl1M datasets. We do not use an inverted
index and we encode the original vectors, not residuals, into

Exhaustive search

5. Our implementation integrated into FAISS is released under the
Clear BSD license at https://github.com/nlescoua/faiss-quickeradc

6. In our evaluation, we execute this last implementation in a non-
SIMD fallback mode as processors with AVX512 VBMI processors are
not available yet. The released code, nevertheless, contains the optimized
SIMD implementation. Our implementation, based on templates, allows
adding additional/newer instruction sets easily as it automatically
generates code regarding the specific memory layout.
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TABLE 3
Exhaustive search (without index) on SIFT1M and Deep1M. Results are given as percentage R@1/R@100 time(ms)
Results as: R@1/R@100(%) time(ms) SIFTIM DeepIM
Code Instr. Set Instr. Dist. 64 bits 128 bits 256 bits 64 bits 128 bits 256 bits
PQ m x 8 [18], [19]) [ float 225/91.7 542 | 44.4/99.7 9.20 | 62.7/100.0 17.2 | 4.40/51.4 542 | 13.5/84.6 9.18 | 31.2/100. 17.2
Poylsemous [12], [18])* O] popcnt bin/f. | 22.2/849 1.22 | 444/97.4 2.25|609/934 4.15 | 4.80/40.0 0.96 | 13.3/76.6 2.02 | 30.6/93.3 3.60
Hamming-only (7=0) popent bin. 0.00/0.00 0.87 | 0.00/0.00 1.30 | 0.00/0.00 3.01 | 0.00/0.00 0.85 | 0.00/0.00 1.41 | 0.00/0.00 2.97
Quicker ADC
mx{4,4} SSE pshufb int8 15.5/80.6 0.68 | 30.6/96.0 1.25 | 46.5/99.8 4.26 | 2.9/41.8 0.67 | 14.0/78.2 1.32 | 30.0/97.3 4.28
mx{4,4} SSE pshufb uint8 15.5/80.9 0.69 | 31.0/96.3 1.21 | 49.9/99.9 4.40 | 3.0/41.5 0.68 | 14.8/79.8 1.31 | 32.4/97.1 4.45
mx{4,4} AVX2 pshufb int8 15.5/80.6 0.51 | 30.6/96.0 0.83 | 46.5/99.8 2.48 | 2.9/41.8 0.51 | 14.0/78.2 0.92 | 30.0/97.3 2.45
mx{4,4} AVX2 pshufb uint8 15.5/80.9 0.54 | 31.0/96.3 0.85 | 49.9/99.9 2.43 | 3.0/41.5 0.54 | 14.8/79.8 0.95 | 32.4/97.1 2.48
mx{4,4} AVX512 BW pshufb int8 15.5/80.6 0.49 | 30.6/96.0 0.78 | 46.5/99.8 2.26 | 2.9/41.8 0.49 | 14.0/78.2 0.86 | 30.0/97.3 2.17
mx{4,4} AVX512BW A | pshufb uint8 | 15.5/80.9 0.53 | 31.0/96.3 0.80 | 49.9/99.9 2.28 | 3.0/41.5 0.52 | 14.8/79.8 0.90 | 32.4/97.1 2.26
mx{4,4,4,4} AVX512 vpermw uintlé6 | 15.7/80.9 0.84 | 31.6/96.5 1.63 | 51.2/100. 3.98 | 3.1/42.1 0.84 | 14.6/79.9 1.73 | 33.6/97.5 3.87
Quick ADC [1] AVX2 pshufb int8 15.2/80.2 0.51 | 30.1/95.7 0.82 | 46.2/99.7 2.42 | 3.1/40.9 0.5 | 13.7/77.1 091 | 27.2/953 2.36
Bolt'® [11] AVX2 pshufb uint8 12.8/77.0 0.73 | 29.7/95.6 1.34 | 50.7/100. 3.45 | 3.1/41.8 0.73 | 14.6/80.3 1.41 | 33.3/97.5 3.42
Bolt® [11] AVX2 pshufb uint8 | 12.5/66.7 0.46 | 15.0/32.2 0.72 | 85/122 228 | 0.1/0.5  0.43 | 0/0 0.8210/0 2.30
