
1

BlockQNN: Efficient Block-wise Neural Network
Architecture Generation

Zhao Zhong, Zichen Yang, Boyang Deng, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu, Fellow, IEEE

Abstract—Convolutional neural networks have gained a remarkable success in computer vision. However, most usable network
architectures are hand-crafted and usually require expertise and elaborate design. In this paper, we provide a block-wise network
generation pipeline called BlockQNN which automatically builds high-performance networks using the Q-Learning paradigm with
epsilon-greedy exploration strategy. The optimal network block is constructed by the learning agent which is trained to choose
component layers sequentially. We stack the block to construct the whole auto-generated network. To accelerate the generation
process, we also propose a distributed asynchronous framework and an early stop strategy. The block-wise generation brings unique
advantages: (1) it yields state-of-the-art results in comparison to the hand-crafted networks on image classification, particularly, the
best network generated by BlockQNN achieves 2.35% top-1 error rate on CIFAR-10. (2) it offers tremendous reduction of the search
space in designing networks, spending only 3 days with 32 GPUs. A faster version can yield a comparable result with only 1 GPU in 20
hours. (3) it has strong generalizability in that the network built on CIFAR also performs well on the larger-scale dataset. The best
network achieves very competitive accuracy of 82.0% top-1 and 96.0% top-5 on ImageNet.

Index Terms—Convolutional Neural Network, Auto-Generated Network, Reinforcement Learning, Q-Learning.

F

1 INTRODUCTION

D URING the last decades, Convolutional Neural Networks
(CNNs) have shown remarkable potentials almost in every

field in the computer vision society [1]. It achieved successes first
in image classification [2], and then in object detection [3], [4],
semantic segmentation [5], [6] and tracking [7], [8]. For example,
the network evolution from AlexNet [2], VGG [9], Inception [10]
to ResNet [11] has improved the top-5 performance on ImageNet
challenge steadily from 83.6% to 96.43%. However, as the
performance gain usually requires an increasing network capacity,
a high-performance network architecture generally possesses a
tremendous number of possible configurations about the number
of layers, hyperparameters in each layer and type of each layer.
It is hence infeasible to find the optimal network structure by
manually exhaustive search, and the design of successful hand-
crafted networks heavily rely on expert knowledge and experience.
Therefore, constructing network in a smart and automatic manner
remains an open problem.

Although some recent works have attempted computer-aided
or automated network design [12], [13], there are several chal-
lenges unsolved: (1) The large number of convolutional layers and
the numerous options in type and hyperparameters of each make
huge search space and heavy computational costs for network
generation. (2) The network designed on a specific dataset or
task yields inferior performance when transfered to other datasets
or tasks. In this paper, we aim to solve the aforementioned

• Z. Zhong is with the NLPR, Institute of Automation of Chinese Academy
of Sciences, University of Chinese Academy of Sciences, Beijing 100190,
P.R. China. E-mail: zhao.zhong@nlpr.ia.ac.cn.

• Z. Yang, B. Deng, J. Yan, W. Wu and J. Shao are with Sensetime
Research Institute.E-mail: {yangzichen, dengboyang, yanjunjie, wuwei,
shaojing}@sensetime.com

• C.-L. Liu is with the NLPR, Institute of Automation of Chinese Academy
of Sciences, Beijing, China, and the CAS Center for Excellence in Brain
Science and Intelligence Technology, University of Chinese Academy of
Sciences, Beijing 100190, P.R. China. E-mail: liucl@nlpr.ia.ac.cn.

challenges by proposing a novel fast Q-learning framework, called
BlockQNN, for automatically designing the network architecture,
as shown in Fig. 1.

Particularly, to make the network generation efficient and gen-
eralizable, we generate the network in block-wise, i.e., stacking
personalized blocks rather than tedious per-layer network piling.
This ia inspired by some modern CNN architectures such as
Inception [10], [14], [15] and ResNet Series [11], [16] which are
assembled as the stack of basic block structures. For example,
the inception and residual blocks shown in Fig. 1 are repeatedly
concatenated to construct the entire network. With such kind of
block-wise network architecture, the generated network owns a
powerful generalization to other task domains or different datasets.

In comparison to previous methods like NAS [13] and
MetaQNN [12], as depicted in Fig. 1, we present a more readily
and elegant model generation method that specifically designed
for block-wise generation. Motivated by the unsupervised re-
inforcement learning paradigm, we employ the well-known Q-
learning [17] with experience replay [18] and epsilon-greedy
strategy [19] to effectively and efficiently search for the optimal
block structure. The network block is constructed by the learning
agent which is trained sequentiality to choose component layers.
Afterwards we stack the block to construct the whole auto-
generated network. Moreover, we propose an early stop strategy
to enable efficient search with fast convergence. A novel reward
function is designed to ensure the accuracy of the early stopped
network to be positively correlated with the converged network.
Good blocks can be selected in reduced training time using this
property. With this acceleration strategy, we can construct a Q-
learning agent to learn the optimal block-wise network structure
for a given task with limited resources (e.g. few GPUs or short
time period). The generated architectures are thus succinct and
have powerful generalization ability compared to the networks
generated by the other automatic network generation methods.

A preliminary version of this manuscript was published previ-

ar
X

iv
:1

80
8.

05
58

4v
1

 [
cs

.C
V

]
 1

6
A

ug
 2

01
8

2

Input

5x5 Conv

3x3 Conv

Dropout 1/8

2x2 MaxP

1x1 Conv

3x3 MaxP

Dropout 1/4

5x5 Conv

Dropout 3/8

3x3 Conv

Linear

Input

BN

ReLU

Conv

BN

Add

Output

Conv

ReLU

Input

Conv,5

Concat

Output

Conv,1 MaxP,3

Conv,1Conv,3

Conv,1
Conv,1

AlexNet VGGNet Inception-block Residue-block NAS BlockQNNMetaQNN

Hand-crafted Network Auto-generated Network

Conv,3

Conv,3 Conv,5 Conv,3Conv,1

Conv,5 AvgP,3

Concat

Add Concat

Input

Output

Hand-crafted Network Auto-generated Network

Input

11x11 Conv

Pool	1/2

5x5	Conv

Pool	1/2

3x3 Conv

Pool	1/2

3x3 Conv

3x3 Conv

Linear	4096

Linear	4096

Linear

Input

3x3 Conv

3x3 Conv

3x3 Conv

5x5 Conv

3x7 Conv

7x3 Conv

7x7 Conv

7x7 Conv

7x1 Conv

7x7 Conv

5x7 Conv

7x7 Conv

7x5 Conv

7x5 Conv

7x5 Conv

Linear

Figure 1. The proposed BlockQNN (right in red box) compared with the hand-crafted networks marked in yellow and the existing auto-generated
networks in green. Automatically generating the plain networks [12], [13] marked in blue need large computational costs in searching optimal
layer types and hyperparameters for each single layer, while the block-wise network heavily reduces the cost to search structures only for one
block. The entire network is then constructed by stacking the generated blocks. Similar block concept has been demonstrated its superiority in
hand-crafted networks, such as inception-block and residue-block marked in red.

ously in conference [20]. Since then, the block conception for
auto-generated network have been adopted and generalized to
other methods, such as [21], [22], [23], [24], [25]. Searching trans-
ferable blocks (referred to as cells in [26]) and assembling them
into a network becomes an universal formulation in automating
neural network design area.

After that, we introduce more advanced depthwise convolution
operation [27] to update the state-of-the-art performance on image
classification, and in this paper we analyze the different connec-
tion styles between blocks instead of stacking block structures
sequentially. Also, we propose the accelerated block-wise network
generation with network performance prediction, called faster
BlockQNN, which only costs 20 hours with 1 GPU on CIFAR.

The proposed block-wise network generation method brings
a few advantages as follows:
• Effectiveness. The automatically generated networks present

state-of-the-art performance compare to those of hand-crafted
networks with human expertise. The proposed method is
also superior to the existing automatic works and achieves
a leading performance on CIFAR-10 with 2.35% error rate.

• Efficiency. We are the first to consider block-wise setup in
automatic network generation. The block-wise setup and the
proposed early stop strategy result in a fast search process.
The network generation for CIFAR task reaches convergence
with only 32 GPUs in 3 days, which is much more efficient
than that by NAS [13] with 800 GPUs in 28 days. Moreover,
the faster version can get a comparable result with only 1
GPU in 20 hours, which is affordable for common deep
learning researchers.

