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Abstract—The non-negative matrix factorization (NMF) algorithm represents the original image as a linear combination of a set of

basis images. This image representation method is in line with the idea of “parts constitute a whole” in human thinking. The existing

deep NMF performs deep factorization on the coefficient matrix. In these methods, the basis images used to represent the original

image is essentially obtained by factorizing the original images once. To extract features reflecting the deep localization characteristics

of images, a novel deep NMF architecture based on underlying basis images learning is proposed for the first time. The architecture

learns the underlying basis images by deep factorization on the basis images matrix. The deep factorization architecture proposed in

this paper has strong interpretability. To implement this architecture, this paper proposes a deep non-negative basis matrix factorization

algorithm to obtain the underlying basis images. Then, the objective function is established with an added regularization term, which

directly constrains the basis images matrix to obtain the basis images with good local characteristics, and a regularized deep non-

negative basis matrix factorization algorithm is proposed. The regularized deep nonlinear non-negative basis matrix factorization

algorithm is also proposed to handle pattern recognition tasks with complex data. This paper also theoretically proves the convergence

of the algorithm. Finally, the experimental results show that the deep NMF architecture based on the underlying basis images learning

proposed in this paper can obtain better recognition performance than the other state-of-the-art methods.

Index Terms—Non-negative matrix factorization, underlying basis images, deep factorization architecture, face recognition

Ç

1 INTRODUCTION

IN the field of artificial intelligence currently, the data often
has a higher dimension. Direct analysis and processing of

such data lower the work efficiency and the results are
affected by redundant information to a certain extent.
Therefore, researchers have conducted a lot of studies on
the dimension reduction sample representation. The non-
negative matrix factorization algorithm is one of the effec-
tive dimensionality-reduced sample representation meth-
ods because of its excellent performance in the low-
dimensional non-negative representation of samples.

First proposed by Lee et al., the NMF algorithm repre-
sented the original image sample as a combination of a set
of basis images [1], [2]. The original samples in the NMF
algorithm can be reconstructed by the set of basis images,
and the reconstruction coefficient is a new feature of the
original sample. This sample representation based on the
combination of the basis vectors has a very intuitive seman-
tic interpretation, reflecting the concept of “parts constitute
a whole” in human thinking. The NMF algorithm factorizes

a non-negative matrix into the product of a non-negative
basis images matrix and a non-negative coefficient matrix.
The matrix elements in the factorization process of NMF
algorithm satisfy the non-negative characteristics, which
makes it widely used in many practical data analysis,
including image analysis with non-negative pixel values,
text analysis with non-negative word frequency, etc. [3], [4],
[5], [6], [7], [8], [9]. In order to improve its performance,
many researchers are studying the NMF algorithm.

Hoyer presented an NMF algorithm with sparse con-
straints to improve the local characteristics of the basis ima-
ges after factorization [10]. A sparse metric based on the
relationship between l1 norm and l2 norm was proposed in
this algorithm to measure the sparsity of the vector after fac-
torization. Pascual-Montano et al. presented the non-smooth
non-negative matrix factorization in order to obtain a basis
image with better sample expression ability and stronger
local feature representation. The algorithm introduces a
“smoothing” matrix to construct a new factorization form. In
this form, the sparseness is represented explicitly [11]. From
the point of geometric, Cai et al. believe that data is usually
sampled from low-dimensionalmanifolds embedded in high-
dimensional space, and the graphic regularized non-negative
matrix factorization (GNMF) algorithm is proposed [12]. The
algorithm adds the graph regular term to the objective func-
tion, constraining the geometric structure of the new feature
after factorization. Ding et al. relax the constraints of factoriza-
tions tomake the algorithm not only applicable to the analysis
of non-negative data but also the data with negative numbers.
They only limit the coefficient matrix after factorization to be
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non-negative and propose the semi-non-negative matrix fac-
torizations algorithm (SNMF) [13]. In 2018, Rousset et al.
applied SNMF to pattern generalization in single-pixel imag-
ing [14]. Although SNMF can adapt to more data, the
interpretability of the algorithm is weaker because it contains
negative values in the basis matrix when dealing with image
intelligence analysis problems.

The NMF-based algorithms above are all linear algo-
rithms, whereas the distribution characteristics of real data
tend to be complex and nonlinear. It is generally difficult to
obtain better performance by using linear methods. Some
researchers have studied the nonlinear NMF algorithm [15],
[16], [17], [18], [19]. Ioan Buciu et al. use kernel trick [15] and
polynomial kernel functions to extend the linear NMF to a
nonlinear method [16]. However, only polynomial kernel
functions can be applied to this method. Stefanos Zafeiriou
et al. proposed a projected gradient kernel non-negative
matrix factorization (PGKNMF) algorithm, enabling the
algorithm to use arbitrary kernel functions [17].

The existing NMF-based algorithm can achieve effects on
the problem of the pattern recognition problem, but the
structures of the methods above are all single-layered, while
the human visual system uses a multilayered and nonlinear
method to analyze images [20]. Deep learning based meth-
ods have been applied to many practical data analysis
recently [21], [22]. Therefore, researchers focus largely on
studying the multilayered NMF algorithm in recent years
[23], [24], [25], [26], [27], [28]. Ahn et al. proposed a multiple
NMF (MNMF) network structure in which the deep feature
of the sample under the basis images is obtained by continu-
ously performing non-negative factorization on the coeffi-
cient matrix [29]. Cichocki et al. propose a multilayer NMF
algorithm with multi-start initializations, which is also a
deep factorization of the coefficient matrix [30], [31]. Song
et al. extended the nsNMF algorithm that can learn sparse
features to an algorithm with a multilayered structure [32].
In 2017, Trigeorgis et al. extended the SNMF algorithm to a
multilayer structure and proposed the deep semi NMF
(DSNMF) algorithm [33]. The algorithm is achieved by min-
imizing the reconstruction error of the original sample
when obtaining the factorization result of each layer,
instead of minimizing the reconstruction error of the previ-
ous coefficient matrix. It reduces the reconstruction error of
the original sample but increases the amount of calculation.
The DSNMF algorithm relaxes the constraints on the factor-
ized matrix so that the basis images matrix acquired by the
factorization does not satisfy the non-negative property. It
is not possible to consider each column vector in the basis
matrix as an image. The DSNMF explains the factorization
result from the perspective of clustering. It abandons the
idea of representing primitive samples based on the combi-
nation of basis images in classical NMF and weakens the
semantic interpretability of the algorithm. In 2018, Tong
et al. proposed a deep discriminative and robust non-nega-
tive matrix factorization network method (DDRNMF) for
obtaining differentiated, compact and robust data represen-
tations [34]. The algorithm achieves the data representation
by minimizing an objective function with a soft label con-
straint. However, the deep architecture of these methods
still performs the deep factorization on the coefficient
matrix.

Nowadays algorithms based onNMFand deepNMF focus
on the coefficient matrix, including deep factorization on the
coefficient matrix [33], [34] and adding different regulariza-
tion constraints on the coefficientmatrix [35], [36]. The optimi-
zation of the basis images matrix is indirect in these methods.
However, the actual extracted features are closely relevant to
the basis matrix. Making the basis vectors with obvious part-
based features is advantageous for classification [37]. In addi-
tion, there is no clear interpretability and purpose for the deep
factorization on the coefficient matrix. In this paper, a novel
deep NMF architecture based on the underlying basis images
learning (UBIL) is proposed to extract features reflecting the
deep localization characteristics of samples. The architecture
obtains the underlying basis images by deep factorization on
the basis imagesmatrix. Themotivation of the proposed archi-
tecture is discussed in detail in Section 2.

To realize the proposed deep NMF architecture based on
the UBIL the deep non-negative basis matrix factorization
(DNBMF) algorithm is proposed. DNBMF, a linear algo-
rithm that includes amultilayered structure, is themost basic
algorithm for implementing the proposed architecture.
Then, the regularized deep non-negative basismatrix factori-
zation (RDNBMF) algorithm is proposed. The objective func-
tion of the RDNBMF algorithm contains the regularization
constraint term on the basis images matrix. This term makes
a larger difference between the factorized basis images so the
parts-based features reflected from the obtained underlying
basis images matrix are more explicit, which is helpful for
classification. Finally, the regularized deep nonlinear non-
negative basis matrix factorization (RDNNBMF) algorithm
is proposed to deal with more complex identification prob-
lems. The RDNNBMF algorithm is a nonlinear version of the
RDNBMF algorithm. In the RDNNBMF algorithm, the origi-
nal samples are projected into a high dimensional space by a
nonlinear map, and deep non-negative factorization based
on the UBIL is performed on the mapped samples in this
high dimensional space.

The following are the main innovations and contribu-
tions of this proposed deep NMF architecture:

1. A novel deep non-negativematrix factorization archi-
tecture based on learning underlying basis images is
proposed. The architecture obtains the underlying
basis images representing the original samples by fac-
torizing the basis images hierarchically. To the best of
our knowledge, it is the first time that a multilayer
NMF architecture based on the deep factorization of
the basis images is proposed. The proposed deep
NMF architecture based on the underlying basis
images learning is more strongly interpretable.

2. A new objective function with direct constraints on
the basis images is proposed. This paper theoreti-
cally explains how the regularization constraint
implemented on the non-negative basis image
matrix can encourage the basis images to have better
sparse property. The sparse term based on the l1 and
l2 norms may lead to low rather than sparse values,
which can be avoided by the proposed regularizer
can avoid this to a certain extent. With the proposed
regularization term constraint, each basis vector
reflects distinct parts-based features.
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3. A nonlinear deep NMF algorithm based on UBIL is
proposed to adapt to more complex data.

4. The convergence of the proposed algorithm is theo-
retically proved.

The rest of this paper is organized as follows. The second
section details the motivation for the proposed architecture.
The third section introduces the classic NMF algorithm and
the existing deep NMF architecture. The fourth section
presents the proposed deep NMF architecture based on the
UBIL, which includes three algorithms DNBMF, RDNBMF
and RDNNBMF. The fifth section is the theoretical proof of
the convergence of the algorithm. The sixth section
describes the experimental results and analysis. The seventh
section concludes this paper.