mx{4,4} float 15.7/80.9 25.6 | 31.7/96.5 54.0 | 51.2/100. 104 | 3.0/42.1 25.6 | 14.6/79.8 54.0 | 33.6/97.5 104
mx{6,6,4} AVX512 BW vpermi2w | intlé 17.4/85.8 0.51 | 36.8/98.5 0.98 | 56.6/100. 2.59 | 4.8/46.5 0.48 | 13.6/81.8 0.98 | 34.4/985 2.57
mx{6,6,4} AVX512BW O | vpermi2w | uintl6 | 17.4/85.8 0.51 | 36.8/98.5 1.07 | 56.7/100. 2.57 | 5.0/46.3 0.48 | 13.6/81.8 1.07 | 34.3/98.5 2.58
mx{6,6,4} float | 17.4/85.8 184 | 36.8/98.6 40.5 | 56.5/100. 77.9 | 48/46.3 18.4 | 13.6/81.8 40.4 | 34.4/98.5 77.9
mx{6,5,5} AVX512 BW vpermi2w | intle | 17.1/84.5 0.50 | 37.5/98.6 0.97 | 56.8/100. 2.54 | 4.4/46.8 0.48 | 14.0/81.1 0.97 | 33.7/98.4 2.5
mx{6,5,5} AVX512 BW vpermi2w | uintlé | 17.2/84.5 0.50 | 37.4/98.6 1.04 | 56.8/100. 2.55 | 44/46.8 0.47 | 14.0/81.1 1.03 | 33.8/98.5 2.47
mx{6,5,5} float 17.1/84.5 19.3 | 37.4/98.6 41.6 | 56.8/100. 79.5 | 44/46.8 19.2 | 14.0/81.1 41.6 | 33.8/98.5 79.6
mx{5,5,5} AVX512 BW vpermw intle [ 14.9/80.5 0.50 | 34.4/97.6 0.95 | 53.2/99.9 2.44 | 2.8/39.3 0.47 | 12.0/77.0 0.95 | 29.7/98.5 2.46
mx{5,5,5} AVX512 BW vpermw uint16 | 14.9/80.5 0.5 | 34.4/97.6 0.96 | 53.2/99.9 2.48 | 2.9/39.3 0.47 | 12.0/77.0 0.96 | 29.7/98.5 2.49
mx{5,5,5} float 14.9/80.5 19.3 | 34.4/97.7 41.6 | 53.2/99.9 79.5 ] 2.8/39.2 19.1 | 12.0/77.0 41.6 | 29.7/985 79.6
mx{8,8} AVX512 BW vpermi2w | intlé 22.5/91.8 1.18 | 445/99.7 2.3 | 62.8/100. 4.89 | 43/51.5 1.19 | 13.5/84.6 2.27 | 31.2/99.0 4.9
mx{8,8} AVX512 BW vpermi2w | uintlé | 22.6/91.8 1.19 | 445/99.7 2.35 | 62.8/100. 4.9 | 44/51.4 1.19 | 13.6/84.6 2.26 | 31.2/99.0 4.91
mx{8} AVX512 VBMI vpermi2b | int8 22.8/91.8 < ** | 43.7/99.7 < ** | 60.2/100. < ** | 43/51.6 <** | 13.7/84.6 < **|30.6/99.0 <**
mx{8} AVX512 VBMI vpermi2b | uint8 22.3/91.6 < **|425/995 < **|556/100. <**| 45/51.8 < **|13.0/85.1 < **|28.7/981 <™**
mx{8} float 225/91.8 11.8 | 44.4/99.7 22.9 | 62.7/100. 47.0 | 44/514 11.8 | 13.5/84.6 22.8 | 31.2/99.0 47.0
" For SIFTIM, T = 21 for 64-bit, 7 = 51 for 128-bit and 7 = 99 for 256-bit. For DeeplM, T = 17 for 64-bit , 7 = 47 for 128-bit and 7 = 99 for 256-bit.
" Timings for mx {8} cannot be obtained as current processors do not support AVX512 VBMI; recalls are obtained by simulating saturated arithmetic on quantized
distances. As explained in Section 3.2, we expect AVX512 VBMI mx {8} to be significantly (up to 4 times) faster than AVX512 BW mx{8,8} .
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short codes. Table 3 gives results for the baseline product
quantization implementation from FAISS [21], polysemous
codes [12], Bolt [11], Quick ADC [1] and Quicker ADC. We
also include a specific operating point where polysemous
codes degenerate into binary codes (7 = 0).