• Transferability. The proposed method offers surprisingly
superior transferable ability that the network generated for
CIFAR can be transferred to ImageNet with outstanding per-
formance with little modification. The best network achieves
very competitive accuracy of 82.0% top-1 and 96.0% top-5
on ImageNet.

2 RELATED WORK

Early works, from 1980s, have made efforts on automating neural
network design which often searched good architecture by the

genetic algorithm or other evolutionary algorithms [28], [29],
[30], [31], [32], [33], [34]. Nevertheless, these works, to our best
knowledge, cannot perform competitively compared with hand-
crafted networks. Recent works, i.e. Neural Architecture Search
(NAS) [13] and MetaQNN [12], adopted reinforcement learning to
automatically search a good network architecture. Although they
can yield good performance on small datasets such as CIFAR-10,
CIFAR-100, the direct use of MetaQNN or NAS for architecture
design on big datasets like ImageNet [35] is computationally
expensive via searching in a huge space. Besides, the network
generated by this kind of methods is task-specific or dataset-
specific, that is, it cannot been well transferred to other tasks nor
datasets with different input data sizes. For example, the network
designed for CIFAR-10 cannot been generalized to ImageNet.

Instead, our approach is aimed for designing network block
architecture by an efficient search method with a distributed asyn-
chronous Q-learning framework as well as an early-stop strategy.
The block design conception follows the modern convolutional
neural networks such as Inception [10], [14], [15] and Resnet [11],
[16]. The inception-based networks construct the inception
blocks via a hand-crafted multi-level feature extractor strategy
by computing 1×1, 3×3, and 5×5 convolutions, while the Resnet
uses residue blocks with shortcut connection to make it
easier to represent the identity mapping which allows a very deep
network. The blocks automatically generated by our approach
have similar structures such as some blocks contain short cut
connections and inception-like multi-branch combination. We will
discuss the details in Section 5.1. Concurrent with our work, the
NASNet [26] is developed for learning block structures (referred
to as cells in [26]) to construct the whole network with RNN-based
controller.

There is a growing interest in improving the efficiency of
automatic network generation for Common researchers who have
limited computing resources. Baker et al. [36] use standard fre-
quentist regression models to predict the final performance, Brock
et al. [37] propose SMASH which designs an architecture and
then uses a hyper-network to generate its weights. These methods,
however, can not compete with state-of-the-art networks, and the
networks generated by them are still task-specific or dataset-
specific.

3

Table 1
Network Structure Code Space. The space contains seven types of

commonly used layers. Layer index stands for the position of the
current layer in a block, the range of the parameters is set to be
T = {1, 2, 3, ...max layer index}. Three kinds of kernel sizes are

considered for convolution layer and two sizes for pooling layer. Pred1
and Pred2 refer to the predecessor parameters which is used to

represent the index of preceding layers, the allowed range is
K = {1, 2, ..., current layer index− 1}

Name Index Type Kernel Size Pred1 Pred2

Convolution T 1 1, 3, 5 K 0

Max Pooling T 2 1, 3 K 0

Average Pooling T 3 1, 3 K 0

Identity T 4 0 K 0

Elemental Add T 5 0 K K

Concat T 6 0 K K

Terminal T 7 0 0 0

Other related works include hyper-parameter optimiza-
tion [38], meta-learning [39] and learning to learn methods [40],
[41]. The goal of these works is to use meta-data to improve the
performance of the existing algorithms, such as finding the optimal
learning rate of optimization methods or the optimal number of
hidden layers to construct the network. In this paper, we focus
on learning the entire topological structure of network blocks to
improve the performance.

3 METHODOLOGY

In this section, we first present the basic designs and properties of
the proposed BlockQNN framework. Extension of the framework
to block connection style will be described in Section 3.4. The
faster version with network performance prediction called faster
BlockQNN will be introduced in Section 3.5 .

3.1 Convolutional Neural Network Blocks
The modern CNN architectures, e.g. Inception and Resnet, are de-
signed by stacking several blocks each of which shares similar
structure but with different weights and filter numbers to construct
the network. With the block-wise design, the network can not only
achieves high performance but also generalizes well to different
datasets and tasks. Unlike previous research on automating neural
network design which generates the entire network directly, we
aim at designing the block structure.

As a CNN contains a feed-forward computation procedure, we
represent it by a directed acyclic graph (DAG), where each node
corresponds to a layer in the CNN while directed edges stand for
data flow from one layer to another. To turn such a graph into a
uniform representation, we propose a novel layer representation
scheme called Network Structure Code (NSC), as shown in
Table 1. Each block is then depicted by a set of 5-D NSC vectors.
In NSC, the first three numbers stand for the layer index, operation
type and kernel size respectively. The last two are predecessor
parameters which refer to the position of a layer’s predecessor
layer in structure codes. The second predecessor (Pred2) is set for
the layer owns two predecessors, and for the layer with only one
predecessor, Pred2 will be set to zero. This design is motivated
by the current powerful hand-crafted networks like Inception and
Resnet which own their special block structures. This kind of
block structure shares similar properties such as containing more

Codes = [(1,4,0,0,0), (2,1,1,1,0), (3,1,3,2,0),
(4,1,1,1,0), (5,1,5,4,0), (6,6,0,3,5),
(7,2,3,1,0), (8,1,1,7,0), (9,6,0,6,8),
(10,7,0,0,0)]

Codes = [(1,4,0,0,0), (2,1,3,1,0),
(3,1,3,2,0), (4,5,0,1,3),
(5,7,0,0,0)]

Identity

Conv,5

Concat

Output

Conv,1 MaxP,3

Conv,1Conv,3

Conv,1

Concat

Identity

Conv,3

Add

Output

Conv,3

Input Input

Figure 2. Representative block exemplars with their Network structure
codes (NSC) respectively: the block with multi-branch connections (left)
and the block with shortcut connections (right).

Input

Block

Pooling

Linear

Conv

Block

Pooling

Block

×N

×N

×N

Input

Block

Pooling

Linear

Conv

Block

Pooling

Block

×N

×N

×N

Pooling

Conv

Pooling

Block

Pooling

×N

Figure 3. Auto-generated networks on CIFAR-10 (left) and ImageNet
(right). Each network starts with a few convolution layers to learn low-
level features, and followed by multiple repeated blocks with several
pooling layers inserted for downsampling.

complex connections, e.g. shortcut connections or multi-branch
connections, unlike the simple connections in plain networks such
as AlexNet. Thus, the proposed NSC can encode complexity
architectures as shown in Fig. 2. In addition, all layers without
successor in the block are concatenated together to provide the
final output. Note that each convolution operation, same as the
declaration in Resnet [16], refers to a Pre-activation Convolu-
tional Cell (PCC) with three components, i.e. ReLU, Convolution
and Batch Normalization. This results in a smaller search space
than that with three components separately searchable, and hence
with the PCC, we can get better initialization for searching and
generating optimal block structure with a quick training process.

Based on the above defined blocks, we construct the com-
plete network by stacking these block structures sequentially
which turn a common plain network into its counterpart block

4

(c)

Agent samples
structure codes

Stack blocks
to generate a

network

Train the
network	on	a	

task

Feedback	
validation	
accuracy as
reward

Update
Q-Value

Input

Conv,1x1

Conv,3x3

Block

(a)

Input

(1,1,1,0,0)

(1,x,x,x,x)

(2,1,3,1,0)

(2,x,x,x,x)

(T,x,x,x,x)

(T,x,x,x,x)

State

Action
(1,7,0,0,0) (2,7,0,0,0) (T,7,0,0,0)

(3,1,3,1,0)

(3,x,x,x,x)

(3,7,0,0,0)

… … … …

…

…
…

(b)

Figure 4. Q-learning process illustration. (a) The state transition process by different action choices. The block structure in (b) is generated by the
red solid line in (a). (c) The flow chart of the Q-learning procedure.

version. Two representative auto-generated networks on CIFAR
and ImageNet tasks are shown in Fig. 3. There is no down-
sampling operation within each block. We perform down-sampling
directly by the pooling layer. If the size of feature map is halved
by pooling operation, the block’s weights will be doubled. The
architecture for ImageNet contains more pooling layers than that
for CIFAR because of their different input sizes, i.e. 224×224 for
ImageNet and 32×32 for CIFAR. More importantly, the blocks
can be repeated for arbitrary N times to fulfill different demands,
and can even be placed in other manner, such as inserting the block
into the Network-in-Network [42] framework or setting short cut
connection between different blocks. We will discuss the block
connection later in the Section 3.4.

