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Abstract—Slow motion videos are becoming increasingly popular, but capturing high-resolution videos at extremely high frame rates
requires professional high-speed cameras. To mitigate this problem, current techniques increase the frame rate of standard videos
through frame interpolation by assuming linear object motion which is not valid in challenging cases. In this paper, we address this
problem using two video streams as input; an auxiliary video with high frame rate and low spatial resolution, providing temporal
information, in addition to the standard main video with low frame rate and high spatial resolution. We propose a two-stage deep
learning system consisting of alignment and appearance estimation that reconstructs high resolution slow motion video from the hybrid
video input. For alignment, we propose to compute flows between the missing frame and two existing frames of the main video by
utilizing the content of the auxiliary video frames. For appearance estimation, we propose to combine the warped and auxiliary frames
using a context and occlusion aware network. We train our model on synthetically generated hybrid videos and show high-quality
results on a variety of test scenes. To demonstrate practicality, we show the performance of our system on two real dual camera setups
with small baseline.

Index Terms—Computational Photography, Video Frame Interpolation, Slow Motion, Deep Learning, Hybrid Imaging.
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1 INTRODUCTION

Many moments in life, such as popping a bottle of cham-
pagne or lightning, happen in a short period of time and
are difficult to observe in real time speed. These moments
can be properly recorded with a high frame rate camera
and the resulting video can be played in slow motion.
Nowadays, even smartphones have the ability to capture
videos with high frame rates and, thus, slow motion videos
are becoming increasingly popular. However, since these
cameras have limited bandwidth, they increase the frame
rate by sacrificing the spatial resolution. For example, Nokia
6.1 can capture 1080p videos at 30 frames per second (fps),
but can only capture 480p videos at 120 fps. Although there
are professional high-speed cameras that are able to capture
high-resolution videos at extremely high frame rates, they
are expensive and, thus, not available to the general public.

To address this problem, existing techniques use a stan-
dard high-resolution video at low frame rate as input and
increase the frame rate by interpolating the frames in be-
tween [1], [2], [3], [4], [5], [6]. Although these methods
produce high-quality results for simple cases, their ability
to handle challenging cases with complex motion is limited.
This is mainly because all of them have a limiting assump-
tion that the motion between the two existing frames is
linear. However, this is not the case in challenging scenarios,
as shown in Fig. 2.

In this paper, we address this problem by using a set of
hybrid videos consisting of a main and an auxiliary video
captured with a small baseline. As shown in Fig. 1, the
main video has high resolution and low frame rate, while
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the auxiliary video is of low resolution and high frame rate.
Therefore, the main and auxiliary frames provide the spatial
and temporal information, respectively. The goal of our
approach is to use the main and auxiliary videos as input
and produce a video with high spatial resolution (same as
the main video) and high frame rate (equal to the auxiliary
video). This setup takes advantage of the current trend of
dual cameras in the smartphones.

We propose to reconstruct the missing target frames in
the main video through a learning-based system consisting
of two main stages of alignment and appearance estimation.
During alignment, we use a pre-trained flow estimation
CNN to compute initial flows between the target and neigh-
boring frames using only the auxiliary frames. We then use
a CNN to enhance these estimates by incorporating the
information in the high resolution main frames and utilize
the enhanced flows to warp the main frames. In the next
stage of appearance estimation, we propose a context and
occlusion aware CNN to combine the warped and target
auxiliary frames and produce the final image.

We train our system in an end-to-end fashion by mini-
mizing the loss between the synthesized and ground truth
frames on a set of training videos. For training data, we
use a set of high frame rate videos with high resolution as
the ground truth and propose an approach to synthetically
generate the main and auxiliary input videos, emulating
the inputs from two real cameras with a small baseline.
To demonstrate our results on real scenarios, we build two
setups; a camera rig consisting of two smartphones and
another one with two digital cameras. Experimental results
shows that our approach is able to produce high-quality
results on both synthetic and real datasets.

In summary, the contributions of this work are:
• We propose a two-stage deep learning model that

combines two input video streams from a hybrid
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Fig. 1. We propose to increase the frame rate of standard videos with low frame rate from hybrid video inputs. In addition to the standard high-
resolution video with low frame rate, our system takes a high frame rate video with low resolution as the input (left). We propose a deep learning
approach to produce a high-resolution high frame rate video from the two input video streams (shown in the middle). As shown on the right, our
approach produces high-quality results that are better than the recent learning-based video interpolation method by Bao et al. (DAIN) [1]. The
complete comparison against other methods is shown in Fig. 11 and the comparison videos are provided in the supplementary material.

Left Keyframe Right KeyframeGround Truth

Ours

DAIN

Fig. 2. The top row shows three frames of a video demonstrating
Newton’s cradle in motion. The state-of-the-art video interpolation tech-
niques, such as the method by Bao et al. (DAIN) [1], attempt to in-
terpolate the intermediate frame using the neighboring keyframes by
assuming the motion between them to be linear. However, this is not a
valid assumption in this case. For example, the rightmost ball stays still
in the left and middle frames of the video and then moves to the right
and, thus, has a non-linear motion. Since Bao et al.’s approach linearly
interpolates the motion of the left and right balls, it produces incorrect
results, as shown in the red and green insets. Our hybrid system utilizes
the temporal information of the additional high frame rate video with low
spatial resolution and is able to properly handle this challenging case.

imaging system to reconstruct a high quality slow
motion video.

• We present a flow estimation system that utilizes
two videos to generate high resolution flows even
in challenging cases with large motion.

• We introduce a context and occlusion aware ap-
pearance estimation network which blends the two
warped key frames and minimizes warping artifacts.

