
ar
X

iv
:1

81
0.

04
24

6v
2 

 [
cs

.L
G

] 
 1

5 
D

ec
 2

01
9

1

Deep clustering: On the link between
discriminative models and K-means

Mohammed Jabi, Marco Pedersoli, Amar Mitiche and Ismail Ben Ayed

Abstract—In the context of recent deep clustering studies, discriminative models dominate the literature and report the most

competitive performances. These models learn a deep discriminative neural network classifier in which the labels are latent. Typically,

they use multinomial logistic regression posteriors and parameter regularization, as is very common in supervised learning. It is

generally acknowledged that discriminative objective functions (e.g., those based on the mutual information or the KL divergence) are

more flexible than generative approaches (e.g., K-means) in the sense that they make fewer assumptions about the data distributions

and, typically, yield much better unsupervised deep learning results. On the surface, several recent discriminative models may seem

unrelated to K-means. This study shows that these models are, in fact, equivalent to K-means under mild conditions and common

posterior models and parameter regularization. We prove that, for the commonly used logistic regression posteriors, maximizing the L2

regularized mutual information via an approximate alternating direction method (ADM) is equivalent to minimizing a soft and

regularized K-means loss. Our theoretical analysis not only connects directly several recent state-of-the-art discriminative models to

K-means, but also leads to a new soft and regularized deep K-means algorithm, which yields competitive performance on several

image clustering benchmarks.

Index Terms—Deep Clustering, Convolutional Neural Networks, Alternating Direction Methods, K-means, Mutual Information,

Kullback–Leibler (KL) divergence, Regularization, Multilogit Regression.

✦

1 INTRODUCTION

ONE of the most fundamental unsupervised learning
problem, clustering aims at grouping data into cate-

gories. Obtaining meaningful categorical representations of
data without supervision is fundamental in a breadth of
applications of data analysis and visualization. With the
excessive amounts of high-dimensional data (e.g., images)
routinely collected everyday, the problem is currently at-
tracting substantial research interest, in both the learning
and computer vision communities.

Clustering performance heavily depends on the struc-
ture of the input data. Therefore, representation learning
methods, which encode the original data in feature spaces
where the grouping tasks become much easier, are widely
used in conjunction with clustering algorithms. Typically,
feature learning and clustering are performed sequentially
[1]. However, with the success of deep neural networks
(DNNs), a large number of recent studies, e.g., [2], [3], [4],
[5], [6], [7], [8], [9], investigated joint learning of feature
embedding (via DNNs) and estimation of latent cluster
assignments (or labels). Commonly, these recent models
are stated as the optimization of objective functions that
integrate two types of losses: (1) a clustering loss, which
depends on both latent cluster assignments and deep net-
work parameters and, (2) a reconstruction loss as a data-
dependent regularization, e.g., via an auto-encoder [4], to
prevent the embedding from over-fitting.

Clustering objectives fall into two main categories, gener-
ative, e.g., K-means and Gaussian Mixture Models [10], and
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discriminative, e.g., graph clustering clustering [11], [12],
[13] and information-theoretic models [14], [15]. Generative
objectives explicitly model the density of data points within
the clusters via likelihood functions, whereas discriminative
objectives learn the decision boundaries in-between clusters
via conditional probabilities (posteriors) over the labels
given the inputs. In the context of recent deep clustering
models, discriminative objectives dominate the literature
and report the most competitive performances [4], [5], [7],
[9]. For instance, [5], [7] learned deep discriminative neural
network classifiers that maximize the mutual information
(MI) between data inputs and latent labels (cluster assign-
ments), following much earlier MI-based clustering works
[14], [15]. In another very recent line of deep discrimi-
native clustering investigations, e.g., [4], [9], the problem
is addressed by introducing auxiliary target distributions,
which can be viewed as latent probabilistic point-to-cluster
assignments. Then, it is stated as the minimization of a
mixed-variable objective containing the Kullback-Leibler
(KL) divergence between these auxiliary targets and the pos-
teriors of a discriminative deep network classifier, typically
expressed as standard multilogit regression functions [4],
[14]. The minimization is carried out by alternating two sub-
steps, until convergence. The first sub-step fixes the network
parameters and optimizes the objective w.r.t the targets. The
second fixes target assignments, and optimizes the objective
w.r.t network parameters. Conveniently, this sub-step takes
the form of standard supervised classifiers, in which the
ground-truth labels are given by the latent auxiliary targets.
The KL divergence is used in conjunction with other terms,
to favor balanced partitions and to regularize model param-
eters.

Generative models were also investigated in the context
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of deep clustering [2], [3], [6]. For instance, in [2], [3], a DNN
is trained with a loss function that includes the standard
K-means clustering objective. However, in the literature, it
is commonly acknowledged that discriminative models are
more flexible in the sense that they make fewer assumptions
about data distributions and, typically, yield better unsuper-
vised learning results, e.g.,

“Generally it has been argued that the discriminative
models often have better results compared to their gen-
erative counterparts" [4]

“ . . . discriminative clustering techniques represent the
boundaries or distinctions between categories. Fewer
assumptions about the nature of categories are made,
making these methods powerful and flexible in real
world applications” [14]

Furthermore, the results reported in the literature suggest
that the performances of discriminative models are signifi-
cantly better. For instance, the DEPICT model in [4], which
is based on the KL-divergence between multilogit regression
posteriors and targets, reports a state-of-the-art performance
on MNIST nearly approaching supervised learning perfor-
mance. This discriminative model outperforms significantly
the K-means loss investigated recently in the deep clustering
model in [3], with 14% difference in accuracy; see Table
2. On the surface, the several recent discriminative models
based on either the MI or KL objectives, e.g., [4], [5], [7],
may seem completely unrelated to K-means. Our study
shows that they are, in fact, equivalent to K-means under
mild conditions and commonly used posterior models and
parameter regularization. The following lists the main con-
tributions of this work.