3.2 Designing Network Blocks With Q-Learning
Albeit we squeeze the search space of the entire network design
by focusing on constructing network blocks, there is still a
large amount of possible structures to seek. Therefore, we employ
reinforcement learning rather than random sampling for automatic
design. Our method is based on standard tabular Q-learning, a kind
of reinforcement learning, which concerns how an agent ought to
take actions so as to maximize the cumulative reward. The Q-
learning model consists of an agent, states and a set of actions.

In this paper, the state s ∈ S represents the status of the
current layer which is defined as a Network Structure Code (NSC)
claimed in Section 3.1, i.e. 5-D vector {layer index, layer type,
kernel size, pred1, pred2}. The action a ∈ A is the decision for
the next successive layer. Thanks to the defined NSC set with a
limited number of choices, both the state and action space are
thus finite and discrete to ensure a relatively small search space.
The state transition process (st, a(st)) → (st+1) is shown in
Fig. 4(a), where t refers to the current layer. The block example
in Fig. 4(b) is generated by the red solid lines in Fig. 4(a). The
learning agent is given the task of sequentially picking NSC of
a block. The structure of block can be considered as an action
selection trajectory τa1:T , i.e. a sequence of NSCs. We model
the layer selection process as a Markov Decision Process with
the assumption that a well-performing layer in one block should
also perform well in another block [12]. To find the optimal
architecture, the agent maximizes its expected reward over all
possible trajectories, denoted by Rτ ,

Rτ = EP (τa1:T
)[R], (1)

where the R is the cumulative reward. The expected reward can
be maximized using the recursive Bellman Equation. Given a state

st ∈ S and subsequent action a ∈ A(st), we define the maximum
total expected reward to be Q∗(st, a) which is known as Q-value
of state-action pair. The recursive Bellman Equation is then written
as

Q∗(st, a) = Est+1|st,a[Er|st,a,st+1
[r|st, a, st+1]

+γ max
a′∈A(st+1))

Q∗(st+1, a
′)]. (2)

Empirically, the above quantity can be formulated as an
iterative update:

Q(sT , a) =0, (3)

Q(sT−1, aT) =(1− α)Q(sT−1, aT) + αrT , (4)

Q(st, a) =(1− α)Q(st, a)

+α[rt + γmax
a′
Q(st+1, a

′)], t ∈ {1, 2, ...T − 2}, (5)

where α is the learning rate which determines how the newly
acquired information overrides the old information, γ is the
discount factor which measures the importance of future rewards;
rt denotes the intermediate reward observed for the current state
st, and sT refers to final state, i.e. terminal layers; rT is the
validation accuracy of corresponding network trained convergence
on training set for aT , i.e. action to final state. Since the reward
rt cannot be explicitly measured in our task, we use reward
shaping [43] to speed up training. The shaped intermediate reward
is defined as:

rt =
rT
T
. (6)

Previous works [12] ignore these rewards in the iterative
process by simply setting them to zero, which may cause a slow
convergence in the beginning. This is known as the temporal credit
assignment problem which makes RL time consuming [44]. In this
case, the Q-value of sT is much higher than others in early stage
of training and thus leads the agent prefer to stop searching at the
very beginning, i.e. tend to build small block with fewer layers. As
the comparison result in Fig. 5 shows, the learning process of the
agent with our shaped reward rt is convergent much faster than
previous method.

We summarize the learning procedure in Fig. 4(c). The agent
first samples a set of structure codes to build the block architecture,
based on which the entire network is constructed by stacking these
blocks sequentially. We then train the generated network on a
certain task, and the validation accuracy is regarded as the reward
to update the Q-value. Afterwards, the agent picks another set of
structure codes to get a better block structure.

5

55

60

65

70

1 6 11 16 21 26

Ac
cu
ra
cy

(%
)

Iteration	(batch)

Q-learning Performancewith Different
intermediate	reward

Ignore
shaped	reward

	𝑟#
	𝑟#

Figure 5. Comparison results of Q-learning with and without the shaped
intermediate reward rt. By taking our shaped reward, the learning
process convergent faster than that without shaped reward start from
the same exploration.

3.3 Early Stop Strategy

Introducing block-wise generation indeed increases the effi-
ciency. However, it is still time consuming to complete the search
process. To further accelerate the learning process, we introduce
an early stop strategy. However, early stopping training process
may result in a poor accuracy. Fig. 6 shows an example, where
the early-stop accuracy in yellow line is much lower than the
final accuracy in orange line, which means that some good blocks
unfortunately perform worse than bad blocks when stop training
early. Meanwhile, we notice that the FLOPs and density of the
corresponding blocks have a negative correlation with the final
accuracy. Thus, we redefine the reward function as

reward = ACCEarlyStop − µ log(FLOPs)

−ρ log(Density), (7)

where FLOPs [45] refer to an estimation of computational com-
plexity of the block, and Density is the edge number divided by the
dot number in DAG of the block. There are two hyperparameters,
µ and ρ, to balance the weights of FLOPs and Density. With the
redefined reward function, the reward is more relevant to the final
accuracy.

With this early stop strategy and small search space of network
blocks, the training process just costs 3 days to complete the
searching process with only 32 GPUs, which is superior to that
of [13], which spends 28 days with 800 GPUs to achieve the
similar performance. However, the use of 32 GPUs is still not
common for most deep learning practitioners. Accordingly, we
will further accelerate the searching process using an algorithm
called faster BlockQNN described in Section 3.5.

3.4 Connection Style Between Blocks

Our method can search for the optimal block structure effectively
and efficiently, but still utilizes manual rules, i.e. stacking the
block structures sequentially and when the size of feature map is
halved by pooling operation, the block’s weights will be doubled
or increased. With this block connection rule, we can transfer the
block structure between different datasets and tasks easily.

However, stacking the block structures sequentially may not be
the optimal connection style between blocks. Hence, we trade off
some transferable ability and design the connection between spe-
cific block structures automatically by search. The only difference
from the above method lies in the definition of Network Structure
Code: convolution layer is replaced by blocks structure

0

1

2

3

4

5

75

80

85

90

95

100

1 11 21 31 41 51 61 71 81 91

Sc
al
ar

fo
rF
LO

Ps
an
d
De

ns
ity

Ac
cu
ra
cy
	(%

)

Model (block)

Data Analysis of Early Stop Accuracy	
Early	Stop	ACC Final	ACC Redefined	Reward FLOPs Density

Figure 6. The performance of early stop training is poorer than the final
accuracy of a complete training. With the help of FLOPs and Density, it
squeezes the gap between the redefined reward function and the final
accuracy.

and the kernel size for convolutional operation is substituted
by channel numbers. Firstly, the block structures are connected
sequentially and we use the predecessor parameters to represent
the additional connection between different blocks. We perform
down-sampling only by the pooling layer with stride 2 and use1×1
convolutions to match the different dimensions for connected
layers.

With the block connection auto-generation module, the Block-
QNN can be regarded as a two-stage framework: (1) find the
optimal block, and (2) find the optimal connection for optimal
block. We can further improve the performance of auto-generated
network with this two-stage strategy, it proves stacking the block
structures sequentially is not the best choice. But the generated
network is dataset-specific that cannot be well transferred to other
tasks with different input data size. The exploration of universal
block connection formulation with transferable ability is still an
open problem.

3.5 Predicting Network Performance Before Training

To further accelerate the block searching process, for the common
deep learning practitioners who have limited computing resources,
we propose a strategy to predict the network performance before
training. As we know, the most time-consuming portion in network
generation is the training of the sampled network to get the
validation accuracy as reward. To mitigate this cost, we assess
a network architecture quantitatively before investing resources
in training it. The design method with network performance
prediction is called as Faster BlockQNN, which is depicted in
Figure 7.

The network performance prediction model can be formalized
as a function, denoted by f . The function f takes two arguments,
a network architecture x and an epoch index t, and produces a
scalar value f(x, t) as the prediction of the accuracy at the end of
the t-th epoch. Here, incorporating the epoch index t as an input
to f is reasonable, as the validation accuracy generally changes as
the training proceeds. Therefore, when we predict performance,
we have to be specific about the time point of the prediction.