• We construct two real dual camera rigs with small
baseline to demonstrate the results of our model on
real world data.

2 RELATED WORK

Frame interpolation is a classical problem in computer
graphics with applications like increasing the frame rate of
videos and novel view synthesis. This problem has been
extensively studied in the past and many powerful methods
have been developed. Here, we focus on the approaches
performing video frame interpolation and optical flow es-
timation, a common ingredient in existing video frame in-

terpolation systems. We also briefly discuss the approaches
using hybrid imaging systems.

2.1 Optical Flow
Optical flow estimation has been a long standing problem in
the field of computer vision with a plethora of papers trying
to address the challenges like large motion and occlusion.
Many classical approaches [7], [8], [9] are based on Horn and
Schunck’s [10] seminal approach which minimized a custom
energy function based on brightness constancy and spatial
smoothness assumptions. Sun et al. [11] provides a com-
prehensive comparison between these approaches. These
methods however require solving complex optimization
problems and in most cases are computationally expensive.

Most of the recent state-of-the-art approaches have uti-
lized deep learning for the flow estimation problem. The
FlowNet models by Dosovitskiy et al. [12] are the first
end-to-end trained deep CNNs for estimating optical flow.
Ilg et al. [13] further improve this approach by estimating
large and small displacements through a series of FlowNet
models and then fusing the results together. Inspired by the
classical coarse-to-fine pyramid approach for image regis-
tration, Ranjan and Black [14] introduce a spatial pyramid
network to estimate flow at a coarse scale and then refine
this flow by computing residuals at higher resolutions.
Similarly, Sun et al. [15] propose a pyramid network which
utilizes features instead of images. This architecture has the
advantage of being fast and compact while also giving a
better performance. We utilize this model for estimating an
initial flow between auxiliary frames since it works well
with high resolution videos containing large motion.

Another popular approach is to train a deep CNN using
unsupervised learning [16], [17], [18], [19]. Instead of using
ground truth flows, the generated flows are used as input
for a secondary task and the output quality is used as a
supervisory signal to train the flow network. For example,
Long et al. [20] supervise their optical flow CNNs by inter-
polating frames. We utilize a similar strategy to train our
high resolution flow estimation network.

2.2 Video Frame Interpolation
A standard solution to this problem is to compute optical
flows [21] between the neighboring frames and use the
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Fig. 3. Our system takes two video streams with different spatial resolu-
tions and frame rates as the input. On the top, we show the frames from
our main video with high-resolution and low frame rate. The auxiliary
frames with low resolution and high frame rate are shown at the bottom.

TABLE 1
Notations used in the paper

t index of the target frame
l index of the keyframe before the target frame
r index of the keyframe after the target frame
In frame n of the main video
În frame n of the auxiliary video
Fn flow from the target frame It to In in the main video
F̂n flow from the target frame Ît to În in the auxiliary video
Vl visibility map of the warped left keyframe. Vr is

computed as: Vr = 1− Vl.

estimated flows to warp the existing frames and reconstruct
the missing frame. However, optical flow is brittle in pres-
ence of large motion and also has difficulty handling the
occluded regions. Mahajan et al. [22] propose to move and
copy the gradients across each pixels path. They then per-
form Poisson reconstruction on the interpolated gradients to
obtain the final image. Shechtman et al. [23] use patch-based
synthesis for reconstructing the intermediate frames. Meyer
et al. [24] propose to interpolate the phase across different
levels of a multi-scale pyramid.

In recent years, several approaches have utilized deep
learning for this application. Niklaus et al. [25] use a deep
CNN to estimate a spatially adaptive convolutional kernel
for each pixel. This kernel is then used to reconstruct the
final image from the two neighboring frames. Later, they
improved the speed and quality of the results by formulat-
ing the problem as local separable convolution and using
a perceptual loss [3]. Liu et al. [2] use a CNN to estimate
the flows and use them to reconstruct the missing frame by
trilinear interpolation.

Niklaus and Liu [5] propose to blend the pre-warped
neighboring frames using a CNN. They also utilize contex-
tual information in the blending stage to improve the quality
of the results. Meyer et al. [26] improves the phase-based
approach [24] by using a CNN to estimate the phase of the
intermediate frames across different levels of a pyramid.
Jiang et al. [4] propose to interpolate arbitrary number of
in between frames by estimating flows to the intermediate
frame. The flows are then used to warp the neighboring
frames which are in turn combined to generate the final
frame using a weighted average. Liu et al. [6] propose that
the synthesized interpolated frames are more reliable if they
are cyclically used to reconstruct the input frames. Wenbo
et al. [1] introduce a depth-aware interpolation approach to
better handle occlusions in the video frames.

All of these approaches work with the main assumption

Single CNN Ours
Fig. 4. We compare the result of our two-stage approach against the
simpler single stage method where a single network directly recon-
structs the high-resolution target frame from the two keyframes and the
corresponding auxiliary target frame. The single CNN quickly learns to
combine the keyframes with the auxiliary frame without properly aligning
them. Therefore, it can produce reasonable results in the static regions,
as shown in the green inset. However, in the regions with motion, like the
one shown in the red inset, it produces result with excessive blurriness.
Our method, on the other hand, properly aligns the keyframes and is
able to produce high-quality results in both regions.

that the motion between the existing frames is linear, but
this is not a valid assumption in challenging cases. There-
fore, they are not able to correctly synthesize the interme-
diate frames in cases with complex motion, as shown in
Fig. 2. In our system, we use an additional auxiliary video
to provide the needed temporal information and, thus, are
able to produce high-quality results without aliasing.