• For the commonly used logistic regression posteriors,
we prove that maximizing the L2 regularized mutual
information via an approximate alternating direction
method (ADM) is equivalent to a soft and regular-
ized K-means loss (Proposition 2).

• We establish the link between state-of-the-art KL-
based models, e.g., DEPICT [4], and the standard
mutual information objective [14], which is used in
a number recent deep clustering works [5], [7]. In
particular, we show that optimizing the KL objective,
in conjunction with a balancing term, can be viewed
as an approximate ADM solution for optimizing the
mutual information.

• We give theoretical results that connect directly sev-
eral recent discriminative formulations to K-means.
Furthermore, this leads to a new soft and regularized
version of deep K-means, which has approximately
the same competitive performances as state-of-the-
art discriminative algorithms on several benchmarks
(Table 2).

2 DEEP DISCRIMINATIVE CLUSTERING MODELS

Let X =
{

x1, . . . ,xN

}

be an unlabeled data set composed
of N samples, each of dimension dx, i.e., xi ∈ R

dx . The
purpose is to cluster the N samples into K categories
(clusters). The data samples are embedded into a feature
space Z =

{

z1, . . . , zN

}

using a mapping φW : X → Z ,
where W are learnable parameters and zi ∈ R

dz , with

dz << dx, i.e., the dimensionality of Z is much smaller
than X . In recent deep clustering models, as in [4], [7],
[9], for instance, the embedding function φW is learned
jointly with latent cluster assignments (or labels) using a
Deep Neural Network (DNN), in which case W denotes the
set of network parameters. These models are stated as the
optimization of an objective that integrates two types of loss
terms: (1) a clustering loss, which depends on both latent
cluster assignments and network parameters, and, (2) a re-
construction loss R(Z) as a data-dependent regularization,
e.g., via an auto-encoder [4], to prevent the embedding from
over-fitting. While all the recent deep clustering objectives
discussed in the following used a reconstruction loss, we
will focus only on the clustering losses in this section for the
sake of clarity; we will discuss a reconstruction loss in more
detail in section 5.

2.1 Mutual information

Following the works in [14], [15], maximizing the mutual
information between data inputs and latent cluster assign-
ments is commonly used in discriminative clustering. Also,
very recently, the concept is revisited in several deep cluster-
ing studies, e.g., [5], [7], which learned discriminative neural
network classifiers that maximize the mutual information
and obtained competitive performances. In general, the
problem amounts to maximizing the following clustering
loss:

I(X,K) = H(K)−H(K|X), (1)

where H(·) and H(·|·) are the entropy and conditional
entropy, respectively. K ∈ {1, . . . ,K} and X ∈ X denote
random variables for cluster assignments (latent labels) and
data samples, respectively. The objective is to learn a condi-
tional probability (posterior) over the labels given the input
data, which we denote pik . The marginal distribution of
labels can be estimated as follows [14]:

p̂k =
1

N

N
∑

i=1

pik (2)

Thus, the entropy terms appearing in the mutual informa-
tion can be expressed with the posteriors as follows [14]:

H(K) = −
K
∑

k=1

p̂k log
(

p̂k
)

(3)

H(K|X) = − 1

N

N
∑

i=1

K
∑

k=1

pik log
(

pik
)

(4)

Minimizing the conditional entropy of the posteriors,
H(K|X), inhibits the uncertainty associated to the assign-
ment of labels to each data point. Each point-wise condi-
tional entropy in the sum reaches its minimum when a
single label k has the maximum posterior for point i, i.e.,
pik = 1, whereas each of the other labels verifies pij =
0, j 6= k. In the semi-supervised setting, it is well known
that this conditional entropy models effectively the cluster
assumption [16]: The decision boundaries of the discrimina-
tive model should not occur at dense regions of the inputs.
However, using this term alone in the unsupervised setting
yields degenerate solutions, in which decision boundaries
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are removed [14]. Maximizing the entropy of the marginal
distribution of labels, H(K), avoids degenerate solutions as
it biases the results towards balanced partitions1.

Finally, one has to choose a parametric model for posteri-
ors pik, e.g., the widely used multilogit regression function
[4], [14]:

pik ∝ exp(θT
k zi + bk), (5)

where O = {θ1, . . . , θK , b1, . . . , bK} is the set of weight
vectors θk and bias values bk for each cluster k. We note
here that pik is also related to the DNN parameters W ,
i.e., pik ≡ pik(θk, bk,W), since zi = φW(xi). In the
reminder of the paper, we will use probability-simplex
vectors pi ∈ [0, 1]K to denote (pi1, . . . , piK)t and matrix
P = (pi1, . . . ,piK) ∈ [0, 1]K×N to denote the posteriors of
all data points. To simplify the notation, we will omit the
explicit dependence of posteriors pik on model parameters
{O,W}.

2.2 The KL divergence and auxiliary targets

In another very recent line of deep discriminative clustering
investigations, e.g., [4], [9], the problem is stated by intro-
ducing auxiliary target distributions qi = (qi1, . . . , qiK)t ∈
[0, 1]K , which are latent probabilistic point-to-cluster assign-
ments within the simplex. Then, the problem is formulated
as the minimization the KL divergences between these aux-
iliary targets and the posteriors of a discrimintaive deep
network classifier, which we denote pi, as earlier in the
case of the mutual information. Conveniently, in this case,
the sub-problem of optimizing w.r.t the network parameters
takes the form of a standard supervised classifier, in which
the ground truth labels are given by the auxiliary targets.
For instance, the recent state-of-the-art model in [4], referred
to as DEPICT, follows from minimizing the KL divergence
and a term that encourages balanced cluster assignments,
subject to simplex constraints:

min
Φ,Q

KL(Q‖P ) + γ
K
∑

k=1

q̂k log
(

q̂k
)

s.t. qt
i1 = 1; qi ≥ 0 ∀i (6)

where matrix Q = (qi1, . . . , qiK) ∈ [0, 1]K×N contains the
targets for all points, Φ = {O,W} and q̂k = 1

N

∑N
i=1 qik is

the empirical distribution of the target assignments. The KL
divergence is defined as:

KL(Q‖P ) =
1

N

N
∑

i=1

K
∑

k=1

qik log
( qik
pik

)

. (7)

The model in (6) depends on two different types of variables:
auxiliary targets Q and classifier parameters Φ. Therefore, it
is solved by alternating two sub-steps, until convergence:

1. Notice that H(K) is equal up to an additive constant to the
Kullback-Leiber (KL) divergence between the label distribution and
the uniform distribution: KL((p̂k, k = 1, . . . ,K)‖(ûk , k = 1, . . . , K)),
with ûk = 1/K ∀k. Also, note that it is possible to encourage label
distribution p̂k to match any prior distribution d̂k , not necessarily
uniform, simply by using KL((p̂k , k = 1, . . . ,K)‖(d̂k , k = 1, . . . , K)
[5], [14].