Note that this formulation differs fundamentally from previous
works [33], [36], [46], which require the observation of the

6

Layer
Embedding

Conv,1x1

Conv,3x3

BlockStructure

MaxPool,3x3

Code of Layer 1

Code of Layer 2

Code of Layer 3

LSTM

LSTM

LSTM

Epoch ID

Epoch
Embedding

Network StructureCode

Epoch
Vector

Structural
Feature

Concat

MLP
Predicted
Accuracy

Figure 7. The overall pipeline of the Faster BlockQNN framework. Given a network architecture, it first encodes each layer into a
vector through integer coding and layer embedding. Subsequently, it applies a recurrent network with LSTM units to integrate the
information of individual layers following the network topology into a structural feature. This structural feature together with the
epoch index (also embedded into a vector) will finally be fed to an MLP to predict the accuracy at the corresponding time point,
i.e. the end of the given epoch. Note that the blocks indicated by blue color, including the embeddings, the LSTM, and the MLP, are
jointly learned in an end-to-end manner.

Type Pred1 Pred2

Layer
Types

Predecessor
Index

Kernel
Sizes

Kernel

Types
Vector

Pred1
Vector

Pred2
Vector

Kernel
Vector

Concat

Integer Code

Layer Representation

Lookup Tables

Figure 8. The layer embedding component. It takes the integer
codes as input, maps them to embedded vectors respectively
via table lookup, and finally concatenates them into a real vector
representation. Note that Pred1 and Pred2 share the same
lookup table.

initial part (usually 25%) of the training curve and extrapolate
the remaining part. On the contrary, our method aims to predict
the entire curve, relying only on the network architecture. In this
way, it can provide feedback much quicker and thus is particularly
suited for large-scale search of network designs.

As stated in Section 3.1, we define the various layers in
network as Network Structure Code (NSC), i.e. 5-D vector {layer
index, layer type, kernel size, pred1, pred2}. While capturing the
key information for a layer, this discrete representation is not
amenable to complex numerical computation and deep pattern
recognition. Inspired by word embedding [47], a strategy proven
to be very effective in natural language processing, we take one
step further and develop Layer Embedding, a scheme to turn the
integer codes into a unified real-vector representation.

As shown in Figure 8, the embedding is done by table lookup.
Specifically, this module is associated with three lookup tables,
respectively for layer types, kernel sizes, and predecessor. Note
that the predecessor table is used to encode both Pre1 and Pre2.
Given a tuple of integers, we can convert its element into a real
vector by retrieving from the corresponding lookup table. Then by
concatenating all the embedded vectors derived respectively from
individual integers, we can form a vector representation of the
layer.

With the layer-wise representations based on Network Struc-
ture Code (NSC) and Layer Embedding, the next is to aggregate

them into an overall representation for the entire network. Inspired
by the success of recurrent networks in sequential modeling, e.g. in
language modeling [48] and video analytics [49], we choose to
explore recurrent networks in our problem. Specifically, we adopt
the Long-Short Term Memory (LSTM) [50], an effective variant of
RNN, for integrating the information along a sequence of layers.
Along the way from low-level to high-level layers, the LSTM
network would gradually incorporate layer-wise information into
the hidden state. At the last step, i.e. the layer right before the
fully connected layer for classification, we extract the hidden state
of the LSTM cell to represent the overall structure of the network,
which we refer to as the structural feature. Note that we would
reverse the topological sequence of architectures before feeding
it to LSTM since we think Long-term dependencies are better
recognized by LSTM if the signal occurs at the starting point.

As shown in Figure 7, the Faster BlockQNN framework will
finally combine this structural feature with the epoch index (also
embedded into a real-vector) and use a Multi-Layer Perceptron
(MLP) to make the final prediction of accuracy. In particular,
the MLP component at the final step is comprised of three fully
connected layers with Batch Normalization and ReLU activation.
The output of this component is a real value that serves as an
estimate of the accuracy.

Given a set of sample networks {xi}1:N , we can obtain a
performance curves yi(t) for each network xi, i.e. the valida-
tion accuracy as a function of epoch numbers, by training the
network on a given dataset. Hence, we can obtain a set of pairs
D = {(xi, yi)}1:N and learn the parameters of the predictor in a
supervised way.

Specifically, we formulate the learning objective with the
smooth L1 loss, denoted by l, as below:

L(D;θ) = 1

N

n∑
i=1

l (f(xi, T), yi(T)) . (8)

Here, θ denotes the predictor parameters. Note that we train
each sample network with T epochs, and use the results of the
final epoch to supervise the learning process. Our framework is
very flexible – with the entire learning curves, in principle, one
can use the results at multiple epochs for training. However, we
found empirically that using only the final epochs already yields
reasonably good results.

7

Controller Node

Master Node

Compute Nodes

Figure 9. The distributed asynchronous framework. It contains three
parts: master node, controller node and compute nodes.

Table 2
Epsilon Schedules. The number of iteration the agent trains at each

epsilon(ε) state.

ε 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Iters 95 7 7 7 10 10 10 10 10 12

With the Faster BlockQNN, the demand of computing resource
will be further reduced. More accurately, we can get a comparable
result with only 1 GPU in 20 hours which is afforded for common
deep learning researcher.

4 TRAINING DETAILS

Distributed Asynchronous Framework. To speed up the learn-
ing of agent, we use a distributed asynchronous framework as
illustrated in Fig. 9. It consists of three parts: master node,
controller node and compute nodes. The agent first samples a batch
of block structures in master node. Afterwards, we store them in a
controller node which uses the block structures to build the entire
networks and allocates these networks to compute nodes. It can be
regarded as a simplified parameter-server [51], [52]. Specifically,
the network is trained in parallel on each of compute nodes and
returns the validation accuracy as reward by controller nodes to
update agent. With this, we can generate network efficiently on
multiple machines with multiple GPUs.
Epsilon-greedy Strategy. The agent is trained using Q-learning
with experience replay [18] and epsilon-greedy strategy [19].
With epsilon-greedy strategy, the random action is taken with
probability ε and the greedy action is chosen with probability
1 − ε. We decrease epsilon from 1.0 to 0.1 following the epsilon
schedule as shown in Table 2 such that the agent can transform
smoothly from exploration to exploitation. We find that the result
goes better with a longer exploration, since the search scope would
become larger and the agent can see more block structures in the
random exploration period.
Experience Replay. Following [12], we employ a replay memory
to store the validation accuracy and block description after each
iteration. Within a given interval, i.e. each training iteration,
the agent samples 64 blocks with their corresponding validation
accuracies from the memory and updates Q-value 64 times.
BlockQNN Generation. In the Q-learning update process, the
learning rate α is set to 0.01 and the discount factor γ is 1. We set
the hyperparameters µ and ρ in the redefined reward function as
1 and 8, respectively. The agent samples 64 sets of NSC vectors
at a time to compose a mini-batch and the maximum layer index

for a block is set to 23. We train the agent with 178 iterations,
i.e. sampling 11, 392 blocks in total.

During the block searching phase, the compute nodes train
each generated network for a fixed 12 epochs on CIFAR-100 using
the early top strategy as described in Section 3.3. CIFAR-100
contains 60, 000 samples with 100 classes which are divided into
training and test set with the ratio of 5 : 1. We train the network
without any data augmentation procedure. The batch size is set to
256. We use Adam optimizer [53] with β1 = 0.9, β2 = 0.999,
ε = 10−8. The initial learning rate is set to 0.001 and is reduced
with a factor of 0.2 every 5 epochs. All weights are initialized as
in [54]. If the training result after the first epoch is worse than the
random guess, we reduce the learning rate by a factor of 0.4 and
restart training, with a maximum of 3 times for restart-operations.

After obtaining one optimal block structure, we build the
whole network with stacked blocks and train the network until
converging to get the validation accuracy as the criterion to
pick the best network. In this phase, we augment data with
randomly cropping the images with size of 32×32 and horizontal
flipping. Besides, we also apply the cutout regularization during
training [55]. All models use the SGD optimizer with momentum
rate set to 0.9 and weight decay set to 0.0005. We start with a
learning rate of 0.1 and train the models for 300 epochs with a
single period cosine decay as in [56]. The batch size is set to 128
and all weights are initialized with MSRA initialization [54].

Transferable BlockQNN. We also evaluate the transferability of
the best auto-generated block structure searched on CIFAR-100
to a smaller dataset, CIFAR-10, with only 10 classes and a larger
dataset, ImageNet, containing 1.2M images with 1000 classes.
All the experimental settings on CIFAR-10 are the same as those
on the CIFAR-100 stated above. ImageNet models are trained on
224x224 images and evaluated on 224x224 or 320x320 images
with center crop. The training is conducted with a mini-batch size
of 512 where each image has the same data augmentation pro-
cedures as described previously [15], and is optimized with SGD
strategy. The initial learning rate, weight decay and momentum are
set as 0.1, 0.0001 and 0.9, respectively. We decay the learning rate
with a single period cosine annealing as in [56]. Additionally, we
use label smoothing with a value of 0.1 and an auxiliary classifier
located at 2/3 of the way up the network with the weight of 0.4
for all ImageNet models as done in [15]. Dropout is applied to the
final softmax with probability 0.4.