2 MOTIVATIONS

NMF and deep NMF-based algorithms represent a non-neg-
ative column vector xi as a linear combination of basis vec-
tors, i.e., xi ¼

P
j wjhji , where wj is a basis vector, hji is a

linear combination coefficient. For a non-negative data
matrix X, the above linear combination form can be written
in a matrix form, i.e., X ¼ WH. Every column of X consti-
tutes the training samples. Every column of W constitutes
the basis vector. Every column of H constitutes the recon-
struction coefficient vector. Basically all NMF-based algo-
rithms map the original samples into the new feature space
for data analysis by the Moore-Penrose pseudo-inverse of
the basis images matrix W . The basis images matrix directly
affect the new features extracted by the algorithm [37].
Therefore, it is very important to accurately obtain the basis
images matrix with distinct parts-based features for the per-
formance of the algorithm. Moreover, the existing algo-
rithms do not contain the explicit physical meaning and is
not well interpretable. The deep factorization on the coeffi-
cient matrix makes the final projection matrix of the feature
mapping still only related to the basis matrix obtained in
the first layer, which is the shallow basis images. It is incon-
sistent with the idea of extracting deep features, which
affects the effect of feature extraction.

Fig. 1 shows the factorization architecture of the classical
shallow NMF algorithm, the existing deep NMF algorithm,
and the proposed deep NMF architecture based on the
underlying basis images learning (UBIL). Fig. 1a shows the
factorization architecture based on the classical shallow

NMF algorithm. The original sample X is represented by a
set of shallow basis images through a linear combination of
coefficients X ¼ WH. Fig. 1b shows the factorization archi-
tecture based on the existing deep NMF algorithm. This
architecture obtains the underlying coefficient matrix Hl by
deep factorization of the coefficient matrix. The factorization
task in the ith layer is Hi�1 ¼ WiHi. The original sample
matrix X is factorized into X ¼ W1W2 . . .Wl�1WlHl, where
Hl is the new sample feature acquired by this architecture.
However, in this architecture, only the basis matrix W1

obtained by the first layer factorization is directly related to
the original images, which reflects the shallow localization
features. The factorization after the first layer is a deep fac-
torization of the coefficient matrix representing the samples
through these bases. The obtained new feature by this archi-
tecture cannot be considered as the true underlying feature.
The coefficient matrix of each layer is essentially the weight-
ing coefficient in the process of sample reconstruction, and
there is no actual physical meaning about the factorization
on the coefficient matrix. The optimization of the basis
matrix is still indirect and the purpose of this deep factoriza-
tion architecture is weak.

Regarding the above existing deficiency, this paper
proposes a novel deep NMF algorithm architecture based
on UBIL. Fig. 1c shows the proposed deep NMF architec-
ture. The underlying basis images representing the origi-
nal sample is obtained by hierarchical deep factorization
of the basis images. The factorization task in the ith layer
is Wi�1 ¼ WiHi. The factorization task of each layer in
the proposed architecture is to find the bases that can rep-
resent the basis images of the previous layer. The factori-
zation of each layer has a strong purpose and
interpretability. The original sample is expressed as
X ¼ WlHlHl�1 . . .H2H1, where Wl is the basis image
matrix obtained by the final layer with distinct parts-
based features to represent the original images.

Fig. 2 shows an illustration of the proposed deep NMF
architecture in detail. The detailed architecture based on the
UBIL is presented with a hierarchical form in Fig. 2a. Each
column in the original sample matrix X represents an origi-
nal image, and each column in the basis images matrix Wl

represents a basis image of the same size as the original
image. The original image is represented by a linear combi-
nation of a set of basis images. The local features that are
reflected by the basis images obtained by the shallow factor-
ization are not obvious [33]. Each shallow basis image may
contain multiple local features, such as the forehead and
cheek. By deep factorization of the basis image, it is possible
to obtain a better underlying basis image that reflects the
distinct parts-based features of the original image. For
instance, the basis image after deep factorization can high-
light the eyebrows, left cheeks, right cheeks, teeth, etc. of
the face, respectively. The final factorization form of the pro-
posed deep NMF architecture based on the UBIL proposed
in this paper is shown in Fig. 2b. The original sample X is
represented by the underlying basis images. The proposed
deep NMF architecture based on UBIL continuously factor-
izes the basis images to obtain the underlying basis images
with clear local features of the original samples. The factori-
zation process of the proposed factorization architecture is
strongly interpretable.

Fig. 1. The factorizations of the classical shallow NMF algorithm, the
existing deep NMF algorithm and the proposed deep NMF architecture
based on the underlying basis images learning.
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3 RELATED WORK

This section presents the classic NMF algorithm and the
multilayer non-negative matrix factorization (MNMF) [29].
The classic NMF algorithm presents the most primitive idea
of the NMF-based algorithm. MNMF is a deep matrix fac-
torization method, which the existing deep NMF-based
algorithms are based on. Let the original training sample be
a non-negative vector of m dimensions xi 2 Rm

þ , and the
original training samples matrix X consists of n samples
X ¼ ½x1; x2; . . . ; xn� 2 Rm�n

þ .

3.1 NMF

The classical NMF algorithm aims to decompose the origi-
nal training sample xi 2 Rm

þ into a linear combination
xi ¼

Pr
j¼1 hijwj of multiple basis images wj 2 Rm

þ , where r
is the number of basis images. hij is the coefficient of the jth
basis image in the original sample xi linearly represented
by the basis images. For all training samples, there is a
matrix form as X ¼ WH. W ¼ ½w1; w2; . . . ; wr� 2 Rm�r

þ is the
basis images matrix composed of r basis images and
H ¼ ½h1; h2; . . . ; hn� 2 Rr�n

þ is the coefficient matrix of the
linear representation. From the factorization form, it can be
perceived that the training samples are represented by a set
of basis vectors, which reflects the concept of “the whole
consists of parts” in human thinking. The elements of the
factorized basis vector are all non-negative, satisfying the
non-negative nature of the image pixel points. To obtain
the factorization, the algorithm minimizes the objective
function:

JNMF ðW;HÞ ¼ 1

2
kX �WHk2F ; s:t: W � 0; H � 0: (1)

Using the gradient descent method, the updated formulas
for the optimization problem (1) can be obtained.

Hðtþ1Þ ¼ HðtÞ � ðW ðtÞTXÞ�ðW ðtÞTW ðtÞHðtÞÞ; (2)

W ðtþ1Þ ¼ W ðtÞ � ðXHðtÞT Þ�ðW ðtÞHðtÞHðtÞT Þ; (3)

where � is the point multiplication operation and � is the
point division operation.

Although the NMF algorithm and its variant algorithms
have certain capabilities of feature extraction, the research-
ers believe that the underlying features of the sample cannot
be obtained by shallow factorization [33]. Deep architec-
tures have been widely applied particularly in image proc-
essing and analysis [23], [34], [38], since deep factorization
provides high performance in data representation and effi-
cient formulas behind deep learning [39]. However, there
are still some challenges particularly in recognition [40].
The following section describes the MNMF, which repre-
sents the idea of the existing deep NMF algorithm.

3.2 Multilayer Non-Negative Matrix Factorization

The MNMF algorithm considers that deep factorization has
better performance in data representation than shallow fac-
torization. The MNMF constructs a deep factorization archi-
tecture based on the coefficient matrix as follows:

X ¼ W1H1; (4)

H1 ¼ W2H2; (5)

. . . ; Hl�1 ¼ WlHl: (6)

The original sample matrix X can be expressed as the prod-
uct of lþ 1matrices.

X ¼ W1W2 . . .WlHl; (7)

where each element in the basis imagesmatrix and the coeffi-
cient matrix is non-negative. The algorithm obtains the basis
images matrix and coefficient matrix of the ith layer used to
representX byminimizing the following objective function:

JMNMF ðWi;HiÞ ¼ 1

2
kHi�1 �WiHik2F ;

s:t: Wi � 0; Hi � 0:
(8)

The existing deep NMF algorithms are based on this multi-
layer factorization architecture [32], [33], [34]. The update
formulas in each layer are

W
ðtþ1Þ
i ¼ arg min

Wi�0
JMNMF ðWi;H

ðtÞ
i Þ; (9)

H
ðtþ1Þ
i ¼ arg min

Hi�0
JMNMF ðW ðtÞ

i ; HiÞ: (10)

The existing algorithms for deep NMF with multilayered
structure are based on the factorization architecture men-
tioned above, all of which perform deep factorization on the
coefficient matrix to the best of our knowledge. The
“partial” that makes up the original sample is in fact

Fig. 2. The illustration of the proposed deep NMF architecture based on
underlying basis images learning.
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obtained by factorizing only once. In this architecture, the
basis images reflecting the local characteristics of the sam-
ples are the shallow basis images. The deep basis images
reflecting deep local features of the original sample still can-
not be obtained. Therefore, to extract the underlying basis
images reflecting the local characteristics of the original
samples, this paper proposes a deep NMF architecture
based on the deep factorization of the basis images matrix
to directly factorize the basis images. The Section 4 details
the three proposed algorithms based on the deep NMF fac-
torization architecture proposed in this paper.

4 DEEP NMF ARCHITECTURE BASED ON

UNDERLYING BASIS IMAGES LEARNING

The existing deep NMF algorithm performs deep factoriza-
tion on the coefficient matrix. However, in such a factoriza-
tion architecture, only the basis matrix obtained by the first
layer factorization is directly related to the original images,
which reflects the shallow localization features. The factori-
zation in the latter layers is a deep factorization of the coeffi-
cient matrix representing the samples through the shallow
bases. The obtained new feature by this architecture cannot
be considered as the true underlying feature. The optimiza-
tion of the basismatrix is still indirect and the interpretability
of this deep factorization architecture is weak. Therefore, a
deep NMF architecture based on the UBIL is proposed to
extract the real underlying basis images. In this deep factori-
zation architecture, the factorization process of each layer
contains explicit interpretability. The proposed factorization
architecture consists of l layers with the following factoriza-
tion process.