2.3 Hybrid Imaging System

Several approaches have used multiple cameras to increase
the spatial resolution of images [27], [28], [29] and both
spacetime resolution of videos [30], [31]. Boominathan et
al. [32] and Wang et al. [33] combine a DSLR camera
with a light field camera to increase the resolution of light
fields spatially and temporally, respectively. Ben-Ezra and
Nayar [34] construct a hybrid imaging system to estimate
camera motion and use it to deblur the captured image.

A few non-learning methods [30], [31] have proposed
to synthesize high resolution high frame rate videos using a
dual camera setup. Watanabe et al. [31] first estimate motion
in the video and then perform fusion in the wavelet domain
to synthesize the final frame. Gupta et al. [30] compute flows
using the high resolution stills and low resolution video, and
then perform graph-cut based fusion to generate the output.
Their fusion algorithm tries to simultaneously preserve the
spatial and temporal gradients, essentially creating a trade-
off between spatial resolution and temporal consistency.
They give more weight to temporal consistency which re-
sults in blurry patches in the output video for challenging
scenes. In contrast, our learning based technique is able to
effectively combine the information of the two input videos
and produce high-quality videos, as shown in Fig. 16.

3 ALGORITHM

The inputs to our system are two video streams with differ-
ent spatial resolutions and frame rates. In our system, the
main low frame rate video captures high spatial resolution
details, as shown in Fig. 3. The auxiliary video, on the
other hand, is a high frame rate video with low spatial
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Fig. 5. System overview: We first estimate low resolution flows from the target frame using auxiliary frames. These flows are then enhanced by
using the high resolution keyframes and warped keyframes in the flow enhancement network. The final warped frames generated with the enhanced
flows are masked with the visibility maps and then combined by the context-aware appearance estimation network to output the final frame.

resolution. For example, our digital camera system (shown
on right in Fig. 12) captures the main video with resolution
of 1920 × 720 at 30 fps, while the auxiliary camera records
a video with a resolution 640 × 240 at 400 fps. Our goal
is to use these two video streams as input and reconstruct
a video with the spatial resolution and frame rate of the
main and auxiliary videos, respectively. To reconstruct each
high-resolution target frame, It, we need to utilize the in-
formation in the two neighboring frames in the main video
(called keyframes hereafter), Il and Ir , and the target low
resolution frame from the auxiliary video, Ît (see Fig. 3).
Table 1 summarizes the notations used in the paper.

A straightforward approach for addressing this problem
is to pass the two main keyframes and the bilinearly up-
sampled auxiliary target frame, Il, Ir , and Ît, as inputs to
a CNN and estimate the high-resolution target frame, It.
Ideally, the network increases the spatial resolution of Ît by
utilizing the corresponding content from the two keyframes.
However, as shown in Fig. 4, this approach produces results
with blurriness, specifically in the regions with large motion.
This demonstrates that while the network quickly learns to
combine the input images to improve the regions with small
or no motion, it is unable to align the keyframes in regions
with large motion.

Therefore, we propose an end-to-end trained two-stage
learning system, consisting of alignment and appearance es-
timation, to force the system to properly learn to align the
keyframes and combine them. During alignment, we first
use homography to globally align the main and auxiliary
frames since they are captured from different views. We then
register the high-resolution keyframes to the target frame by
estimating a set of flows between them. Next, we combine
the aligned keyframes and the auxiliary target frame to
produce the final frame in the appearance estimation stage.
An overview of the process is shown in Fig. 5. We discuss
these two stages in the following sections.

3.1 Alignment

In order to align the two keyframes to the target frame,
we first need to compute a set of flows from the left and
right keyframes to the target frame, denoted by Fl and Fr ,
respectively. Once these flows are obtained, we can simply
use them to backward warp the two keyframes and produce
a set of aligned keyframes, g(Il, Fl) and g(Ir, Fr), where g is
the function that performs backward warping using bilinear
interpolation.

Direct estimation of the high-resolution flows, Fl and
Fr, is difficult as the high-resolution target frame, It, is not

Warped KeyframesFlows

Initial Estimate Enhanced Initial Estimate Enhanced
Fig. 6. We show the initial and enhanced flows as well as the warped
keyframe using these two flows. Since the initial flow is computed
using low resolution auxiliary frames, it does not accurately capture the
motion boundaries and produces artifacts around the moving ball. The
enhanced flow is obtained by utilizing the content of the main frames
and, thus, produces warped frame without noticeable artifacts.

available. Previous methods compute bidirectional flows be-
tween neighboring frames and then apply a linear equation
to estimate the flow to an intermediate frame assuming
linear motion [4], [5]. Instead, we propose a novel approach
to compute these flows by utilizing the information in both
the main and auxiliary frames in two stages. In the first
stage, we estimate low resolution flows using the auxiliary
frames. We then enhance these flows in the second stage
using the high-resolution keyframes.

3.1.1 Initial Flow Estimation

The goal of this stage is to estimate a set of flows from
the two keyframes to the target using the low-resolution
auxiliary frames. This can be done by simply computing
the flows from Îl and Îr to Ît to obtain F̂l and F̂r , re-
spectively. However, we observed that in some cases there
are large motions between the neighboring and the target
frames and, thus, this approach has difficulty estimating
the correct flows. Therefore, since we have access to all the
intermediate low resolution frames, we propose to compute
the flows by concatenating the flows computed between the
consecutive auxiliary frames. Here, we explain the process
for computing F̂l, but F̂r is computed in a similar manner.
To do so, we use PWC-Net by Sun et al. [15] to compute a set
of flows between the consecutive auxiliary frames, i.e., Ît to
Ît−1, Ît−1 to Ît−2, ..., Îl+1 to Îl. These flows are then chained
to produce the flow between the left keyframe and the
target frame, F̂l. Note that, the resolution of the estimated
flows should be equal to the resolution of the main frames,
since they are used to warp the main keyframes. We can do
this either by computing the low resolution flows and then
upsampling them, or first upsampling the low resolution
frames and then computing the flows between them. We
choose the latter as it generally produces results with higher
quality.
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Fig. 7. Architecture of Flow Enhancement and Appearance Estimation
networks. The only difference is inputs and outputs to both networks.