For Quick ADC [1] and Quicker ADC, we scan t=400 vec-
tors to set the gnax bound for the quantization of lookup tables
(Section 3.4). We evaluate various SIMD-implementations
and compare them to sequential implementations that use
floating-point distances to evaluate the loss of recall due to
distance quantization.

4.1.1 Impact of distance quantization

Distance quantization has no impact on recall with 16-bit
integers and negligible impact with 8-bit integers (e.g., 0.155
instead of 0.157 for mx{4,4} for R@1 SIFT1M - 64 bit).
Hence, scanning t=400 vectors is enough for estimating the
distance-quantization bounds. The unsigned variants have a
slight recall advantage over the signed ones. As query times
for both are similar, we’ll keep the unsigned variants.
Quicker ADC mx{4,4} with 8-bit distance is faster than
mx{4,4,4,4} with 16-bit distances for similar recall. We
thus prefer using 8-bit distances whenever an appropriate
shuffle is available. Indeed, shuffling 16-bit values has a
higher latency (see Table 2), converting 8-bit to 16-bit has a
cost and the number of additions per cycle is divided by 2.
Regarding prior work, Quicker ADC mx{4,4} (AVX2)
improves over Quick ADC [1], which also uses AVX2, with

a better recall for the same query time thanks to the tighter
(nin bound. Quicker ADC outperforms Bolt'® by providing
better recall (thanks to the different distance quantization
scheme) and by being faster (thanks to accumulating on 8-
bit instead of upcasting partial distances to 16-bits). Note
that Bolt® with an 8-bit accumulator has poor recalls as
the quantization bounds are estimated on partial distances
rather than summed distance, thus a lot of relevant distances
saturate during accumulation.

As a side note, our sequential implementation tends to
be slower than original the PQ ADC because it is not as
specialized and it systematically uses shifting and masking
for accessing subcodes. For mx{4,4} , using SSE is slower
than using AVX2 or AVX512 which give similar timings.

4.1.2 Comparing QuickerADC to PQ and Polysemous

Quicker ADC mx{6,6,4} is as fast as mx{4,4} yet
improves recall for both 64-bit and 128-bit codes. Its recall
R@1 (0.174 and 0.368 on SIFT1M 64-bit/128-bit) is lower
than PQ and polysemous codes (0.225 and 0.444) but the
recall R@100 of Quicker ADC is equivalent if not better than
the one of polysemous codes. Yet, this slight recall decrease
allows Quicker ADC mx{6,6,4} to be 10 times faster
than PQ ADC and 2-3 times faster than polysemous codes.
Interestingly, mx{5,5,5} has a lower recall than all other
including mx{4,4} because it uses only 60 bits instead of
all 64 bits. Hence, irregular product quantizers are preferable
over simpler constructions not using all bits.
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Fig. 4. Non-exhaustive search with different index types and different PQ or Irregular PQ codes. SIFT1000M

Quicker ADC mx{8, 8} codes are 5x faster than regular
PQ codes, and slightly faster than polysemous codes while
achieving similar recall R@1 and improved recall R@100.
Note that the timings reported here are using AVX512 BW
and are likely to be up to 4x better with the availability of
AVX512 VBMI without significant degradation of accuracy.
Thus, mx{8} codes with Quicker ADC could prove
extremely interesting due to their recall being very close
to the original PQ with significantly improved performance.

Quicker ADC is faster than a binary code (polysemous
with 7 = 0) as the shuffle instructions used in Quicker
ADC are faster than popcount. This opens perspectives
for using PQ with Symmetric Distance Computation with
an SIMD implementation similar to that of Quicker ADC
in order to build a very fast code that could be used in
pruning applications (e.g., in place of the hamming code of
polysemous codes). Bounding a PQmx8 with a PQmx4
code is one of the two mechanisms used in [1]; it could be
used in isolation as explained in Derived Quantizers [3], in a
way similar to the hamming codes of polysemous codes [12].

