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Image-based 3D Object Reconstruction:
State-of-the-Art and Trends in the Deep
Learning Era

Xian-Feng Han*, Hamid Laga*, Mohammed Bennamoun Senior Member, IEEE

Abstract—3D reconstruction is a longstanding ill-posed problem, which has been explored for decades by the computer vision,
computer graphics, and machine learning communities. Since 2015, image-based 3D reconstruction using convolutional neural
networks (CNN) has attracted increasing interest and demonstrated an impressive performance. Given this new era of rapid evolution,
this article provides a comprehensive survey of the recent developments in this field. We focus on the works which use deep learning
techniques to estimate the 3D shape of generic objects either from a single or multiple RGB images. We organize the literature based
on the shape representations, the network architectures, and the training mechanisms they use. While this survey is intended for
methods which reconstruct generic objects, we also review some of the recent works which focus on specific object classes such as
human body shapes and faces. We provide an analysis and comparison of the performance of some key papers, summarize some of
the open problems in this field, and discuss promising directions for future research.

Index Terms—3D Reconstruction, Depth Estimation, SLAM, SfM, CNN, Deep Learning, LSTM, 3D face, 3D Human Body, 3D Video.

1 INTRODUCTION

The goal of image-based 3D reconstruction is to infer the 3D
geometry and structure of objects and scenes from one or
multiple 2D images. This long standing ill-posed problem is
fundamental to many applications such as robot navigation,
object recognition and scene understanding, 3D modeling
and animation, industrial control, and medical diagnosis.
Recovering the lost dimension from just 2D images has
been the goal of classic multiview stereo and shape-from-
X methods, which have been extensively investigated for
many decades. The first generation of methods approached
the problem from the geometric perspective; they focused
on understanding and formalizing, mathematically, the 3D
to 2D projection process, with the aim to devise mathemat-
ical or algorithmic solutions to the ill-posed inverse prob-
lem. Effective solutions typically require multiple images,
captured using accurately calibrated cameras. Stereo-based
techniques [1], for example, require matching features across
images captured from slightly different viewing angles, and
then use the triangulation principle to recover the 3D coor-
dinates of the image pixels. Shape-from-silhouette, or shape-
by-space-carving, methods [2] require accurately segmented
2D silhouettes. These methods, which have led to reason-
able quality 3D reconstructions, require multiple images of
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the same object captured by well-calibrated cameras. This,
however, may not be practical or feasible in many situations.

Interestingly, humans are good at solving such ill-posed
inverse problems by leveraging prior knowledge. They can
infer the approximate size and rough geometry of objects
using only one eye. They can even guess what it would
look like from another viewpoint. We can do this because
all the previously seen objects and scenes have enabled us
to build prior knowledge and develop mental models of
what objects look like. The second generation of 3D recon-
struction methods tried to leverage this prior knowledge by
formulating the 3D reconstruction problem as a recognition
problem. The avenue of deep learning techniques, and more
importantly, the increasing availability of large training data
sets, have led to a new generation of methods that are able
to recover the 3D geometry and structure of objects from one
or multiple RGB images without the complex camera cali-
bration process. Despite being recent, these methods have
demonstrated exciting and promising results on various
tasks related to computer vision and graphics.

In this article, we provide a comprehensive and struc-
tured review of the recent advances in 3D object recon-
struction using deep learning techniques. We first focus
on generic shapes and then discuss specific cases, such
as human body shapes faces reconstruction, and 3D scene
parsing. We have gathered 149 papers, which appeared
since 2015 in leading computer vision, computer graphics,
and machine learning conferences and journal The goal
is to help the reader navigate in this emerging field, which
gained a significant momentum in the past few years. Com-
pared to the existing literature, the main contributions of

1. This continuously and rapidly increasing number, even at the time
we are finalising this article, does not include many of the CVPR2019
and the upcoming ICCV2019 papers.
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this article are as follows;

1) To the best of our knowledge, this is the first survey
paper in the literature which focuses on image-
based 3D object reconstruction using deep learning.

2) We cover the contemporary literature with respect
to this area. We present a comprehensive review of
149 methods, which appeared since 2015.

3) We provide a comprehensive review and an in-
sightful analysis on all aspects of 3D reconstruction
using deep learning, including the training data, the
choice of network architectures and their effect on
the 3D reconstruction results, the training strategies,
and the application scenarios.

4) We provide a comparative summary of the prop-
erties and performance of the reviewed methods
for generic 3D object reconstruction. We cover 88
algorithms for generic 3D object reconstruction, 11
methods related to 3D face reconstruction, and 6
methods for 3D human body shape reconstruction.

5) We provide a comparative summary of the methods
in a tabular form.

The rest of this article is organized as follows; Section 2| fo-
mulates the problem and lays down the taxonomy. Section 3|
reviews the latent spaces and the input encoding mecha-
nisms. Section[d]surveys the volumetric reconstruction tech-
niques, while Section | focuses on surface-based techniques.
Section (| shows how some of the state-of-the-art techniques
use additional cues to boost the performance of 3D re-
construction. Section [7] discusses the training procedures.
Section (8| focuses on specific objects such as human body
shapes and faces. Section [9|summarizes the most commonly
used datasets to train, test, and evaluate the performance of
various deep learning-based 3D reconstruction algorithms.
Section[I0]compares and discusses the performance of some
key methods. Finally, Section [11] discusses potential future
research directions while Section [12| concludes the paper
with some important remarks.

2 PROBLEM STATEMENT AND TAXONOMY

LetI = {I;,k = 1,...,n} be a set of n > 1 RGB images
of one or multiple objects X. 3D reconstruction can be sum-
marized as the process of learning a predictor fy that can
infer a shape X that is as close as possible to the unknown
shape X. In other words, the function fy is the minimizer
of a reconstruction objective L(I) = d (fy(I), X). Here, 0 is
the set of parameters of f and d(-,-) is a certain measure of
distance between the target shape X and the reconstructed
shape f(I). The reconstruction objective L is also known as
the loss function in the deep learning literature.

This survey discusses and categorizes the state-of-the-
art based on the nature of the input I, the representation
of the output, the deep neural network architectures used
during training and testing to approximate the predictor
f, the training procedures they use, and their degree of
supervision, see Table[I|for a visual summary. In particular,
the input I can be (1) a single image, (2) multiple images
captured using RGB cameras whose intrinsic and extrinsic
parameters can be known or unknown, or (3) a video stream,
ie, a sequence of images with temporal correlation. The

2

TABLE 1: Taxonomy of the state-of-the-art image-based 3D
object reconstruction using deep learning.

1 vs. muli RGB,
Training 3D ground truth, | One vs. multiple objects,
Input Segmentation. Uniform vs. cluttered
Testi 1vs. muli RGB, | background.
esting Se .
gmentation
Volumetric High vs. low resolution
Output Surf Parameterization, template deformation,
urface !
Point cloud.
Direct vs. intermediating
Architecture at training Architecture at testing
Network Encoder - Decoder
architec- TL-Net Encoder - Decoder
ture (Conditional) GAN
3D-VAE-GAN 3D-VAE
Degree of 2D vs. 3D supervision. Weak supervision.
supervision Loss functions.
Training Training Adversarial training. Joint 2D-3D embedding.
procedure Joint training with other tasks.

first case is very challenging because of the ambiguities in
the 3D reconstruction. When the input is a video stream,
one can exploit the temporal correlation to facilitate the
3D reconstruction while ensuring that the reconstruction is
smooth and consistent across all the frames of the video
stream. Also, the input can be depicting one or multiple 3D
objects belonging to known or unknown shape categories. It
can also include additional information such as silhouettes,
segmentation masks, and semantic labels as priors to guide
the reconstruction.

The representation of the output is crucial to the choice of
the network architecture. It also impacts the computational
efficiency and quality of the reconstruction. In particular,

o Volumetric representations, which have been exten-
sively adopted in early deep leaning-based 3D re-
construction techniques, allow the parametrization
of 3D shapes using regular voxel grids. As such, 2D
convolutions used in image analysis can be easily
extended to 3D. They are, however, very expensive
in terms of memory requirements, and only a few
techniques can achieve sub-voxel accuracy.

o Surface-based representations: Other papers explored
surface-based representations such as meshes and
point clouds. While being memory-efficient, such
representations are not regular structures and thus,
they do not easily fit into deep learning architectures.

o Intermediation: While some 3D reconstruction algo-
rithms predict the 3D geometry of an object from
RGB images directly, others decompose the problem
into sequential steps, each step predicts an interme-
diate representation.

A variety of network architectures have been utilized to im-
plement the predictor f. The backbone architecture, which
can be different during training and testing, is composed of
an encoder h followed by a decoder g, i.e., f = g o h. The
encoder maps the input into a latent variable x, referred to
as a feature vector or a code, using a sequence of convolu-
tions and pooling operations, followed by fully connected
layers of neurons. The decoder, also called the generator,
decodes the feature vector into the desired output by using
either fully connected layers or a deconvolution network (a
sequence of convolution and upsampling operations, also
referred to as upconvolutions). The former is suitable for
unstructured output, e.g., 3D point clouds, while the latter
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is used to reconstruct volumetric grids or parametrized
surfaces. Since the introduction of this vanilla architecture,
several extensions have been proposed by varying the ar-
chitecture (e.g., ConvNet vs. ResNet, Convolutional Neu-
ral Networks (CNN) vs. Generative Adversarial Networks
(GAN), CNN vs. Variational Auto-Encoders, and 2D vs. 3D
convolutions), and by cascading multiple blocks each one
achieving a specific task.

While the architecture of the network and its building
blocks are important, the performance depends highly on
the way it is trained. In this survey, we will look at:

e Datasets: There are various datasets that are currently
available for training and evaluating deep learning-
based 3D reconstruction. Some of them use real data,
other are CG-generated.

e Loss functions: The choice of the loss function can
significantly impact on the reconstruction quality. It
also defines the degree of supervision.

o Training procedure sand degree of supervision: Some
methods require real images annotated with their
corresponding 3D models, which are very expensive
to obtain. Other methods rely on a combination of
real and synthetic data. Others avoid completely
3D supervision by using loss functions that exploit
supervisory signals that are easy to obtain.

The following sections review in detail these aspects.

3 THE ENCODING STAGE

Deep learning-based 3D reconstruction algorithms encode
the input I into a feature vector x = h(I) € X where X is
the latent space. A good mapping function h should satisfy
the following properties:

e Twoinputs I; and I, that represent similar 3D objects
should be mapped into x; and xp € X that are close
to each other in the latent space.

e A small perturbation 0x of x should correspond to a
small perturbation of the shape of the input.

o The latent representation induced by h should be
invariant to extrinsic factors such as the camera pose.

e A 3D model and its corresponding 2D images should
be mapped onto the same point in the latent space.
This will ensure that the representation is not am-
biguous and thus facilitate the reconstruction.

The first two conditions have been addressed by using
encoders that map the input onto discrete (Section or
continuous (Section latent spaces. These can be flat or
hierarchical (Section [3.3). The third one has been addressed
by using disentangled representations (Section [3.4). The
latter has been addressed by using TL-architectures during
the training phase. This is covered in Section[7.3.1]as one of
the many training mechanisms that have been used in the
literature. Table 2| summarizes this taxonomy.

3.1 Discrete latent spaces

Wu et al. in their seminal work [3] introduced 3D ShapeNet,
an encoding network which maps a 3D shape, represented
as a discretized volumetric grid of size 303, into a latent

TABLE 2: Taxonomy of the encoding stage. FC: fully-

connected layers. VAE: Variational Auto-Encoder.

Latent spaces Architectures
Discrete VS. continuous (3.2) ConvNet, ResNet,
Flat vs_hierarchical (3.3) FC, 3D-VAE

Disentangled representation (3.4)

representation of size 4000 x 1. Its core network is composed
of Neony = 3 convolutional layers (each one using 3D
convolution filters), followed by ny. = 3 fully connected
layers. This standard vanilla architecture has been used for
3D shape classification and retrieval [3], and for 3D recon-
struction from depth maps represented as voxel grids [3].
It has also been used in the 3D encoding branch of the
TL architectures during the training of 3D reconstruction
networks, see Section |7.3.1

2D encoding networks that map input images into a
latent space follow the same architecture as 3D ShapeNet [3]]
but use 2D convolutions [4], [5], (6, [71, 18], [9], [10], [11].
Early works differ in the type and number of layers they use.
For instance, Yan et al. [4] use ncon, = 3 convolutional layers
with 64,128, ad 256 channels, respectively, and ny. = 3
fully-connected layers with 1024, 1024, and 512 neurons,
respectively. Wiles and Zisserman [10] use ncony, = 6 con-
volutional layers of 3,64,128,256,128, and 160 channels,
respectively. Other works add pooling layers [7], [12]], and
leaky Rectified Linear Units (ReLU) [7], [12], [13]. For ex-
ample, Wiles and Zisserman [10] use max pooling layers
between each pair of convolutional layers, except after the
first layer and before the last layer. ReLU layers improve
learning since the gradient during the back propagation is
never zero.

Both 3D shape and 2D image encoding networks can be
implemented using deep residual networks (ResNet) [14],
which add residual connections between the convolutional
layers, see for example [6], [7], [9]. Compared to conven-
tional networks such as VGGNet [15], ResNets improve and
speed up the learning process for very deep networks.

3.2 Continuous latent spaces

Using the encoders presented in the previous section, the
latent space A may not be continuous and thus it does not
allow easy interpolation. In other words, if x; = h(Iy) and
xg = h(I2), then there is no guarantee that %(xl + x2) can
be decoded into a valid 3D shape. Also, small perturbations
of x; do not necessarily correspond to small perturbations
of the input. Variational Autoencoders (VAE) [16] and their
3D extension (3D-VAE) [17] have one fundamentally unique
property that makes them suitable for generative modeling;:
their latent spaces are, by design, continuous, allowing easy
sampling and interpolation. The key idea is that instead of
mapping the input into a feature vector, it is mapped into
a mean vector p and a vector of standard deviations o of
a multivariate Gaussian distribution. A sampling layer then
takes these two vectors, and generates, by random sampling
from the Gaussian distribution, a feature vector x, which
will serve as input to the subsequent decoding stages.