While these flows can be used to produce a set of
warped keyframes, g(Il, F̂l) and g(Ir, F̂r), they have two
main problems. First, these flows are computed on low
resolution frames and, thus, are missing high frequency
details. Second, while we reduce the disparity between the
auxiliary and main frames through homography, there is
still minor misalignment between the two videos. There-
fore, the flows are often inaccurate around the edges and
occlusion boundaries, as shown in Fig. 6. We improve these
flows in the next stage by utilizing the content of the high-
resolution main frames.

3.1.2 Flow Enhancement

Here, the goal is to estimate the residual flows, ∆Fl and
∆Fr, that provide high frequency details and alignment for
the estimated low resolution flows from the previous stage.
The final high resolution flows can then be obtained as:

Fl = F̂l + ∆Fl, Fr = F̂r + ∆Fr (1)

We propose to estimate the two residual flows using a
CNN. The network takes a 19 channel input consisting of
the initial flows (2 channels each), F̂l and F̂r , original and
warped keyframes (3 channels each), Il, Ir, g(Il, F̂l), and
g(Ir, F̂r), as well as the bilinearly upsampled low-resolution
target frame (3 channels), Ît. The estimated residual flows,
∆Fl and ∆Fr , can then be used to reconstruct the final
flows, using Eq. 1, and they in turn can be used to produce
the warped keyframes, g(Il, Fl) and g(Ir, Fr).

Note that, each pixel of the target frame is not always
visible in both keyframes due of occlusion. To take this
into account, in addition to the residual flows, our flow
enhancement network estimates a visibility map for one
of the keyframes. In our implementation, we estimate the
map for the left keyframe, Vl, and obtain the map for the
right keyframe as Vr = 1 − Vl. These visibility maps are
single channel maps and basically measure the quality of
the warped image at each pixel. Intuitively, if a region is
occluded in a keyframe, the visibility map corresponding to
that region will have small values. These visibility maps are
extremely helpful in reconstructing the motion boundaries
in the appearance estimation stage (see Fig. 8).

For our model, we use an encoder-decoder U-Net archi-
tecture [4], [35] with skip connections, as shown in Fig. 7.
The network is fully convolutional with leaky ReLu (al-
pha=0.1) activation function. In addition to this, to constrain
the range of values in the visibility masks between [0, 1], we
use a sigmoid activation function on the output channels
corresponding to the visibility map.

Keyframes Warped Frames Visibility Maps

Without Visibility Map With Visibility Map
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Fig. 8. On the top, we show two keyframes along with their warped ver-
sion and visibility maps. The juggler’s arm is moving up in the video and
it only appears in the right keyframe (see the green arrow). Therefore,
the warped left keyframe lacks details on the hand since it does not
appear in the corresponding keyframe. On the other hand, the warped
right keyframe does not have the details on top of the ball, since it is
occluded in the right keyframe (note the star on the shirt as indicated
by the green arrows). The visibility maps correctly identify the occluded
regions and assign lower values to them (see the green boxes). As
shown on the bottom, providing the visibility maps to the appearance
estimation network, helps utilizing the valid content of the keyframes
and producing high-quality results.

w/o context w/ context w/o context w/ context
Fig. 9. Our appearance estimation without contextual information pro-
duces results with sharp artifacts at the motion boundaries (left). Using
contextual information, we are able to reduce these artifacts (right).

3.2 Appearance Estimation

The goal of this component is to generate the final frame
from the warped keyframes and the target auxiliary frame.
A straightforward approach is to use the warped keyframes
and the target auxiliary frame as the input to the network
to produce the final intermediate frame. However, this
approach produces results with artifacts in the occluded
regions, as shown in Fig. 8. This is because the network
has difficulty detecting the occluded regions from only the
input warped frames. To address this issue, we mask the
warped keyframes in the occluded regions by multiplying
them with their corresponding visibility mask in a pixel-



wise manner, i.e., instead of g(Ir, Fr) and g(Il, Fl) we pass
Vl� g(Il, Fl) and Vr � g(Ir, Fr) as the input to the network.

Although incorporating visibility maps significantly re-
duces the artifacts in the occluded regions, the results still
suffer from high frequency warping artifacts around the
motion boundaries, as shown in Fig. 9. These artifacts are
caused by error in flow computation and error accumulation
in chaining of low resolution flows. To address this issue,
we add contextual information to our inputs to supply
more information about the objects in the scene (like edges
and object boundaries). Specifically, we extract contextual
information from the keyframes and warp them along with
the keyframes to use as input to our CNN. We use the
feature maps from the conv1 layer of ResNet-18 [5], [36]
(64 channels) to produce the contextual information. The
two warped keyframes along with their warped contextual
maps, produce a 134 channel input to the network. We also
feed the upsampled auxiliary target frame and its contextual
map (67 channels) as input to the network.

In summary, our appearance estimation network takes
a 201 channel input and estimates the final high-resolution
target frame (3 channels). We use the same encoder decoder
architecture as flow enhancement network (Fig. 7), but with
different inputs and output.