X ¼ W1H1; (11)

W1 ¼ W2H2; (12)

. . . ;Wl�1 ¼ WlHl; (13)

where X 2 Rm�n
þ is the training samples matrix,

Wi ¼ ½wi
1; w

i
2; . . . ; w

i
ri
� 2 R

m�riþ is the basis image matrix of
the ith layer and Hi is the coefficient matrix of the ith layer.
Formula (11) represents the factorization process of the first
layer. The original samples matrix X is factorized into the
product of the basis images matrix W1 and the coefficient
matrix H1. Formula (12) represents the factorization process
of the second layer. The basis images matrix obtained by the
factorization of the previous layer is further factorized into
the product of the basis images matrix W2 and the coeffi-
cient matrix H2. A further factorization on the basis images
matrix is intended to find the more localized basis images
that can characterize the basis images of the previous layer.
According to the factorization mode of the second layer, the
basis images matrix Wi is continuously factorized until the
underlying basis images Wl with deep localization features
are obtained. Finally, the original sample image is repre-
sented by the underlying basis images

X ¼ WlHlHl�1 . . .H2H1: (14)

To implement the proposed deep NMF architecture based on
the UBIL, the DNBMF algorithm is proposed in Section 4.1,
which is the most basic algorithm for implementing the

proposed architecture. The RDNBMF algorithm is proposed
in Section 4.2 to obtain the basis images with more localized
characteristics. In Section 4.3, the RDNBMF algorithm is
extended to a nonlinear version, which enables the algorithm
to deal with themore complex data.

4.1 Deep Non-Negative Basis Matrix Factorization
Algorithm

For the sample matrix X 2 Rm�n, to obtain the underlying
basis images matrix Wl of the sample images, the hierarchi-
cal factorization structure is designed to obtain the underly-
ing basis images matrixWl of the sample images.

In the first layer, the original sample image xi is repre-
sented as a linear combination xi ¼

P
j w

1
jhij of a set of basis

images wi
j. It can be written in the matrix form X ¼ W1H1,

where W1 2 R
m�r1þ is the basis images matrix containing r1

basis images, and H1 ¼ ½h1
1; h

1
2; . . . ; h

1
n� 2 R

r1�n
þ is the

coefficient matrix of the first layer. In order to obtain the
underlying basis images matrix Wl, this paper designs a
hierarchical optimization method, which in turn optimizes
basis images matrix Wl and coefficient matrices
Hi; i ¼ 1; . . . ; l . In the optimization of the ith layer, it is nec-
essary to solve the following optimization problem:

min
Wi;Hi

J
ðiÞ
DNBMF ðWi;HiÞ ¼ min

Wi;Hi

1

2
kX �WiHi � � �H1k2F

s:t: Wi � 0; Hi � 0:

(15)

When optimizing the basis images matrix of the ith layer
and its coefficient matrix, the coefficient matrixes of the
front layer H1; H2; . . . ; Hi�1 is known. To simplify the repre-
sentation, the optimization problem (15) can be expressed as

min
Wi;Hi

J
ðiÞ
DNBMF ðWi;HiÞ ¼ min

Wi;Hi

1

2
kX �WiHiLi�1k2F

s:t: Wi � 0; Hi � 0;

(16)

where Li�1 ¼ Hi�1 . . .H1, and when i ¼ 1, L0 ¼ In is the
identity matrix. The above optimization problem can be
transformed into two optimization sub-problems to optimize
Wi;Hi, respectively, while fixing the other one. The gradient
descentmethod is used to optimize the solution. The solution
process is referred to Supplementary, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2019.2962679.
The final update formula can be obtained

H
ðtþ1Þ
i ¼ H

ðtÞ
i � W

ðtÞT
i XLT

i�1

W
ðtÞT
i W

ðtÞ
i H

ðtÞ
i Li�1L

T
i�1

(17)

W
ðtþ1Þ
i ¼ W

ðtÞ
i � XLT

i�1H
ðtÞT
i

W
ðtÞ
i H

ðtÞ
i Li�1L

T
i�1H

ðtÞT
i

; (18)

where � denotes the point multiplication operation and = is
the element-wise matrix division. The algorithm step of the
DNBMF algorithm is given in Algorithm 1. After iteratively
optimizing the underlying basis images matrix Wl and coef-
ficient matrices Hi; i ¼ 1; 2; . . . ; lÞ of the samples, the sample
x can be directly mapped by the Moore-Penrose pseudo-
inverse W y

n of the underlying basis images to obtain new
featureW y

nx.
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Algorithm 1. The Proposed DNBMF

Input:
The training samples matrix X 2 Rm�n, the number of layers
l, the number of basis images per layer ri; i ¼ 1; 2; . . . ; l, the
iterations t.

Output:
The underlying basis images matrix Wl, coefficient matrices
Hi; i ¼ 1; 2; . . . ; l.
Initialize fWi;Higli¼1

for i ¼ 1 : l do

Li�1 ¼ In; i ¼ 1
Hi�1 . . .H1; i 6¼ 1

�
for t = 1: item do

H
ðtþ1Þ
i ¼ H

ðtÞ
i � W

ðtÞT
i

XLT
i�1

W
ðtÞT
i

W
ðtÞ
i

H
ðtÞ
i

Li�1L
T
i�1

W
ðtþ1Þ
i ¼ W

ðtÞ
i � XLT

i�1H
ðtÞT
i

W
ðtÞ
i

H
ðtÞ
i

Li�1L
T
i�1H

ðtÞT
i

:
end for

end for

4.2 The Regularized Deep Non-Negative Basis
Matrix Factorization Algorithm

In the study of single-layer NMF algorithms, some research-
ers believe that it is helpful for classification to make the
basis vectors sparse with distinct parts-based features [37].
This paper considers adding a regularization term to the
objective function of each layer and the regularized deep
non-negative basis matrix factorization (RDNBMF) algo-
rithm is proposed. With the proposed regularization term
constraint, each basis vector reflects distinct parts-based fea-
tures. Meanwhile, this regularizer produces a better sparse
effect. The existing sparse term based on the l1 and l2 norms
may lead to low rather than sparse values, and the proposed
regularizer can avoid this to a certain extent. The objective
function of the RDNBMF in the ith layer is

J
ðiÞ
RDNBMF ðWi;HiÞ ¼ 1

2
kWi�1 �WiHik2F � a

2
TrðSWi

Þ; (19)

where Wi � 0, Hi � 0 and SWi
¼Pri

j¼1ðwi
j � �wiÞðwi

j� �wiÞT is
the total scatter matrix of the basis images at layer i. The
objective function can be further written as follow, and the
derivation process is given in the Supplementary, available
online

J
ðiÞ
RDNBMF ðWi;HiÞ ¼ 1

2
kWi�1 �WiHik2F þ a

2r2i

X
p6¼q

wiT
p wi

q

� aðri � 1Þ
2r2i

X
j

wiT
j wi

j:

(20)

When the objective function J
ðiÞ
RDNBMF ðWi;HiÞ is minimized,P

p6¼q w
iT
p wi

q has a smaller value and
P

j w
iT
j wi

j has a larger
value. Because each element of the basis vectors wi

j is non-
negative, the minimum value of

P
p6¼q w

iT
p wi

q is 0. The effect
of
P

p 6¼q w
iT
p wi

q ¼ 0 on the value of the elements in the basis
vectors is that non-zero elements in different basis vectors
wi

j are at different positions. The reward term
P

j w
iT
j wi

j

does not degrade the basis vectors wi
j to the zero vector, and

at the same time enhances the non-zero elements of the
basis vector at different positions from the other basis

vector. Therefore, the effects of the proposed regularization
term lead to greater differences among different basis vec-
tors, and avoid the situation where the values of elements in
the basis vector are low rather sparse values.

The detailed solution process for the optimization prob-
lem (19) is given in the Supplementary, available online.
The iteration formulas of the optimization problem (19) is

H
ðtþ1Þ
i ¼ H

ðtÞ
i � W

ðtÞT
i X

W
ðtÞT
i W

ðtÞ
i H

ðtÞ
i

; (21)

W
ðtþ1Þ
i ¼ W

ðtÞ
i � Wi�1H

ðtÞT
i þ aW

ðtÞ
i

W
ðtÞ
i H

ðtÞ
i H

ðtÞT
i þ aW

ðtÞ
i Ai

; (22)

where Ai ¼ 1
ri
1ri�ri , 1ri�ri is an ri � ri matrix of ones and ri

is the number of basis images of the ith layer. The RDNBMF
algorithm step is given in Algorithm 2.

Algorithm 2. The Proposed RDNBMF

Input:
The training samples matrix X 2 Rm�n, the number of layers
l, the number of basis images per layer ri; i ¼ 1; 2; . . . ; l, the
regularization factor a, the iterations t.

Output:
The underlying basis images matrix Wl, coefficient matrices
Hi; i ¼ 1; 2; . . . ; l.
Initialize fWi;Higli¼1

for i ¼ 1 : l do
Ai ¼ 1

ri
1ri�ri

for t = 1: item do

H
ðtþ1Þ
i ¼ H

ðtÞ
i � W

ðtÞT
i

X

W
ðtÞT
i

W
ðtÞ
i

H
ðtÞ
i

;

W
ðtþ1Þ
i ¼ W

ðtÞ
i � Wi�1H

ðtÞT
i

þaW
ðtÞ
i

W
ðtÞ
i

H
ðtÞ
i

H
ðtÞT
i

þaW
ðtÞ
i

Ai

:

end for
end for

4.3 The Regularized Deep Nonlinear Non-Negative
Basis Matrix Factorization Algorithm

Since most of the actual data is complex and nonlinear, the
factorization of the original sample data by linear methods
cannot be effectively described [33]. The human visual sys-
tem adopts a hierarchical and nonlinear method when ana-
lyzing images [20]. From a mathematical point of view, the
model’s expressibility can be enhanced by nonlinear func-
tions and a better sample representation is provided [41].
Therefore, a regularized deep nonlinear non-negative basis
matrix factorization algorithm (RDNNBMF) is proposed. In
RDNNBMF, the original samples and the basis images of
each layer are projected into a high-dimensional space by a
nonlinear mapping, and the preimages of the underlying
basis images are optimized in this high-dimensional space.