This architecture has been used to learn continuous
latent spaces for volumetric [17], [18], depth-based [19],
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surface-based [20], and point-based [21], [22] 3D reconstruc-
tion. In Wu et al. [17], for example, the image encoder takes a
256 x 256 RGB image and outputs two 200-dimensional vec-
tors representing, respectively, the mean and the standard
deviation of a Gaussian distribution in the 200-dimensional
space. Compared to standard encoders, 3D-VAE can be
used to randomly sample from the latent space, to generate
variations of an input, and to reconstruct multiple plausible
3D shapes from an input image [21], [22]. It generalizes well
to images that have not been seen during the training.

3.3 Hierarchical latent spaces

Liu et al. [18] showed that encoders that map the input into
a single latent representation cannot extract rich structures
and thus may lead to blurry reconstructions. To improve
the quality of the reconstruction, Liu et al. [18] introduced a
more complex internal variable structure, with the specific
goal of encouraging the learning of a hierarchical arrange-
ment of latent feature detectors. The approach starts with
a global latent variable layer that is hardwired to a set of
local latent variable layers, each tasked with representing
one level of feature abstraction. The skip-connections tie
together the latent codes in a top-down directed fashion:
local codes closer to the input will tend to represent lower-
level features while local codes farther away from the in-
put will tend towards representing higher-level features.
Finally, the local latent codes are concatenated to a flattened
structure when fed into the task-specific models such as 3D
reconstruction.

3.4 Disentangled representation

The appearance of an object in an image is affected by
multiple factors such as the object’s shape, the camera pose,
and the lighting conditions. Standard encoders represent all
these variabilities in the learned code x. This is not desirable
in applications such as recognition and classification, which
should be invariant to extrinsic factors such as pose and
lighting [23]. 3D reconstruction can also benefit from dis-
entangled representations where shape, pose, and lighting
are represented with different codes. To this end, Grant et
al. [5] proposed an encoder, which maps an RGB image
into a shape code and a transformation code. The former is
decoded into a 3D shape. The latter, which encodes lighting
conditions and pose, is decoded into (1) another 80 x 80 RGB
image with correct lighting, using upconvolutional layers,
and (2) camera pose using fully-connected layers (FC). To
enable a disentangled representation, the network is trained
in such a way that in the forward pass, the image decoder
receives input from the shape code and the transformation
code. In the backward pass, the signal from the image
decoder to the shape code is suppressed to force it to only
represent shape.

Zhu et al. [24] followed the same idea by decoupling the
6DOF pose parameters and shape. The network reconstructs
from the 2D input the 3D shape but in a canonical pose. At
the same time, a pose regressor estimates the 6DOF pose
parameters, which are then applied to the reconstructed
canonical shape. Decoupling pose and shape reduces the
number of free parameters in the network, which results in
improved efficiency.

4 VOLUMETRIC DECODING

Volumetric representations discritize the space around a 3D
object into a 3D voxel grid V. The finer the discretization
is, the more accurate the representation will be. The goal is
then to recover a grid V = fy(I) such that the 3D shape X
it represents is as close as possible to the unknown real 3D
shape X. The main advantage of using volumetric grids is
that many of the existing deep learning architectures that
have been designed for 2D image analysis can be easily ex-
tended to 3D data by replacing the 2D pixel array with its 3D
analogue and then processing the grid using 3D convolution
and pooling operations. This section looks at the different
volumetric representations (Section and reviews the
decoder architectures for low-resolution (Section and
high-resolution (Section 3D reconstruction.

4.1 Volumetric representations of 3D shapes

There are four main volumetric representations that have
been used in the literature:

e Binary occupancy grid. In this representation, a voxel
is set to one if it belongs to the objects of interest,
whereas background voxels are set to zero.

o DProbabilistic occupancy grid. Each voxel in a prob-
abilistic occupancy grid encodes its probability of
belonging to the objects of interest.

e The Signed Distance Function (SDF). Each voxel en-
codes its signed distance to the closest surface point.
It is negative if the voxel is located inside the object
and positive otherwise.

o Truncated Signed Distance Function (TSDF). Intro-
duced by Curless and Levoy [37], TSDF is computed
by first estimating distances along the lines of sight of
a range sensor, forming a projective signed distance
field, and then truncating the field at small negative
and positive values.

Probabilistic occupancy grids are particularly suitable for
machine learning algorithms which output likelihoods.
SDFs provide an unambiguous estimate of surface positions
and normal directions. However, they are not trivial to con-
struct from partial data such as depth maps. TSDFs sacrifice
the full signed distance field that extends indefinitely away
from the surface geometry, but allow for local updates of
the field based on partial observations. They are suitable for
reconstructing 3D volumes from a set of depth maps [26],
[31], [35], [38].

In general, volumetric representations are created by
regular sampling of the volume around the objects. Knyaz et
al. [30] introduced a representation method called Frustum
Voxel Model or Fruxel, which combines the depth represen-
tation with voxel grids. It uses the slices of the camera’s
3D frustum to build the voxel space, and thus provides
precise alignment of voxel slices with the contours in the
input image.

Also, common SDF and TSDF representations are discre-
tised into a regular grid. Recently, however, Park et al. [39]
proposed Deep SDF (deepSDF), a generative deep learning
model that produces a continuous SDF field from an in-
put point cloud. Unlike the traditional SDF representation,
DeepSDF can handle noisy and incomplete data. It can also
represent an entire class of shape
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TABLE 3: Taxonomy of the various volumetric decoders used in the literature. Number in parentheses are the corresponding
section numbers. MDN: Mixture Density Network. BBX: Bounding Box primitives. Part.: partitioning.

Representation {4.1] Resolution Architecture
Low High resolution (4.3]
Sampling Content 26253', Fiiggce oart.Lqul:;ﬁ‘]e vl Sz:f € Sggsgfce ement Network Intermediation
643 Octree Octree 54.3.3 {%.3.4|
Regular, Occupancy, l Normal, HSP, OGN, “Parts, "PCA, Upsampling, FC, (1) image — voxels,
Fruxel, SDF, O-CNN, | Patch-guide Patches DCT Volume slicing, UpConv. (2) image — (2.5D,
Adaptive TSDF OctNet Patch synthesis, silh.) — voxels
Patch refinement
|7] Regular | Occupancy v — — — — — LSTM + UpConv image — voxels
[125] Regular Occupancy v — — — — — UpConv image — voxels
1117 Regular Occupancy v — — — — — UpConv image — voxels
| 14 Regular | Occupancy v — — — — — UpConv image — voxels
|6 Regular Occupancy v 128 — — — — UpConv (2)
126 Regular SDF v — — — — patch synthesis UpConv scans — voxels
1127 Regular Occupancy v — — — — — UpConv image — voxels
112 Regular Occupancy v — — — DCT — IDCT image — voxels
1118 Regular | Occupancy v — — — — — UpConv image — voxels
[28 Regular | Occupancy - 128 — - - Volume slicing | CNN — LSTM — CNN image — voxels
1124 Regular | Occupancy v — — — - - UpConv image — voxels
1129 Regular TSDF — — — Parts — — LSTM + MDN depth — BBX
1130 Fruxel Occupancy - 1283 — — - = UpConv image — voxels
131 Regular TSDF — — — PCA — FC image — voxels
1132 Adaptive - — O-CNN — — — — — —
[133] | Adaptive — — OGN — — — — —
| 18! Regular | Occupancy v — — — — — UpConv image — voxels
[ 19! Regular Occupancy — 1282 — — — — UpConv 2)
[134] | Adaptive | Occupancy — O-CNN | patch-guided — — — UpConv image — voxels
113 Regular Occupancy v — — — — — UpConv image — voxels
1135 Regular TSDF — OctNet — — Global to Iocal UpConv scans — voxels
[111 Regular | Occupancy v - - - - - UpConv image — voxels
136 Adaptive | Occupancy — — HSP — — — UpConv nets image — voxels

4.2

Once a compact vector representation of the input is learned
using an encoder, the next step is to learn the decoding func-
tion g, known as the generator or the generative model, which
maps the vector representation into a volumetric voxel grid.
The standard approach uses a convolutional decoder, called
also up-convolutional network, which mirrors the convolu-
tional encoder. Wu et al. [3] were among the first to propose
this methodology to reconstruct 3D volumes from depth
maps. Wu et al. [6] proposed a two-stage reconstruction
network called MarrNet. The first stage uses an encoder-
decoder architecture to reconstruct, from an input image,
the depth map, the normal map, and the silhouette map.
These three maps, referred to as 2.5 sketches, are then used
as input to another encoder-decoder architecture, which
regresses a volumetric 3D shape. The network has been
later extended by Sun et al. [9] to also regress the pose of
the input. The main advantage of this two-stage approach
is that, compared to full 3D models, depth maps, normal
maps, and silhouette maps are much easier to recover from
2D images. Likewise, 3D models are much easier to recover
from these three modalities than from 2D images alone.
This method, however, fails to reconstruct complex, thin
structures.

Wu et al.’s work [3] has led to several extensions [7],
[81, 1171, [27], [40]. In particular, recent works tried to di-
rectly regress the 3D voxel grid [8]], [11], [13]], [18] without
intermediation. Tulsiani ef al. [8], and later in [11]], used a
decoder composed of 3D upconvolution layers to predict the
voxel occupancy probabilities. Liu et al. [18] used a 3D up-
convolutional neural network, followed by an element-wise
logistic sigmoid, to decode the learned latent features into
a 3D occupancy probability grid. These methods have been
successful in performing 3D reconstruction from a single or

Low resolution 3D volume reconstruction

a collection of images captured with uncalibrated cameras.
Their main advantage is that the deep learning architec-
tures proposed for the analysis of 2D images can be easily
adapted to 3D models by replacing the 2D up-convolutions
in the decoder with 3D up-convolutions, which also can be
efficiently implemented on the GPU. However, given the
computational complexity and memory requirements, these
methods produce low resolution grids, usually of size 323
or 643. As such, they fail to recover fine details.

4.3 High resolution 3D volume reconstruction

There have been attempts to upscale the deep learning
architectures for high resolution volumetric reconstruction.
For instance, Wu et al. [6] were able to reconstruct voxel
grids of size 1283 by simply expanding the network. Vol-
umetric grids, however, are very expensive in terms of
memory requirements, which grow cubically with the grid
resolution. This section reviews some of the techniques
that have been used to infer high resolution volumetric
grids, while keeping the computational and memory re-
quirements tractable. We classify these methods into four
categories based on whether they use space partitioning,
shape partitioning, subspace parameterization, or coarse-to-
fine refinement strategies.

4.3.1 Space partitioning

While regular volumetric grids facilitate convolutional op-
erations, they are very sparse since surface elements are
contained in few voxels. Several papers have exploited this
sparsity to address the resolution problem [32], [33], [41],
[42]. They were able to reconstruct 3D volumetric grids of
size 256° to 512% by using space partitioning techniques
such as octrees. There are, however, two main challeng-
ing issues when using octree structures for deep-learning
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(a) Octree Network (OctNet) [41].
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(c) Octree Generative Network (OGN) [33].

Fig. 1: Space partitioning. OctNet [41] is a hybrid grid-octree, which enables deep and high-resolution 3D CNNs. High-
resolution octrees can also be generated, progressively, in a depth-first [36] or breadth-first [33] manner.

based reconstruction. The first one is computational since
convolutional operations are easier to implement (especially
on GPUs) when operating on regular grids. For this pur-
pose, Wang et al. [32] designed O-CNN, a novel octree
data structure, to efficiently store the octant information
and CNN features into the graphics memory and execute
the entire training and evaluation on the GPU. O-CNN
supports various CNN structures and works with 3D shapes
of different representations. By restraining the computations
on the octants occupied by 3D surfaces, the memory and
computational costs of the O-CNN grow quadratically as
the depth of the octree increases, which makes the 3D CNN
feasible for high-resolution 3D models.

The second challenge stems from the fact that the octree
structure is object-dependent. Thus, ideally, the deep neural
network needs to learn how to infer both the structure of the
octree and its content. In this section, we will discuss how
these challenges have been addressed in the literature.

43.1.1 Using pre-defined octree structures: The
simplest approach is to assume that, at runtime, the struc-
ture of the octree is known. This is fine for applications such
as semantic segmentation where the structure of the output
octree can be set to be identical to that of the input. However,
in many important scenarios, e.g., 3D reconstruction, shape
modeling, and RGB-D fusion, the structure of the octree is
not known in advance and must be predicted. To this end,
Riegler et al. [41] proposed a hybrid grid-octree structure
called OctNet (Fig. (a)). The key idea is to restrict the
maximal depth of an octree to a small number, e.g., three,
and place several such shallow octrees on a regular grid.
This representation enables 3D convolutional networks that
are both deep and of high resolution. However, at test
time, Riegler et al. [41] assume that the structure of the
individual octrees is known. Thus, although the method is
able to reconstruct 3D volumes at a resolution of 256, it
lacks flexibility since different types of objects may require
different training.

43.1.2 Learning the octree structure : Ideally, the
octree structure and its content should be simultaneously
estimated. This can be done as follows;

o First, the input is encoded into a compact feature
vector using a convolutional encoder (Section [3).

e Next, the feature vector is decoded using a standard
up-convolutional network. This results in a coarse
volumetric reconstruction of the input, usually of
resolution 323 (Section .

¢ The reconstructed volume, which forms the root of
the octree, is subdivided into 8 octants. Octants with
boundary voxels are upsampled and further pro-
cessed, using an up-convolutional network, to refine
the reconstruction of the regions in that octant.

e The octants are processed recursively until the de-
sired resolution is reached.