• Parameter-learning step: This step fixes target as-
signments Q and optimizes (6) w.r.t network param-
eters Φ. Notice that, ignoring constant terms, this
sub-step becomes equivalent to a cross-entropy loss,
exactly as in standard supervised classifiers, with
ground-truth labels given by fixed targets Q:

min
Φ

− 1

N

N
∑

i=1

K
∑

k=1

qik log pik (8)

• Target-estimation step: This sub-step finds the target
variable Q that minimizes (6), with the network
parameters fixed. Setting the approximated gradient
equal to zero, it is easy to show that the optimal
solution is given by [4]:

qik ∝
pik

(

∑N
i′=1 pi′k

)1/2
(9)

The above algorithm alternates two steps until con-
vergence: (1) updates of network parameters Φ via back-
propagation and stochastic gradient descent (SGD) corre-
sponding to the standard cross-entropy loss; and (2) updates
of target assignments qik , according to closed-form solution
(9). While a direct maximization of the MI is based on SGD
solely, this alternating scheme has an additional computa-
tional load of O(NK), which comes from target-variable
updates in (9). The computational load associated with
updates (9) is marginal in comparison to the load associated
with SGD network training. In practice, the training time as-
sociated with this alternating ADM scheme is approximately
of the same order as a direct SGD maximization of the MI.

The following proposition establishes the link between
the state-of-the-art DEPICT model in (6), which was intro-
duced recently in [4], and the standard mutual information
objective in (1), which was used in a number of other recent
deep clustering works [5], [7].

Proposition 1. Alternating steps (8) and (9) for optimizing
mixed-variable objective (6) can be viewed as an approximate
Alternating Direction Method (ADM)2 [17] for maximizing the
mutual information I(X,K) in (1) via the following constrained
decomposition of the problem:

max
Φ,Q

1

N

N
∑

i=1

K
∑

k=1

qik log(pik)−
K
∑

k=1

q̂k log
(

q̂k
)

s.t. Q = P ; qt
i1 = 1; qi ≥ 0 ∀i (10)

Proof. It is easy to see that equality-constrained problem
(10) is an ADM decomposition of the mutual information
maximization in (1). Notice that, when constraint Q = P

is satisfied, one can replace each auxiliary target qik in the
objective of (10) by posterior pik, which yields exactly the
mutual information in (1):

I(X,K) = 1

N

N
∑

i=1

K
∑

k=1

pik log(pik)−
K
∑

k=1

p̂k log
(

p̂k
)

(11)

2. The most basic form of the ADM approach transforms a single-
variable problem of the form minx u(x) + v(x) into a constrained two-
variable problem of the form maxx,y u(x) + v(y) s.t. x = y. This
splits the original problem into two easier sub-problems, alternating
optimization over variables x and y.
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Rather than optimizing directly mutual information (11)
with respect to the parameters of posteriors P , ADM splits
the problem into two sub-problems by introducing auxiliary
variable Q and enforcing Q = P . Now, notice that one can
solve constrained problem (10) with a penalty approach. This
replaces constraint Q = P by adding a term to the objective,
which penalizes some divergence between Q and P , e.g.,
KL3:

max
Φ,Q

1

N

N
∑

i=1

K
∑

k=1

qik log(pik)−
K
∑

k=1

q̂k log
(

q̂k
)

− KL(Q‖P )

s.t. qt
i1 = 1; qi ≥ 0 ∀i (12)

This is closely related to the principle of ADMM (Alter-
nating Direction Method of Multipliers) [17], except that KL
is not a typical choice for a penalty to replace the equality
constraints. Typically, ADMM methods use multiplier-based
quadratic penalties for enforcing the equality constraint
(also referred to as augmented Lagrangian). We will discuss
more details on maximizing the MI directly or via an alter-
nating direction method in Sections 4 and 5. Furthermore,
we will discuss the standard approach based on multiplier-
based quadratic penalties and its link to the KL penalties for
simplex variables.

Using expression (7) of KL in the objective of (12), and
after some manipulations, we can show that the problem in
(12) is equivalent to:

min
Φ,Q

KL(Q‖P ) +
1

2

K
∑

k=1

q̂k log
(

q̂k
)

+
1

2
H(Q)

s.t. qt
i1 = 1; qi ≥ 0 ∀i (13)

where H(Q) = − 1
N

∑N
i=1

∑K
k=1 qik log(qik) is the entropy of

auxiliary variable Q. Notice that the first two terms in (13)
correspond to the DEPICT model in (6) for γ = 1/2. The last
term H(Q) encourages peaked auxiliary distributions qi =
(qi1, . . . , qiK). Each point-wise entropy in the sum reaches
its minimum at one vertex of the simplex: a single label k
has the maximum target variable for point i, i.e., qik = 1,
whereas each of the other variables verifies qij = 0, j 6= k.
Term H(Q) is close to zero near the vertices of the simplex
(peaked distributions qi). Therefore, the mutual information
objective we obtained in model (13), which we refer to as MI-
ADM, can be viewed as an approximation of the DEPICT
model in (6). In fact, as we will see in our experiments, the
additional entropy term in (13), H(Q), has almost no effect
on the results: DEPICT and MI-ADM have approximately
the same performances; see Table 2.