Note that, recent state-of-the-art video frame interpo-
lation methods have either used visibility maps [4] or
contextual information [1], [5] to enhance the interpolation
quality. In contrast, we propose to incorporate both of them
to address the two key issues of occlusion and warping
artifacts when combining the auxiliary and main frames.

4 TRAINING

4.1 Data
We collect a set of 1080p (565 clips) and 720p (310 clips)
videos at 240 fps from YouTube and use them along with
the videos from Adobe240-fps dataset (118 clips) [37] as
our training data. The videos have a variety of scenes
with diverse objects (humans, vehicles, different terrains)
and varying degrees of camera motion. From these videos,
we extract a set of 23,000 shorter clips, each consisting of
12 frames. From each video clip, we randomly select 9
consecutive frames, use the first and last ones as the two
main keyframes, and select the remaining 7 intermediate
frames as ground truth. We then downsample the 9 frames
by a factor of six and four for the 1080p and 720p videos,
respectively, and use them as auxiliary frames with low
resolution. To augment the data, we randomly change the
direction of the sequence. We also randomly horizontally
flip them and randomly crop each frame to patches of size
768×384. Auxiliary patches (180p) are smaller by a factor of
six or four depending on the keyframe resolution; we choose
this factor to generalize our model to most real cameras.

Our system trained on this synthetically generated
dataset is not able to produce satisfactory results on videos
captured with real hybrid imaging systems (see Fig. 12).
This is mainly because the auxiliary frames in the training
data are generated by directly downsampling the main
video frames. However, in real dual camera setups, the aux-
iliary and main frames may have different brightness and
color, and are captured from different viewpoints. To reduce

Without perturbation With perturbation
Fig. 10. Our system trained on synthetic data produces results with
severe artifacts on the real data (left). By perturbing the synthetic training
data, we simulate the imperfections of the real camera setup and are
able to generate high-quality results on real data (right).

the color and brightness variations, we use HaCohen et al.’s
approach [38] to match the color of the auxiliary frames
to the main ones. While color transfer is generally helpful,
it does not completely address the problem, as shown in
Fig. 10. Therefore, we propose a series of perturbations to
increase the robustness of our system to brightness, color
and viewpoint differences. First, we apply gamma correc-
tion with random γ in the range [0.8, 1.3] to the auxiliary
frames, before feeding them to our system. To increase the
robustness of our approach to small misalignment between
the main and auxiliary frames, we shift the auxiliary frames
randomly from 0 to 2 pixels along both x and y axes
before upsampling. As shown in Fig. 10, these perturbations
significantly improve the quality of the results on real data.

4.2 Optimization
We utilize four types of losses to train the flow enhancement
and appearance estimation networks to improve quality of
outputs at each stage and the reconstructed intermediate
frame Ĩt. The pixel intensities of images lie in range [0, 1].

Reconstruction Loss Lr One of the popular losses in
image reconstruction is a pixel-wise color loss. We use the
widely used pixel-wise L1 loss between the generated frame
and ground truth frame [4], [5], [25], [26].

Lr = ‖Ĩt − It‖1. (2)

Perceptual Loss Lp This loss helps generate fine details
and improves the perceptual quality of the output image
[39], [40], [41]. Specifically, we define the loss function as:

Lp = ‖φ(Ĩt)− φ(It)‖22, (3)

where φ is the response of conv4_3 layer of the pre-trained
VGG-16 network [42], as commonly used in previous ap-
proaches [3], [4], [5].

Warping Loss Lw To improve the flows estimated by the
flow enhancement network, we use a warping loss between
the warped key frames and ground truth as:

Lw = ‖It − g(Il, Fl)‖1 + ‖It − g(Ir, Fr)‖1. (4)

Total variation loss Ltv To enforce the estimated flow to
be smooth [2], [4], we also minimize the total variation loss
on the estimated flows as:

Ltv = ‖∇Fl‖1 + ‖∇Fr‖1. (5)

Training the flow enhancement and appearance estimation
networks by directly minimizing the error between the esti-
mated and ground truth final frames is difficult. Therefore,
we propose to perform the training in three stages. In the



TABLE 2
Results on Slow Flow [44], Middlebury [21] and NfS [45] datasets

Slow Flow Middlebury NfS

LPIPS SSIM LPIPS SSIM LPIPS SSIM
DUF 0.4076 0.556 0.3410 0.585 0.2215 0.745
EDVR 0.3860 0.657 0.2882 0.670 0.1751 0.839
DAIN 0.1585 0.832 0.1709 0.729 0.0626 0.928
Super SloMo 0.1525 0.833 0.1498 0.736 0.0563 0.929
Ours 0.1332 0.865 0.1107 0.807 0.0467 0.956

first stage, we only train the flow enhancement network
without the need for the ground truth flows and visibility
maps by minimizing the following loss function:

Lalign = 204 Lr + 0.005 Lp + 102 Lw + Ltv. (6)

Note that, Lr computes the distance between the estimated
and ground truth frames. We compute the target frame
using the estimated flows and visibility maps as follows:

Ĩt =
(1− t)Vl g(Il, Fl) + tVr g(Ir, Fr)

(1− t)Vl + tVr
. (7)

In this case, the flow network is trained to estimate flows
and visibility maps that result in high-quality images. Once
the network is converged, in the second stage, we only
train the appearance estimation network by minimizing the
appearance loss between the estimated and ground truth
target frames as given below,

Lappearance = 204 Lr + 0.005 Lp. (8)

Note that, the estimated target frame in this stage is the
output of the appearance estimation network. At the end,
we fine-tune both the networks jointly using only the per-
ceptual loss Lp to improve the details in Ĩt.