Block Connection. The training process is basically same as the
block searching phase. The agent samples 64 sets of NSC vectors
for Block Connection at a time to compose a mini-batch and the
maximum layer index for a network is set to 12. We train the
agent with 46 iterations, i.e. sampling 2, 944 connection styles in
total. Specifically, we allow 5 pooling layers at most in CIFAR
task to ensure the resolution is not too small. Moreover, we use
the Block-QNN-S, introduced in section 5.4, as the basic block
structure for the connection generation.

Faster BlockQNN. For the Faster BlockQNN model, we use 40-
dimensional vectors for both layer embedding and epoch embed-
ding. The dimension of the hidden states in LSTM is set to 160.
The Multi-Layer Perceptron (MLP) for final prediction comprises
3 linear layers, each with 200 hidden units. We randomly sample
2000 block structures and train them on CIFAR-100 to get
performance curves for the predictor, the experimental setup is
same as the block searching phase. After that, the training process
for sampled block structures is replaced by the Faster BlockQNN

8

Conv,1

Add

Conv,3 Conv,5 Conv,3Conv,5

Conv,3

MaxP,1

Conv,1

MaxP,1

AvgP,3

MaxP,3

Concat

Input

Conv,3

Conv,3 Conv,5 Conv,3Conv,1

Conv,5 AvgP,3

Concat

Add Concat

Input

(b) Block-QNN-A (c) Block-QNN-B

54

56

58

60

62

64

66

68

1 21 41 61 81 101 121 141 161

Ac
cu
ra
cy

(%
)

Iteration	(batch)

Mean	Accuracy	

Random Exploration Start Exploitation

Block-QNN-A

Block-QNN-B

(a) Q-learning performance

Conv,3

Conv,3 Conv,1 Conv,1Conv,3

Concat

Input

Conv,1

MaxP,3

Conv,3

Conv,5

Add

Add Conv,3

MaxP,3

(d) Block-QNN-S

Figure 10. (a) Q-learning performance on CIFAR-100. The accuracy goes up with the epsilon decrease and the top models are all found in the
final stage, show that our agent can learn to generate better block structures instead of random searching. (b-c) Topology of the Top-2 block
structures generated by our approach. We call them Block-QNN-A and Block-QNN-B. (d) Topology of the best block structures generated with
limited parameters, named Block-QNN-S.

40

45

50

55

60

65

70

1 21 41 61 81 101 121 141 161

Ac
cu
ra
cy

(%
)

Iteration	(batch)

Q-learning Performancewith Different Structure Codes

PCC{ReLU,Conv,BN}	
separate	ReLU,BN,Conv

Figure 11. Q-learning result with different NSC on CIFAR-100. The red
line refers to searching with PCC, i.e. combination of ReLU, Conv and
BN. The blue stands for separate searching with ReLU, BN and Conv.
The red line is better than blue from the beginning with a big gap.

predictor in the searching phase, other setting is the same as the
standard BlockQNN generation.

Our framework is implemented under the PyTorch scientific
computing platform. We use the CUDA backend and cuDNN
accelerated library in our implementation for high-performance
GPU acceleration. Our experiments are carried out on 32 NVIDIA
1080Ti GPUs and took about 3 days to complete searching.
Moreover, the faster version can also get a comparable result with
only 1 GPU in 20 hours.

5 EXPERIMENTAL RESULTS

In this section, we will analyze the training process of block
searching and block connection searching. And then, we present
experiments on CIFAR and ImageNet, for the purpose of evalu-
ating and comparing the proposed model with other state-of-the-
art approaches. Moreover, we will also discuss properties of the
evolutionary process and the efficiency of the network architecture
generation.

5.1 Block Searching Analysis
Fig. 10(a) provides early stop accuracies over 178 batches on
CIFAR-100, each of which is averaged over 64 auto-generated
block-wise network candidates within in each mini-batch. After
random exploration, the early stop accuracy grows steadily till

converges. The mean accuracy within the period of random
exploration is 56% while finally achieves 65% in the last stage
with ε = 0.1. We choose top-100 block candidates and train
their respective networks to verify the best block structure. We
show top-2 block structures in Fig. 10(b-c), denoted as Block-
QNN-A and Block-QNN-B. As shown in Fig. 10(a), both top-2
blocks are found in the final stage of the Q-learning process, which
proves the effectiveness of the proposed method in searching
optimal block structures rather than randomly searching a large
amount of models. Furthermore, we observe that the generated
blocks share similar properties with those state-of-the-art hand-
crafted networks. For example, Block-QNN-A and Block-QNN-B
contain short-cut connections and multi-branch structures which
have been manually designed in residual-based and inception-
based networks. Compared to other auto-generated methods, the
networks generated by our approach are more elegant and can
automatically and effectively reveal the beneficial properties for
optimal network structure.

To squeeze the search space, as stated in Section 3.1, we define
a Pre-activation Convolutional Cell (PCC) consists of three com-
ponents, i.e. ReLU, convolution and batch normalization (BN). We
show the superiority of the PCC, searching a combination of three
components, in Fig. 11, compared to the separate search of each
component. Searching the three components separately is more
likely to generate “bad” blocks and also needs more search space
and time to pursue “good” blocks.

5.2 Block Connection Analysis
Fig. 12 provides early stop accuracies over 46 batches on CIFAR-
100, each of which is averaged over 64 auto-generated block
connection candidates within in each mini-batch. After random
exploration, the early stop accuracy grows steadily. The mean
accuracy within the period of random exploration is 56% while
finally achieves 62% in the last stage with ε = 0.1. It is shown
that the convergent curve of the Q-learning performance saw in
the above is similar with Fig. 10(a). The basic block structure we
used is Block-QNN-S will be introduced in section 5.4. We choose
top-64 block connection and train their respective networks to
verify the best connection style. We show the top block connection
in Fig. 13(a), denoted as Block-QNN-Connection. Moreover,
we observe that the generated blocks connection style is totally
different from the sequentially connection. The connection prefer
to connect blocks with different resolutions (high resolutions to
low resolutions). It may improve the network performance by

9

50

52

54

56

58

60

62

64

1 6 11 16 21 26 31 36 41 46

Ac
cu
ra
cy

(%
)

Iteration	(batch)

Q-learning Performancewith Block Connection

Block	Connection

Random Exploration

Block-QNN-Connection

Start Exploitation

Figure 12. Q-learning performance in block connection generation on
CIFAR-100. The accuracy goes up with the epsilon decrease and the top
model is found in the final stage. The training process is relatively shorter
than the standard BlockQNN because the search space of connection
is smaller than the block.

combining features across multiple resolutions. This conception
has been widely used in segmentation area [5], but our method
found that it also work well in classification task with appropriate
connection style. The only weakness is that the generated network
is dataset-specific that can not transfer to other task with different
input data size. Here, the Block-QNN-Connection can only handle
image with 32×32. The exploration of universal block connection
formulation with transferable ability is still a open problem.

5.3 Faster BlockQNN with 1 GPUs in 20 Hours
As shown in Fig. 14, the mean accuracies over 178 batches on
CIFAR-100, each of which is averaged over 64 auto-generated
block-wise network candidates within in each mini-batch. After
random exploration, the mean accuracy grows shakily. The mean
accuracy within the period of random exploration is 56% while
finally achieves 60% in the last stage with ε = 0.1. We can find
that the convergent curve of the Q-learning performance saw in the
above is different with Fig. 10(a). The mean accuracy is also lower
than the standard BlockQNN. It may caused by the errors between
Faster BlockQNN predictor and early stop training. We choose
top-100 block candidates and train their respective networks to
verify the best block structure. As shown in Fig. 14, the top block
is found in the final stage of the Q-learning process, besides the
mean accuracy grows even if the curve is shakily, which proves the
effectiveness of the proposed faster method in searching optimal
block structures. We show the top block structures in Fig. 13(b),
denoted as Block-QNN-Faster. Furthermore, we observe that the
top blocks generated by Faster BlockQNN are also different from
the top blocks by standard BlockQNN. Block-QNN-Faster doesn’t
contain multi-branch structure, instead it can be seen as a variant
of DenseNet and ResNet. Although the generated block is not
complex as the standard BlockQNN blocks, it needs very little
computing resources to get comparable performance which is
afforded for common deep learning researcher.