With the model parameters fixed, setting the approxi-
mated gradient of (13) w.r.t the target variables equal to zero,
we obtain the following updates:

qik ∝
p2ik

(

∑N
i′=1 p

2
i′k

)1/2
(14)

Notice that these updates are slightly different from the
DEPICT updates in (9), due to additional entropy term

3. KL is non-negative and is equal to zero if and only if the two
distributions are equal.

H(Q). It is worth noting that the recent deep discrimintaive
clustering algorithm in [9] updated qik as follows:

qik ∝
p2ik

(

∑N
i′=1 pi′k

) (15)

This expression was found experimentally, and was not based
on a formal statement of the problem.

3 DEEP K-MEANS

The standard generative K-means objective, integrated with
a reconstruction loss, was recently investigated in the con-
text of deep clustering [3], [18]. In this case, a DNN is
trained with a loss function that includes the classical K-
means clustering objective, which takes the following form:

N
∑

i=1

K
∑

k=1

sik‖zi − µk‖2 s.t.
K
∑

k=1

sik = 1; si,k ∈ {0, 1} ∀i, k

(16)

where µk is the cluster prototype (mean of features zi)
and sik is a binary integer variable for assigning data
point i to cluster k: sik = 1 when point i is assigned to
cluster k, and sik = 0 otherwise. Similarly to earlier, zi

denotes features that are learned jointly with clustering via
an additional reconstruction loss R(Z). On the surface, the
discriminative mutual information objective in Eq. (11) and
its ADM approximation in the DEPICT model in Eq. (6)
may seem completely different from the K-means loss in
(16). The following proposition shows that they are, in fact,
equivalent under mild conditions.

Proposition 2. For balanced partitions and multiclass logistic
regression posteriors of the form in (5), ADM maximization of a
regularized mutual information defined by

I(X,K)− λ
K
∑

k=1

θT
k θk, (17)

is equivalent to the minimization of the following regularized
soft K-means loss function4:

N
∑

i=1

K
∑

k=1

qik‖zi − θ
′
k‖2 + λK

N
∑

i=1

K
∑

k=1

qik log(qik)−
N
∑

i=1

zT
i zi,

(18)

where λ ∈ R is the regularization parameter and θ′
k is a soft

cluster prototype (mean) defined by:

θ′
k =

∑N
i=1 qikzi

∑N
i=1 qik

. (19)

The function including the first two terms in (18) can
be viewed as a soft K-means objective. The first term cor-
responds exactly to (16), except that the integer constraints
on assignment variables are relaxed: sik ∈ {0, 1} are hard
assignments (vertices of the simplex) whereas qik ∈ [0, 1] are
soft assignments (within the simplex). The second term in
(18) is a negative entropy, which favors assignment softness.

4. We omitted simplex constraints q
t
i1 = 1 and qi ≥ 0 ∀i in both

Eqs. (17) and (18). This simplifies the presentation without causing any
ambiguity.
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It reaches its maximum and vanishes (i.e., becomes equal
to zero) for hard binary assignments qi,k ∈ {0, 1}: at the
vertices of the simplex, the function including the first two
terms in (18) becomes exactly the hard K-means objective
in (16). It is also worth noting that optimizing this soft K-
means objective, with features zi fixed, yields softmin K-
means updates that are known in the literature; see [19, p.
289].

Proof. Consider the ADM approximation of the mutual in-
formation in Eq. (12), augmented with regularization term

λ
∑K

k=1 θ
T
k θk. Using this approximation, along with the

expression of KL in (7), it is easy to see that maximizing
the regularized mutual information in (17) can be stated as
minimizing the following expression:

K
∑

k=1

q̂k log
(

q̂k
)

− 1

N

N
∑

i=1

K
∑

k=1

qik log
(

pik
)

+
1

N

N
∑

i=1

K
∑

k=1

qik log
( qik
pik

)

+ λ
K
∑

k=1

θ
T
k θk (20)

=
K
∑

k=1

q̂k log
(

q̂k
)

+
1

N

N
∑

i=1

K
∑

k=1

qik log
(

qik
)

− 2

N

N
∑

i=1

K
∑

k=1

qik log
(

exp(θT
k zi + bk)

)

+ λ
K
∑

k=1

θT
k θk (21)

=
K
∑

k=1

q̂k log
(

q̂k
)

+
1

N

N
∑

i=1

K
∑

k=1

qik log
(

qik
)

− 2

N

N
∑

i=1

K
∑

k=1

qikbk +
1

N

[

N
∑

i=1

K
∑

k=1

−2qikθ
T
k zi

+Nλ
K
∑

k=1

θT
k θk

]

, (22)

where we replaced pik by its expression in Eq. (5). We recall
that, in Eq. (5), bk is the bias for cluster k.

Notice that the first term in the expression above is
the negative entropy of the marginal distribution of labels.
Minimization of this term prefers balanced partitions and,
in fact, its global minimum is attained for a clustering
verifying q̂k = 1

K ∀k. Now, assuming that the empirical
label distribution is approximately uniform, i.e., q̂k ≈ 1

K ,
we show in the Appendix that:

N
∑

i=1

K
∑

k=1

−2qikθ
T
k zi +Nλ

K
∑

k=1

θT
k θk ≈

N
∑

i=1

K
∑

k=1

qik‖
1√
λK

zi −
√
λKθk‖2 −

1

λK

N
∑

i=1

zT
i zi. (23)

Using (23), we obtain the following approximation of the

regularized mutual information in (22):

1

N

N
∑

i=1

K
∑

k=1

qik log q̂k −
2

N

N
∑

i=1

K
∑

k=1

qikbk

+
1

N

N
∑

i=1

K
∑

k=1

qik log
(

qik
)

− 1

NλK

N
∑

i=1

zT
i zi

+
1

N

N
∑

i=1

K
∑

k=1

qik‖
1√
λK

zi −
√
λKθk‖2 (24)

= KL
(

q̂k‖ exp(2bk)
)