Hane et al. [36] introduced the Hierarchical Surface Predic-
tion (HSP), see Fig. (b), which used the approach described
above to reconstruct volumetric grids of resolution up to
256°. In this approach, the octree is explored in depth-first
manner. Tatarchenko et al. [33]], on the other hand, proposed
the Octree Generating Networks (OGN), which follows the
same idea but the octree is explored in breadth-first man-
ner, see Fig. (c). As such, OGN produces a hierarchical
reconstruction of the 3D shape. The approach was able to
reconstruct volumetric grids of size 5123.

Wang et al. [34] introduced a patch-guided partitioning
strategy. The core idea is to represent a 3D shape with an
octree where each of its leaf nodes approximates a planar
surface. To infer such structure from a latent representation,
Wang et al. [34] used a cascade of decoders, one per octree
level. At each octree level, a decoder predicts the planar
patch within each cell, and a predictor (composed of fully
connected layers) predicts the patch approximation status
for each octant, i.e., whether the cell is “empty”, ”surface
well approximated” with a plane, and ”surface poorly ap-
proximated”. Cells of poorly approximated surface patches
are further subdivided and processed by the next level. This
approach reduces the memory requirements from 6.4GB
for volumetric grids of size 256 [32] to 1.7GB, and the
computation time from 1.39s to 0.30s, while maintaining the
same level of accuracy. Its main limitation is that adjacent
patches are not seamlessly reconstructed. Also, since a plane
is fitted to each octree cell, it does not approximate well
curved surfaces.

4.3.2 Occupancy networks

While it is possible to reduce the memory footprint by
using various space partitionning techniques, these ap-
proaches lead to complex implementations and existing
data-adaptive algorithms are still limited to relatively small
voxel grids (256° to 5122). Recently, several papers pro-
posed to learn implicit representations of 3D shapes using
deep neural networks. For instance, Chen and Zhang [43]
proposed a decoder that takes the latent representation of
a shape and a 3D point, and returns a value indicating
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whether the point is outside or inside the shape. The net-
work can be used to reconstruct high resolution 3D volu-
metric representations. However, when retrieving generated
shapes, volumetric CNNs only need one shot to obtain the
voxel model, while this method needs to pass every point in
the voxel grid to the network to obtain its value. Thus, the
time required to generate a sample depends on the sampling
resolution.

Tatarchenko et al. [44] introduced occupancy networks
that implicitly represent the 3D surface of an object as the
continuous decision boundary of a deep neural network
classifier. Instead of predicting a voxelized representation
at a fixed resolution, the approach predicts the complete
occupancy function with a neural network that can be eval-
uated at any arbitrary resolution. This drastically reduces
the memory footprint during training. At inference time,
a mesh can be extracted from the learned model using a
simple multi-resolution isosurface extraction algorithm.

4.3.3 Shape partitioning

Instead of partitionning the volumetric space in which the
3D shapes are embedded, an alternative approach is to
consider the shape as an arrangement of geometric parts,
reconstruct the individual parts independently from each
other, and then stitch the parts together to form the complete
3D shape. There has been a few works which attempted
this approach. For instance, Li et al. [42] only generate
voxel representations at the part level. They proposed
a Generative Recursive Autoencoder for Shape Structure
(GRASS). The idea is to split the problem into two steps.
The first step uses a Recursive Neural Nets (RvNN) encoder-
decoder architecture coupled with a Generative Adversarial
Network to learn how to best organize a shape structure
into a symmetry hierarchy and how to synthesize the part
arrangements. The second step learns, using another gener-
ative model, how to synthesize the geometry of each part,
represented as a voxel grid of size 323. Thus, although
the part generator network synthesizes the 3D geometry of
parts at only 32° resolution, the fact that individual parts are
treated separately enables the reconstruction of 3D shapes at
high resolution.

Zou et al. [29] reconstruct a 3D object as a collection
of primitives using a generative recurrent neural network
called 3D-PRNN. The architecture transforms the input into
a feature vector of size 32 via an encoder network. Then,
a recurrent generator composed of stacks of Long Short-
Term Memory (LSTM) and a Mixture Density Network
(MDN) sequentially predicts from the feature vector the
different parts of the shape. At each time step, the network
predicts a set of primitives conditioned on both the fea-
ture vector and the previously estimated single primitive.
The predicted parts are then combined together to form
the reconstruction result. This approach predicts only an
abstracted representation in the form of cuboids. Coupling
it with volumetric-based reconstruction techniques, which
would focus on individual cuboids, could lead to a refined
3D reconstruction at the part level.

4.3.4 Subspace parameterization

The space of all possible shapes can be parameterized using
a set of orthogonal basis B = {by,...,b,}. Every shape
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X can then be represented as a linear combination of the
bases, i.e., X = Z;-l:l a;b;, with a; € R. This formulation
simplifies the reconstruction problem; instead of trying to
learn how to reconstruct the volumetric grid V, one can
design a decoder composed of fully connected layers to
estimate the coefficients «;,7 = 1,...,n from the latent
representation, and then recover the complete 3D volume.
Johnston et al. [[12] used the Discrete Cosine Transform-II
(DCT-II) to define B. They then proposed a convolutional
encoder to predict the low frequency DCT-II coefficients ;.
These coefficients are then converted by a simple Inverse
DCT (IDCT) linear transform, which replaces the decoding
network, to a solid 3D volume. This had a profound impact
on the computational cost of training and inference: using
n = 203 DCT coefficients, the network is able to reconstruct
surfaces at volumetric grids of size 128°.

The main issue when using generic bases such as the
DCT bases is that, in general, one requires a large number
of basis elements to accurately represent complex 3D ob-
jects. In practice, we usually deal with objects of known
categories, e.g., human faces and 3D human bodies, and
usually, training data is available, see Section As such, one
can use Principal Component (PCA) bases, learned from the
training data, to parameterize the space of shapes [31]. This
would require a significantly smaller number of bases (in
the order of 10) compared to the number of generic basis,
which is in the order of thousands.

4.3.5 Coarse-to-fine refinement

Another way to improve the resolution of volumetric tech-
niques is by using multi-staged approaches [26], [28], [35],
[45], [46]. The first stage recovers a low resolution voxel
grid, say 323, using an encoder-decoder architecture. The
subsequent stages, which function as upsampling networks,
refine the reconstruction by focusing on local regions. Yang
et al. [46] used an up-sampling module which simply
consists of two up-convolutional layers. This simple up-
sampling module upgrades the output 3D shape to a higher
resolution of 256°.

Wang et al. [28] treat the reconstructed coarse voxel
grid as a sequence of images (or slices). The 3D object is
then reconstructed slice by slice at high resolution. While
this approach allows efficient refinement using 2D up-
convolutions, the 3D shapes used for training should be
consistently aligned so that the volumes can be sliced along
the first principal direction. Also, reconstructing individual
slices independently from each other may result in discon-
tinuities and incoherences in the final volume. To capture
the dependencies between the slices, Wang et al. [28] use
a Long term Recurrent Convolutional Network (LRCN) [47]
composed of a 3D encoder, an LSTM unit, and a 2D decoder.
At each time, the 3D encoder processes five consecutive
slices to produce a fixed-length vector representation as
input to the LSTM. The output of the LSTM is passed to
the 2D convolutional decoder to produce a high resolution
image. The concatenation of the high-resolution 2D images
forms the high-resolution output 3D volume.

Instead of using volume slicing, other papers used addi-
tional CNN modules, which focus on regions that require re-
finement. For example, Dai et al. [26] firstly predict a coarse
but complete shape volume of size 323 and then refine it
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into a 1283 grid via an iterative volumetric patch synthe-
sis process, which copy-pastes voxels from the k-nearest-
neighbors retrieved from a database of 3D models. Han et
al. [45] extend Dai et al.’s approach by introducing a local
3D CNN to perform patch-level surface refinement. Cao et
al. [35], which recover in the first stage a volumetric grid
of size 1283, take volumetric blocks of size 16% and predict
whether they require further refinement. Blocks that require
refinement are resampled into 5123 and fed into another
encoder-decoder for refinement, along with the initial coarse
prediction to guide the refinement. Both subnetworks adopt
the U-net architecture [48] while substituting convolution
and pooling layers with the corresponding operations from
OctNet [41].

Note that these methods need separate and sometimes
time-consuming steps before local inference. For example,
Dai et al. [26] require nearest neighbor searches from a 3D
database. Han et al. [45] require 3D boundary detection
while Cao et al. [35] require assessing whether a block
requires further refinement or not.

4.4 Deep marching cubes

While volumetric representations can handle 3D shapes of
arbitrary topologies, they require a post processing step,
e.g., marching cubes [49], to retrieve the actual 3D surface
mesh, which is the quantity of interest in 3D reconstruction.
As such, the whole pipeline cannot be trained end-to-end.
To overcome this limitation, Liao et al. [50] introduced the
Deep Marching Cubes, an end-to-end trainable network,
which predicts explicit surface representations of arbitrary
topology. They use a modified differentiable representation,
which separates the mesh topology from the geometry.
The network is composed of an encoder and a two-branch
decoder. Instead of predicting signed distance values, the
first branch predicts the probability of occupancy for each
voxel. The mesh topology is then implicitly (and probabilis-
tically) defined by the state of the occupancy variables at its
corners. The second branch of the decoder predicts a vertex
location for every edge of each cell. The combination of both
implicitly-defined topology and vertex location defines a
distribution over meshes that is differentiable and can be
used for back propagation. While the approach is trainable
end-to-end, it is limited to low resolution grids of size 323,

Instead of directly estimating high resolution volumetric
grids, some methods produce multiview depth maps, which
are fused into an output volume. The main advantage is
that, in the decoding stage, one can use 2D convolutions,
which are more efficient, in terms of computation and
memory storage, than 3D convolutions. Their main limita-
tion, however, is that depth maps only encode the external
surface. To capture internal structures, Richter ef al. [51] in-
troduced Matryoshka Networks, which use L nested depth
layers; the shape is recursively reconstructed by first fusing
the depth maps in the first layer, then subtracting shapes in
even layers, and adding shapes in odd layers. The method
is able to reconstruct volumetric grids of size 256°.

5 3D SURFACE DECODING

Volumetric representation-based methods are computation-
ally very wasteful since information is rich only on or
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TABLE 4: Taxonomy of mesh decoders. GCNN: graph CNN.
MLP: Multilayer Perceptron. Param.: parameterization.

Param.-based Deformation-based Decoder
} Defo. model Template architecture
Geometry Images Vertex defo. Sphere / ellipse FC layers
Spherical maps Morphable (k-)NN UpConv
Patch-based FFD Learned (PCA)
Learned (CNN)
|52] Geometry Image — — UpConv

ResNet blocks +
2 Conv layers

[153] Geometry Image — —

[54] Patch-based — — MLP

1155 Mesh vertex defo. sphere FC

1156 Mesh vertex defo. ellipse GCNN blocks
[120] Mesh vertex cube UpConv
1157 Mesh vertex defo. | Learned (CNN) FC layer
[158] Mesh FFD k-NN FC

1159 Mesh FFD NN UpConv

[ 160 Mesh FFD kNN Feed-forward

near the surfaces of 3D shapes. The main challenge when
working directly with surfaces is that common represen-
tations such as meshes or point clouds are not regularly
structured and thus, they do not easily fit into deep learn-
ing architectures, especially those using CNNs. This sec-
tion reviews the techniques used to address this problem.
We classify the state-of-the-art into three main categories:
parameterization-based (Section[5.1), template deformation-
based (Section [5.2), and point-based methods (Section 5.3).

5.1 Parameterization-based 3D reconstruction

Instead of working directly with triangular meshes, we
can represent the surface of a 3D shape X as a mapping
¢ : D — R3 where D is a regular parameterization do-
main. The goal of the 3D reconstruction process is then to
recover the shape function ¢ from an input I. When D is
a 3D domain then the methods in this class fall within the
volumetric techniques described in Section[d] Here, we focus
on the case where D is a regular 2D domain, which can
be a subset of the two dimensional plane, e.g., D = [0,1]?,
or the unit sphere, ie., D = S2. In the first case, one can
implement encoder-decoder architectures using standard
2D convolution operations. In the latter case, one has to use
spherical convolutions [61] since the domain is spherical.

Spherical parameterizations and geometry images [62],
[63], [64] are the most commonly used parameterizations.
They are, however, suitable only for genus-0 and disk-like
surfaces. Surfaces of arbitrary topology need to be cut into
disk-like patches, and then unfolded into a regular 2D do-
main. Finding the optimal cut for a given surface, and more
importantly, findings cuts that are consistent across shapes
within the same category is challenging. In fact, naively
creating independent geometry images for a shape category
and feeding them into deep neural networks would fail to
generate coherent 3D shape surfaces [52].

To create, for genus-0 surfaces, robust geometry im-
ages that are consistent across a shape category, the 3D
objects within the category should be first put in corre-
spondence [65], [66], [67]. Sinha et al. [52] proposed a cut-
invariant procedure, which solves a large-scale correspon-
dence problem, and an extension of deep residual nets
to automatically generate geometry images encoding the
x,y, z surface coordinates. The approach uses three separate
encoder-decoder networks, which learn, respectively, the
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z,y and z geometry images. The three networks are com-
posed of standard convolutions, up-residual, and down-
residual blocks. They take as input a depth image or a RGB
image, and learn the 3D reconstruction by minimizing a
shape-aware Ly loss function.

Pumarola et al. [53]] reconstruct the shape of a deformable
surface using a network which has two branches: a detec-
tion branch and a depth estimation branch, which operate
in parallel, and a third shape branch, which merges the
detection mask and the depth map into a parameterized
surface. Groueix et al. [54] decompose the surface of a
3D object into m patches, each patch ¢ is defined as a
mapping ¢; : D = [0,1]? — R3. They have then designed
a decoder which is composed of m branches. Each branch
1 reconstructs the i—th patch by estimating the function ¢;.
At the end, the reconstructed patches are merged together
to form the entire surface. Although this approach can
handle surfaces of high genus, it is still not general enough
to handle surfaces of arbitrary genus. In fact, the optimal
number of patches depends on the genus of the surface
(n = 1 for genus-0, n = 2 for genus-1, etc.). Also, the patches
are not guaranteed to be connected, although in practice one
can still post-process the result and fill in the gaps between
disconnected patches.