4.2 Non-exhaustive search

Each index and product quantizer combination can operate
in numerous configurations by varying the hyper-parameters
(i.e., How many cells to explore? How many distances
to evaluate? What hamming threshold to use? How to
estimate distance quantizers?). Hence, the performance of
each combination is not a single point but a curve of the
optimal tradeoffs between query time (in ms) and recall
(R@1 or R@100). Thus, to compare the various combinations
of indexes and product quantizers, we plot the best recall
achieved for a given query time budget. We are particularly
interested by small query times (less than 0.5ms). Among
the parameters of importance is the parameter a (multiple
assignement/probe) which allows faster codes to scan more
vectors and more inverted lists for a given time budget.

We consider 3-types of indexes combined with either 64-
bit or 128-bit codes. The first index considered is a relatively
coarse index (IVF K = 65536) [19], the second is a very fine-
grained index (inverted-multi-index, IMI K = 40962) [4],
and the last one is a fine-grained index leveraging a neigh-
borhood graph (IVF HNSW K = 218) [27]. The two latters
are considered state-of-the-art and are widely used; they
achieve similar performance and the more recent IVF HNSW
produces fewer inverted lists, which are also more balanced.
We report results for the SIFT1000M dataset [20] on Figure 4
and for the Deep1B dataset [8]) on Figure 5. Note that gaps in
the curves (quite visible for 128-bit PQ and polysemous codes
with IVF HNSW) are related to the fact that parametrizations
are discrete (i.e., exploring 1,2,3,... inverted lists).

For all indexes, both codes (64-bit and 128-bit) and both
datasets (SIFT1000M and Deep1B), the top performer is one
of Quicker ADC’s implementations, with a single exception
(SIFT1000M, IMI, 128-bit codes for the metric R@1, with
a budget for query time > 0.2 ms). Indeed, as observed
in Section 4.2, polysemous codes tend to perform better
on R@1; they also avoid distance table computation which
are numerous in IMI. The domination of Quicker ADC is
particularly salient for low query time budget, where the
recall gain of Quicker ADC over polysemous codes can
be 50% (SIFT100M, IMI, 128-bit, 0.2 ms) or 100% (SIFT
1000M, IVF HSNW, 128-bit, 0.2ms). Quicker ADC is also
particularly efficient for metric R@100, or for Deep 1B vectors.
For example, on Deep1B with an IMI 2x12 with a query time
budget of 0.25ms, Quicker ADC 32x{4,4} allows a R@100
of 0.55 while polysemous allow a R@100 of 0.33 or would
require a query time of 0.5ms to achieve the same R@100,
and PQ 16x8 requires more than 1ms to achieve a recall
R@100 of 0.55. Quicker ADC becomes particularly interesting
when combined with IVF HNSW: for example, 32x{4,4}
achieves a R@100 of 0.55 in less than 0.16ms; faster than
alternatives on IMI. Indeed, IMI is a worst case for Quicker
ADC as these indexes tend to have numerous short lists, and
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Fig. 5. Non-exhaustive search with different index types and different PQ or Irregular PQ codes. Deep1B

Quicker ADC requires (i) pre-computing distance tables, and
(if) processing batches of vectors. The benefits are higher
for indexes that have longer inverted lists (IVE, IVF HNSW).
The reduced accuracy of QADC mx{4,4} or mx{6,6,4},
observed on exhaustive searched, is here offset by the ability
to scan more inverted lists (larger hyper-parameter a) for a
given time budget. This explains why QADC outperforms
PQ and polysemous codes in term of accuracy.

Note that for index types other than IMI, polysemous
codes allow additional operating points over PQ (lower
query time by jeopardizing recall) but do not improve
performance for the larger query times. It means that while
the reduced cost per code of polysemous allows computing
distances for more codes/more inverted lists, an equally
effective alternative is to not use polysemous but scan fewer
codes/less inverted lists. The fact that they are more benefical
in the context of IMI can be explained by the fact that they
allow avoiding distance table computations, that are more
numerous for such fine-grained indexes. Interestingly, their
benefits are limited on IVF HNSW.