5 RESULTS

We implemented our model using PyTorch and used the
ADAM [43] optimizer to train the networks. We train the
flow enhancement network for 300 epochs, using an initial
learning rate of 10−4 and decreased the rate by a factor
of 10 every 100 epochs. Similarly, we train the appearance
estimation network for 75 epochs, with an initial learning
rate of 10−5 and decreased the rate by a factor of 10 every
25 epochs.

We compare our approach against state-of-the-art multi-
frame video interpolation and video super-resolution deep
learning methods on a set of synthetic and real videos. Super
SloMo [4] and DAIN [1] increase the frame rate of the main
video, and EDVR [46] and DUF [47] increase the spatial
resolution of the auxiliary video. We also compare against
Gupta et al.’s [30] non-learning approach, which similar to
our system, utilizes both the main and auxiliary frames
to generate the output frames. Since the source code for
Super SloMo is not available, we implemented it ourselves.
We replaced the flow computation network with PWC-
Net [15] as it gives better performance, especially on videos
with high resolution and large motion. For Gupta et al.’s ap-
proach, we use one of the scenes from their supplementary
video for comparison. For all the other approaches, we use
the source code provided by the authors.
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Fig. 11. Comparison against state-of-the-art multi frame video interpo-
lation and video super-resolution methods on JUGGLER and HORSE
scenes. The auxiliary video in this case has been synthetically gener-
ated from the main video.

5.1 Synthetic Videos

We begin by quantitatively evaluating our results on the
Slow Flow [44], Middlebury [21] and (NfS) [45] datasets.
We use the 20 color sequences from the eval-color and
other-color Middlebury datasets, each with 8 frames. We
use the first and last frames as keyframes and interpolate
the 6 frames in between. For the 41 sequences in the Slow
Flow dataset and 9 test sequences from NfS dataset, we
interpolate 7 in-between frames. To generate the auxiliary
frames, we downsample the original frames by a factor of
3 along each dimension. As shown in Table. 2, our method
produces better results than the state-of-the-art methods in
terms of two perceptual metrics, SSIM [48] and LPIPS [41].

In Fig. 11, we compare our approach with state-of-the-
art methods on two 1080p test videos. These are 240 fps
videos and we attempt to interpolate 12 frames, effectively
increasing the frame rate from 20 to 240 fps. We generate
the auxiliary frames by downsampling the input frames by
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Fig. 12. Prototypes of our hybrid imaging system. a) The smartphone
rig (left) is a simple setup with Moto G6 (main camera) and Nokia 6.1
(auxiliary camera). b) The digital camera rig (right) is designed using two
Nikon S1 and a 50:50 beam-splitter to emulate a small baseline setup.

a factor of 4 in each dimension. The JUGGLER scene (top)
contains large motion on the ball, as seen in the keyframes.
The video interpolation methods of DAIN and Super SloMo
are not able to properly handle this challenging scene,
producing artifacts on the ball. The video super-resolution
methods of EDVR and DUF are unable to recover the texture
details on the shirt. Our approach correctly handles regions
with motion and is able to recover high resolution texture.

The HORSE scene (bottom) is challenging because of the
large motion of the horse and relative motion of objects on
the horse (reins, rider). DAIN and Super SloMo generate
results with severe artifacts in the fast moving areas. Since
most of the background is out of focus and the foreground
has smooth texture (horse, saddle), EDVR and DUF are able
to produce reasonable results in these areas. However, they
are unable to completely recover the intricate details on
rider’s clothes and produce results with artifacts on thin
objects like reins. By utilizing both the main and auxiliary
frames, our method is able to reconstruct results with fine
details and correct motions.

5.2 Real Camera Setups

To capture the real videos with different resolutions and
frame rates, we construct two hybrid imaging systems, as
shown in Fig. 12. The first rig is simple with two low end
smartphones, Moto G6 and Nokia 6.1, placed side-by-side.
The main camera captures 30 fps videos with a resolution
of 1920× 1080 and auxiliary camera records 120 fps videos
of effective size 570 × 320; we crop the original auxiliary
video (720 × 480) to match the field of view of the main
camera. For all our real results, the cameras were manually
triggered without any synchronization. During preprocess-
ing, we simply discard the frames from one video to match
the first frame of the other video. While this step reduces
the mismatch between the main and auxiliary frames, small
temporal misalignments remain between the corresponding
frames. However, our system properly handles these cases
since we train our flow network to be robust to small
misalignments (see Sec. 4.1). Moreover, both our setups
use cameras with rolling shutters and, thus, the captured
videos have distortions on fast-moving objects. However,
our flow enhancement network treats these distortions as
misalignment between the auxiliary and main videos and
estimates appropriate residual flows.

From the corresponding results in Fig. 13, Super SloMo
and DAIN are not able to properly handle regions with
motion blur and large motion like the leg and basketball
in JUMP and DRIBBLE scenes. A particularly interesting case
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Fig. 13. Comparison against state-of-the-art multi frame video interpo-
lation and video super-resolution methods on the JUMP (top), DRIBBLE
(middle), and CAR (bottom) sequences captured with our hybrid smart-
phone camera rig.
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Fig. 14. Comparison against state-of-the-art multi frame video interpo-
lation and video super-resolution methods on the BASKETBALL (top),
FOUNTAIN (middle), and VEGGIES (bottom) sequences captured with
our hybrid digital camera rig.
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Fig. 15. This scene is captured under low light condition and, thus, the
auxiliary frames are noisy. EDVR and DUF are unable to reconstruct the
details (left arrow) and remove the input noise (right arrow). Due to the
rolling shutter effect, the light torch is off but the reflection is visible in
the left keyframe, which is problematic for Super SloMo and DAIN. Our
method, however, is able to handle this challenging scene.

is the CAR scene where Super SloMo and DAIN produce
results with temporal aliasing on the wheel (see supplemen-
tary video). EDVR and DUF, on the other hand, are not able
to recover the sharp details in the textured areas like the
shirt in the DRIBBLE scene. Our method is able to effectively
utilize information from the main and auxiliary videos to
generate high quality results. These results demonstrate
that we can use the dual camera setups in most recent
smartphones to capture high resolution slow motion videos.