In summary, parameterization methods are limited to
low-genus surfaces. As such, they are suitable for the recon-
struction of objects that belong to a given shape category,
e.g., human faces and bodies.

5.2 Deformation-based 3D reconstruction

Methods in this class take an input I and estimate a de-
formation field A, which, when applied to a template 3D
shape, results in the reconstructed 3D model X. Existing
techniques differ in the type of deformation models they
use (Section [5.2.1), the way the template is defined (Sec-
tion 5.2.2), and in the network architecture used to estimate
the deformation field A (Section[5.2.3). In what follows, we
assume that a 3D shape X = (V,F) is represented with
n vertices V = {vq,...,v,} and faces F. Let X = (V,F)
denote a template shape.

5.2.1 Deformation models

(1) Vertex deformation. This model assumes that a 3D shape
X can be written in terms of linear displacements of the
individual vertices of the template, i.e., Vv; € V,v; = V; +0;,
where §; € R3. The deformation field is defined as A =
(01,...,0,). This deformation model, illustrated in Fig.
(top), has been used in) [55], [56], [57]. It assumes that (1)
there is a one-to-one correspondence between the vertices
of the shape X and those of the template X, and (2) the
shape X has the same topology as the template X.

(2) Morphable models. Instead of using a generic template,
one can use learned morphable models [68] to parameterize
a 3D mesh. Let V be the mean shape and Aq,...,Ax be a
set of orthonormal basis. Any shape V can be written in the
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Fig. 2: Template deformation (top) [56] vs. domain deforma-
tion (bottom) [60].

The second term of Equation (1) can be seen as a deforma-
tion field, A = Zfil a;A;, applied to the vertices V of the
mean shape. By setting Ag = V and o9 = 1, Equation
can be written as V = Y1* | a;A;. In this case, the mean V
is treated as a bias term.

One approach to learning a morphable model is by
using Principal Component Analysis (PCA) on a collec-
tion of clean 3D mesh exemplars [68]. Recent techniques
showed that, with only 2D annotations, it is possible to build
category-specific 3D morphable models from 2D silhouettes
or 2D images [69], [70]. These methods require efficient
detection and segmentation of the objects, and camera pose
estimation, which can also be done using CNN-based tech-
niques.

(3) Free-Form Deformation (FFD). Instead of directly deform-
ing the vertices of the template X, one can deform the
space around it, see Fig. 2}(bottom). This can be done by
defining around X a set P € R™*3 of m control points,
called deformation handles. When the deformation field
A = (01,...,0m),m < n,is applied to these control points,
they deform the entire space around the shape and thus,
they also deform the vertices V of the shape according to
the following equation:

VI =B®(P+A)T, )

where the deformation matrix B € R™*™ is a set of polyno-
mial basis, e.g., the Bernstein polynomials [60]. ® isa m x m
matrix used to impose symmetry in the FFD field, see [71],
and A is the displacements.

This approach has been used by Kuryenkov et al. [59],
Pontes et al. [60], and Jack et al. [58]. The main advantage
of free-form deformation is that it does not require one-to-
one correspondence between the shapes and the template.
However, the shapes that can be approximated by the FFD
of the template are only those that have the same topology
as the template.

5.2.2 Defining the template

Kato et al. [55] used a sphere as a template. Wang et al. [56]
used an ellipse. Henderson et al. [20] defined two types
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of templates: a complex shape abstracted into cuboidal
primitives, and a cube subdivided into multiple vertices.
While the former is suitable for man-made shapes that have
multiple components, the latter is suitable for representing
genus-0 shapes and does not offer advantage compared to
using a sphere or an ellipsoid.

To speed up the convergence, Kuryenkov et al. [59] intro-
duced DeformNet, which takes an image as input, searches
the nearest shape from a database, and then deforms, using
the FFD model of Equation , the retrieved model to match
the query image. This method allows detail-preserving 3D
reconstruction.

Pontes et al. [60] used an approach that is similar to
DeformNet [59]. However, once the FFD field is estimated
and applied to the template, the result is further refined by
adding a residual defined as a weighted sum of some 3D
models retrieved from a dictionary. The role of the deep
neural network is to learn how to estimate the deformation
field A and the weights used in computing the refinement
residual. Jack et al. [58], on the other hand, deform, using
FFD, multiple templates and select the one that provides
the best fitting accuracy.

Another approach is to learn the template, either sepa-
rately using statistical shape analysis techniques, e.g., PCA,
on a set of training data, or jointly with the deformation field
using deep learning techniques. For instance, Tulsiani et
al. [70] use the mean shape of each category of 3D models as
a class-specific template. The deep neural network estimates
both the class of the input shape, which is used to select
the class-specific mean shape, and the deformation field
that needs to be applied to the class-specific mean shape.
Kanazawa et al. [57] learn, at the same time, the mean shape
and the deformation field. Thus, the approach does not
require a separate 3D training set to learn the morphable
model. In both cases, the reconstruction results lack details
and are limited to popular categories such as cars and birds.

5.2.3 Network architectures

Deformation-based methods also use encoder-decoder ar-
chitectures. The encoder maps the input into a latent vari-
able x using successive convolutional operations. The latent
space can be discrete or continuous as in [20], which used a
variational auto-encoder (see Section [3). The decoder is, in
general, composed of fully-connected layers. Kato et al. [55],
for example, used two fully connected layers to estimate the
deformation field to apply to a sphere to match the input’s
silhouette.

Instead of deforming a sphere or an ellipse, Kuryenkov
et al. [59] retrieve from a database the 3D model that is most
similar to the input I and then estimate the FFD needed to
deform it to match the input. The retrieved template is first
voxelized and encoded, using a 3D CNN, into another latent
variable x;. The latent representation of the input image
and the latent representation of the retrieved template are
then concatenated and decoded, using an up-convolutional
network, into an FFD field defined on the vertices of a voxel
grid.

Pontes et al. [60] used a similar approach, but the latent
variable x is used as input into a classifier which finds,
from a database, the closest model to the input. At the
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same time, the latent variable is decoded, using a feed-
forward network, into a deformation field A and weights
a;,% = 1,..., K. The retrieved template is then deformed
using A and a weighted combination of a dictionary of CAD
models, using the weights ;.

Note that, one can design several variants to these
approaches. For instance, instead of using a 3D model
retrieved from a database as a template, one can use a class-
specific mean shape. In this case, the latent variable x can be
used to classify the input into one of the shape categories,
and then pick the learned mean shape of this category as a
template [70]. Also, instead of learning separately the mean
shape, e.g., using morphable models, Kanazawa et al. [57]
treated the mean shape as a bias term, which can then
be predicted by the network, along with the deformation
field A. Finally, Wang et al. [56] adopted a coarse to fine
strategy, which makes the procedure more stable. They
proposed a deformation network composed of three defor-
mation blocks, each block is a graph-based CNN (GCNN),
intersected by two graph unpooling layers. The deformation
blocks update the location of the vertices while the graph
unpoolling layers increase the number of vertices.

Parameterization and deformation-based techniques can
only reconstruct surfaces of fixed topology. The former is
limited to surfaces of low genus while the latter is limited to
the topology of the template.

5.3 Point-based techniques

A 3D shape can be represented using an unordered set
S = {(xi,yi, 7))}, of N points. Such point-based repre-
sentation is simple but efficient in terms of memory require-
ments. It is well suited for objects with intriguing parts and
fine details. As such, an increasing number of papers, at
least one in 2017 [72], more than 12 in 2018 [21]], [21], [22],
(73], 1741, 1750, [76], 1771, [78], 1791, [80], [81], [82]l, and a few
others in 2019 [81], explored their usage for deep learning-
based reconstruction. This section discusses the state-of-
the-art point-based representations and their corresponding
network architectures.

5.3.1 Representations

The main challenge with point clouds is that they are not
regular structures and do not easily fit into the convolutional
architectures that exploit the spatial regularity. Three repre-
sentations have been proposed to overcome this limitation:

o DPoint set representation treats a point cloud as a
matrix of size N x 3 [21], [22], [72]], [75], [77], [81].

e One or multiple 3-channel grids of size H x W x
3 [72], [73]], [82]. Each pixel in a grid encodes the
(x,y, z) coordinates of a 3D point.

e Depth maps from multiple viewpoints [78]], [83].

The last two representations, hereinafter referred to as grid
representations, are well suited for convolutional networks.
They are also computationally efficient as they can be in-
ferred using only 2D convolutions. Note that depth map-
based methods require an additional fusion step to infer
the entire 3D shape of an object. This can be done in
a straightforward manner if the camera parameters are
known. Otherwise, the fusion can be done using point cloud
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Fig. 3: The different network architectures used in point-
based 3D reconstruction.

registration techniques [84], [85] or fusion networks [86].
Also, point set representations require fixing in advance
the number of points N while in methods that use grid
representations, the number of points can vary based on
the nature of the object but it is always bounded by the grid
resolution.

5.3.2 Network architectures

Similar to volumetric and surface-based representations,
techniques that use point-based representations follow the
encoder-decoder model. While they all use the same ar-
chitecture for the encoder, they differ in the type and
architecture of their decoder, see Fig. 3| In general, grid
representations use up-convolutional networks to decode
the latent variable [72], [73], [78], [82]], see Fig. (a) and (b).
Point set representations (Fig. [3}(c)) use fully connected lay-
ers [21], [72]], [74], [77]], [81] since point clouds are unordered.
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The main advantage of fully-connected layers is that they
capture the global information. However, compared to con-
volutional operations, they are computationally expensive.
To benefit from the efficiency of convolutional operations,
Gadelha et al. [22] order, spatially, the point cloud using a
space-partitionning tree such as KD-tree and then process
them using 1D convolutional operations, see Fig. B}(d). With
a conventional CNN, each convolutional operation has a
restricted receptive field and is not able to leverage both
global and local information effectively. Gadelha et al. [22]
resolve this issue by maintaining three different resolutions.
That is, the latent variable is decoded into three different res-
olutions, which are then concatenated and further processed
with 1D convolutional layers to generate a point cloud of
size 4K.

Fan et al. [72] proposed a generative deep network that
combines both the point set representation and the grid
representation (Fig. [3}(a)). The network is composed of a
cascade of encoder-decoder blocks:

e The first block takes the input image and maps it into
a latent representation, which is then decoded into a
3-channel image of size H x W. The three values at
each pixel are the coordinates of a point.

e Each of the subsequent blocks takes the output of its
previous block and further encodes and decodes it
into a 3-channel image of size H x W.

o The last block is an encoder, of the same type as the
previous ones, followed by a predictor composed of
two branches. The first branch is a decoder which
predicts a 3-channel image of size H x W (32 x 24
in this case), of which the three values at each pixel
are the coordinates of a point. The second branch is a
fully-connected network, which predicts a matrix of
size N x 3, each row is a 3D point (N = 256).

e The predictions of the two branches are merged
using set union to produce a 3D point set of size
1024.

This approach has been also used by Jiang et al. [74]. The
main difference between the two is in the training proce-
dure, which we will discuss in Section [7]

Tatarchenki et al. [83], Wang et al. [82], and Lin et al. [73]
followed the same idea but their decoder regresses N grids,
see Fig. B}(a). Each grid encodes the depth map [83] or the
(x,y,2) coordinates [73], [82] of the visible surface from
that view point. The viewpoint, encoded with a sequence of
fully connected layers, is provided as input to the decoder
along with the latent representation of the input image. Li et
al. [78], on the other hand, used a multi-branch decoder,
one for each viewpoint, see Fig. B}(b). Unlike [83], each
branch regresses a canonical depth map from a given view
point and a deformation field, which deforms the estimated
canonical depth map to match the input, using Grid De-
formation Units (GDUs). The reconstructed grids are then
lifted to 3D and merged together.

Similar to volumetric techniques, the vanilla architecture
for point-based 3D reconstruction only recovers low resolu-
tion geometry. For high-resolution reconstruction, Mandikal
et al. [81], see Fig. BH(c), use a cascade of multiple net-
works. The first network predicts a low resolution point
cloud. Each subsequent block takes the previously predicted
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point cloud, computes global features, using a multi-layer
perceptron architecture (MLP) similar to PointNet [87] or
Pointnet++ [88], and local features by applying MLPs in
balls around each point. Local and global features are then
aggregated and fed to another MLP, which predicts a dense
point cloud. The process can be repeated recursively until
the desired resolution is reached.

Mandikal et al. [21] combine TL-embedding with a varia-
tional auto-encoder (Fig. B}(c)). The former allows mapping
a 3D point cloud and its corresponding views onto the
same location in the latent space. The latter enables the
reconstruction of multiple plausible point clouds from the
input image(s).

Finally, point-based representations can handle 3D
shapes of arbitrary topologies. However, they require a post
processing step, e.g., Poisson surface reconstruction [89] or
SSD [90], to retrieve the 3D surface mesh, which is the
quantity of interest. The pipeline, from the input until the
final mesh is obtained, cannot be trained end-to-end. Thus,
these methods only optimise an auxiliary loss defined on an
intermediate representation.

6 LEVERAGING OTHER CUES

The previous sections discussed methods that directly re-
construct 3D objects from their 2D observations. This section
shows how additional cues such as intermediate represen-
tations (Section and temporal correlations (Section
can be used to boost 3D reconstruction.

6.1 Intermediating

Many of the deep learning-based 3D reconstruction al-
gorithms directly predict the 3D geometry of an object
from RGB images. Some techniques, however, decompose
the problem into sequential steps, which estimate 2.5D
information such as depth maps, normal maps, and/or
segmentation masks, see Fig. [l The last step, which can
be implemented using traditional techniques such as space
carving or 3D back-projection followed by filtering and
registration, recovers the full 3D geometry and the pose of
the input.