5.4 Results on CIFAR
Due to the small size of images (i.e. 32 × 32) in CIFAR, we
set block stack number as N = 4. We compare our generated
best architectures with the state-of-the-art hand-crafted networks
or auto-generated networks in Table 3.

Comparison with hand-crafted networks - It shows that our Block-
QNN networks (i.e. Block-QNN-A and Block-QNN-B) outper-
form most hand-crafted networks. The DenseNet-BC [57] uses
additional 1 × 1 convolutions in each composite function and
compressive transition layer to reduce parameters and improve
performance, which is not adopted in our design. Our performance
can be further improved by using this prior knowledge.
Comparison with auto-generated networks - Our approach
achieves a significant improvement to the MetaQNN [12], and
even better than NAS’s best model (i.e. NASv3 more filters) [13]
proposed by Google brain which needs an expensive costs on time
and GPU resources. As shown in Table 4, NAS trains the whole
system on 800 GPUs in 28 days while we only need 32 GPUs
in 3 days to get state-of-the-art performance. Moreover, the faster
version can get a comparable result with only 1 GPU in 20 hours
which is 100x less expensive than standard BlockQNN.
Transfer block from CIFAR-100 to CIFAR-10 - We transfer the
top blocks learned from CIFAR-100 to CIFAR-10 dataset, all
experiment settings are the same. As shown in Table 3, the blocks
can also achieve state-of-the-art results on CIFAR-10 dataset with
3.60% error rate that proved Block-QNN networks have powerful
transferable ability.
Analysis on network parameters - The networks generated by our
method might be complex with a large amount of parameters since
we do not add any constraints during training. We further conduct
an experiment on searching networks with limited parameters and
adaptive block numbers. We set the maximal parameter number
as 10M and obtain an optimal block (i.e. Block-QNN-S) which
outperforms NASv3 with less parameters, as shown in Fig. 10(d).
In addition, when involving more filters in each convolutional
layer (e.g. from [32,64,128] to [80,160,320]), we can achieve
even better result (2.80%).
Block connection - The optimal block connection style we find is
much better than the sequentially connection with the basic block
structure, i.e. Block-QNN-S, as shown in Table 3 (i.e. from 3.30%
to 3.01% with even less parameters). Moreover, when involving
more filters in each convolutional layer, we can further improve the
performance (2.35%). The empirical evidence indicates that the
connection style between blocks can further improve the perfor-
mance of networks. But as discussed above, the only weakness of
block connection is that the generated network is dataset-specific
that can not transfer to other task with different input data size.
Advanced depthwise convolution operation - To further reduce
the computational complexity of the generated network, we
introduce the advanced depthwise convolution operation. Each
convolution operation refers to a cell with four components,
i.e. ReLU, Depthwise Convolution, Pointwise Convolution and
Batch Normalization. Note that we remove Batch Normalization
and ReLU between the depthwise and pointwise operations in the
cell. After the searching process with depthwise convolution, we
obtain an optimal block only with 3.3M parameters (i.e. Block-
QNN-depthwise) which achieve a result with 2.58% error rate
on CIFAR-10, as shown in Fig. 13(c). Moreover, our model
outperforms all other networks with similar parameters.

5.5 Transfer to ImageNet
To demonstrate the generalizability of our approach, we transfer
the block structure learned from CIFAR to ImageNet dataset.

For the ImageNet task, we set block repeat numberN = 3 and
add more down sampling operation before blocks, the filters for

10

(a) Block-QNN-Connection (c) Block-QNN-Depthwise(b) Block-QNN-Faster

In
pu

t

Bl
oc

k,
64

M
ax

Po
ol

in
g

Li
ne

ar

Co
nv

Bl
oc

k,
64

M
ax

Po
ol

in
g

Bl
oc

k,
64

Bl
oc

k,
32

Bl
oc

k,
32

Bl
oc

k,
64

Bl
oc

k,
12

8

M
ax

Po
ol

in
g

Conv,5

Conv,3

Conv,1
Conv,1

Conv,1

Concat

Input

Conv,1

Concat
Conv,3

Concat

Conv,5 Conv,1

Add

Concat

Conv,3

Input

AvgP,3

Add

Add

Figure 13. (a) Topology of the best connection style between blocks generated by block Connection, named Block-QNN-Connection. Note that
the basic block we used here is Block-QNN-S, i.e. Fig. 10(d). (b) Topology of the top block structures generated by Faster BlockQNN. We call
it Block-QNN-Faster. (c) Topology of the best block structures generated with advanced depthwise convolution operation, named Block-QNN-
Depthwise. All convolution operation be replaced by a cell with four components, i.e. ReLU, Depthwise Convolution, Pointwise Convolution and
Batch Normalization.

50

52

54

56

58

60

62

64

1 21 41 61 81 101 121 141 161

Ac
cu
ra
cy

(%
)

Iteration	(batch)

Q-learning Performancewith Faster BlockQNN

Faster	BlockQNN

Random Exploration

Block-QNN-Faster

Start Exploitation

Figure 14. Q-learning performance in faster BlockQNN generation on
CIFAR-100. The accuracy goes up with the epsilon decrease and the
top model is found in the final stage. We can find that the convergent
curve of the Q-learning performance grows shakily, it may caused by
the errors between Faster BlockQNN predictor and early stop training

convolution layers in different level blocks are [64,128,256,512].
We use the best blocks structure learned from CIFAR-100 directly
without any fine-tuning, and the generated network initialized with
MSRA initialization as same as above. The experimental results
are shown in Table 5. The network generated by our framework
can get competitive result compared with other human designed
models. The recently proposed methods such as Xception [27] and
ResNext [59] use special depthwise convolution operation to re-
duce their total number of parameters and to improve performance.
In our work, the block structures with depthwise convolution
operation, i.e. Block-QNN-Depthwise, can outperform all these
hand-crafted networks. SENet [60] use fully connection layer to
recalibrate channel-wise feature responses which we do not adopt
this operation in our search space. Besides, SENet can be seen as
a Plug-in block to any backbone network, we will consider this in
our future work to further improve the performance.

As far as we known, most previous works of automatic
network generation did not report competitive result on large
scale image classification datasets. With the conception of block
learning, we can transfer our architecture learned in small datasets
to big dataset like ImageNet task easily. Furthermore, the model

Table 3
Block-QNN’s results (error rate) compare with state-of-the-art methods

on CIFAR-10 (C-10) and CIFAR-100 (C-100) dataset.

Method Depth Para C-10 C-100

VGG [9] - 7.25 -

ResNet [11] 110 1.7M 6.61 -

Wide ResNet [58] 28 36.5M 4.17 20.5

ResNet (pre-activation) [16] 1001 10.2M 4.62 22.71

DenseNet (k = 12) [57] 40 1.0M 5.24 24.42
DenseNet (k = 12) [57] 100 7.0M 4.10 20.20
DenseNet (k = 24) [57] 100 27.2M 3.74 19.25

DenseNet-BC (k = 40) [57] 190 25.6M 3.46 17.18

MetaQNN (ensemble) [12] - - 7.32 -
MetaQNN (top model) [12] - 11.2M 6.92 27.14

NAS v1 [13] 15 4.2M 5.50 -
NAS v2 [13] 20 2.5M 6.01 -
NAS v3 [13] 39 7.1M 4.47 -

NAS v3 more filters [13] 39 37.4M 3.65 -

NASNet-A (6 @ 768) [26] - 3.3M 2.65 -

Block-QNN-A, N=4 [20] 25 - 3.60 18.64
Block-QNN-B, N=4 [20] 37 - 3.80 18.72

Block-QNN-S, N=2 19 6.1M 3.30 17.05
Block-QNN-S more filters 22 39.8M 2.80 15.56

Block-QNN-Faster 25 3.9M 3.57 18.21
Block-QNN-Faster more filters 25 34.4M 3.15 16.74

Block-QNN-Connection 22 3.9M 3.01 16.07
Block-QNN-Connection more filters 22 33.3M 2.35 14.83