To demonstrate our approach’s ability to generate videos
with very high frame rates, we construct another rig with
two Nikon S1 cameras. One captures 30 fps videos with
resolution of 1920×720 and the other records 400 fps videos
of size 640× 240. To reduce the baseline of the cameras, we
place a 50:50 beam-splitter at 45◦ angle between them.

The BASKETBALL scene from Fig. 14 shows a basketball
rotating to the right. Super SloMo and DAIN are unable
to capture the flow of this rotation and, therefore, produce
results with artifacts. EVDR and DUF are not able to recover
details like writing on the basketball. However, our method
generates a high quality video since it can properly utilize
the temporal information from the auxiliary frames. Next,
we examine the FOUNTAIN scene, which has highly complex
and stochastic motion. Super SloMo and DAIN produce a
video with unnatural motion (see supplementary video).
EVDR and DUF produce blurry results, lacking details on
the rocks and water. Our method generates a coherent video
with natural motion and detailed texture. The VEGGIES
scene is particularly challenging for our method since auxil-
iary video contains saturated areas. Super SloMo and DAIN
are unable to capture the rotation of the vegetables and
simply translate them horizontally. EDVR and DUF produce
noisy results and are unable to recover the saturated areas
in the auxiliary frames. Our method correctly captures the
motion of the vegetables and recovers the saturated content
by utilizing the main keyframes.

We also demonstrate the performance of our method on
a scene captured under low light condition in Fig. 15. Note
that, the auxiliary frames in this case are noisy. In addition
to producing blurry results, EDVR and DUF are not able to
remove the noise. This scene also demonstrate the rolling
shutter effect where the light reflection appears before the
torch turns on (see supplementary video). Super SloMo
and DAIN are not able to handle this case and generate
artifacts in these regions. Our method effectively utilizes the
information in the auxiliary video to generate the output.
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Fig. 16. Comparison against Gupta et al.’s [30] approach on the LADY
scene from their supplementary video. This is a challenging scene with
constant change in lighting due to the flickering of lamp.

TABLE 3
Inference performance on GTX 1080 Ti GPU

# Intermediate Frames 9 7 5 3 1
Run-time (seconds/frame) 0.90 0.87 0.84 0.70 0.22

TABLE 4
Evaluating the effect of visibility and contextual information in

appearance estimation

Component LPIPS SSIM
Appearance Estimation 0.1193 0.891

+ Visibility Maps 0.1110 0.896
+ Contextual Information 0.1012 0.903

5.3 Comparison against Gupta et al.
We compare our approach with the non-learning method
by Gupta et al. [30] on a synthetic scene (Fig. 16). The input
videos for their results are not available and, therefore, we
extract the main and auxiliary videos from their supplemen-
tary video. The extracted LADY scene is challenging due to
constant change in lighting caused by the flickering of lamp.
Gupta et al.’s method has a trade-off between spatial reso-
lution and temporal consistency and, thus, produces results
with blurry patches. In comparison, our method produces a
high quality output with minimal ghosting artifacts.

5.4 Inference performance
Table 3 shows the inference performance of our model on
a GTX 1080 Ti GPU using a main and auxiliary video
sequence of resolutions 1080p and 360p, respectively. Note
that, the average time for generating an intermediate frame
increases with the number of intermediate frames to be in-
terpolated. This is primarily caused by the chaining of flows
between consecutive auxiliary frames during the initial flow
estimation (Sec. 3.1.1).

5.5 Analysis
5.5.1 Effect of Visibility and Contextual Information
We study the impact of different components in appearance
estimation. Specifically, we evaluate the effect of visibility

TABLE 5
Evaluating the effect of auxiliary video resolution

540p 360p 270p 180p 90p 45p
LPIPS 0.1005 0.1005 0.1012 0.1065 0.1365 0.2011
SSIM 0.906 0.906 0.903 0.892 0.851 0.811

TABLE 6
Evaluating the effect of main video frame rate

120 fps 60 fps 40 fps 30 fps 24 fps
LPIPS 0.0535 0.0709 0.0856 0.0976 0.1095
SSIM 0.951 0.936 0.923 0.911 0.901

TABLE 7
Evaluating output quality by changing gamma and hue of the auxiliary

video frames

Gamma 0.65 0.85 0.95 1.00 1.25 1.75
LPIPS 0.1016 0.1005 0.1005 0.1005 0.1006 0.1052
SSIM 0.905 0.906 0.906 0.906 0.905 0.903
Hue 0.00 0.02 0.05 0.15 0.30 0.50
LPIPS 0.1005 0.1005 0.1007 0.1014 0.1018 0.1018
SSIM 0.906 0.906 0.905 0.905 0.905 0.904

maps and contextual information on the quality of the output
of appearance estimation network. Here, we use 30 fps
1080p main and 240 fps 270p auxiliary videos. As shown
in Table 4, visibility maps improve the result as indicated
by LPIPS and SSIM. Adding contextual information further
enhances the output by providing perceptual and semantics
information about the scene (edges, object boundaries).