While early methods train separately the different mod-
ules, recent works proposed end-to-end solutions [6], [9],
381, [53], [80], [91]], [92]]. For instance, Wu et al. [6]] and later
Sun et al. [9] used two blocks. The first block is an encoder
followed by a three-branch decoder, which estimates the
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depth map, the normal map, and the segmentation mask
(called 2.5D sketches). These are then concatenated and fed
into another encoder-decoder, which regresses a full 3D vol-
umetric grid [6]], [9], [91], and a set of fully-connected layers,
which regress the camera pose [9]. The entire network is
trained end-to-end.

Other techniques convert the intermediate depth map
into (1) a 3D occupancy grid [46] or a truncated signed
distance function volume [38], which is then processed
using a 3D encoder-decoder network for completion and
refinement, or (2) a partial point cloud, which is further pro-
cessed using a point-cloud completion module [80]. Zhang
et al. [92]] convert the inferred depth map into a spherical
map and unpaint it, to fill in holes, using another encoder-
decoder. The unpainted spherical depth map is then back-
projected to 3D and refined using a voxel refinement net-
work, which estimates a voxel occupancy grid of size 1285.

Other techniques estimate multiple depth maps from
pre-defined or arbitrary viewpoints. Tatarchenko et al. [83]
proposed a network, which takes as input an RGB image
and a target viewpoint v, and infers the depth map of the
object as seen from the viewpoint v. By varying the view-
point, the network is able to estimate multiple depths, which
can then be merged into a complete 3D model. The approach
uses a standard encoder-decoder and an additional network
composed of three fully-connected layers to encode the
viewpoint. Soltani ef al. [19] and Lin et al. [73] followed the
same approach but predict the depth maps, along with their
binary masks, from pre-defined view points. In both meth-
ods, the merging is performed in a post-processing step.
Smith et al. [93] first estimate a low resolution voxel grid.
They then take the depth maps, of the low resolution voxel
grid, computed from the six axis-aligned views and refine
them using a silhouette and depth refinement network. The
refined depth maps are finally combined into a volumetric
grid of size 256% using space carving techniques.

Tatarchenko et al. [83]], Lin et al. [73]], and Sun et al. [9] also
estimate the binary/silhouette masks, along with the depth
maps. The binary masks have been used to filter out points
that are not back-projected to the surface in 3D space. The
side effect of these depth mask-based approaches is that it
is a huge computation waste as a large number of points are
discarded, especially for objects with thin structures. Li et
al. [78] overcome this problem by deforming a regular depth
map using a learned deformation field. Instead of directly
inferring depth maps that best fit the input, Li et al. [78]
infer a set of 2D pre-deformation depth maps and their
corresponding deformation fields at pre-defined canonical
viewpoints. These are each passed to a Grid Deformation
Unit (GDU) that transforms the regular grid of the depth
map to a deformed depth map. Finally, the deformed depth
maps are transformed into a common coordinate frame for
fusion into a dense point cloud.

The main advantage of multi-staged approaches is that
depth, normal, and silhouette maps are much easier to
recover from 2D images. Likewise, 3D models are much
easier to recover from these three modalities than from 2D
images alone.
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6.2 Exploiting spatio-temporal correlations

There are many situations where multiple spatially dis-
tributed images of the same object(s) are acquired over an
extended period of time. Single image-based reconstruc-
tion techniques can be used to reconstruct the 3D shapes
by processing individual frames independently from each
other, and then merging the reconstruction using registra-
tion techniques. Ideally, we would like to leverage on the
spatio-temporal correlations that exist between the frames to
resolve ambiguities especially in the presence of occlusions
and highly cluttered scenes. In particular, the network at
time ¢ should remember what has been reconstructed up
to time ¢ — 1, and use it, in addition to the new input,
to reconstruct the scene or objects at time ¢. This problem
of processing sequential data has been addressed by using
Recurrent Neural Networks (RNN) and Long-Short Term
Memory (LSTM) networks, which enable networks to re-
member their inputs over a period of time.

Choy et al. [7] proposed an architecture called 3D Re-
current Reconstruction Network (3D-R2N2), which allows
the network to adaptively and consistently learn a suitable
3D representation of an object as (potentially conflicting)
information from different viewpoints becomes available.
The network can perform incremental refinement every time
a new view becomes available. It is composed of two parts;
a standard convolution encoder-decoder and a set of 3D
Convolutional Long-Short Term Memory (3D-LSTM) units
placed at the start of the convolutional decoder. These take
the output of the encoder, and then either selectively update
their cell states or retain the states by closing the input
gate. The decoder then decodes the hidden states of the
LSTM units and generates a probabilistic reconstruction in
the form of a voxel occupancy map.

The 3D-LSTM allows the network to retain what it has
seen and update its memory when it sees a new image.
It is able to effectively handle object self-occlusions when
multiple views are fed to the network. At each time step,
it selectively updates the memory cells that correspond to
parts that became visible while retaining the states of the
other parts.

LSTM and RNNs are time consuming since the input
images are processed sequentially without parallelization.
Also, when given the same set of images with different
orders, RNNs are unable to estimate the 3D shape of an ob-
ject consistently due to permutation variance. To overcome
these limitations, Xie et al. [86] introduced Pix2Vox, which
is composed of multiple encoder-decoder blocks, running in
parallel, each one predicts a coarse volumetric grid from its
input frame. This eliminates the effect of the order of input
images and accelerates the computation. Then, a context-
aware fusion module selects high-quality reconstructions
from the coarse 3D volumes and generates a fused 3D
volume, which fully exploits information of all input images
without long-term memory loss.

7 TRAINING

In addition to their architectures, the performance of deep
learning networks depends on the way they are trained.
This section discusses the various supervisory modes (Sec-
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tion[7.1) and training procedures that have been used in the
literature (Section [7.3).

7.1 Degree of supervision

Early methods rely on 3D supervision (Section [7.1.1). How-
ever, obtaining ground-truth 3D data, either manually or
using traditional 3D reconstruction techniques, is extremely
difficult and expensive. As such, recent techniques try to
minimize the amount of 3D supervision by exploiting other
supervisory signals such consistency across views (Sec-
tion|/.1.2).

7.1.1 Training with 3D supervision

Supervised methods require training using images paired
with their corresponding ground-truth 3D shapes. The train-
ing process then minimizes a loss function that measures
the discrepancy between the reconstructed 3D shape and
the corresponding ground-truth 3D model. The discrepancy
is measured using loss functions, which are required to be
differentiable so that gradients can be computed. Examples
of such functions include:

(1) Volumetric loss. It is defined as the distance between
the reconstructed and the ground-truth volumes;

Lyot (1) = d (f(1), X). ®

Here, d(-, -) can be the L, distance between the two volumes
or the negative Intersection over Union (IoU) L, (see
Equation (16)). Both metrics are suitable for binary occu-
pancy grids and TSDF representations. For probabilistic oc-
cupancy grids, the cross-entropy loss is the most commonly
used [25]:

N
1 R R
Lok = N > {pilogpi + (1 —p;)log(L —pi}.  (4)
i=1
Here, p; is the ground-truth probability of voxel ¢ being
occupied, p; is the estimated probability, and N is the
number of voxels.

(2) Point set loss. When using point-based representations,
the reconstruction loss can be measured using the Earth
Mover’s Distance (EMD) [59], [72] or the Chamfer Distance
(CD) [59], [72]. The EMD is defined as the minimum of
the sum of distances between a point in one set and a
point in another set over all possible permutations of the
correspondences. More formally, given two sets of points
Syt and Sy, the EMD is defined as:

> el 5)

Levmp =
s

Here, ¢(p) € Srec is the closest point on Sy to p € Sy The
CD loss, on the other hand, is defined as:

1 1
Lop = — min ||p—¢||> + —— min —q|%. 6
N, 2 I =4l N lp—dql*. (6)
Ny and N, are, respectively, the size of Sy and Sy.. The
CD is computationally easier than EMD since it uses sub-
optimal matching to determine the pairwise relations.

(3) Learning to generate multiple plausible reconstruc-
tions. 3D reconstruction from a single image is an ill-posed
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problem, thus for a given input there might be multiple
plausible reconstructions. Fan et al. [72] proposed the Min-
of-N (MoN) loss to train neural networks to generate dis-
tributional output. The idea is to use a random vector r
drawn from a certain distribution to perturb the input. The
network learns to generate a plausible 3D shape from each
perturbation of the input. It is trained using a loss defined
as follows;

Laton = ;Tifgi(gyl) {d(f(L,7),Sq0)}- @)
Here, f(I,r) is the reconstructed 3D point cloud after
perturbing the input with the random vector r sampled
from the multivariate normal distribution N(0,I), Sy is the
ground-truth point cloud, and d(-, -) is a reconstruction loss,
which can be any of the loss functions defined above. At
runtime, various plausible reconstructions can be generated
from a given input by sampling different random vectors r
from N(0, ).

7.1.2 Training with 2D supervision

Obtaining 3D ground-truth data for supervision is an ex-
pensive and tedious process even for a small scale train-
ing. However, obtaining multiview 2D or 2.5D images for
training is relatively easy. Methods in the category use the
fact that if the estimated 3D shape is as close as possible to
the ground truth then the discrepancy between views of the
3D model and the projection of the reconstructed 3D model
onto any of these views is also minimized. Implementing
this idea requires defining a projection operator, which
renders the reconstructed 3D model from a given viewpoint
(Section [71.2.1), and a loss function that measures the

reprojection error (Section|/.1.2.2).

7.1.2.1 Projection operators: Techniques from pro-
jective geometry can be used to render views of a 3D
object. However, to enable end-to-end training without gra-
dient approximation [55], the projection operator should
be differentiable. Gadelha et al. [27] introduced a differ-
entiable projection operator P defined as P((i,j),V) =
1 — e~ 2 V{3F) where V is the 3D voxel grid. This op-
erator sums up the voxel occupancy values along each line
of sight. However, it assumes an orthographic projection.
Loper and Black [94] introduced OpenDR, an approximate
differentiable renderer, which is suitable for orthographic
and perspective projections.

Petersen et al. [95] introduced a novel C*° smooth dif-
ferentiable renderer for image-to-geometry reconstruction.
The idea is that instead of taking a discrete decision of
which triangle is the visible from a pixel, the approach softly
blends their visibility. Taking the weighted SoftMin of the z-
positions in the camera space constitutes a smooth z-buffer,
which leads to a C°° smooth renderer, where the z-positions
of triangles are differentiable with respect to occlusions. In
previous renderers, only the zy-coordinates were locally
differentiable with respect to occlusions.

Finally, instead of using fixed renderers, Rezende et
al. [96] proposed a learned projection operator, or a learnable
camera, which is built by first applying an affine transforma-
tion to the reconstructed volume, followed by a combination
of 3D and 2D convolutional layers, which map the 3D
volume onto a 2D image.
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7.1.2.2 Re-projection loss functions: There are sev-
eral loss functions that have been proposed for 3D recon-
struction using 2D supervision. We classify them into two
main categories; (1) silhouette-based and (2) normal and
depth-based loss functions.

(1) Silhouette-based loss functions. The idea is that a 2D
silhouette projected from the reconstructed volume, under
certain camera intrinsic and extrinsic parameters, should
match the ground truth 2D silhouette of the input image.
The discrepancy, which is inspired by space carving, is then:

Lproj(I) = %zn:d (P (f(l)v a(j)) aS(j)) ) 8)
j=1

where SU) is the j—th ground truth 2D silhouette of the
original 3D object X, n is the number of silhouettes or
views used for each 3D model, P(-) is a 3D to 2D projection
function, and «/) are the camera parameters of the j-th
silhouette. The distance metric d(-,-) can be the standard
Ly metric [77]], the negative Intersection over Union (IoU)
between the true and reconstructed silhouettes [55], or the
binary cross-entropy loss [4], [24].

Kundu et al. [31] introduced the render-and-compare
loss, which is defined in terms of the IoU between the
ground-truth silhouette G5 and the rendered silhouette R;,
and the L, distance between the ground-truth depth G4 and
the rendered depth R, i.e.,

L,=1- IOU(RSa Gs; Is) +dg, (Rda Gya; Id)- )

Here, I, and I; are binary ignore masks that have value
of one at pixels which do not contribute to the loss. Since
this loss is not differentiable, Kundu et al. [31] used finite
difference to approximate its gradients.

Silhouette-based loss functions cannot distinguish be-
tween some views, e.g., front and back. To alleviate this
issue, Insafutdinov and Dosovitskiy [77] use multiple pose
regressors during training, each one using silhouette loss.
The overall network is trained with the min of the individ-
ual losses. The predictor with minimum loss is used at test
time.

Gwak et al. [97] minimize the reprojection error subject
to the reconstructed shape being a valid member of a certain
class, e.g., chairs. To constrain the reconstruction to remain
in the manifold of the shape class, the approach defines a
barrier function ¢, which is set to be 1 if the shape is in the
manifold and 0 otherwise. The loss function is then:

1 N
L= Lreprojection - 2 IOg ¢(X) (10)

The barrier function is learned as the discriminative function
of a GAN, see Section[7.3.2]

Finally, Tulsiani et al. [8] define the re-projection loss
using a differentiable ray consistency loss for volumetric
reconstruction. First, it assumes that the estimated shape X
is defined in terms of the probability occupancy grid. Let
(O, C) be an observation-camera pair. Let also R be a set of
rays where each ray » € R has the camera center as origin
and is casted through the image plane of the camera C'. The
ray consistency loss is then defined as:

X; (Oa C)) - Z ﬁT(X)v

reER

(11

Lray_cons(
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where ET(X ) captures if the inferred 3D model X correctly
explains the observations associated with the specific ray r.
If the observation O is a ground-truth foreground mask tak-
ing values 0 at foreground pixels and 1 elsewhere, then £,
is the probability that the ray r hits a surface voxel weighted
by the mask value at the pixel associated with the ray . This
loss is differentiable with respect to the network predictions.
Note that when using foreground masks as observations,
this loss, which requires known camera parameters, is sim-
ilar to the approaches designed to specifically use mask
supervision where a learned [25] or a fixed [4] reprojection
function is used. Also, the binary cross-entropy loss used
in [4], [24] can be thought of as an approximation of the one
derived using ray consistency.