Block-QNN-Depthwise, N=3 19 3.3M 2.58 15.28

Block-QNN-Depthwise achieves a surprising performance on Im-
ageNet (82.0% Top1 96.0% Top5) when trained on 224x224 and
tested on 320x320 images based on the single crop and single
model condition. With limited compute resource, we can not train
our model on high resolution images (i.e. 331x331) directly
like NASNet [26]. For a fair comparison, we train Block-QNN-
Depthwise and NASNet-A(6 @ 4032) on 224x224 images with
same parameter setting. As can be seen from Table 5, our Block-
QNN-Depthwise reduces the top-1 error rate by an absolute value

11

Exploitation fromepsilon=0.9 to epsilon=0.1	

Conv,3

MaxP,3

Input

Add

Conv,5Conv,1

Concat

Input

Conv,1

Add

Input

Conv,3

Conv,1

Add

Input

Conv,1

Conv,3

AvgP,3 AvgP,1

AvgP,3

Concat

Concat

Input

Conv,3 Conv,5

AvgP,3AvgP,3

Concat Add Conv,5

Conv,5 Conv,3Conv,3

Conv,1 AvgP,3

Concat

Input

Conv,3

Conv,3 Conv,3 Conv,5Conv,5

Concat

Input

AvgP,3 Conv,5 Conv,5

Conv,5 Conv,3 Conv,1Conv,3

Conv,3

Concat

Add

Input

RandomExploration

Figure 15. Evolutionary process of blocks generated by BlockQNN. We sample the block structures with median performance at iteration
[1, 30, 60, 90, 110, 130, 150, 170] to compare the difference between the blocks in the random exploration stage and the blocks in the exploitation
stage.

Conv,3

Concat

Input

Conv,5

MaxP,3
Conv,5

Add

Input

Conv,1

AvgP,3

Conv,3Conv,5

Concat

Input

MaxP,3

MaxP,1 AvgP,3

Conv,1

Concat

Input

AvgP,3

MaxP,3 Concat

Conv,5

Conv,1

Conv,5

Conv,1

Concat

Add

Input

MaxP,3AvgP,3

AvgP,1 Conv,5

Conv,1

Conv,3

Conv,3Conv,3

Concat

Input

Concat

AvgP,3

MaxP,3

Conv,1

Conv,3 Conv,3Conv,1

Concat

Input

Conv,3

Concat

Conv,3 Conv,1 Conv,1Conv,3

Concat

Input

AvgP,3 Add

Exploitation fromepsilon=0.9 to epsilon=0.1	RandomExploration

Figure 16. Evolutionary process of blocks generated by BlockQNN with limited parameters and adaptive block numbers (BlockQNN-L). We sample
the block structures with median performance at iteration [1, 30, 60, 90, 110, 130, 150, 170] to compare the difference between the blocks in the
random exploration stage and the blocks in the exploitation stage.

Table 4
The required computing resource and time of our approach compare

with other automatic designing network methods.

Method Best Model on CIFAR10 GPUs Time(days)

MetaQNN [12] 6.92 10 10

NAS [13] 3.65 800 28

NASNet-A [26] 2.65 450 3-4

BlockQNN 2.80 32 3
Faster BlockQNN 3.15 1 0.8

Depthwise BlockQNN 2.58 32 3
Connection BlockQNN 2.35 32 1

of 0.9% compared with the NASNet-A(6 @ 4032). Moreover, the
inference speed of Block-QNN-Depthwise (281 Image/Second)
is around 30% faster than NASNet-A (222 Image/Second) tested
on same computing platform and hardware environment (PyTorch
and 8x NVIDIA 1080Ti). The experimental result on ImageNet
shows that our auto-generated model can achieve very competitive
performances compare with state-of-the-art models.

5.6 Evolutionary Process of Auto-Generated Blocks

We sample the block structures with median performance gen-
erated by our approach in different stage, i.e. at iteration
[1, 30, 60, 90, 110, 130, 150, 170], to show the evolutionary pro-
cess. As illustrated in Figure 15 and Figure 16, i.e. BlockQNN
and BlockQNN-L respectively, the block structures generated in
the random exploration stage is much simpler than the structures
generated in the exploitation stage.

Table 5
Block-QNN’s results (single-crop error rate) compare with modern

methods on ImageNet-1K Dataset.

Method Input Size Para Top-1 Top-5

VGG [9] x224 138M 28.5 9.90

Inception V1 [10] x224 7M 30.2 10.10
Inception V2 [14] x224 11M 25.2 7.80

ResNet-50 [16] x224 26M 24.7 7.80
ResNet-152 [16] x224 60M 23.0 6.70

Xception(our test) x224 23M 23.6 7.10
ResNext-101(64x4d) [59] x224 84M 20.4 5.30

DPN-131 [61] x224 80M 19.93 5.12

Xception [27] x299 23M 21.00 5.50
Inception-resnet-v2 [62] x299 56M 19.90 4.90

Very Deep Inception-ResNet [63] x299 130M 19.10 4.48
PolyNet [63] x331 92M 18.71 4.25

DPN-131 [61] x320 80M 18.55 4.16

NASNet-A(6 @ 4032)(our test) x224 89M 19.90 5.27
NASNet-A(6 @ 4032) [26] x331 89M 17.30 3.80

Block-QNN-B, N=3 [20] x224 - 24.3 7.40
Block-QNN-S, N=3 x224 95M 21.9 6.16

Block-QNN-Depthwise x224 91M 19.00 4.58

Block-QNN-Depthwise
train x224
test x320

91M 18.00 4.00

In the exploitation stage, the multi-branch structures appear
frequently. Note that the connection numbers is gradually increase
and the block tend choose ”Concat” as the last layer. And we can

12

63

64

65

66

67

68

1 21 41 61 81 101 121 141 161

Ac
cu
ra
cy

(%
)

Iteration	(batch)

RS	Top1

RS	Top5

BlockQNN	Top1

BlockQNN	Top5

Start Exploitation

Figure 17. Measuring the efficiency of BlockQNN to random search
(RS) for learning neural architectures. The x-axis measures the training
iterations (batch size is 64), i.e. total number of architectures sampled,
and the y-axis is the early stop performance after 12 epochs on CIFAR-
100 training. Each pair of curves measures the mean accuracy across
top ranking models generated by each algorithm. Best viewed in color.

find that the short-cut connections and elemental add layers are
common in the exploitation stage. Additionally, blocks generated
by BlockQNN-L have less ”Conv,5” layers, i.e. convolution layer
with kernel size of 5, since the limitation of the parameters.

These prove that our approach can learn the universal design
concepts for good network blocks. Compare to other automatic
network architecture design methods, our generated networks are
more elegant and model explicable.

5.7 Efficiency of BlockQNN
We demonstrate the effectiveness of our proposed BlockQNN
on network architecture generation on the CIFAR-100 dataset
as compared to random search given an equivalent amount of
training iterations, i.e. number of sampled networks. We define the
effectiveness of a network architecture auto-generation algorithm
as the increase in top auto-generated network performance from
the initial random exploration to exploitation, since we aim to
getting optimal auto-generated network instead of promoting the
average performance.

Figure 17 shows the performance of BlockQNN and random
search (RS) for a complete training process, i.e. sampling 11, 392
blocks in total. We can find that the best model generated by
BlockQNN is markedly better than the best model found by RS
by over 1% in the exploitation phase on CIFAR-100 dataset.
We observe this in the mean performance of the top-5 models
generated by BlockQNN compares to RS. Note that the compared
random search method start from the same exploration phase as
BlockQNN for fairness.

Figure 18 shows the performance of BlockQNN with limited
parameters and adaptive block numbers (BlockQNN-L) and ran-
dom search with limited parameters and adaptive block numbers
(RS-L) for a complete training process. We can see the same
phenomenon, BlockQNN-L outperform RS-L by over 1% in the
exploitation phase. These results prove that our BlockQNN can
learn to generate better network architectures rather than random
search.

5.8 Additional Experiment
We also use BlockQNN to generate optimal model on person key-
points task. The training process is conducted on MPII dataset,

61

62

63

64

65

66

1 21 41 61 81 101 121 141 161

Ac
cu
ra
cy

(%
)

Iteration	(batch)

RS-L	Top1

RS-L	Top5

BlockQNN-L	Top1

BlockQNN-L	Top5

Start Exploitation

Figure 18. Measuring the efficiency of BlockQNN with limited param-
eters and adaptive block numbers (BlockQNN-L) to random search
with limited parameters and adaptive block numbers (RS-L) for learning
neural architectures. The x-axis measures the training iterations (batch
size is 64), i.e. total number of architectures sampled, and the y-axis is
the early stop performance after 12 epochs on CIFAR-100 training. Each
pair of curves measures the mean accuracy across top ranking models
generated by each algorithm. Best viewed in color.

and then, we transfer the best model found in MPII to COCO
challenge. It costs 5 days to complete the searching process. The
auto-generated network for key-points task outperform the state-
of-the-art hourglass 2 stacks network, i.e. 70.5 AP compares to
70.1 AP on COCO validation dataset.