+
1

N

N
∑

i=1

K
∑

k=1

qik log(qik)

− 1

NλK

N
∑

i=1

zT
i zi +

1

NλK

N
∑

i=1

K
∑

k=1

qik‖zi − θ′
k‖2, (25)

where θ′
k = λKθk. Notice that we re-wrote the first two

terms in (24) in the form of a KL divergence. The con-
venience of this will soon become clear. The optimization
problem we obtained in (25) can be solved by alternating
optimization w.r.t assignments qi,k, parameters θ′

k and bi-

ases bk. Since KL
(

q̂k‖ exp(2bk)
)

≥ 0 and is equal to 0 if

and only the distributions are equal, the optimal bk can be
expressed in closed-form as:

exp(2bk) = q̂k ⇐⇒ bk =
1

2
log

(

q̂k
)

. (26)

Substituting these optimal biases back into (25), the KL term
vanishes and (25) becomes equivalent to the regularized soft
K-means in (18).

We refer to the soft and regularized K-means objective
in (18) as SR-K-means. Using this objective jointly with
a reconstruction loss, the problem amounts to alternating
optimization w.r.t Q, {θ′

1, . . . , θ
′
K} and network parameters

W . Setting the partial derivatives of (18) with respect to θ
′
k

and qik equals to zero, we obtain the corresponding optima
in closed form as:

θ′
k =

∑N
i=1 qikzi

∑N
i=1 qik

, (27)

and

qik ∝ exp
(

− 1

λK

w

w

wzi − θ′
k

w

w

w

2)

(28)

These updates clearly correspond to the well-known gener-
ative K-means algorithm. Eq. (28) uses a softmin function: it
is a soft version of the standard hard (binary) assignments

rule of K-means: qik = 1 if k = argminl

w

w

wzi− θ′
l

w

w

w. Such soft

K-means updates are known in the literature; see [19, p. 289].
Also, Eq. (27) is clearly a soft version of the mean updates
in the standard K-means. Notice that, here, the θ-updates
are in closed-form, unlike earlier for discriminative models
DEPICT and MI-ADM, in which θ-updates are performed
within network training via stochastic gradient descent. It is

also worth noting that balancing term
∑K

k=1 q̂k log
(

q̂k
)

has

disappeared from our formulation in (18) due to (26). This
makes sense because it is well known that K-means has an
implicit bias towards balanced partitions [20].
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4 PROPERTIES OF ADM OPTIMIZATION FOR THE

MUTUAL INFORMATION

In this section, we prove that I(X,K) does not decrease at
each two-step iteration of the ADM optimization in (12),
which can be viewed as a bound maximization5 of the mutual
information. We will also discuss the standard constrained-
optimization approach based on multiplier-based quadratic
penalties and its link to the KL penalties for simplex vari-
ables.

4.1 Bound-optimization interpretation

Let I(t)(X,K) denotes the MI at iteration t, i.e.,

I(t)(X,K) ,
1

N

N
∑

i=1

K
∑

k=1

p
(t)
ik log(p

(t)
ik )−

K
∑

k=1

p̂
(t)
k log

(

p̂
(t)
k

)

.

(29)

Proposition 3. I(t)(X,K) is a non-deceasing function of itera-
tion counter t for the two-step mixed-variable ADM optimization
in (12).

Proof. Given the network parameter at time t or, equiva-

lently, the resulting posteriors P (t), the target estimation
step at time t explicitly implies:

1

N

N
∑

i=1

K
∑

k=1

q
(t)
ik log(p

(t)
ik )−

K
∑

k=1

q̂
(t)
k log

(

q̂
(t)
k

)

− KL(Q(t)‖P (t))

≥ 1

N

N
∑

i=1

K
∑

k=1

qik log(p
(t)
ik )−

K
∑

k=1

q̂k log
(

q̂k
)

− KL(Q‖P (t)),

(30)

for all Q. Applying (30) to Q = P (t), we have the following
upper bound on the mutual information at iteration t:

1

N

N
∑

i=1

K
∑

k=1

q
(t)
ik log(p

(t)
ik )−

K
∑

k=1

q̂
(t)
k log

(

q̂
(t)
k

)

− KL(Q(t)‖P (t))

≥ I(t)(X,K). (31)

Using the estimated Q(t), the parameter-learning step at
time t+ 1 implies:

1

N

N
∑

i=1

K
∑

k=1

q
(t)
ik log(p

(t+1)
ik )−

K
∑

k=1

q̂
(t)
k log

(

q̂
(t)
k

)

− KL(Q(t)‖P (t+1))

≥ 1

N

N
∑

i=1

K
∑

k=1

q
(t)
ik log(pik)−

K
∑

k=1

q̂
(t)
k log

(

q̂
(t)
k

)

− KL(Q(t)‖P ), (32)

5. Bound optimization, also known as MM (Minorize-Maximization)
framework [21], [22], is a general principle, which updates the current
solution to the next as the optimum of an auxiliary function (a tight
lower bound on the original objective). This guarantees that the original
objective function we want to maximize does not decrease at each
iteration. The principle is widely used in machine learning as one trades
a difficult optimization problem with a sequence of easier sub-problems
[22]. Examples of well-known bound optimizers include expectation
maximization (EM) algorithms, the concave-convex procedure (CCCP)
[23] and submodular-supermodular procedures (SSP) [24], among oth-
ers.

for all P . Applying inequality (32) to P = P (t), and combin-
ing the result with inequality (31), we obtain the following
upper bound on the mutual information at iteration t:

1

N

N
∑

i=1

K
∑

k=1

q
(t)
ik log(p

(t+1)
ik )−

K
∑

k=1

q̂
(t)
k log

(

q̂
(t)
k

)

− KL(Q(t)‖P (t+1)) ≥ I(t)(X,K). (33)

Finally, using the fact that P (t+1) = Q(t), (33) can be
rewritten as:

I(t+1)(X,K) ≥ I(t)(X,K), (34)

which terminates the proof.