(2) Surface normal and depth-based loss. Additional
cues such as surface normals and depth values can be
used to guide the training process. Let ng , = (14, N, Nc)
be a normal vector to a surface at a point (z,y,z). The
vectors n,; = (0,—nc,np) and (—ne,0,n,) are orthogo-
nal to n,,. By normalizing them, we obtain two vectors
ny = (0,—1,np/n.) and n; = (—1,0,n4/n.). The normal
loss tries to guarantee that the voxels at (z,v,2) &+ n/, and
(z,y,2) + ny should be 1 to match the estimated surface
normals. This constraint only applies when the target voxels
are inside the estimated silhouette. The projected surface

normal loss is then:

2 2
Lnormal = (1 - vw,yfl,z+:/—lc’) + (1 - nyngl,zfﬁ) +

nc

2 2
(1 - szl,y,z+z—‘z) + (1 - Ucc«l»l,y,zfz—‘;) (12)

This loss has been used by Wu et al. [6]], which includes, in
addition to the normal loss, the projected depth loss. The
idea is that the voxel with depth v, 4, , should be 1, and
all voxels in front of it should be 0. The depth loss is then
defined as:

Ug,y,z if 2 <dgy,
Edepth(-xv:% Z) = (1 - Uw,y,Z)2 if 2= d:r,y/ (13)

0 otherwise.

This ensures the estimated 3D shape matches the estimated
depth values.

(3) Combining multiple losses. One can also combine
2D and 3D losses. This is particularly useful when some
ground-truth 3D data is available. One can for example train
first the network using 3D supervision, and then fine-tune it
using 2D supervision. Yan et al. [4]], on the other hand, take
the weighted sum of a 2D and a 3D loss.

In addition to the reconstruction loss, one can impose
additional constraints to the solution. For instance, Kato
et al. [55] used a weighted sum of silhouette loss, defined
as the negative intersection over union (IoU) between the
true and reconstructed silhouettes, and a smoothness loss.
For surfaces, the smoothness loss ensures that the angles
between adjacent faces is close to 180°, encouraging flatness.

7.1.2.3 Camera parameters and viewpoint estima-
tion: Reprojection-based loss functions use the camera pa-
rameters to render the estimated 3D shape onto image
planes. Some methods assume the availability of one or
multiple observation-camera pairs [4], [8]], [10]. Here, the
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observation can be an RGB image, a silhouette/foreground
mask or a depth map of the target 3D shape. Other methods
optimize at the same time for the camera parameters and
the 3D reconstruction that best describe the input [27], [77].

Gadelha et al. [27] encode an input image into a latent
representation and a pose code using fully-connected layers.
The pose code is then used as input to the 2D projection
module, which renders the estimated 3D volume onto the
view of the input. Insafutdinov and Dosovitskiy [77], on
the other hand, take two views of the same object, and
predict the corresponding shape (represented as a point
cloud) from the first view, and the camera pose (represented
as a quaternion) from the second one. The approach then
uses a differentiable projection module to generate the view
of the predicted shape from the predicted camera pose. The
shape and pose predictor is implemented as a convolutional
network with two branches. The network starts with a
convolutional encoder with a total of 7 layers followed by 2
shared fully connected layers, after which the network splits
into two branches for shape and pose prediction. The pose
branch is implemented as a multi-layer perceptron.

There has been a few papers that only estimate the
camera pose [70], [98], [99]. Unlike techniques that do si-
multaneously reconstruction, these approaches are trained
with only pose annotations. For instance, Kendall et al. [98]
introduced PoseNet, a convolutional neural network which
estimates the camera pose from a single image. The network,
which represents the camera pose using its location vector
and orientation quaternion, is trained to minimize the L,
loss between the ground-truth and the estimate pose. Su et
al. [99] found that CNNs trained for viewpoint estimation
of one class do not perform well on another class, possibly
due to the huge geometric variation between the classes.
As such, they proposed a network architecture where the
lower layers (both convolutional layers and fully connected
layers) are shared by all classes, while class-dependent fully-
connected layers are stacked over them.

7.2 Training with video supervision

Another approach to significantly lower the level of super-
vision required to learn the 3D geometry of objects is by
replacing 3D supervision with motion. To this end, Novotni
et al. [100] used Structure-from Motion (SfM) to generate
a supervisory signal from videos. That is, at training, the
approach takes a video sequences, generates a partial point
cloud and the relative camera parameters using SfM [101].
Each RGB frame is then processed with a network that
estimates a depth map, an uncertainty map, and the camera
parameters. The different depth estimates are fused, using
the estimated camera parameters, into a partial point cloud,
which is further processed for completion using the point
cloud completion network PointNet [87]. The network is
trained using the estimates of the SfM as supervisory sig-
nals. That is, the loss functions measure the discrepancy
between the depth maps estimated by the network and the
depth maps estimated by SfM, and between the camera
parameters estimated by the network and those estimated
by SfM. At test time, the network is able to recover a full 3D
geometry from a single RGB image.
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7.3 Training procedure

In addition to the datasets, loss functions, and degree of
supervision, there are a few practical aspects that one needs
to consider when training deep learning architectures for 3D
reconstruction.

7.3.1 Joint 2D-3D embedding

Most of the state-of-the-art works map the input (e.g., RGB
images) into a latent representation, and then decode the
latent representation into a 3D model. A good latent rep-
resentation should be (1) generative in 3D, i.e., we should
be able to reconstruct objects in 3D from it, and (2) it
must be predictable from 2D, i.e., we should be able to
easily infer this representation from images [25]. Achieving
these two goals has been addressed by using TL-embedding
networks during the training phase, see Fig. p}(a) and (b). It
is composed of two jointly trained encoding branches: the
2D encoder and the 3D encoder. They map, respectively, a
2D image and its corresponding 3D annotation into the same
point in the latent space [24], [25].

Gidhar et al. [25], which use the TL-embedding network
to reconstruct volumetric shapes from RGB images, train the
network using batches of (image, voxel) pairs. The images
are generated by rendering the 3D model and the network
is then trained in a three stage procedure.

o In the first stage, the 3D encoder part of the network
and its decoder are initialized at random. They are
then trained, end-to-end with the sigmoid cross-
entropy loss, independently of the 2D encoder.

e In the second stage, the 2D encoder is trained to
regress the latent representation. The encoder gen-
erates the embedding for the voxel, and the image
network is trained to regress the embedding.

o The final stage jointly fine-tunes the entire network.

This approach has been extended by Li et al. [79] and
Mandikal et al. [21] for point cloud-based 3D reconstruction
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by replacing the volume encoder by a point cloud auto-
encoder.

7.3.2 Adversarial training

In general, a good reconstruction model should be able to
go beyond what has been seen during training. Networks
trained with standard procedures may not generalize well
to unseen data. Also, Yang et al. [46] noted that the results
of standard techniques tend to be grainy and lack fine
details. To overcome these issues, several recent papers train
their networks with adversarial loss by using Generative
Adversarial Networks (GAN). GANs generate a signal from
a given random vector [102]. Conditional GANs, on the
other hand, conditions the generated signal on the input
image(s), see Fig. (c). It consists of a generator g, which
mirrors the encoder h, and a discriminator D, which mirrors
the generator.

In the case of 3D reconstruction, the encoder can be a
ConvNet/ResNet [46], [103] or a variational auto-encoder
(VAE) [17]]. The generator decodes the latent vector x into a
3D shape X = g(x). The discriminator, which is only used
during training, evaluates the authenticity of the decoded
data. It outputs a confidence C'(X) between 0 and 1 of
whether the 3D object X is real or synthetic, i.e., coming
from the generator. The goal is to jointly train the generator
and the discriminator to make the reconstructed shape as
close as possible to the ground truth.

Central to GAN is the adversarial loss function used to
jointly train the discriminator and the generator. Following
Goodfellow et al. [102]], Wu et al. [17] use the binary cross
entropy as the classification loss. The overall adversarial loss
function is defined as:

L3p-gan =log (D(X)) +1log (1 — D (g(x))) -

Here x = h(I) where I is the 2D images(s) of the training
shape X. Yang et al. [46], [103] observed that the original
GAN loss function presents an overall loss for both real
and fake input. They then proposed to use the WGAN-
GP loss [104], [105], which separately represents the loss
for generating fake reconstruction pairs and the loss for
discriminating fake and real reconstruction pairs, see [104],
[105] for the details.

To jointly train the three components of the network,
ie., the encoder, the generator, and the discriminator, the
overall loss is defined as the sum of the reconstruction loss,
see Section[7.1} and the GAN loss. When the network uses a
variational auto-encoder, .., the 3D VAE-GAN [17], then an
additional term is added to the overall loss in order to push
the variational distribution towards the prior distribution.
For example, Wu et al. [17] used a KL-divergence metric,
and a multivariate Gaussian distribution with zero-mean
and unit variance as a prior distribution.

The potential of GANs is huge, because they can learn to
mimic any distribution of data. They are also very suitable
for single-view 3D shape reconstruction. They have been
used for volumetric [13]], [17], [30], [40], [46], [103] and
point cloud [74], [75] reconstruction. They have been used
with 3D supervision [17], [30]], [40], [46], [103] and with 2D
supervision as in [13]], [27], [97], see Section The latter
methods train a single discriminator with 2D silhouette
images. However, among plausible shapes, there are still

(14)
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multiple shapes that fit the 2D image equally well. To
address this ambiguity, Wu et al. [91] used the discriminator
of the GAN to penalize the 3D estimator if the predicted
3D shape is unnatural. Li ef al. [106], on the other hand, use
multiple discriminators, one for each view, resulting in a
better generation quality.

GAN:Ss are hard to train, especially for the complex joint
data distribution over 3D objects of many categories and
orientations. They also become unstable for high-resolution
shapes. In fact, one must carefully balance the learning of
the generator and the discriminator, otherwise the gradi-
ents can vanish, which will prevent improvement [40]. To
address this issue, Smith and Meger [40] and later Wu et
al. [91] used as a training objective the Wasserstein distance
normalized with the gradient penalization.

7.3.3 Joint training with other tasks

Jointly training for reconstruction and segmentation leads
to improved performance in both tasks, when compared
to training for each task individually. Mandikal et al. [[107]
proposed an approach, which generates a part-segmented
3D point cloud from one RGB image. The idea is to en-
able propagating information between the two tasks so as
to generate more faithful part reconstructions while also
improving segmentation accuracy. This is done using a
weighted sum of a reconstruction loss, defined using the
Chamfer distance, and a segmentation loss, defined using
the symmetric softmax cross-entropy loss.

8 APPLICATIONS AND SPECIAL CASES

Image-based 3D reconstruction is an important problem and
a building block to many applications ranging from robotics
and autonomous navigation to graphics and entertainment.
While some of these applications deal with generic objects,
many of them deal with objects that belong to specific
classes such as human bodies or body parts (e.g., faces
and hands), animals in the wild, and cars. The techniques
described above can be applied to these specific classes of
shapes. However, the quality of the reconstruction can be
significantly improved by designing customised methods
that leverage the prior knowledge of the shape class. In this
section, we will briefly summarize recent developments in
the image-based 3D reconstruction of human body shapes
(Section , and body parts such as faces (Section . We
will also discuss in Section [B.3] methods that deal with the
parsing entire 3D scenes.

8.1 3D human body reconstruction

3D static and dynamic digital humans are essential for a
variety of applications ranging from gaming, visual effects
to free-viewpoint videos. However, high-end 3D capture
solutions use a large number of cameras and active sensors,
and are restricted to professionals as they operate under
controlled lighting conditions and studio settings. With the
avenue of deep learning techniques, several papers have
explored more lightweight solutions that are able to recover
the 3D human shape and pose from a few RGB images.
We can distinguish two classes of methods; (1) volumetric
methods (Section[4), and (2) template or parameteric-based
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methods (Section [5.2). Some methods in both categories
reconstruct naked 3D human body shapes [108], [109], while
others recover also cloths and garments [110], [111].

8.1.1 Parametric methods

Parametric methods regularize the problem using statistical
models such as morphable models [112], SCAPE [113], and
SMPL [114]. The problem of 3D human body shape recon-
struction then boils down to estimating the parameters of
the model.

Dibra et al. [108] used an encoder followed by three fully
connected layers to regress the SCAPE parameters from
one or multiple silhouette images. Later, Dibra et al. [[109]
first learn a common embedding of 2D silhouettes and
3D human body shapes (see Section [7.3.1). The latter are
represented using their Heat Kernel Signatures [115]. Both
methods can only predict naked body shapes in nearly
neutral poses.

SMPL has the advantage of encoding in a disentangled
manner both the shape, the pose, and the pose specific de-
tails, and thus it has been extensively used in deep learning-
based human body shape reconstruction [110], [116], [117],
[118]. Bogo et al. [116] proposed SMPLify, the first 3D human
pose and shape reconstruction from one image. They first
used a CNN-based architecture, DeepCut [119], to estimate
the 2D joint locations. They then fit an SMPL model to
the predicted 2D joints giving the estimation of 3D human
body pose and shape. The training procedure minimizes an
objective function of five terms: a joint-based data term,
three pose priors, and a shape prior. Experimental results
show that this method is effective in 3D human body
reconstruction from arbitrary poses.