4.3 Summary of experimental study

Our experiments show that Quicker ADC offers interesting
operating points for exhaustive search and non-exhaustive
search, even with fine-grained indexes. For exhaustive
search, new variants relying on AVX512 are the fastest, with
mx{8,8} offering good recall for both R@1 and R@100 with
significantly reduced query times. For non-exhaustive search,
Quicker ADC mx{4,4} or mx{6,6,4} outperforms
other solutions, including polysemous when fast queries
are desired. As the time budget for queries increases, or
when R@1 is the metric of interest, Quicker ADC mx {8, 8}
is among the top performers. Hence, Quicker ADC mx {8}
whose ADC procedure could be up to 4x faster (see Table 2)
is likely to be well positioned when processors supporting
the required instructions will become available.

5 RELATED WORK

SIMD evaluation of distances. PQ Fast Scan [1] pioneered
the use of SIMD for ADC distance evaluation. It inspired
later work [2], [11], [32] that are more suitable for indexed
databases. Quicker ADC is a generalization of Quick ADC [2]
supporting additional shuffles and an improved distance
quantization scheme. Bolt [11] is cotemporary of Quick ADC
and both implement lookups using pshufb. Bolt however
differs in the approach of distance quantization. In Bolt,
the distance quantization scheme is decided once for all at
training time and aims at minimizing distance distortion
for all distances. In Quick ADC and Quicker ADC, the
distance quantization scheme is decided dynamically at
query-time based on the first vectors scanned and aims
at minimizing distortion for only the k-closest vectors,
quantizing distances for all other vectors to co. This also
implies different choices for accumulation: Bolt quantizes
distances to 8-bit and accumulates on 16-bit whereas Quick
ADC and Quicker ADC quantize distances to 8-bit and
accumulate them on 8-bit with saturated arithmetic to ensure
semantic coherence between oo encoded onto 8-bit in tables
and oo encoded onto 8-bit during accumulation — should
we accumulate on 16-bit, 8-bit sub-distances quantized to co
wouldn’t be interpreted as oo during accumulation. Quick
ADC and Quicker ADC prove more effective for nearest
neighbor search, while Bolt allows more general use in
other applications (matrix multiplication...). Wu et al. [32]
present an improved method for learning product quantizers
and depart from the usual mx8 to also evaluate mx4
variants, which can be implemented in SIMD. They report
execution speed 5x faster, and equaling popcnt-based
hamming distances speed, similar to our observations. These
propositions [1], [11], [32] have shown to be particularly
efficient yet their evaluations remains limited to no or coarse
indexes and thus lack results for fine grained indexes (e.g.,
Inverted Multi Index [6]).
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By implementing Quicker ADC into FAISS, we have been
able to evaluate Quicker ADC with both IMI and IVF HNSW.
Also, as we release the implementation, it will be possible to
evaluate Quicker ADC for future index designs. In addition,
these works were limited to mx4 codes, while we have
proposed numerous other variants for a better usage of
AVX512-compatible processors.

Indexes. Inverted Multi-Indexes [6] or graph-based in-
verted indexes [10], [27] provide a finer partition than vanilla
inverted indexes. The design of indexes is rather independent
from the design of the product quantizer, and thus Quicker
ADC can be combined with any inverted index. We evaluate
Quicker ADC with several types of indexes and shows that
it works fine with IMI which are at the extreme of spectrum
in term of cell sizes and works equally well, contrary to
polysemous codes with more recent propositions such as IVF
HNSW. We expect Quicker ADC to be relatively independent
of index choices and to remain efficient with newer indexes.

Alternatively, PQTable [28] seeks to avoid the distance
computation for numerous vectors by using a hash-table-like
structure, using a PQ code as the key. While it’s as fast as
less optimized implementations of PQ with Inverted Multi
Indexes [6], the evaluation reports 7 ms to achieve 0.06 R@1
and 0.57 R@100 which are much lower than speeds achieved
by FAISS using polysemous [12] and Quicker ADC (< 0.3
ms in Figure 4). Yet, both polysemous using popcount
and Quicker ADC are optimized according to hardware
capabilities, and PQTable could also benefit from additional
CPU-aware optimization, using batching and prefetching
similarly to classical hash-tables [25].