The original sample matrix X 2 Rm�n is mapped to
’ðXÞ ¼ ½’ðx1Þ;’ðx2Þ; . . . ;’ðxnÞ� 2 RM�n by a non-linear map
’. The basis images ŵi

j 2 Rm�1
þ ; j ¼ 1; . . . ; ri are mapped to

’ðŵi
jÞ 2 RM�1

þ ; j ¼ 1; . . . ; ri, where M 	 m. By factorizing
the basis images of each layer, there is

’ðŴi�1Þ ¼ ’ðŴiÞĤi; (23)

1902 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 6, JUNE 2021



where Ŵi ¼ ½ŵi
1; ŵ

i
2; . . . ; ŵ

i
ri
� 2 R

m�riþ and ’ðŴiÞ ¼ ½’ðŵi
1Þ;

’ðŵi
2Þ; . . . ;’ðŵi

ri
Þ� 2 R

M�riþ . The mapped original samples
matrix is deeply factorized by the mapped basis images
matrix in a hierarchical architecture, which can be
expressed as

’ðXÞ ¼ ’ðŴiÞĤiĤi�1 . . . Ĥ1: (24)

The algorithm also directly factorizes the basis images of
each layer. To obtain the final factorization form in (24), it is
necessary to solve the following optimization problem with
regularization by hierarchically optimizing the basis images
matrix of each layer

min
Ŵi�0;Ĥi�0

J
ðiÞ
RDNNBMF ðŴi; ĤiÞ

¼ min
Ŵi�0;Ĥi�0

1

2
k’ðŴi�1Þ � ’ðŴiÞĤik2F � a

2
TrðS’

Ŵi
Þ;

(25)

where S’

Ŵi
is the total scatter matrix S’

Ŵi
¼Pni

j¼1ð’ðŵi
jÞ�

’ð �wiÞÞð’ðŵi
jÞ � ’ð �wiÞÞT of the ith layer basis imagesmatrix in

the high dimensional space. In general, it is difficult to deter-

mine the explicit expression of the nonlinear function ’.

According to the kernel trick [15], the inner product between

samples after nonlinear mapping can be represented by the

kernel function kðxi; xjÞ ¼ ’ðxiÞ;’ðxjÞ
� �

of the original sam-

ples. Gaussian radial basis functions kðxi; xjÞ ¼ expð�kxi �
xjk2=tÞ are used as kernel functions in this paper. The solu-

tion process is referred to Supplementary, available online.
The iterative formulas for the basis images matrix and

the coefficient matrix are shown as (26) and (27), where
Ai ¼ 1

ri
1ri�ri , 1ri�ri is an ri � ri matrix of ones and ri is the

number of basis images of the ith layer. The algorithm steps
of the proposed RDNNBMF are given in Algorithm 3.

Algorithm 3. The Proposed RDNNBMF

Input:
The training samples matrix X 2 Rm�n, the number of layers
l, the number of basis images per layer ri; i ¼ 1; 2; . . . ; l, the
regularization factor a, the iterations t.

Output:
The underlying basis images matrix Ŵl, coefficient matrices
Ĥi; i ¼ 1; 2; . . . ; l.
Initialize fŴi; Ĥigli¼1

for i ¼ 1 : l do
Ai ¼ 1

ri
1ri�ri

for t = 1: item do
Updating Ĥi according to formula (26).

Updating Ŵi according to formula (27).
end for

end for

When the training is completed, the mapped samples
are expressed in the form of the formula (24) by the
mapped basis images matrix and the coefficient matrix.
By multiplying ’ðŴlÞT on both sides of the formula (24),
there is

’ðŴlÞT’ðXÞ ¼ ’ðŴlÞT’ðŴlÞĤlĤl�1 . . . Ĥ1

) KŴlX
¼ KŴlŴl

HRDNNBMF :

The new features HRDNNBMF of the samples extracted by
the proposed RDNNBMF based on the underlying base
image are

HRDNNBMF ¼ Ky
ŴlŴl

KŴlX
; (28)

where ½KŴlŴl
�pq ¼ expð�kŵl

p � ŵl
qk2=tÞ, ½KWlX�pq ¼ expð�kŵl

p�
xqk2=tÞ and Ky

ŴlŴl
is the Moore-Penrose pseudo-inverse of

KŴlŴl
.

5 THE CONVERGENCE OF THE PROPOSED

ALGORITHM

This section theoretically proves the convergence of the
proposed RDNBMF algorithm. The convergence of Algo-
rithms 1 and 3 proves similar. In order to prove that the
optimization problem (19) is convergent under the itera-
tive formulas (21) and (22), the theory of the auxiliary
function is needed [2]. The following is a brief introduc-
tion of the definition of the auxiliary function and its
properties.

Definition 1. Gðw;w0Þ is an auxiliary function for JðwÞ if, for
any vector w; w0 2 Rm, there are Gðw;w0Þ � JðwÞ and
Gðw;wÞ ¼ JðwÞ:

Lemma 1. JðwÞ is non-increasing with the iteration formula
wðtÞ ¼ argminwGðw;wðt�1ÞÞ, if Gðw;w0Þ is an auxiliary func-
tion for JðwÞ.

The objective function in the optimization problem (19) is
able to be treated as a function of the basis image wi

b and can
be re-expressed as

Jðwi
bÞ ¼

1

2
kWi�1 �WiHik2F � a

2
TrðSWi

Þ; (29)

where wi
b is the bth basis image of the ith layer, Wi ¼

½wi
1; w

i
2; . . . ; w

i
ri
� is the basis images matrix of the ith layer.

Because the convergence proof process for each layer is
similar, the convergence of the first layer is proved in
this section. In order to facilitate the observation, the

Ĥ
ðtþ1Þ
i ¼ Ĥ

ðtÞ
i �

K
Ŵ

ðtÞ
i

Ŵ
ðtÞ
i�1

K
Ŵ

ðtÞ
i

Ŵ
ðtÞ
i

Ĥ
ðtÞ
i

; (26)

Ŵ
ðtþ1Þ
i ¼ Ŵ

ðtÞ
i �

Ŵi�1ðĤT �K
Ŵi�1Ŵ

ðtÞ
i

Þ þ Ŵ
ðtÞ
i � ð1m�1diagððĤĤT þ aAiÞK

Ŵ
ðtÞ
i

Ŵ
ðtÞ
i

ÞÞ þ aŴ
ðtÞ
i K

ŴiŴ
ðtÞ
i

Ŵ
ðtÞ
i � ð1m�1diagðĤK

Ŵi�1Ŵ
ðtÞ
i

þ aK
Ŵ

ðtÞ
i

Ŵ
ðtÞ
i

ÞÞ þ Ŵ
ðtÞ
i ððĤĤT þ aAiÞ �K

Ŵ
ðtÞ
i

Ŵ
ðtÞ
i

Þ
: (27)
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layer mark is omitted in the proof process. In the first
layer W0 ¼ X, then the formula (29) can be rewritten as

JðwbÞ ¼ 1

2
kX �WHk2F � a

2
TrðSW Þ: (30)

The following Theorem 1 proves that the Gðwb; w
ðtÞ
b Þ given

by the formula (31) is an auxiliary function for JðwbÞ.
Theorem 1. Gðwb; w

ðtÞ
b Þ is an auxiliary function for JðwbÞ,

b ¼ 1; 2; . . . ; r. Gðwb; w
ðtÞ
b Þ is given by

Gðwb; w
ðtÞ
b Þ ¼ JðwðtÞ

b Þ þ ðwb � w
ðtÞ
b ÞTrJðwðtÞ

b Þ

þ 1

2
ðwb � w

ðtÞ
b ÞTLðwðtÞ

b Þðwb � w
ðtÞ
b Þ; (31)

where wb; w
ðtÞ
b are the bth columns of the matrices W; W ðtÞ,

respectively. LðwðtÞ
b Þ is a diagonal matrix. The diagonal element

of LðwðtÞ
b Þ is ½LðwðtÞ

b Þ�aa ¼ ½ðW ðtÞBb þ aW ðtÞAbÞ�a=½wðtÞ
b �a,

where A ¼ 1
r 1r�r, B ¼ HHT and Ab, Bb represent the bth col-

umns of the matricesA,B, respectively.

Proof. According to the definition of JðwbÞ and Gðwb; w
ðtÞ
b Þ

in formulas (30) and (31), it is easy to know that
Gðwb; wbÞ ¼ JðwbÞ. Then just need to prove that
Gðwb; w

ðtÞ
b Þ � JðwbÞ. The function JðwbÞ can be written as

a Taylor expansion of the point w
ðtÞ
b

JðwbÞ ¼ JðwðtÞ
b Þ þ ðwb � w

ðtÞ
b ÞTrJðwðtÞ

b Þ
þ 1

2
ðwb � w

ðtÞ
b ÞTr2JðwðtÞ

b Þðwb � w
ðtÞ
b Þ;

(32)

where rJðwðtÞ
b Þ is the first-order partial derivative of

the function JðwðtÞ
b Þwith respect to w

ðtÞ
b

rJðwðtÞ
b Þ ¼ W ðtÞBb �XHðtÞT eb � aw

ðtÞ
b þ aW ðtÞAb;

where A ¼ 1
r 1r�r, B ¼ HHT and eb is a column vector

whose element in row b is 1 and the other elements are 0.