Kanazawa et al. [120], on the other hand, argue that
such a stepwise approach is not optimal and propose an
end-to-end solution to learn a direct mapping from image
pixels to model parameters. This approach addresses two
important challenges: (1) the lack of large scale ground
truth 3D annotations for in-the-wild images, and (2) the
inherent ambiguities in single 2D-view-to-3D mapping of
human body shapes. An example is depth ambiguity where
multiple 3D body configurations can explain the same 2D
projections [116]. To address the first challenge, Kanazawa et
al. observe that there are large-scale 2D keypoint annotations
of in-the-wild images and a separate large-scale dataset of
3D meshes of people with various poses and shapes. They
then take advantage of these unpaired 2D keypoint annota-
tions and 3D scans in a conditional generative adversarial
manner. They propose a network that infers the SMPL [114]
parameters of a 3D mesh and the camera parameters such
that the 3D keypoints match the annotated 2D keypoints
after projection. To deal with ambiguities, these parameters
are sent to a discriminator whose task is to determine if
the 3D parameters correspond to bodies of real humans or
not. Hence, the network is encouraged to output parameters
on the human manifold. The discriminator acts as a weak
supervisor.

These approaches can handle complex poses from im-
ages with complex backgrounds, but are limited to a single
person per image and does not handle clothes. Also, these
approaches do not capture details such as hair and clothing
with garment wrinkles, as well has details on the body
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parts. To capture these details, Alldieck et al. [118] train
an encoder-decoder to predict normals and displacements,
which can then be applied to the reconstructed SMPL
model.

8.1.2 Volumetric methods

Volumetric techniques for 3D human body reconstruction
do not use statistical models. Instead, they directly infer 3D
occupancy grids. As such, all the methods reviewed in Sec-
tion[d] can be used for 3D human body shape reconstruction.
An example is the approach of Huang et al. [121], which
takes multiple RGB views and their corresponding camera
calibration parameters as input, and predicts a dense 3D
field that encodes for each voxel its probability of being
inside or outside the human body shape. The surface ge-
ometry can then be faithfully reconstructed from the 3D
probability field using marching cubes. The approach uses
a multi-branch encoder, one for each image, followed by a
multi-layer perceptron which aggregates the features that
correspond to the same 3D point into a probability value.
The approach is able to recover detailed geometry even
on human bodies with cloth but it is limited to simple
backgrounds.

To exploit domain-specific knowledge, Varol et al. [[122]
introduce BodyNet, a volumetric approach for inferring,
from a single RGB image, the 3D human body shape, along
with its 2D and 3D pose, and its partwise segmentation.
The approach uses a cascade of four networks; (1) a 2D pose
and a 2D segmentation network, which operate in parallel,
(2) a 3D pose inference network, which estimates the 3D
pose of the human body from the input RGB image and
the estimated 2D pose and 2D partwise segmentation, and
(4) finally, a 3D shape estimation network, which infers a
volumetric representation of the human body shape and its
partwise segmentation from the input RGB image and the
estimates of the previous networks. By dividing the problem
into four tasks, the network can benefit from intermediate
supervision, which results in an improved performance.

8.2 3D face reconstruction

Detailed and dense image-based 3D reconstruction of the
human face, which aims to recover shape, pose, expres-
sion, skin reflectance, and finer scale surface details, is a
longstanding problem in computer vision and computer
graphics. Recently, this problem has been formulated as a
regression problem and solved using convolutional neural
networks.

In this section, we review some of the representative
papers. Most of the recent techniques use parametric repre-
sentations, which parametrize the manifold of 3D faces. The
most commonly used representation is the 3D morphable
model (3DMM) of Blanz and Vetter [68]], which is an ex-
tension of the 2D active appearance model [123] (see also
Section [5.2.T). The model captures facial variabily in terms
of geometry and texture. Gerig et al. [124] extended the
model by including expressions as a separate space. Below,
we discuss the various network architectures (Section
and their training procedures (Section 8.2.2). We will also
discuss some of the model-free techniques (Section [8.2.3).
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8.2.1 Network architectures

The backbone architecture is an encoder, which maps the in-
put image into the parametric model parameters. It is com-
posed of convolutional layers followed by fully connected
layers. In general, existing techniques use generic networks
such as AlexNet, or networks specifically trained on facial
images such as VGG-Face [125] or FaceNet [126]. Tran et
al. [127] use this architecture to regress the 198 parameters of
a 3DMM that encodes facial identity (geometry) and texture.
It has been trained with 3D supervision using Lo asymetric
loss, i.e., a loss function that favours 3D reconstructions that
are far from the mean.

Richardson et al. [128]] used a similar architecture but
perform the reconstruction iteratively. At each iteration,
the network takes the previously reconstructed face, but
projected onto an image using a frontal camera, with the
input image, and regresses the parameters of a 3DMM. The
reconstruction is initialized with the average face. Results
show that, with three iterations, the approach can success-
fully handle face reconstruction from images with various
expressions and illumination conditions.

One of the main issues with 3DMM-based approaches
is that they tend to reconstruct smooth facial surfaces,
which lack fine details such as wrinkles and dimples. As
such, methods in this category use a refinement module to
recover the fine details. For instance, Richardson et al. [128]
refine the reconstructed face using Shape from Shading
(5£S) techniques. Richardson et al. [129], on the other hand,
add a second refinement block, FineNet, which takes as
input the depth map of the coarse estimation and recovers
using an encoder-decoder network a high resolution facial
depth map. To enable end-to-end training, the two blocks
are connected with a differentiable rendering layer. Unlike
traditional SfS, the introduction of FineNet treats the cal-
culation of albedo and lighting coefficients as part of the
loss function without explicitly estimating these informa-
tion. However, lighting is modeled by first-order spherical
harmonics, which lead to an inaccurate reconstruction of the
facial details.

8.2.2 Training and supervision
One of the main challenges is in how to collect enough
training images labelled with their corresponding 3D faces,
to feed the network. Richardson et al. [128]], [129] generate
synthetic training data by drawing random samples from
the morphable model and rendering the resulting faces.
However, a network trained on purely synthetic data may
perform poorly when faced with occlusions, unusual light-
ing, or ethnicities that are not well represented. Genova
et al. [130] address the lack of training data by including
randomly generated synthetic faces in each training batch to
provide ground truth 3D coordinates, but train the network
on real photographs at the same time. Tran et al. [127] use
an iterative optimization to fit an expressionless model to
a large number of photographs, and treat the results where
the optimization converged as ground truth. To generalize
to faces with expressions, identity labels and at least one
neutral image are required. Thus, the potential size of the
training dataset is restricted.

Tewari et al. [131] train, without 3D supervision, an
encoder-decoder network to simultaneously predict the fa-
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cial shape, expression, texture, pose, and lighting. The en-
coder is a regression network from images to morphable
model coordinates, and the decoder is a fixed, differentiable
rendering layer that attempts to reproduce the input pho-
tograph. The loss measures the discrepancy between the re-
produced photograph and the input one. Since the training
loss is based on individual image pixels, the network is vul-
nerable to confounding variation between related variables.
For example, it cannot readily distinguish between dark skin
tone and a dim lighting environment.

To remove the need for supervised training with 3D data
and the reliance on inverse rendering, Genova et al. [130]
propose a framework that learns to minimize a loss based
on the facial identity features produced by a face recognition
network such as VGG-Face [125] or Google’s FaceNet [126].
In other words, the face recognition network encodes the
input photograph as well as the image rendered from the
reconstructed face into feature vectors that are robust to
pose, expression, lighting, and even non-photorealistic in-
puts. The method then applies a loss that measures the
discrepancy between these two feature vectors instead of
using pixel-wise distance between the rendered image and
the input photograph. The 3D facial shape and texture
regressor network is trained using only a face recognition
network, a morphable face model, and a dataset of unla-
belled facial images. The approach does not only improve
on the accuracy of previous works but also produces 3D
reconstructions that are often recognizable as the original
subjects.

8.2.3 Model-free approaches

Morphable model-based techniques are restricted to the
modelled subspace. As such, implausible reconstructions
are possible outside the span of the training data. Other rep-
resentations such as volumetric grids, which do not suffer
from this problem, have been also explored in the context
of 3D face reconstruction. Jackson et al. [132], for example,
propose a Volumetric Regression Network (VRN), which
takes as input 2D images and predicts their corresponding
3D binary volume instead of a 3DMM. Unlike [127]], the
approach can deal with a wide range of expressions, poses
and occlusions without alignment and correspondences. It,
however, fails to recover fine details due to the resolution
restriction of volumetric techniques.

Other techniques use intermediate representations. For
example, Sela et al. [133] use an Image-to-Image Transla-
tion Network based on U-Net [48] to estimate a depth
image and a facial correspondence map. Then, an iterative
deformation-based registration is performed followed by a
geometric refinement procedure to reconstruct subtle facial
details. Unlike 3DMM, this method can handle large geo-
metric variations.

Feng et al. [134] also investigated a model-free method.
First, a densely connected CNN framework is designed
to regress 3D facial curves from horizontal and vertical
epipolar plane images. Then, these curves are transformed
into a 3D point cloud and the grid-fit algorithm [135] is
used to fit a facial surface. Experimental results suggest that
this approach is robust to varying poses, expressions and
illumination.

19

8.3 3D scene parsing

Methods discussed so far are primarily dedicated to the 3D
reconstruction of objects in isolation. Scenes with multiple
objects pose the additional challenges of delineating objects,
properly handling occlusions, clutter, and uncertainty in
shape and pose, and estimating the scene layout. Solutions
to this problem involve 3D object detection and recognition,
pose estimation, and 3D reconstruction. Traditionally, many
of these tasks have been addressed using hand-crafted fea-
tures. In the deep learning-based era, several of the blocks
of the pipeline have been replaced with CNNs.

For instance, Izadinia et al. [136] proposed an approach
that is based on recognizing objects in indoor scenes, in-
ferring room geometry, and optimizing 3D object poses
and sizes in the room to best match synthetic renderings
to the input photo. The approach detects object regions,
finds from a CAD database the most similar shapes, and
then deforms them to fit the input. The room geometry
is estimated using a fully convolutional network. Both the
detection and retrieval of objects are performed using Faster
R-CNN [137]. The deformation and fitting, however, are
performed via render and match. Tulsiani et al. [138], on the
other hand, proposed an approach that is entirely based on
deep learning. The input, which consists of an RGB image
and the bounding boxes of the objects, is processed with a
four-branch network. The first branch is an encoder-decoder
with skip connections, which estimates the disparity of the
scene layout. The second branch takes a low resolution
image of the entire scene and maps it into a latent space
using a CNN followed by three fully-connected layers. The
third branch, which has the same architecture as the second
one, maps the image at its original resolution to convo-
lutional feature maps, followed by ROI pooling to obtain
features for the ROI. The last layer maps the bounding box
location through fully connected layers. The three features
are then concatenated and further processed with fully-
connected layers followed by a decoder, which produces
a 323 voxel grid of the object in the ROI and its pose in
the form of position, orientation, and scale. The method has
been trained using synthetically-rendered images with their
associated ground-truth 3D scene.

9 DATASETS

Table[f|lists and summarizes the properties of the most com-
monly used datasets. Unlike traditional techniques, the suc-
cess of deep learning-based 3D reconstruction algorithms
depends on the availability of large training datasets. Su-
pervised techniques require images and their corresponding
3D annotations in the form of (1) full 3D models represented
as volumetric grids, triangular meshes, or point clouds, or
(2) depth maps, which can be dense or sparse. Weakly
supervised and unsupervised techniques, on the other hand,
rely on additional supervisory signals such as the extrinsic
and intrinsic camera parameters and segmentation masks.
The main challenge in collecting training datasets for
deep learning-based 3D reconstruction is two-fold. First,
while one can easily collect 2D images, obtaining their
corresponding 3D ground truth is challenging. As such, in
many datasets, IKEA, PASCAL 3D+, and ObjectNet3D, only
a relatively small subset of the images are annotated with
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TABLE 5: Some of the datasets that are used to train and evaluate the performance of deep learning-based 3D reconstruction
algorithms. "img”: image. ”"obj”: object. "Bkg”: background. “cats”: categories. “GT”: ground truth.

Year Images

Objects 3D ground truth Camera

No. imgs Size objs per img Type Bkg Type No. cats No. Type Img with 3D GT params
ShapeNet [139. 2015 — — Single rendered Uniform Generic 55 51,300 3D model 51,300 Intrinsic
ModelNet |3 2015 - - Single Rendered Uniform Generic 662 127,915 3D model 127,915 Intrinsic
IKEA |140 2013 759 Variable Single Real, indoor Cluttered Generic 7 219 3D model 759 Intrinsic+extrinsic
Pix3D |9 2018 9,531 110 x 110 to Single Real, indoor Cluttered Generic 9 1015 3D model 9,531 Focal Iength,

3264 x 2448 extrinsic
PASCAL 3D+ |141 2014 30,899 Variable Multiple Real, indoor, outdoor — Cluttered Generic 12 36,000 3D model 30, 809 Intrinsic+extrinsic
ObjectNet3D [142] 2016 90,127 Variable Multiple Real, indoor, outdoor  Cluttered Generic 100 44,147 3D model 90,127 Intrinsic+extrinsic
KITTI12 |143 2012 41,778 1240 x 376 Multiple Real, outdoor Cluttered Generic 2 40,000 Point cloud 12,000 Intrinsic+extrinsic
ScanNet |144 2017, 2,492,518 640 x 480, Multiple Real, indoor Cluttered Generic 296 36,123 Dense depth 2,492,518 Intrinsic+extrinsic
2018 RGB 1296 x 968
Stanford Car [145] 2013 16, 185 Variable Single Real, outdoor Cluttered Cars 196 — — — —
Caltech-UCSD 2010, 6,033 Variable Single Real Cluttered Birds 200 — — — Extrinsic
Birds 200 [146, |147: 2011
SUNCG |148 2017 130, 269 - Multiple Synthetic Cluttered Generic 84 5,697,217 Depth, voxel grid 130, 269 Intrinsic
Stanford 2D-3D-S 2016, 70,496 1080 x 1080 Multiple Real, indoor Cluttered Generic 13 6,005 Point cloud, mesh 70,496 Intrinsic + extrinsic
{1491, 150 2017
ETHZ CVL 2014 428 — Multiple Real, outdoor Cluttered Generic 8 — Point cloud, mesh 428 Intrinsic
RueMonge 151}
NYU V2 |152 2012 1,449 640 x 480 Multiple Real, indoor Cluttered Generic 894 35,064 Dense depth, 1,449 Intrinsic
3D points

their corresponding 3D models. Second, datasets such as
ShapeNet and ModelNet, which are the largest 3D datasets
currently available, contain 3D CAD models without their
corresponding natural images since they have been origi-
nally intended to benchmark 3D shape retrieval algorithms.