Optimized and Compositional Quantization Models. Cartesian
k-means (CKM) [30] and Optimized Product Quantizers
(OPQ) [14] optimize the sub-space decomposition by per-
forming an arbitrary rotation and permutation of vector
components. This allows for improved accuracy with a
moderate cost (i.e., a matrix multiplication to perform the ro-
tation). These are compatible with Quicker ADC as the ADC
procedure remains unchanged. The source code we release
includes FAISS’s implementation of OPQ. We focused our
evaluation on the combination of Quicker ADC with regular
PQ with various indexes. In addition, compositional vector
quantization models inspired by PQ have been proposed.
These models offer a lower quantization error than PQ or
OPQ. Among these models are Additive Quantization (AQ)
[5], Tree Quantization (TQ) [7] and Composite Quantization
(CQ) [36]. These models also use cache-resident lookup
tables to compute distances, therefore Quicker ADC may be
combined with them. However, this may require additional
work as some of these models use more lookup tables than
the ADC procedure of PQ or OPQ.

Deep-Learning-based quantizers. Subic [17], DPQ [22] and
[35] use deep neural networks to compute a compact vector
representating images. Similarly to product quantization, the
compact vector has a product structure which is exploited
to compute distances by summing the contribution of sub-
vectors. The distances to each sub-vectors are thus stored in
lookup tables and an ADC-like procedure is used. Hence,
Quicker ADC naturally extends to these quantizers, and can
bring similar benefits. Quicker ADC could be particularly
interesting if these quantizers can be adapted to accomodate
well small (4-bits) or irregular quantizers.

Encodings based on neighborhood graphs. Some proposi-
tions [9], [13] leverage the nearest neighbor graph to have
lower encoding error. This improves recall but tend to
operate with a higher memory budget [13] and thus does not
compare directly. Our work target operating points strictly
identical to IVF or inverted multi-indexes combined with
Product Quantization [6], [19] and Polysemous Codes [12].
Yet, as these propositions [9], [13] rely on lookup tables for
distance computation, they could leverage some principles
from Quicker ADC to speed up distance computation.

6 CONCLUSION

In this paper, we presented Quicker ADC, a novel distance
computation method for product-quantization-based ANN
search. Quicker ADC improves over previous proposition [2]
by (i) supporting additional quantizers (e.g., mx{6,6,4},
mx{8,8}, mx{8}) and (ii) having an improved implemen-
tation integrated into FAISS and compatible with various
indexes (IMI, IVF HNSW). Through an extensive evaluation,
we have shown that Quicker ADC outperforms schemes
based on PQ or polysemous codes for both exhaustive
and non-exhaustive (i.e., index-based) search, and that they
combine well with the latest indexes such as HNSW-based
IVF [27]. We release the implementation as open-source to
allow a wider adoption and evaluation of this approach.

Techniques presented in this paper focus on the efficient
evaluation of distances in the compressed domain. This
problem is present in all quantization-based approaches,
which rely on lookup tables to speed-up computation. Thus,
the principles behind our work (i.e., replacing memory
accesses by shuffles and quantizing distance tables) can
be the basis for an improved implementation of other
approaches [9], [13], [17]. This is of particular interest if those
new approaches behave better with coarser (i.e., 4-bit) or
irregular quantizers (i.e., combined 6-bit and 5-bit quantizers).
Also, Quicker ADC brings product quantizer codes on par
with binary codes regarding distance evaluation speed. Thus,
Quicker ADC could inspire new designs where filtering with
a binary code (e.g., polysemous codes) is replaced by filtering
with a lower precision product quantizer (e.g., mx{4,4}
with symmetric distance computation used to filter vectors
before ADC computation on PQmx8 as in [1], [3]).

Finally, we would like to stress that upcoming proces-
sors will have improved SIMD capabilities allowing for a
bright future for Quicker ADC. The Cannonlake processors
expected in 2019 will have support for 7-bit shuffles thus
quadrupling shuffle throughput as mx{8} codes replace
mx{8,8}, and Sunny Cove processors expected in 2020 will,
in addition, double shuffle throughput by having two shuffle
units per core instead of one. Hence, the performance of
Quicker ADC will significantly improve in a near future just
from hardware upgrade, without algorithm adaptation.
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