The second-order partial derivative of the function

JðwðtÞ
b Þ with respect to w

ðtÞ
b is r2JðwðtÞ

b Þ ¼ ðBbb � aþ
aAbbÞI, where Abb and Bbb are elements on the bth row

and the bth column of A and B, respectively. The matrix

I is an identity matrix. It is easy to know from formulas

(31) and (32), if the inequality Gðwb; w
ðtÞ
b Þ � JðwbÞ is true,

just need to prove that

ðwb � w
ðtÞ
b ÞT ðLðwðtÞ

b Þ � r2JðwðtÞ
b ÞÞðwb � w

ðtÞ
b Þ � 0: (33)

That means we should prove that LðwðtÞ
b Þ � r2JðwðtÞ

b Þ is

a positive semi-definite matrix. According to the defini-

tion of LðwðtÞ
b Þ andr2JðwðtÞ

b Þ, the definition of the element

in the qth column and the pth row is ½LðwðtÞ
b Þ�pq ¼

dpq½W ðtÞBbþ aW ðtÞAb�p=½wðtÞ
b �p; ½r2JðwðtÞ

b Þ�pq ¼ dpqð½B�bb �
aþ a½A�bbÞ; where dpq is defined as

dpq ¼ 1; p ¼ q;
0; p 6¼ q:

�
(34)

Let U 
 LðwðtÞ
b Þ � r2JðwðtÞ

b Þ, for any vector v, there is

vTUv ¼
X
pq

vpð½LðwðtÞ
b Þ�pq � ½r2JðwðtÞ

b Þ�pqÞvq

¼
X
pq

vpðdpq½LðwðtÞ
b Þ�pp � ½r2JðwðtÞ

b Þ�pqÞvq

¼
X
pq

vp dpq
W ðtÞBb þ aW ðtÞAb

w
ðtÞ
b

" #
p

0
@

1
Avq

�
X
pq

vpðdpqðBpp � aþ aAppÞÞvq

¼
X
p

P
i 6¼bð½wðtÞ

i �p½B�ib þ a½wðtÞ
i �p½A�ibÞ

½wðtÞ
b �p

þ a

 !
v2p:

(35)

Hence, U ¼ LðwðtÞ
b Þ � r2JðwðtÞ

b Þ is positive semi-definite.

Then Gðwb; w
ðtÞ
b Þ � JðwbÞ. According to Definition 1,

Gðwb; w
ðtÞ
b Þ is an auxiliary function for JðwbÞ. Then Theo-

rem 1 is proved. tu
As can be seen from Lemma 1, the objective function

JðwbÞ is non-increasing under the iterative formula
wðtÞ ¼ argminwGðw;wðt�1ÞÞ. Let rGðwbÞ ¼ rJðwðtÞ

b Þ þ LðwðtÞ
b Þ

ðwb � w
ðtÞ
b Þ ¼ 0. With some line algebra, the iterative formula

for wb is

w
ðtþ1Þ
b ¼ w

ðtÞ
b � XHðtÞT eb þ aw

ðtÞ
b

W ðtÞBb þ aW ðtÞAb
: (36)

The iterative formula can be written in the form of a matrix
with layer information as follows:

W
ðtþ1Þ
i ¼ W

ðtÞ
i � Wi�1H

ðtÞT
i þ aW

ðtÞ
i

W
ðtÞ
i H

ðtÞ
i H

ðtÞT
i þ aW

ðtÞ
i Ai

: (37)

The iterative formula (37) for Wi can be obtained, which is
the same as the iterative formula (22) derived in Section 4.2.
Therefore, the objective function J

ðiÞ
RDNBMF ðWi;HiÞ is non-

increasing under the iteration formula (37). Similarly, it can
be proved that the objective function J

ðiÞ
RDNBMF ðWi;HiÞ is

non-increasing with the iterative formula forHi. Algorithms
1 and 3 can be proved to be convergent under their respec-
tive iterative formulas in a similar way. The experimental
results about the convergence of the proposed algorithm are
given in the Supplementary, available online.

6 EXPERIMENTAL RESULTS AND ANALYSES

To evaluate the performance of the proposed deep NMF
architecture based on the UBIL this section is organized in
sequence of the following four parts. Section 6.1 introduces
the databases and the experimental parameters setting of
the proposed algorithms and the comparison algorithms.
The experiments assessing the recognition performance of
the proposed three algorithms and 10 state-of-the-art com-
parison algorithms are carried out on 6 publicly available
databases in Section 6.2. The algorithmic performance on
different number of underlying basis images is presented in
Section 6.3. The basis images extracted by different algo-
rithms are analyzed intuitively in Section 6.4.
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6.1 Databases and Experimental Parameters Setting

Fig. 3 shows part face images form FERET, ORL, AR, CMU,
Stirling and Yale face databases. The brief description of the
6 publicly available databases used in the experiments is
given as follow.

FERET Database. This database comprises of 720 facial
images of 120 subjects [42], [43]. Each person has 6 images
with different illumination conditions, facial expressions,
poses and ages. The resolution of each image is 30� 25.

ORL Database. There are 400 grayscale facial images from
40 persons, 10 of each. The images change in pose and
expression. The resolution of each image is 30� 25.

AR Face Database. This database comprises of 3094 facial
images of 119 persons [44]. Each person has 26 images with
different illumination conditions, facial expressions and
with/without sunglasses or scarves. The resolution of each
image is 30� 25.

CMU Face Images Database. There are 640 grayscale facial
images from 20 people. Each one has 32 images with the dif-
ference of angles, expressions and with/without sunglasses.
The resolution of each image is 32� 34.

Stirling Face Database. There are 297 grayscale facial
images from 33 people, including 18 females and 15 males.
Each one has 9 images with different angles, expressions.
The resolution of each image is 88� 68.

Yale Face Database. There are 165 grayscale facial images
with 15 persons. Each person has 11 images. The images
demonstrate variations in illumination condition, pose,
facial expression, and with/without glasses. The resolution
of each image is 27� 27.

Principal Component Analysis (PCA) [45], Kernel Princi-
pal Component Analysis (KPCA) [46], Direct Linear Discrimi-
nate Analysis (DLDA) [47], NMF [1], MNMF [29], PNMF [16],
KNMF-RBF [17], SNMF [13], DSNMF [33] and DDRNMF [34]
are chosen as comparison algorithms. In PCA, the eigenvector

whose eigenvalue is large than 0.01 is kept. In KPCA, the
kernel function is radial basis function kðx; yÞ ¼
expð�kx� yk2=tÞ, the eigenvector whose eigenvalue is large
than 1e� 6 is kept. In DLDA, the threshold value of the eigen-
value is 1e� 2. In NMF, the number of basis images is 100. In
PNMF, the kernel function is polynomial function
kðx; yÞ ¼ hx; yid, the parameter d 6¼ 1, the number of basis
images is 90. In KNMF-RBF, the kernel function is radial basis
function, the number of basis images is set as 60. In SNMF, the
number of basis images is set as 100 on ORL database, 60 on
other databases. For other comparison algorithms MNMF,
DSNMF, DDRNMF and the proposed DNBMF, RDNBMF
and RDNNBMFwith deep structure, which are comprised of
two reconstruction layers, the number of underlying basis
images of those algorithms are shown in Table 1. The value of
the Gaussian RBF parameters t is tried between 1eþ 2 to
1eþ 4, and the range of the regularization coefficient a from
the proposed RDNBMF and RDNNBMF is in (0,1). In all
methods, the maximum number of iterations is set to 1000.
The important parameters setting of all the comparison algo-
rithms are based on the algorithmic performance.

6.2 Experiments on Recognition Performance

In order to evaluate the performance of the proposed deep
NMF architecture based on the UBIL and the recognition
performance of the proposed three algorithms, we experi-
ment on 6 publicly available databases. All images of the
same person are taken as one class. The training number
(TN) represents the number of images per person used for
training. Different training numbers are chosen randomly
on each database. The rest are chosen as testing samples.
Three popular metrics that are used to assess the results of
recognition experiments are accuracy (ACC), receiver oper-
ating characteristic (ROC) curve, and the area under curve
(AUC) [48], [49]. The ROC curve is a 2-dimensional graph
in which the true positive rate (TPR) is plotted on the Y -axis
and the false positive rate (FPR) is plotted on the X-axis.
TPR is the ratio of the number of positive samples being
classified correctly to the number of all positive samples.
FPR is the ratio of the number of negative samples classified
as positive samples to the number of all negative samples.
The area under the ROC curve is the AUC score. The closer
the ROC curve to the upper left corner (0,1), the better the
classification performance. The larger the area of the area
under the ROC curve (AUC), the better the classification
performance. All of the experiments are repeated 10 times
with the same experimental conditions, and the average
value is recorded as the final result. The nearest neighbor
classifier is used for classification.

TABLE 1
The Number of Underlying Basis Images of the

Algorithms With Multi-Layer Structure

ORL Yale FERET AR CMU Stirling

MNMF 30 40 60 30 50 30
DSNMF 90 110 110 90 90 100
DDRNMF 120 120 130 120 130 120
DNBMF 40 60 90 90 90 90
RDNBMF 100 60 140 140 60 140
RDNNBMF 60 70 140 60 140 60

Fig. 3. Part face images from the 6 face databases.
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Table 2 shows the recognition results on FERET database.
The best accuracy of each column is in bold. It is obvious
that the recognition rate increases with the increasing TN.
This means that the recognition performance of algorithm
enhances as TN increasing. Experimental results show that
the proposed DNBMF has better recognition performance
than the other two deep factorization algorithms MNMF
and DSNMF. The proposed DNBMF is based on the deep
factorization of the basis images, while the MNMF and
DSNMF are based on deep factorization of the coefficient
matrix. In particular, the only difference between the

proposed linear algorithm DNBMF and MNMF is that the
object of deep factorization is different. This shows that the
proposed architecture based on the deep factorization of the
basis images can obtain better sample feature representa-
tion, which is more conducive to the recognition task. It can
be observed that in this database, NMF has higher recogni-
tion performance than the proposed linear method DNBMF
and the RDNBMF algorithm with regularization constraints
on the basis images has higher performance than the NMF
algorithm. This is because there is no special constraint on
the basis images in the DNBMF algorithm, and the perfor-
mance of the deep basis images obtained by the multi-layer
factorization algorithm without regular guidance on the
basis images for the complex FERET database may be
degraded layer by layer. For the proposed RDNBMF, it
adds regular guidance on the expression ability of the basis
images in the learning process. The basis images obtained
in this way is more purposeful, and the recognition perfor-
mance can be significantly improved compared with NMF.
This also shows that adding regularization constraints on
the basis images during the learning process is beneficial to
the recognition performance.