This issue has been addressed in the literature by data
augmentation, which is the process of augmenting the orig-
inal sets with synthetically-generated data. For instance, one
can generate new images and new 3D models by applying
geometric transformations, e.g., translation, rotation, and
scaling, to the existing ones. Note that, although some
transformations are similarity-preserving, they still enrich
the datasets. One can also synthetically render, from existing
3D models, new 2D and 2.5D (i.e., depth) views from various
(random) viewpoints, poses, lighting conditions, and back-
grounds. They can also be overlaid with natural images or
random textures. This, however, results in the domain shift
problem, i.e., the space of synthetic images is different from
the space of real images, which often results in a decline
in performance when methods are tested on images of a
completely different type.

Domain shift problem in machine learning has been
traditionally addressed using domain adaptation or trans-
lation techniques, which are becoming popular in depth
estimation [153]. They are, however, not commonly used
for 3D reconstruction. An exception is the work of Petersen
et al. [95], which observed that a differentiable renderer
used in unsupervised techniques may produce images that
are different in appearance compared to the input images.
This has been alleviated through the use of image domain
translation.

Finally, weakly supervised and unsupervised techniques
(Section [7.1.2) minimize the reliance on 3D annotations.
They, however, require (1) segmentation masks, which can
be obtained using the recent state-of-the-art object detection
and segmentation algorithms [154], and/or (2) camera pa-
rameters. Jointly training for 3D reconstruction, segmenta-
tion, and camera parameters estimation can be a promising
direction for feature research.

10 PERFORMANCE COMPARISON

This section discusses the performance of some key meth-
ods. We will present the various performance criteria and
metrics (Section [10.T), and discuss and compare the perfor-
mance of some key methods (Section [10.2).

10.1 Accuracy metrics and performance criteria

Let X be the ground truth 3D shape and X the reconstructed
one. Below, we discuss some of the accuracy metrics (Sec-

tion[10.1.1) and performance criteria (Section[10.1.2) used to

compare 3D reconstruction algorithms.

10.1.1 Accuracy metrics

The most commonly used quantitative metrics for evaluat-
ing the accuracy of 3D reconstruction algorithms include:

(1) The Mean Squared Error (MSE) [60]. It is defined as
the syrr}metric surface distance between the reconstructed
shape X and the ground-truth shape X, i.e.,

L > d(p, X).

peX

N 1 N
d(X, X) =~ > d(p, X) + (15)

peEX nX
Here, nx and ny are, respectively, the number of densely
sampled points on X and X, and d(p, X) is the distance,
e.g., the Ly or Ly distance, of p to X along the normal
direction to X. The smaller this measure is, the better is
the reconstruction.

(2) Intersection over Union (IoU). The IoU measures the
ratio of the intersection between the volume of the predicted
shape and the volume of the ground-truth, to the union of
the two volumes, i.e.,

VAV ALV > )+ I(Vh)}

IOUE— = = = )
Vuv YTV >e) +1(Vi)}

(16)

where I(-) is the indicator function, V; is the predicted value
at the i—th voxel, V; is the ground truth, and ¢ is a threshold.
The higher the IoU value, the better is the reconstruction.
This metric is suitable for volumetric reconstructions. Thus,
when dealing with surface-based representations, the recon-
structed and ground-truth 3D models need to be voxelized.

(3) Mean of Cross Entropy (CE) loss [103]]. It is defined as
follows;

N
1 . .
CE=—+ ;:1 {pilogpi + (1 —pi)log(1 —p:}.  (17)
where N is the total number of voxels or points, depending

whether using a volumetric or a point-based representation.
p and p are, respectively, the ground-truth and the predicted
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value at the i-voxel or point. The lower the CE value is, the
better is the reconstruction.

(4) Earth Mover Distance (EMD) and Chamfer Distance
(CD). These distances are, respectively, defined in Equa-

tions () and (6).

10.1.2 Performance criteria

In addition to these quantitative metrics, there are several
qualitative aspects that are used to evaluate the efficiency of
these methods. This includes:

(1) Degree of 3D supervision. An important aspect of deep
learning-based 3D reconstruction methods is the degree
of 3D supervision they require at training. In fact, while
obtaining RGB images is easy, obtaining their correspond-
ing ground-truth 3D data is quite challenging. As such,
techniques that require minimal or no 3D supervision are
usually preferred over those that require ground-truth 3D
information during training.

(2) Computation time. While training can be slow, in
general, its is desirable to achieve real-time performance at
runtime.

(3) Memory footprint. Deep neural networks have a large
number of parameters. Some of them operate on volumes
using 3D convolutions. As such, they usually require a
large memory storage, which can affect their performance
at runtime and limit their usage.

10.2 Comparison and discussion

We present the improvement in reconstruction accuracy
over the past 4 years in Fig.[6] and the performance of some
representative methods in Table 6]

The majority of early works resort to voxelized rep-
resentations [4], [7]], [17], [25], [156], which can represent
both the surface and the internal details of complex objects
of arbitrary topology. With the introduction of space par-
titioning techniques such as O-CNN [32], OGN [33], and
OctNet [41], volumetric techniques can attain relatively high
resolutions, e.g., 5123. This is due to the significant gain in
memory efficiency. For instance, the OGN of [33] reduces the
memory requirement for the reconstruction of volumetric
grids of size 323 from 4.5GB in [7] and 1.7GB in [12] to
just 0.29GB (see Table [6). However, only a few papers, e.g.,
[35]], adopted these techniques due to the complexity of their
implementation. To achieve high resolution 3D volumet-
ric reconstruction, many recent papers use intermediation,
through multiple depth maps, followed by volumetric [38],
[46], [51], [92] or point-based [80] fusion. More recently,
several papers start to focus on mechanisms for learning
continuous Signed Distance Functions [39], [43] or contin-
uous occupancy grids [157], which are less demanding in
terms of memory requirement. Their advantage is that since
they learn a continuous field, the reconstructed 3D object
can be extracted at the desired resolution.

Fig. [f| shows the evolution of the performance over
the years, since 2016, using the ShapeNet dataset [3] as a
benchmark. On the IoU metric, computed on volumetric
grids of size 323, we can see that methods that use mul-
tiple views at training and/or at testing outperform those
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Fig. 6: Performance of some key methods on the ShapeNet
dataset. References highlighted in red are point-based. The
IoU is computed on grids of size 323. The label next to each
circle is encoded as follow: First author et al. (year, n at
training, n at test), where n is the number of input images.
Table |§| provides a detailed comparison.

that are based solely on single views. Also, surface-based
techniques, which started to emerge in 2017 (both mesh-
based [60] and point-based [59], [72]), slightly outperform
volumetric methods. Mesh-based techniques, however, are
limited to genus-0 surfaces or surfaces with the same topol-
ogy as the template.

Fig. [f] shows that, since their introduction in 2017 by
Yan et al. [4], 2D supervision-based methods significantly
improved in performance. The IoU curves of Figures [6}
(a) and (b), however, show that methods that use 3D su-
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pervision achieve slightly better performance. This can be
attributed to the fact that 2D-based supervision methods
use loss functions that are based on 2D binary masks and
silhouettes. However, multiple 3D objects can explain the
same 2D projections. This 2D to 3D ambiguity has been
addressed either by using multiple binary masks captured
from multiple viewpoints [19], which can only reconstruct
the visual hull and as such, they are limited in accuracy, or
by using adversarial training [91], [97], which constrains the
reconstructed 3D shapes to be within the manifold of valid
classes.

11 FUTURE RESEARCH DIRECTIONS

In light of the extensive research undertaken in the past
five years, image-based 3D reconstruction using deep learn-
ing techniques has achieved promising results. The topic,
however, is still in its infancy and further developments are
yet to be expected. In this section, we present some of the
current issues and highlight directions for future research.

(1) Training data issue. The success of deep learning tech-
niques depends heavily on the availability of training data.
Unfortunately, the size of the publicly available datasets
that include both images and their 3D annotations is small
compared to the training datasets used in tasks such as clas-
sification and recognition. 2D supervision techniques have
been used to address the lack of 3D training data. Many
of them, however, rely on silhouette-based supervision and
thus they can only reconstruct the visual hull. As such, we
expect to see in the future more papers proposing new large-
scale datasets, new weakly-supervised and unsupervised
methods that leverage various visual cues, and new domain
adaptation techniques where networks trained with data
from a certain domain, e.g., synthetically rendered images,
are adapted to a new domain, e.g., in-the-wild images, with
minimum retraining and supervision. Research on realistic
rendering techniques that are able to close the gap between
real images and synthetically rendered images can poten-
tially contribute towards addressing the training data issue.

(2) Generalization to unseen objects. Most of the state-of-the-
art papers split a dataset into three subsets for training,
validation, and testing, e.g., ShapeNet or Pix3D, then report
the performance on the test subsets. However, it is not
clear how these methods would perform on a completely
unseen object/image categories. In fact, the ultimate goal
of 3D reconstruction method is to be able to reconstruct
any arbitrary 3D shape from arbitrary images. Learning-
based techniques, however, perform well only on images
and objects spanned by the training set. Some recent papers,
e.g., Cherabier et al. [38], started to address this issue. An
interesting direction for future research, however, would
be to combine traditional and learning based techniques to
improve the generalization of the latter methods.

(2) Fine-scale 3D reconstruction. Current state-of-the-art tech-
niques are able to recover the coarse 3D structure of shapes.
Although recent works have significantly improved the res-
olution of the reconstruction by using refinement modules,
they still fail to recover thin and small parts such as plants,
hair, and fur.
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(3) Reconstruction vs. recognition. 3D reconstruction from
images is an ill-posed problem. As such, efficient solutions
need to combine low-level image cues, structural knowl-
edge, and high-level object understanding. As outlined in
the recent paper of Tatarchenko et al. [44], deep learning-
based reconstruction methods are biased towards recogni-
tion and retrieval. As such, many of them do not generalize
well and fail to recover fine-scale details. Thus, we expect
in the future to see more research on how to combine
top-down approaches (i.e., recognition, classification, and
retrieval) with bottom-up approaches (i.e., pixel-level recon-
struction based on geometric and photometric cues). This
also has the potential to improve the generalization ability
of the methods, see item (2) above.

(4) Specialized instance reconstruction. We expect in the fu-
ture to see more synergy between class-specific knowledge
modelling and deep learning-based 3D reconstruction in
order to leverage domain-specific knowledge. In fact, there
is an increasing interest in reconstruction methods that are
specialized in specific classes of objects such as human
bodies and body parts (which we have briefly covered
in this survey), vehicles, animals [57], trees, and build-
ings. Specialized methods exploit prior and domain-specific
knowledge to optimise the network architecture and its
training process. As such, they usually perform better than
the general framework. However, similar to deep learning-
based 3D reconstruction, modelling prior knowledge, e.g.,
by using advanced statistical shape models [65], [66], [67],
[158], [159], requires 3D annotations, which are not easy to
obtain for many classes of shapes, e.g., animals in the wild.

(5) Handling multiple objects in the presence of occlusions and
cluttered backgrounds. Most of the state-of-the-art techniques
deal with images that contain a single object. In-the-wild
images, however, contain multiple objects of different cate-
gories. Previous works employ detection followed by recon-
struction within regions of interests, e.g., [138]]. The detection
and then reconstruction modules operate independently
from each other. However, these tasks are inter-related
and can benefit from each other if solved jointly. Towards
this goal, two important issues should be addressed. The
first one is the lack of training data for multiple-object
reconstruction. Second, designing appropriate CNN archi-
tectures, loss functions, and learning methods are important
especially for methods that are trained without 3D supervi-
sion. These, in general, use silhouette-based loss functions,
which require accurate object-level segmentation.

(6) 3D video. This paper focused on 3D reconstruction from
one or multiple images, but with no temporal correlation.
There is, however, a growing interest in 3D video, ie,
3D reconstruction of entire video streams where succes-
sive frames are temporally correlated. On one hand, the
availability of a sequence of frames can improve the recon-
struction, since one can exploit the additional information
available in subsequent frames to disambiguate and refine
the reconstruction at the current frame. On the other hand,
the reconstruction should be smooth and consistent across
frames.

(7) Towards full 3D scene parsing. Finally, the ultimate goal is
to be able to semantically parse a full 3D scene from one or
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multiple of its images. This requires joint detection, recog-
nition, and reconstruction. It would also require capturing
and modeling spatial relationships and interactions between
objects and between object parts. While there have been a
few attempts in the past to address this problem, they are
mostly limited to indoor scenes with strong assumptions
about the geometry and locations of the objects that com-
pose the scene.

12 SUMMARY AND CONCLUDING REMARKS

This paper provides a comprehensive survey of the past
five years developments in the field of image-based 3D
object reconstruction using deep learning techniques. We
classified the state-of-the-art into volumetric, surface-based,
and point-based techniques. We then discussed methods
in each category based on their input, the network archi-
tectures, and the training mechanisms they use. We have
also discussed and compared the performance of some key
methods.

This survey focused on methods that define 3D recon-
struction as the problem of recovering the 3D geometry
of objects from one or multiple RGB images. There are,
however, many other related problems that share similar so-
lutions. The closest topics include depth reconstruction from
RGB images, which has been recently addressed using deep
learning techniques, see the recent survey of Laga [153]], 3D
shape completion [26], [28], [45], [103], [156], [160], [161], 3D
reconstruction from depth images [103]], which can be seen
as a 3D fusion and completion problem, 3D reconstruction
and modelling from hand-drawn 2D sketches [162], [163],
novel view synthesis [164], [165], and 3D shape structure
recovery [10], [29], [83], [96]. These topics have been ex-
tensively investigated in the past five years and require
separate survey papers.
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