It is worth noting that the generative SR-Kmeans pro-
cedure discussed earlier can also be viewed as a bound
optimizer for the mutual information in Eq. (17), but it uses a
bound (auxiliary function) different from the discriminative
ADM procedure. In the discriminative ADM procedure, we
optimizes directly Eq. (20), with the assignment-variable
updates derived from setting the approximate gradient of
Eq. (20) with respect to assignment variables qik equal
to zero. In the generative SR-Kmeans procedure, we still
optimize (20) with respect to qik, but in an indirect way
using the equivalent K-means objective in Eq. (18) and
a two-step process: one step updating cluster prototypes
(means) with Eq. (19) and the other updating assignment
variables. In fact, for the standard K-means procedure, one
can show that this two-step process with prototype updates
is a bound optimization6; See, for instance, Theorem 1 in
[12]. Therefore, as optimizing the ADM version in Eq. (20) is
a bound optimizer for the mutual information (Proposition
3), the SR-Kmeans procedure can also be viewed as a bound
optimizer for the mutual information, but with a different
auxiliary function, as it uses a prototype-based bound on
Eq. (20).

4.2 Other optimization alternatives and the link be-

tween KL and quadratic penalties for simplex variables

In this section, we discuss other alternatives for solving
constrained optimization problem (10). In fact, the stan-
dard alternating direction method of multipliers (ADMM)
method [25] solves (10) iteratively via the following updates:

Φ(t+1) = argmax
Φ

L
(

Φ,Q(t), {λ(t)
i,k}

1≤k≤K
1≤i≤N , ρ

)

, (35)

Q(t+1) = argmax
Q

L
(

Φ(t+1),Q, {λ(t)
i,k}

1≤k≤K
1≤i≤N , ρ

)

, (36)

λ
(t+1)
i,k = λ

(t)
i,k + ρ · (qik − pik), 1 ≤ i ≤ N, 1 ≤ k ≤ K,

(37)

6. The prototype updates correspond to building a bound (auxiliary
function) on high-order K-means objective expressed solely as a func-
tion of the assignment variables (i.e., the prototypes in the K-means
objective are expressed with assignment variables).
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where ρ > is called the penalty parameter, {λi,k}1≤k≤K
1≤i≤N

are the Lagrange multipliers and L is the augmented La-
grangian function defined as:

L
(

Φ,Q, {λi,k}1≤k≤K
1≤i≤N , ρ

)

=
1

N

N
∑

i=1

K
∑

k=1

qik log(pik)

−
K
∑

k=1

q̂k log
(

q̂k
)

−
N
∑

i=1

K
∑

k=1

λi,k

(

qik − pik
)

− ρ

2
‖Q− P ‖22

(38)

In (38), equality constraint Q = P is handled via a
multiplier-based quadratic penalty, i.e., the last two terms
in (38). The use of the KL penalty has important computa-
tional advantages over this standard augmented Lagrangian
formulation. First, it is not straightforward to solve (36)
analytically by setting to zero the partial derivative of L,
which is given by:

∂L
(

Φ(t+1),Q, {λ(t)
i,k}

1≤k≤K
1≤i≤N , ρ

)

∂qik
=

1

N
log

(

p
(t+1)
ik

)

− log
( 1

N

N
∑

i=1

qik
)

− 1

N
− λ

(t)
i,k − ρ · (qik − p

(t+1)
ik ) (39)

Here, a numerical method, with additional inner iterations,
might be needed. We can use a faster, penalty-based version
of (38) by removing the Lagrange-multiplier term (third
term). This removes point-wise multiplier updates (37), but
the quadratic penalty would still require inner iterations
for solving (36). Second, while quadratic penalties are more
standard in the general context of constrained optimization,
the KL penalty we have in (12) has important computa-
tional advantages in the case of simplex constraints. In
fact, the KL penalty in (12) has a negative-entropy barrier
term, which completely removes extra Lagrangian-dual iter-
ations/projections to handle simplex constraints qt

i1 = 1
and qi ≥ 0 ∀i. Such a barrier forces each assignment
variable to be non-negative, which removes the need for
extra dual variables for constraints qi ≥ 0, and conve-
niently yields closed-form updates for the dual variables of
constraints qt

i1 = 1. These computational advantages over
quadratic penalties are important, more so when dealing
with large data sets. It is worth noting that, for dealing
with simplex constraints, KL-based penalties are common
in the context of Bregman-proximal optimization [26], with
established computational and memory advantages over
quadratic penalties [26]. However, to our knowledge, they
are less common in the clustering literature.

Moreover, for simplex variables, there is an interesting
link between KL and quadratic penalties, which comes
directly from the Pinsker’s inequality [27]. In fact, For any P

and Q containing probability simplex vectors, Pinsker’s in-
equality states that the quadratic penalty is upper-bounded
by KL (up to a multiplicative constant):

‖Q− P ‖22 ≤ 2KL(Q‖P ) (40)

Therefore, for simplex variables, minimizing KL corre-
sponds also to minimizing an upper bound on the quadratic
penalty.

5 EXPERIMENTS

5.1 Reconstruction loss and implementation details

We adopted the reconstruction loss and DNN architecture
proposed recently in [4] for our experiments. The architec-
ture consists of a multi-layer convolutional denoising auto-
encoder with stridded convolutional layers in the decoder
part. It is composed of three components:

• A corrupted encoder, which maps the noisy input
into the embedding space. The output of each noisy
encoder layer is given by:

ẑ
l = Dropout

(

g
(

W
l
eẑ

l−1)
)

, (41)

where Dropout(·) is a stochastic mapping that ran-
domly sets a portion of its inputs to zero [28], g is
the activation function and W

l
e denotes the weights

of the l-th encoder. L denotes the depth of the auto-
encoder.

• A clean decoder, which follows the corrupted en-
coder. The reconstruction of each layer is defined as:

z̃l−1 = g
(

W
l
dz̃

l−1
)

(42)

where W
l
d are the weights of the l-th decoder layer.