5.5.2 Auxiliary Video Resolution
Here, we evaluate the performance of our model with
varying auxiliary video resolutions. To do this, we use main
and auxiliary videos at 30 and 240 fps, respectively. We keep
the resolution of the main video at 1080p, and evaluate the
quality of reconstructed video by changing the resolution of
the auxiliary video from 45p to 540p. The results in Table 5
show that the performance degrades sharply below 180p
and improvement above it is minimal. This shows that our
model can effectively extract temporal information from a
very low auxiliary frame resolution of 180p.

5.5.3 Main Video Frame Rate
In this section, we analyze the effect of main video (1080p)
frame rate on the output of the network. Here, we use
auxiliary videos with 240 fps and resolution of 360p. We
vary the main video’s frame rate from 24 fps to 120 fps and
interpolate one middle frame (same middle frame for all
experiments). As shown in Table 6, the network performs
better by increasing the frame rate of the main video, as
expected. Higher frame rate effectively reduces the displace-
ment of objects in consecutive keyframes which results in
higher quality flows and output.

5.5.4 Differences in Color and Brightness
Here, we evaluate the robustness of our model to differences
in brightness and color between main and auxiliary videos.
To do this, we evaluate the quality of the reconstructed
frames by changing gamma and hue of the auxiliary videos
(see Fig. 17). Table 7 shows the result of this experiment on
main (1080p) and auxiliary (360p) videos with frame rates
of 30 and 240. As seen, our method performs consistently
well for a large range of gamma and hue variations.
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Fig. 17. Example of auxiliary video inputs for the experiments in
Sec. 5.5.4 (Gamma and Hue row) and Sec. 5.5.5 (Noisy and Denoised
row). The extent of perturbation is specified by the numbers in the lower
right corner of images.

TABLE 8
Evaluating the effect of noise in auxiliary video on the result’s quality.

We show the results using both noisy and denoised (using
VBM4D [49]) auxiliary videos.

Sigma ( σ ) 0 5 15 35 75

Noisy
LPIPS 0.1005 0.1035 0.1076 0.1572 0.2747
SSIM 0.906 0.904 0.898 0.821 0.689

Denoised
LPIPS 0.1005 0.1012 0.1036 0.1128 0.1380
SSIM 0.906 0.905 0.903 0.896 0.869

TABLE 9
Evaluating the effect of temporal desynchronization between main and

auxiliary videos

# frames 0 1 2 3
LPIPS 0.1005 0.1093 0.1213 0.1326
SSIM 0.906 0.888 0.875 0.862

5.5.5 Effect of Noise
Capturing high frame rate videos in low-light conditions
leads to noisy auxiliary videos, which could potentially
affect the performance of our system. To evaluate the effect
of noise, we add zero-mean Gaussian noise with varying
standard deviations to the auxiliary frames (see Fig. 17) and
evaluate the quality of the estimated frames in Table 8. Our
approach performs well at low levels of noise, but at high
levels of noise, the performance deteriorates due to poor
quality of optical flow estimation. We can mitigate this by
denoising the auxiliary videos using an existing algorithm,
such as VBM4D [49], as shown in Table 8.

5.5.6 Camera Desynchronization
As previously discussed in Sec. 5.2, in addition to spatial
misalignment, we also have temporal misalignment be-
tween the main and auxiliary videos. In this experiment,
we deliberately desynchronize the auxiliary video from 0 to
3 frames and use main (1080p) and auxiliary (360p) videos
with frame rates of 30 and 240 fps, respectively. As shown in
Table 9, our model’s performance degrades gracefully with
increase in desynchronization. Nevertheless, this is not a
major challenge as the two cameras can be synchronized
to trigger simultaneously on typical dual camera devices.

5.6 Limitations
Our approach has several limitations. First, our method is
not able to utilize the information in the auxiliary frames,
if they are captured at extremely low resolution (Table 5).
Second, our system is unable to properly handle cases where
the main and auxiliary videos have large baselines or the ob-
ject is very close to the rig causing significant misalignment

M
ai

n
Au

xi
lia

ry

Keyframes Our intermediate frame
Fig. 18. We show two consecutive main keyframes and their correspond-
ing auxiliary keyframes. Here, since the flag is close to the camera rig,
there is a large disparity between the main and auxiliary keyframes, as
indicated by the arrows. Our flow estimation network cannot handle such
a large misalignment and, thus, our system produces warping artifacts
around the motion boundaries (see also supplementary video).

Keyframes Aux. Frame Super SloMoDAIN Ours
Fig. 19. Because of saturated regions in the auxiliary frame estimating
a reliable flow is challenging. Although our result contains artifacts, it is
considerably better than other methods.

(see Fig. 18 and supplementary video). Third, in cases where
the auxiliary video is saturated, it is difficult to estimate
reliable flows. Therefore, our approach produces results
with slight artifacts (Fig. 19). However, our approach still
generates better results than the existing methods. Finally,
our approach is not able to produce results with higher
frame rate than the auxiliary video. In the future, it would
be interesting to extend our method to also interpolate the
auxiliary frames.

6 CONCLUSION

We have presented a deep learning approach for video
frame interpolation using a hybrid imaging system. In our
method, we address the lack of temporal information in
the input low frame rate video by coupling it with a high
frame rate video with low spatial resolution. Our two-
stage learning system properly combines the two videos
by first aligning the high-resolution neighboring frames to
the target frame and then combining the aligned images to
reconstruct a high-quality frame. We generate the training
data synthetically and perturb them to match the statistics
of real data. We demonstrate that our approach outperforms
prior work on both synthetic and real videos. We show the
practicality of our approach on challenging scenes using real
low-cost dual camera setups with small baseline.
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