The experimental results show that our proposed algo-
rithms significantly outperform all the compared algorithms.
For the proposed deep NMF architecture based on the UBIL,
the recognition performance of linear algorithm DNBMF is
not particularly outstanding, but the performance of linear
algorithm RDNBMF has got a significant improvement. This
is because in RDNBMF the basis images in each layer are
obtained by the objective functions with regularization con-
straint, which makes a greater difference between the
learned basis images. It demonstrates that the basis images
learned by RDNBMF are helpful for the recognition task.
Noted that the nonlinear algorithm RDNNBMF outperforms
linear algorithmsDNBMF andRDNBMF because the nonlin-
ear method can use the nonlinear interface to classify the
samples. In general, the nonlinear method has better perfor-
mance in dealingwith the nonlinear distribution data [50].

To further evaluate the performance of the deep NMF
architecture and the proposed algorithms, ROC curves and
the AUC scores of the corresponding curves are given in the
cases of TN ¼ 3 and TN ¼ 4 on FERET database, shown in
Figs. 4a and 4b. The figures show that the AUC score of

Fig. 4. The ROC curves on FERET database. The DNBMF, RDNBMF and RDNNBMF are the proposed algorithms.The AUC scores is shown in
parentheses.

TABLE 2
Mean ACC (%) Versus TN on the FERET Dataset

TN 2 3 4 5

PCA 36.88 40.04 38.00 40.67
(1.87) (2.53) (2.36) (2.38)

KPCA 49.00 56.78 59.42 61.75
(2.04) (2.14) (2.58) (3.20)

DLDA 60.17 78.36 83.75 87.17
(1.62) (1.56) (1.97) (3.00)

NMF 70.81 80.61 83.75 83.33
(1.32) (1.00) (1.33) (1.67)

MNMF 57.13 61.75 65.63 66.58
(2.76) (2.69) (1.79) (5.10)

PNMF 66.08 76.17 79.79 75.17
(0.78) (1.14) (1.22) (1.92)

KNMF-RBF 37.13 41.53 41.88 47.67
(1.89) (3.25) (2.54) (4.69)

SNMF 59.33 67.00 69.79 73.67
(1.16) (1.19) (1.08) (3.91)

DSNMF 63.13 69.86 73.04 73.83
(1.84) (1.12) (1.72) (2.46)

DDRNMF 68.10 74.94 78.25 81.50
(2.34) (2.21) (2.80) (3.31)

DNBMF 65.67 71.75 75.88 77.50
(2.11) (1.66) (2.11) (2.89)

RDNBMF 75.19 82.89 86.69 88.17
(0.51) (1.24) (1.01) (1.16)

RDNNBMF 75.54 84.08 88.17 93.25
(1.27) (0.45) (0.77) (1.54)
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DNBMF is the highest, which demonstrates that the pro-
posed deep NMF architecture is more suitable for recogni-
tion tasks.

Table 3 shows the experimental results on the ORL data-
base, and Fig. 5a shows the results visually. The experimen-
tal results show that some linear algorithms can achieve
good recognition performance. This is because the images
from the ORL database are affected slightly by shooting
angle, illumination, and occlusion, so the distribution of
data is relatively simple. In this case, some linear algorithms
can also obtain competitive recognition performance, espe-
cially the shallow NMF algorithm. In general, the best rec-
ognition performance with different numbers of training
samples is given by the proposed algorithms. DNBMF has
better recognition performance than MNMF in all cases on
the ORL database, which means that the proposed deep
NMF architecture based on the UBIL can obtain more useful
basis images for feature representation that are beneficial for
improving recognition performance.

To further evaluate the performance of the proposed
deep NMF architecture and the proposed algorithms, the
ROC curves in the cases of TN ¼ 4 and TN ¼ 6 on the ORL
database, and the AUC scores of the corresponding curves
are shown in Figs. 5b and 5c, respectively. From the results
in figures, it can be known that the AUC score of the pro-
posed RDNNBMF is the highest 97.5 percent in the case of
TN ¼ 4, and DNBMF is the highest 98.90 percent in the case
of TN ¼ 6. This validates that the proposed deep NMF
architecture is more suitable for recognition tasks.

The experimental results on AR face database are shown
in Table 4. Fig. 5d visually shows a line graph of the experi-
mental results. The number of the classes is large in this face
database. The changes of face images are more complex,
including excessive exposure, large areas of occlusion, and
dramatic expression changes. Moreover, the data used in this
experiment has never been filtered, so the recognition perfor-
mance of some algorithms on this database is particularly

TABLE 3
Mean ACC (%) Versus TN on the ORL Dataset

TN 2 3 4 5 6 7 8 9

PCA 84.00 87.71 89.54 90.25 92.06 94.00 94.00 95.25
(1.94) (2.51) (2.23) (1.60) (2.28) (2.32) (2.69) (1.84)

KPCA 84.41 88.54 90.92 92.90 93.75 95.00 95.88 97.50
(3.23) (2.84) (1.81) (2.09) (2.23) (1.76) (1.96) (2.36)

DLDA 78.38 86.75 91.04 92.75 93.13 93.75 95.50 94.75
(2.92) (2.32) (1.69) (1.51) (1.25) (1.53) (1.79) (2.19)

NMF 82.03 82.25 84.25 90.10 89.56 95.33 94.38 94.25
(1.13) (1.61) (0.62) (1.13) (2.36) (1.63) (1.69) (2.06)

MNMF 72.81 79.64 84.50 87.20 90.63 89.83 93.50 97.25
(4.03) (1.60) (1.59) (1.01) (1.47) (2.18) (1.75) (2.75)

PNMF 79.38 87.21 88.21 90.80 91.88 94.33 95.75 95.50
(0.96) (1.03) (0.86) (0.63) (0.78) (0.66) (0.87) (1.05)

KNMF-RBF 84.22 88.25 91.08 92.65 92.06 94.08 94.13 96.00
(2.93) (2.64) (1.46) (1.99) (0.84) (2.17) (1.32) (3.57)

SNMF 68.81 75.04 80.04 89.10 90.75 90.42 90.13 94.25
(1.53) (2.90) (2.25) (2.54) (1.44) (1.32) (1.38) (1.69)

DSNMF 69.97 80.64 86.79 88.10 91.50 92.92 93.50 92.00
(2.30) (2.28) (1.84) (2.07) (1.29) (1.43) (1.75) (2.58)

DDRNMF 78.81 83.46 88.17 91.00 91.19 92.50 93.88 94.00
(3.22) (1.77) (2.28) (2.32) (1.68) (2.55) (2.32) (2.93)

DNBMF 81.47 85.36 87.46 92.20 93.88 94.50 94.63 96.75
(1.55) (1.57) (1.86) (1.49) (1.34) (1.48) (2.13) (1.21)

RDNBMF 82.13 88.14 90.33 93.00 92.88 95.42 95.50 99.25
(2.38) (1.61) (1.36) (1.00) (1.03) (1.13) (1.58) (1.21)

RDNNBMF 84.66 89.43 91.17 92.75 93.69 94.83 94.38 95.75
(2.20) (1.70) (1.71) (1.78) (2.68) (1.88) (1.47) (2.65)

Fig. 5. Recognition results (ACC) and ROC curves on ORL and AR databases. The DNBMF, RDNBMF, and RDNNBMF are the proposed algorithms.
The AUC scores are given in parentheses.
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low. The proposed deep nonlinear algorithm RDNNBMF
outperforms the shallow nonlinear algorithm PNMF. This
demonstrates that deep factorization can obtain the basis
image which is more conducive to feature representation and
make the algorithm get better recognition performance. The
performance of the proposed DNBMF is better than MNMF.
This is mainly due to the fact that the deep factorization of
DNBMF and MNMF is essentially different. The MNMF
algorithm continuously factorizes the coefficient matrix and
expresses the original data asX ¼ W1W2 � � �WlHl. In fact, the
factorization method only has the basis W1 obtained by the
first layer as a local feature with respect to the original sam-
ple. The proposed DNBMF is to represent the original data as
X ¼ WlHl � � �H2H1 by deep factorization of the basis matrix,
and each column ofWl is the basis vector of the original sam-
ple factorized in the lth layer. The proposed factorization

architecture has clear interpretability and purpose, and can
obtain a set of underlying basis images reflecting distinct
parts-based features, which ismore helpful to classify.

The ROC curves are plotted in the cases of TN ¼ 10 and
TN ¼ 20 on AR face database, and the AUC scores of the
corresponding curves, shown in Figs. 5e and 5f. The figures
show that the AUC scores of the proposed RDNNBMF are
the highest 80.23 and 81.27 percent in the case of TN ¼ 10
and TN ¼ 20, respectively.

Fig. 6 and Tables 5, 6, and 7 show the experimental results
on CMU, Stirling and Yale face databases. Similarly, the pro-
posed linear algorithm DNBMF based on basis images learn-
ing outperforms the linear algorithm MNMF based on the
deep coefficient matrix factorization in most cases. Mean-
while, the recognition performance of the proposed nonlinear
deep factorization algorithm RDNNBMF is better than other

TABLE 4
Mean ACC (%) Versus TN on the AR Face Dataset

TN 5 10 15 20 25

PCA 14.07 19.04 21.73 24.24 26.89
(0.88) (0.80) (1.06) (1.41) (5.07)

KPCA 19.74 23.85 26.94 31.61 32.44
(1.06) (0.89) (1.15) (1.85) (5.85)

DLDA 59.29 71.59 75.98 78.28 80.84
(0.87) (0.96) (0.60) (1.11) (3.79)

NMF 47.27 58.02 62.38 67.72 71.68
(0.53) (1.11) (1.73) (1.26) (3.45)

MNMF 25.81 32.64 37.42 39.92 43.53
(1.54) (2.10) (1.87) (1.36) (4.15)

PNMF 42.14 51.77 60.82 66.05 67.39
(0.42) (0.57) (0.66) (0.91) (3.33)

KNMF-RBF 17.37 22.26 25.58 25.94 28.82
(1.04) (1.03) (1.74) (1.58) (4.06)

SNMF 45.10 52.86 55.16 56.04 57.14
(0.55) (0.82) (0.81) (1.96) (3.12)

DSNMF 60.62 67.73 70.93 70.43 69.45
(1.33) (1.53) (1.70) (1.47) (3.47)

DDRNMF 52.20 61.17 65.80 69.45 69.87
(1.20) (1.28) (2.04) (1.81) (3.54)

DNBMF 27.79 34.33 40.92 45.18 53.11
(0.82) (1.37) (1.41) (1.63) (2.93)

RDNBMF 62.55 75.57 81.05 83.28 83.61
(0.78) (0.55) (0.42) (0.87) (2.10)

RDNNBMF 63.60 76.79 81.60 83.66 86.39
(0.80) (0.75) (0.87) (0.90) (1.89)

Fig. 6. Recognition results (ACC) on CMU, Stirling, and Yale face databases. The DNBMF, RDNBMF, and RDNNBMF are the proposed algorithms.