• A clean encoder, which has the same weights as the
corrupted one, i.e., the output of the l-th layer is
expressed as:

zl = W
l
e(z

l−1) (43)

We used the rectified linear units (ReLUs) [29] as activation
functions. For further details on the architecture, refer to [4,
Sec. 3.2]. We note that the adopted architecture is similar to
the Ladder network [30], where the clean pathway is used
for prediction while the corrupted one guaranties that the
network is noise-invariant.

As in [4], and in order to avoid over-fitting, we add a
reconstruction loss function to our objectives MI-ADM in
Eq. (13) and in Eq. (18):

R(Z) =
1

N

N
∑

i=1

L−1
∑

l=0

1

|zl
i|
‖zl

i − z̃l
i‖2, (44)

where |zl
i| is the output size of the l-th layer. In the ex-

periments described below, MI-ADM refers to the process
that alternates the target updates of Eq. (14) with learning
network parameters that optimize the following loss:

min
Φ

− 1

N

N
∑

i=1

K
∑

k=1

qik log pik +R(Z) (45)

SR-K-means refer to the process that alternates the soft K-
means updates in Eqs. (27) and (28) and learning network
parameters that optimize the following loss:

min
W

1

NλK

N
∑

i=1

K
∑

k=1

qik‖zi − θ′
k‖2 −

1

NλK

N
∑

i=1

zT
i zi +R(Z)

(46)

Note that the deep network parameters W are firstly ini-
tialized considering the auto-encoder only [4], [9], [31]:
minΦ R(Z). Then the initial features are clustered via
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soft K-means to obtain the initial targets Q. Regarding the
optimization method and hyper-parameter selection, we
use the ones adopted in [4], except for new regulariza-
tion parameter λ, which we introduced in (17). Namely,
as stochastic optimizer, we adopt Adam [32] with default
parameters β1 = 0.9, β2 = 0.999 and ǫ = 1e−8. We initialize
weights using Xavier approach [31]. The mini-batch size,
learning rate and dropout parameter are set to 100, 1e−3

and 0.1, respectively. Regarding λ, as models (1) and (17)
become equivalent when λ → 0, we tested the values 10i,
i = −1, . . . ,−5. We found that λ = 10−4 yields the best
performance for model (17).

5.2 Results

5.2.1 Data sets

In order to confirm the theoretical link in Proposition 2
between discriminative model MI-ADM in (13) and gen-
erative model SR-K-means in (18), we evaluated them on
two handwriting datasets (USPS and MNIST) and three face
datasets (Youtube-Face, CMU-PIE and FRGG [8]). Table 1
presents a summary of the statistics of the data sets.

5.2.2 Performance metrics

We adopt two standard unsupervised evaluation metrics:
the accuracy (ACC) and the normalized mutual informa-
tion (NMI). ACC captures the best matching between the
unsupervised clustering results and the ground truth [33].
NMI translates the similarity between pairs of clusters, and
is invariant w.r.t permutations [34].

5.2.3 Evaluation of clustering algorithms

Table 1 reports the results7 of discriminative model MI-
ADM in (13) and generative model SR-K-means in (18).
We also include the results of several related models: (1)
the DEPICT model [4] based on KL and logistic regression
posteriors, which achieves a state-of-the-art performance on
MNIST; (2) DEC [9], also a KL-based approach assuming
t-distribution between embedded points and cluster proto-
types; and DCN [3], which optimizes a loss containing a
hard K-means term and a reconstruction term.

The numerical results show that MI-ADM and SR-K-
means algorithms may yield comparable results even for un-
balanced data sets, e.g., YTF. We recall here that our analysis
was done assuming the clusters are balanced. Also, notice
that MI-ADM and DEPICT have approximately the same
performance, confirming our earlier discussion: MI-ADM in
(13) can be viewed as an approximation of DEPICT in (6).
The additional entropy term in (13), H(Q), has almost no
effect on the results. Finally, notice the substantial difference
in performance (11%) between our regularized and soft K-
means and DCN [3], which is based on a hard K-means loss.

5.2.4 Direct maximization of the mutual information

In this section, we report the clustering results when mutual
information I(X,K) is maximized directly, as proposed in
[5], [14], [15], which is different from the two-step ADM
approach in (9) & (8). This amounts to solving directly the

7. Our code is publicly available at:
https://github.com/MOhammedJAbi/SoftKMeans
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Fig. 1: Evolution of the MI, I(X,K), during the iterations of
MI-ADM and MI-D algorithms for the FRGC data set.

following optimization problem via SGD: maxΦ I(X,K).
We refer to such direct maximization as MI-D, and report
the results8 in Table (3). As we can see, while the results
of the two algorithms are practically the same for the
majority of considered datasets, the MI-ADM optimizer
outperforms MI-D on FRGC and CMU-PIE in terms of
performance measures NMI and ACC. Regarding optimiza-
tion performance, MI-ADM converges to a local optimum
that is “better” than the one obtained with MI-D on the
FRGC data set, but this is not the case for MNIST, for
instance, where both methods converge approximately to
the same solution. Our results may not be enough to claim
that MI-ADM is a better optimizer than MI-D, in general,
as none of the two optimization methods (MI-ADM and
MI-D) provides optimality guarantee or bounds for highly
non-convex problems involving deep networks. However,
our results are consistent with recent optimization works,
e.g., [35], [36], which showed that variants of ADMM could
be effective alternatives to SGD for supervised deep learning
problems. Those differences in optimization performances
do not provide a full explanation of the fact that MI-ADM
outperforms MI-D on FRGC and CMU-PIE. In fact, to the
best of our knowledge, there is no rigorous quantification
of how maximizing the mutual information, i.e., I(X,K),
which is computed based on the predictions, is maximizing
the commonly used performance metrics, i.e., the accuracy
(ACC) and normalized mutual information (NMI), which
are both computed based on the true ground-truth labels,
for unsupervised clustering problems.

Finally, notice that Fig. 1 confirms Proposition 3 experi-
mentally, i.e. the MI does not increase during the iterations
of KL-based ADM, similarly to a direct SGD maximization.
We used the FRGC data set for this plot as a typical example,
but the MI evolution during the iterations of MI-ADM
follows the same form for the remaining data sets.