6 CONCLUSION AND FUTURE WORK

In this paper, we showed how to efficiently design high per-
formance network blocks with Q-learning, with a distributed
asynchronous Q-learning framework and an early stop strategy
for fast block structures search. We applied the framework to
automatic block generation for constructing good convolutional
network. Our Block-QNN networks outperform modern hand-
crafted networks and other auto-generated networks in image
classification tasks. The best block structure, which achieves a
state-of-the-art performance on CIFAR, can be transferred to the
large-scale dataset ImageNet easily, and also yield a very com-
petitive performance compared with best hand-crafted networks.
We showed that searching with the block design strategy can
get more elegant and model explicable network architectures.
Furthermore, we propose a faster version which is 100x less
expensive than standard BlockQNN and still give a comparable
result. The proposed framework makes it possible for common
deep learning researchers to join automated neural network design
on limited computing resource. We also discussed the different
connection style between blocks, and the empirical results showed
that sequentially connection is not the optimal style.

This work highlights the general trend from hand-crafted
networks to auto-generated networks in deep learning commu-
nity. In the future, we will try to automatic generate backbone
network for other task directly such as detection, segmentation
and tracking. For these task, they often use classification network
as an backbone, which may be not the optimal choice. Another
important future research topic is the automatically preprocessing
the input data, designing the network and setting the training
hyperparameters in an unified framework.

13

ACKNOWLEDGMENTS

This work has been supported by the National Natural Science
Foundation of China (NSFC) Grants 61721004 and 61633021.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015. 1

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105. 1

[3] R. Girshick, “Fast r-cnn,” in IEEE International Conference on Computer
Vision, 2015, pp. 1440–1448. 1

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in Neural
Information Processing Systems, 2015, pp. 91–99. 1

[5] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 3431–3440. 1, 9

[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848,
2018. 1

[7] H. Nam and B. Han, “Learning multi-domain convolutional neural
networks for visual tracking,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 4293–4302. 1

[8] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr,
“Fully-convolutional siamese networks for object tracking,” in European
Conference on Computer Vision. Springer, 2016, pp. 850–865. 1

[9] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference for
Learning Representations, 2015. 1, 10, 11

[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 1–9. 1, 2, 11

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778. 1, 2, 10

[12] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network
architectures using reinforcement learning,” in 6th International Confer-
ence on Learning Representations, 2017. 1, 2, 4, 7, 9, 10, 11

[13] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in 6th International Conference on Learning Representations,
2017. 1, 2, 5, 9, 10, 11

[14] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448–456. 1, 2, 11

[15] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 2818–2826. 1, 2, 7

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in European Conference on Computer Vision. Springer, 2016,
pp. 630–645. 1, 2, 3, 10, 11

[17] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
King’s College, Cambridge, 1989. 1

[18] L.-J. Lin, “Reinforcement learning for robots using neural networks,”
Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, Tech.
Rep., 1993. 1, 7

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, pp. 529–533, 2015. 1, 7

[20] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Blockqnn: Practical
block-wise neural network architecture generation,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2018. 2, 10, 11

[21] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
“Hierarchical representations for efficient architecture search,” arXiv
preprint arXiv:1711.00436, 2017. 2

[22] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for
image classifier architecture search,” arXiv preprint arXiv:1802.01548,
2018. 2

[23] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Faster
discovery of neural architectures by searching for paths in a large model,”
International Conference on Learning Representations Workshop, 2018.
2

[24] C. Liu, B. Zoph, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,
J. Huang, and K. Murphy, “Progressive neural architecture search,” arXiv
preprint arXiv:1712.00559, 2017. 2

[25] H. Cai, J. Yang, W. Zhang, S. Han, and Y. Yu, “Path-level net-
work transformation for efficient architecture search,” arXiv preprint
arXiv:1806.02639, 2018. 2

[26] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2018. 2, 10, 11

[27] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in IEEE Conference on Computer Vision and Pattern Recognition,
2017. 2, 10, 11

[28] J. D. Schaffer, D. Whitley, and L. J. Eshelman, “Combinations of genetic
algorithms and neural networks: A survey of the state of the art,” in
International Workshop on Combinations of Genetic Algorithms and
Neural Networks. IEEE, 1992, pp. 1–37. 2

[29] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002. 2

[30] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-based en-
coding for evolving large-scale neural networks,” Artificial Life, vol. 15,
no. 2, pp. 185–212, 2009. 2

[31] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming
approach to designing convolutional neural network architectures,” in
Genetic and Evolutionary Computation Conference, 2017, pp. 497–504.
2

[32] S. Saxena and J. Verbeek, “Convolutional neural fabrics,” in Advances in
Neural Information Processing Systems, 2016, pp. 4053–4061. 2

[33] T. Domhan, J. T. Springenberg, and F. Hutter, “Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation
of learning curves.” in International Joint Conference on Artificial
Intelligence, 2015, pp. 3460–3468. 2, 5

[34] L. Xie and A. Yuille, “Genetic cnn,” in International Conference on
Computer Vision, 2017. 2

[35] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255. 2

[36] B. Baker, O. Gupta, R. Raskar, and N. Naik, “Practical neural
network performance prediction for early stopping,” arXiv preprint
arXiv:1705.10823, 2017. 2, 5

[37] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Smash: one-
shot model architecture search through hypernetworks,” arXiv preprint
arXiv:1708.05344, 2017. 2

[38] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Advances in Neural Information
Processing Systems, 2011, pp. 2546–2554. 3

[39] R. Vilalta and Y. Drissi, “A perspective view and survey of meta-
learning,” Artificial Intelligence Review, vol. 18, no. 2, pp. 77–95, 2002.
3

[40] S. Hochreiter, A. S. Younger, and P. R. Conwell, “Learning to learn
using gradient descent,” in International Conference on Artificial Neural
Networks. Springer, 2001, pp. 87–94. 3

[41] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, and N. de Freitas, “Learning to learn by gradient descent
by gradient descent,” in Advances in Neural Information Processing
Systems, 2016, pp. 3981–3989. 3

[42] M. Lin, Q. Chen, and S. Yan, “Network in network,” in International
Conference on Learning Representations, 2013. 4

[43] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Interna-
tional Conference on Machine Learning, vol. 99, 1999, pp. 278–287.
4

[44] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1. 4

[45] K. He and J. Sun, “Convolutional neural networks at constrained time
cost,” in IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 5353–5360. 5

[46] A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter, “Learning curve
prediction with bayesian neural networks,” International Conference on
Learning Representations, 2017. 5

[47] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in Advances in Neural Information Processing Systems, 2013, pp. 3111–
3119. 6

[48] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur,
“Recurrent neural network based language model,” in Eleventh Annual

14

Conference of the International Speech Communication Association,
2010. 6

[49] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici, “Beyond short snippets: Deep networks
for video classification,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 4694–4702. 6

[50] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997. 6

[51] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep
networks,” in Advances in Neural Information Processing Systems, 2012,
pp. 1223–1231. 7

[52] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola,
“Parameter server for distributed machine learning,” in Big Learning
NIPS Workshop, vol. 6, 2013, p. 2. 7

[53] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
3rd International Conference on Learning Representations, 2015. 7

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
IEEE International Conference on Computer Vision, 2015, pp. 1026–
1034. 7

[55] T. DeVries and G. W. Taylor, “Improved regularization of convolutional
neural networks with cutout,” arXiv preprint arXiv:1708.04552, 2017. 7

[56] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm
restarts,” in International Conference on Learning Representations, 2016.
7

[57] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2017. 9, 10

[58] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in British
Machine Vision Conference, 2016. 10

[59] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 5987–5995. 10,
11

[60] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2018. 10

[61] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng, “Dual path networks,”
in Advances in Neural Information Processing Systems, 2017, pp. 4467–
4475. 11

[62] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning.” in
AAAI Conference on Artificial Intelligence, vol. 4, 2017, p. 12. 11

[63] X. Zhang, Z. Li, C. C. Loy, and D. Lin, “Polynet: A pursuit of structural
diversity in very deep networks,” in IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2017, pp. 3900–3908. 11