TABLE 5
Mean ACC (%) Versus TN on the CMU Face Images Dataset

TN 5 10 15 20 25 30

PCA 81.89 94.68 96.06 97.13 97.00 94.50
(2.65) (1.56) (1.23) (1.03) (2.00) (2.11)

KPCA 90.15 93.82 94.41 95.79 96.07 96.50
(2.64) (1.66) (0.90) (1.17) (1.51) (4.09)

DLDA 89.39 94.52 95.68 96.71 96.43 95.75
(1.50) (1.40) (1.44) (0.90) (1.12) (3.87)

NMF 93.22 95.80 95.68 96.13 96.57 98.00
(0.34) (0.57) (0.52) (0.35) (1.34) (1.58)

MNMF 90.28 93.66 93.97 94.50 93.64 95.50
(2.30) (0.99) (1.27) (2.08) (2.72) (4.38)

PNMF 92.17 94.18 95.21 97.08 97.93 97.50
(0.57) (0.57) (0.31) (0.34) (0.22) (0.00)

KNMF-RBF 79.46 86.18 88.94 89.50 90.86 91.00
(5.58) (2.85) (3.17) (2.90) (2.30) (4.44)

SNMF 77.13 93.66 95.26 96.58 97.29 97.25
(3.64) (1.36) (0.64) (0.51) (0.45) (0.79)

DSNMF 81.89 94.68 96.06 97.13 97.00 94.50
(2.41) (1.17) (0.70) (0.72) (1.11) (1.97)

DDRNMF 92.87 95.52 95.56 95.75 96.43 95.75
(2.10) (0.68) (1.08) (0.92) (1.17) (2.90)

DNBMF 91.46 92.25 96.03 94.92 97.21 95.00
(1.08) (1.13) (0.81) (0.67) (0.79) (0.00)

RDNBMF 91.37 95.00 96.82 97.04 97.93 98.50
(0.86) (0.68) (1.07) (0.31) (0.79) (2.11)

RDNNBMF 94.20 96.52 96.29 96.50 96.79 97.25
(1.35) (0.67) (0.97) (1.20) (1.59) (2.49)
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shallow nonlinear algorithms, such as KPCA, PNMF, and
KNMF-RBF, on the above three face databases. This shows
that the deep factorization algorithm can obtain the basis
images which are more suitable for feature representation
and it can improve the recognition performance of the algo-
rithm. The best recognition performance on these three data-
bases is also given by the algorithm based on the proposed
factorization architecture.

Its worth noting that in some databases with complex
changes (such as FERET and AR databases), the algorithm
based on the proposed deep factorization architecture has a
very significant improvement in recognition performance.
The recognition performance of proposed RDNNBMF on the
FERET dataset is 3.47 – 9.92 percent better than the best com-
parison algorithm with different conditions. The recognition
performance of proposed RDNNBMF on the AR face dataset
is 4.31 – 5.62 percent better than the best comparison algo-
rithm with different conditions. This shows that the pro-
posed deep factorization algorithm based on the UBIL is
more conducive to the face recognition task with complex
interference.

In general, the proposed deep factorization algorithms
based on the UBIL outperform the deep factorization algo-
rithms based on coefficient matrix. This reveals that the deep
NMF architecture based on the UBIL is more beneficial for
the improvement of recognition performance. The algorithm
can obtain the true underlying basis imageswhich can reflect
the local characteristics of the samples by deep factorization
on the basis images matrix. The feature of the sample
responding to these bases can more accurately reflect the

difference in local characteristics. Meanwhile, the proposed
RDNBMF with basis images regularization constraint out-
performs the proposed DNBMF without basis images regu-
larization constraint. This also shows that basis images
regularization constraint is beneficial for feature extraction.
In most cases, the RDNBMF algorithm with the regulariza-
tion constraint in the basis images matrix performs better
than the DDRNMF algorithm with the regularization con-
straint in the coefficient matrix. It can be observed that the
basis images constrained and optimized directly are more
conducive to the recognition task than those constrained and
optimized indirectly. These results validate that the pro-
posed deepNMF architecture based on the UBIL is more rea-
sonable in recognition tasks, and it is necessary to improve
the recognition performance of the algorithm.

6.3 Experiments on Different Number of Underlying
Basis Images

The effect on the number of basis images is analyzed in this
section. The experiment is performed on Yale, FEREF and
Stirling face databases with different numbers of basis
images. In this experiment, all the other parameters are set
the same except the number of underlying basis images r.
Fig. 7 shows the recognition results of the proposed algo-
rithms on those three face databases in the case of differents
number of basis images. ACC scores are shown in Tables 8,
9, and 10, and the mean square deviation (MSD) of 10 times
experiments is given in parentheses. The experimental
results show that the recognition performance of the algo-
rithm is first enhanced then weakened with the increase of

TABLE 6
Mean ACC (%) Versus TN on the Stirling Face Dataset

TN 2 3 4 5 6 7 8

PCA 41.26 46.21 47.27 48.26 48.18 51.21 52.73
(3.96) (2.77) (2.21) (4.23) (5.11) (6.99) (8.72)

KPCA 42.08 51.21 56.42 57.05 56.46 61.52 65.45
(3.37) (3.85) (3.89) (7.10) (5.58) (7.90) (6.58)

DLDA 41.17 54.65 61.58 67.12 73.54 76.36 82.73
(2.34) (5.28) (4.62) (4.15) (3.95) (2.69) (5.16)

NMF 41.17 52.68 57.03 57.35 67.39 66.52 67.88
(1.28) (1.77) (1.41) (2.90) (3.93) (3.81) (4.33)

MNMF 34.24 40.71 41.21 42.73 43.74 44.55 43.03
(2.54) (4.36) (2.32) (2.58) (6.93) (5.31) (4.91)

PNMF 41.69 51.52 62.91 65.00 66.87 71.21 78.18
(1.12) (1.26) (0.94) (1.12) (3.33) (2.57) (2.78)

KNMF-RBF 36.23 37.48 38.73 38.20 40.18 44.55 42.42
(6.71) (3.67) (3.52) (3.18) (5.36) (5.06) (10.20)

SNMF 44.37 52.07 54.12 63.94 69.90 71.36 81.21
(2.34) (2.13) (3.38) (3.14) (3.43) (2.62) (2.78)

DSNMF 41.13 53.48 62.00 69.77 71.01 71.21 78.79
(1.21) (1.61) (1.85) (1.36) (5.22) (4.95) (5.53)

DDRNMF 40.22 45.96 51.09 53.48 57.37 61.21 64.24
(4.49) (4.22) (5.54) (3.96) (4.03) (6.40) (5.11)

DNBMF 39.44 45.35 48.06 53.18 54.75 58.03 56.36
(3.65) (4.65) (3.74) (1.92) (5.69) (5.35) (6.26)

RDNBMF 45.58 57.22 63.33 69.62 72.42 80.45 84.55
(1.73) (1.70) (1.52) (3.18) (2.18) (3.15) (3.63)

RDNNBMF 47.36 59.60 64.00 69.24 75.05 78.33 85.76
(1.95) (0.82) (1.57) (2.38) (3.06) (3.35) (3.44)

TABLE 7
Mean ACC (%) Versus TN on the Yale Face Dataset

TN 2 3 4 5 6 7 8 9 10

PCA 70.52 75.08 78.29 79.00 79.87 79.50 80.89 80.00 82.67
(3.06) (1.78) (2.69) (2.94) (3.17) (3.77) (6.04) (6.09) (6.44)

KPCA 69.56 74.00 76.10 77.11 79.07 80.17 81.11 82.67 83.33
(2.87) (3.21) (3.58) (4.42) (3.67) (2.28) (2.62) (6.25) (12.27)

DLDA 71.48 77.83 80.00 84.78 86.00 86.17 87.78 83.66 90.00
(6.52) (5.03) (5.61) (3.01) (3.73) (3.93) (5.26) (5.08) (7.20)

NMF 65.11 71.08 76.76 81.67 80.80 80.00 82.00 86.00 91.33
(3.46) (2.33) (2.55) (3.07) (2.10) (2.60) (2.44) (4.66) (6.32)

MNMF 77.56 83.00 84.00 85.00 88.53 86.67 86.22 88.33 93.33
(3.29) (1.93) (2.57) (3.36) (3.89) (4.30) (6.00) (5.27) (5.44)

PNMF 77.26 81.00 85.05 79.33 78.27 77.67 79.33 83.67 86.67
(1.48) (1.40) (2.73) (7.26) (6.19) (8.32) (3.93) (3.67) (5.44)

KNMF-RBF 76.00 82.92 87.24 89.00 88.80 87.83 88.22 91.00 89.33
(4.05) (4.54) (2.43) (3.90) (2.28) (3.52) (4.69) (5.89) (7.82)

SNMF 63.11 69.67 77.43 80.11 81.07 81.67 81.33 83.67 85.33
(3.79) (3.95) (2.88) (2.15) (3.54) (4.23) (3.95) (3.67) (5.26)

DSNMF 72.22 74.83 74.57 77.67 78.33 78.83 78.11 78.67 82.67
(3.78) (3.82) (1.42) (4.46) (2.95) (4.65) (4.50) (5.02) (4.66)

DDRNMF 75.11 81.92 86.57 88.56 90.80 90.67 90.67 91.33 94.67
(5.38) (4.07) (2.60) (3.06) (4.51) (2.85) (4.78) (6.52) (5.26)

DNBMF 75.19 81.08 81.71 84.56 86.01 88.33 89.33 90.00 94.00
(3.62) (1.93) (3.35) (2.64) (3.94) (2.36) (3.60) (4.97) (3.78)

RDNBMF 79.70 81.58 88.57 90.67 90.27 90.51 90.67 92.00 95.33
(2.54) (2.34) (2.69) (2.04) (2.27) (2.94) (1.75) (3.58) (3.22)

RDNNBMF 78.15 83.42 87.90 90.11 90.93 90.97 91.56 92.01 96.03
(3.26) (2.92) (3.73) (3.37) (4.52) (3.30) (3.89) (5.02) (3.44)
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the numbers of underlying basis images. Because few
underlying basis images are not sufficient to represent the
original images, the recognition performance of the algo-
rithm is weak. However, too many underlying basis images
lead to excessively detailed local feature representation,
resulting in redundancy in the extracted features that affects
recognition performance relatively. Therefore, it is advanta-
geous to select an appropriate number of underlying basis
images for recognition performance.