8. Again, here, and as done for MI-ADM and SR-K-means, we added
the reconstruction term when learning the network parameters, i.e., we
solve minΦ −I(X,K) +R(Z) in MI-D.

https://github.com/MOhammedJAbi/SoftKMeans
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TABLE 1: Description of the datasets

Dataset # Samples # Classes #Dimensions % of smallest class % of largest class

USPS 11000 10 1× 16× 16 10 % 10 %
MNIST-test 10000 10 1× 28× 28 8.92 % 11.35 %
MNIST-full 79000 10 1× 28× 28 9.01 % 11.25 %
Youtube-Face (YTF) 10000 41 3× 55× 55 0.31 % 6.94 %
CMU-PIE 2856 68 1× 32× 32 1.47 % 1.47 %
FRGC 2462 20 3× 32× 32 0.24% 10.51 %

TABLE 2: Comparison of clustering algorithms on four date sets based on accuracy and normalized mutual information.
The results of SR-K-means algorithm are obtained using λ = 10−4. (-), (*), (†) stands for “not reported” and “reported" in
[3] and [4], respectively.

Dataset USPS MNIST-test MNIST-full YTF CMU-PIE FRGC

NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

MI-ADM 0.948 0.979 0.885 0.871 0.922 0.969 0.801 0.606 0.965 0.858 0.580 0.431
SR-K-means 0.936 0.974 0.873 0.863 0.866 0.939 0.806 0.605 0.945 0.902 0.487 0.413
DEPICT [4] 0.945 0.978 0.886 0.872 0.925 0.971 0.802 0.611 0.964 0.850 0.583 0.432
DCN (K-means based) [3] - - - - 0.81∗ 0.83∗ - - - - - -
DEC (KL based) [9] 0.586† 0.619† 0.827† 0.859† 0.816† 0.844† 0.446† 0.371† 0.924† 0.801† 0.505† 0.378†

TABLE 3: Comparison of MI-ADM and MI-D on four datasets (accuracy and normalized mutual information).

Dataset USPS MNIST-test MNIST-full YTF CMU-PIE FRGC

NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

MI-ADM 0.948 0.979 0.885 0.871 0.922 0.969 0.801 0.606 0.965 0.858 0.580 0.431
MI-D 0.948 0.979 0.880 0.867 0.921 0.967 0.800 0.616 0.867 0.705 0.444 0.322

6 CONCLUSION

We showed that several prevalent state-of-the-art models
for deep clustering are equivalent to K-means under mild
conditions and commonly used posterior models and pa-
rameter regularization. We proved that, for the standard lo-
gistic regression posteriors, maximizing the L2 regularized
mutual information via the alternating direction method
(ADM) is equivalent to a soft and regularized K-means
loss. Our theoretical analysis not only connected directly
several recent discriminative models to K-means, but also
led to a new soft and regularized deep K-means algorithm,
which gave competitive results on several image cluster-
ing benchmarks. Furthermore, our result suggests several
interesting extensions for future works. For instance, it is
well known that simple parametric prototypes such as the
means, as in K-means, may not be good representatives
of manifold-structured and high-dimensional inputs such
as images. Investigating other prototype-based objectives
such as K-modes [37] may provide better representatives of
the data. Also, for manifold-structured inputs, investigating
pairwise clustering objectives such as normalized cut [38],
in conjunction with reconstruction losses, might be more ap-
propriate for deep image clustering. Namely, it is interesting
to see how using the loss function of the aforementioned
algorithms, e.g., [37, Eq. (1)] and [38, Eq. (3)], instead of the
K-means components in (46), will affect the results. Also, it
is worthy to investigate a possible link between MI and the
loss functions of those algorithms.

As a final comment, we add here the KL divergence to
enforce constraint Q = P when going from (10) to (12). As a
a future work, it will be interesting to analyze the optimality
and convergence of MI-ADM if different distance measures,

e.g., Bhattacharyya measures family [39], and penalty meth-
ods for constrained optimization, e.g., generalized quadratic
penalty [40], are adopted.

APPENDIX A

This appendix derives the approximation in (23). Assuming
that the empirical label distribution is approximately uni-

form, i.e., q̂k = 1
N

∑N
i=1 qik ≈ 1

K ⇐⇒ K
N

∑N
i=1 qik ≈ 1 ∀k,
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we have

N
∑

i=1

K
∑

k=1

−2qikθ
T
k zi +Nλ

K
∑

k=1

θT
k θk (47)

≈
N
∑

i=1

K
∑

k=1

−2qikθ
T
k zi +Nλ

K
∑

k=1

(K

N

N
∑

i=1

qik
)

θT
k θk (48)

=
N
∑

i=1

K
∑

k=1

−2qikθ
T
k zi +Kλ

K
∑

k=1

N
∑

i=1

qikθ
T
k θk (49)

=
N
∑

i=1

K
∑

k=1

−2qikθ
T
k zi +Kλ

N
∑

i=1

K
∑

k=1

qikθ
T
k θk

+
1

λK

N
∑

i=1

zT
i zi −

1

λK

N
∑

i=1

zT
i zi (50)

=
N
∑

i=1

K
∑

k=1

−2qikθ
T
k zi +Kλ

N
∑

i=1

K
∑

k=1

qikθ
T
k θk

+
1

λK

N
∑

i=1

(

K
∑

k=1

qik
)

zT
i zi −

1

λK

N
∑

i=1

zT
i zi (51)

=
N
∑

i=1

K
∑

k=1

qik
(

− 2θT
k zi +

(

√
Kλ

)2
θT
k θk +

( 1√
λK

)2
zT
i zi

)

− 1

λK

N
∑

i=1

zT
i zi (52)

=
N
∑

i=1

K
∑

k=1

qik‖
1√
λK

zi −
√
λKθk‖2 −

1

λK

N
∑

i=1

zT
i zi.

(53)
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