In addition, it can be seen from the experimental results
that on the Yale face database, as shown in Table 8 and
Fig. 7a, when the number of underlying basis images is the
same, the performance of the proposed RDNBMF algorithm
is better in most cases. The best recognition performance of
the nonlinear method RDNNBMF is 90.11 percent (r = 60)
and the best recognition performance of the RDNBMF algo-
rithm is 90.67 percent (r = 70), which are basically equal. On
the FERET database, when the number of underlying basis
images is the same, the proposed nonlinear method
RDNNBMF has better recognition performance in most
cases, as shown in Table 9 and Fig. 7b. The best recognition

result of RDNNBMF is 88.17 percent, which is the best per-
formance among the three algorithms on the FERET data-
base. On the Stirling database, while the number of
underlying basis images is the same, the recognition perfor-
mance of the proposed nonlinear algorithm RDNNBMF is
better than the other two algorithms, as shown in Table 10
and Fig. 7c. The above results are mainly due to the different
characteristics of the data in the three databases.

On the Yale face database, the change of the face images in
angle and occlusion is very weak—only the illumination and
the slight facial expression change. Because the data in this
database is not very complicated, the basis images extracted
by the linear method can better describe the common local
characteristics of the samples. The linear RDNBMF method
can obtain the recognition performance similar to the nonlin-
ear method RDNNBMF. In addition to changes in the illumi-
nation and expression changes, the face images in the FERET
database have change in posture and age. The images in this
database are more complex than those in the Yale face data-
base. The linear approach to dealingwith identification prob-
lems on FERET database is not better than nonlinear
methods generally. In the Stirling database, there is a sharp
change in the angle of the images, which makes the linear
method difficult to extract the local features of the samples.
The nonlinear method has better recognition performance
than the linearmethod on this data.

The proposed RDNBMF algorithm performs better than
the DNBMF in almost all cases, which validates that the
basis images obtained by the algorithm restraining the basis
images directly is more beneficial to improve the recogni-
tion performance. It can be noticed from the experimental
results that when the number of underlying basis images is
within a certain range, the recognition rate fluctuates within

Fig. 7. The recognition results of the proposed algorithms on different numbers of basic images.

TABLE 9
Mean ACC (%) Versus the Number of Underlying Basis Images

on FERET Face Dataset (TN=4)

r 50 70 90 100 120 140 160

DNBMF 67.38 73.38 75.88 75.42 75.08 74.63 74.88
(2.47) (1.70) (2.00) (2.64) (2.87) (2.18) (2.47)

RDNBMF 76.75 77.38 83.46 81.04 83.92 86.96 86.38
(1.50) (1.50) (1.13) (1.29) (0.77) (0.97) (1.22)

RDNNBMF77.5880.7181.2184.2182.7188.1786.00(1.10)(0.77)
(0.71)(0.96)(1.02)(0.73)(0.79)

TABLE 8
Mean ACC (%) Versus the Number of Underlying Basis Images

on Yale Face Dataset (TN=5)

r 40 50 60 70 80 90 100

DNBMF 80.22 82.11 84.56 83.00 83.22 81.11 78.67
(3.17) (3.80) (2.51) (3.48) (4.11) (4.47) (3.08)

RDNBMF 87.11 90.33 90.67 90.33 89.56 89.89 88.33
(2.86) (1.80) (1.94) (1.99) (1.59) (2.70) (2.73)

RDNNBMF 84.11 88.11 89.89 90.11 86.22 76.00 65.67
(4.39) (2.05) (3.80) (3.20) (6.96) (5.82) (2.19)

TABLE 10
Mean ACC (%) Versus the Number of Underlying Basis Images

on Stirling Face Dataset (TN=5)

r 40 60 80 100 120 140 160

DNBMF 46.21 53.18 51.29 51.44 50.76 50.00 50.08
(3.35) (1.82) (3.59) (4.75) (5.70) (4.05) (2.84)

RDNBMF 56.52 57.05 63.26 64.55 65.15 69.62 64.77
(1.63) (2.94) (1.86) (2.11) (2.85) (3.02) (3.07)

RDNNBMF 59.62 67.42 68.11 67.65 72.58 72.80 71.52
(2.01) (3.12) (3.66) (1.44) (1.62) (2.26) (1.70)
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a small range. The performance of the proposed algorithm
is relatively stable, and the proposed algorithm has better
stability when the parameter is within a certain range of
variation.

6.4 Analysis on the Basis Images

In order to observe the basis images obtained by the pro-
posed algorithms based on the UBIL intuitively, we present
the basis images learned by NMF, DSNMF and DNBMF,
RDNBMF and RDNNBMF, and make an intuitive compari-
son. The basis images learned by NMF, DSNMF and
DSNMF, DNBMF, and RDNBMF are shown in Figs. 8a, 8b,
8c, and 8d, and the basis images learned by the first layer of
RDNNBMF are shown in Fig. 8e. Fig. 8f shows the basis
images learned by the second layer of RDNNBMF.

It can be seen from Fig. 8a that the basis images obtained
by the NMF algorithm cannot clearly show the contour of
the face, and there is no obvious local feature. This is due to
the fact that only the shallow factorization is done in the
NMF algorithm and there is no special regularization con-
straint on the basis images matrix or the coefficient matrix.
Therefore, the obtained basis images are difficult to reflect
the local characteristics of the samples as a set of bases rep-
resenting the samples.

Although the base image extracted by the DSNMF algo-
rithm shown in Fig. 8b can clearly display the contour of the
face, the extracted local features are still not obvious. The
underlying basis images obtained by the proposed linear
algorithm DNBMF show a clearer face contour than NMF
and DSNMF. The more obvious local features of faces (such
as teeth, forehead, eyebrows, etc.) in Fig. 8c. Fig. 8d illus-
trates that the basis images extracted by the proposed linear
algorithm RDNBMF with the regularization constraint on
basis images has more prominent local characteristics than
the basis images extracted by DNBMF. Fig. 8e shows that
the characteristics of the basis images that has been factor-
ized by shallow factorization are not localized enough. The

basis images deep extracted by the proposed nonlinear
algorithm RDNNBMF shown in Fig. 8f have more accurate
face contours and can display more prominent features of
various parts of the face.

This experiment shows that the proposed deep NMF
algorithm architecture based on the UBIL can obtain the
basis images with more prominent local characteristics with
the help of the regularization constraints.

7 CONCLUSION

This paper proposes a novel deep NMF architecture based
on the UBIL and applies it to face recognition tasks. Because
the NMF-based algorithm uses the Moore-Penrose pseudo-
inverse of the basis images matrix to map the original sam-
ples and obtain new features of the sample, the basis images
matrix is very important in the NMF-based algorithm. The
proposed deep NMF architecture performs deep factoriza-
tion on the basis images matrix and obtains the underlying
basis images matrix which can reflect the local characteris-
tics of the samples. It can thusly obtain a more accurate
sample representation. There is a strong interpretability
that contains the actual meaning in the factorization pro-
cess of each layer. To implement the proposed deep NMF
algorithm based on the UBIL, this paper proposes three
algorithms. The linear algorithm DNBMF continuously fac-
torizes the basis images matrix until the underlying basis
images matrix is obtained. To make a large difference
between the factorized basis images in each layer, this paper
proposes the RDNBMF which adds a regularization term to
the objective function and directly constrains the basis
images matrix. Then a nonlinear RDNNBMF is proposed.
The RDNNBMF can adapt to the recognition problem with
more complex data and at the same time make the algo-
rithm conform to the idea that the human visual system
adopts a hierarchical and non-linear method when analyz-
ing images. In this paper, the convergence of the algorithm
is proved theoretically. Finally, the paper experiments on 6
public face data sets, namely FERET, ORL, AR, CMU, Stir-
ling and Yale databases. The three proposed algorithms are
compared with the other 10 currently popular algorithms.
The ACC, ROC curve and AUC values are used to verify
the performance of the three proposed algorithms based on
the proposed deep NMF architecture. Experimental results
show that the deep NMF algorithm performs better than the
shallow NMF algorithm. The deep NMF architecture based
on the UBIL proposed in this paper has better recognition
performance than the existing deep factorization architec-
ture based on the coefficient matrix. In addition, the under-
lying basis images obtained by the algorithm are analyzed.
It is observed that the deep NMF algorithm architecture
proposed in this paper can obtain the basis images with
more local features. In general, the algorithm based on the
proposed deep NMF architecture can obtain better recogni-
tion performance.

Due to the important role of the basis images in the NMF-
based algorithm, our future work will continue to focus on
the optimization constraints of the basis images matrix. In
addition, because the basis images of each class of samples
may be different, we will also continue our research on
supervised deep NMF algorithms based on UBIL.

Fig. 8. The basis images learned by NMF, DSNMF, DNBMF, RDNBMF,
and RDNNBMF.
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