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to Interpret a CNN
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Abstract—This paper introduces an explanatory graph representation to reveal object parts encoded inside convolutional layers of

a CNN. Given a pre-trained CNN, each filter' in a conv-layer usually represents a mixture of object parts. We develop a simple yet
effective method to learn an explanatory graph, which automatically disentangles object parts from each filter without any part
annotations. Specifically, given the feature map of a filter, we mine neural activations from the feature map, which correspond to
different object parts. The explanatory graph is constructed to organize each mined part as a graph node. Each edge connects two
nodes, whose corresponding object parts usually co-activate and keep a stable spatial relationship. Experiments show that each graph
node consistently represented the same object part through different images, which boosted the transferability of CNN features. The
explanatory graph transferred features of object parts to the task of part localization, and our method significantly outperformed other

approaches.

Index Terms—Convolutional neural networks, graphical model, interpretable deep learning

1 INTRODUCTION

N this paper, we investigate the disentanglement of inter-
mediate-layer feature representations of a CNN pre-
trained for object classification. We notice that each filter in
a CNN usually encodes mixed features of object parts and
textural patterns. Therefore, in this paper, given a CNN, we
propose to learn an explanatory graph without any part
annotations. The explanatory graph automatically reveals
how object-part features are organized in the CNN. The
explanatory graph
1. disentangles features of object parts from mixed fea-
tures in intermediate-layers of a CNN;
2. encodes which object parts are usually co-activated
and keep the stable spatial relationship.
As Fig. 1 shows, the explanatory graph encodes the com-
positional hierarchy of object parts encoded inside conv-
layers of the CNN, as follows.

e The explanatory graph consists of multiple layers.
Each layer of the graph corresponds to a conv-layer
of the CNN and contains thousands of nodes.

e Each node represents an object part that is encoded in
a filter of a conv-layer. A filter in a conv-layer is usu-
ally activated by multiple parts and textural patterns.
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As Fig. 1 shows, a filter’s feature map' may be acti-
vated by both the head and the neck of a horse.

Given the feature map of a filter, a graph node can
identify neural activations in the feature map, which
correspond to a specific object part. Theoretically, a
CNN with ReLU layers can be considered to encode
high-order piecewise linear representations. An object
part corresponding to a node is encoded inside a spe-
cific feature space divided by the piecewise partitions.
Multiple nodes are learned for each filter, i.e., neural
activations in its feature map are divided and explained
as different multiple parts.

e A graph edge connects two nodes in adjacent layers.
The two connected nodes represent two object parts,
which usually appear simultaneously in an image
and keep a stable spatial relationship among differ-
ent images. For example, the ear part and the face
part of a horse usually co-appear on different images
with similar spatial relationships.

Constructing the explanatory graph is a process of min-
ing object parts from intermediate conv-layers. Nodes in the
explanatory graph represent all candidate parts learned
from the entire set of training images by the CNN. Conse-
quently, in the inference process, given an input image, the
explanatory graph automatically selects a small ratio of
nodes. These chosen nodes identify neural activations in
intermediate-layer feature maps, which correspond to spe-
cific object parts. Given different images, the explanatory
graph selects different sets of nodes for explanation. More-
over, since the same part may appear at various locations,

1. The output of a conv-layer is called the feature map of a conv-
layer. Each channel of this feature map is produced by a filter, so we
call a channel the feature map of a filter.
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Fig. 1. An explanatory graph represents the compositional hierarchy of object parts encoded in conv-layers of a CNN. Each filter in a pre-trained CNN
may be activated by different object parts. Our method disentangles object parts from each filter in an unsupervised manner.

given different images, the same node may identify neural
activations at different positions as the target part.

The explanatory graph mainly takes two advantages, i.e.,
the disentanglement and the transferability, as follows.

Disentangling object parts from a single filter is the core tech-
nique of building an explanatory graph. In this study, we
develop a simple yet effective method to automatically dis-
entangle different object parts from a single filter without
using any annotations of object parts, which presents con-
siderable challenges for state-of-the-art algorithms. In this
way, the explanatory graph exclusively localizes neural acti-
vations of object parts in the feature map, and ignores noisy
activations and activations of textural patterns.

More specifically, for each input image, the explanatory
graph (i) infers which parts (nodes) are responsible for the
feature map of a filter and (ii) localizes these parts.

Graph Nodes With High Transferability. The explanatory
graph contains off-the-shelf features of object parts in a com-
positional hierarchy, like a dictionary. Thus, the explanatory
graph enables us to accurately transfer such object-part fea-
tures to other tasks. Since all filters in the CNN are learned to
encode common features shared by numerous training
images, each graph node can be regarded as a transferable
detector for common parts among different images.

To demonstrate the above advantages, we learn different
explanatory graphs for various CNNs (e.g., the VGG-16,
residual networks, and the encoder of a VAE-GAN) and ana-
lyze the explanatory graphs from various perspectives as
follows.

Visualization & Reconstruction. We visualize object parts
encoded by graph nodes using the following two approaches.
First, for each graph node, we draw image regions corre-
sponding to the node’s part localizations on different input
images. Second, we learn another neural network, which uses
activation states of graph nodes to reconstruct the input
image.

Evaluation of Part Interpretability of Graph Nodes. Given an
explanatory graph, we propose a new metric to quantita-
tively evaluate whether a node consistently represents the
same part in different images.

Examination of Location Instability of Graph Nodes. Besides
the part interpretability, we also use a new metric, namely
location instability, to measure the semantic clarity of each
graph node. It is assumed that if a graph node consistently
represents the same object part, then the distances between
the inferred part and some ground-truth landmarks of the
object should not change a lot through different images.

Thus, the evaluation metric uses the deviation of such rela-
tive distances over images to measure the instability of the
part representation.

Testing Transferability. The transferability of graph nodes
is tested in the scenario of few-shot part localization. We
associate certain graph nodes with explicit part names
based on feature maps of very few images, in order to local-
ize the target part. The superior localization performance
proves the good transferability of graph nodes.

Contributions of this paper are summarized as follows.

e In this paper, we, for the first time, propose a simple
yet effective method to extract and summarize object
parts encoded inside intermediate conv-layers of a
CNN and organize them using an explanatory
graph. Experiments show that each graph node con-
sistently represented the same object part in different
input images.

e The proposed method can be used to learn explana-
tory graphs for various CNNs, e.g., VGGs, residual
networks, and the encoder of a VAE-GAN.

e Graph nodes have good transferability, especially in
the task of few-shot part localization. Although our
graph nodes were learned without part annotations,
our transfer-learning-based part localization still out-
performed approaches using part annotations to
learn part representations.

A preliminary version of this paper appeared in [43].

2 RELATED WORK

2.1 Semantics in the CNN

The interpretability of neural networks receives increasing
attention in recent years [51]. Different methods have been
developed to explore visual concepts encoded inside a
CNN.

Visualization & Interpretability of CNN Filters. Visualiza-
tion of filters in a CNN is the most direct way of diagnosing
representations of a CNN. Dosovitskiy et al. [6] proposed
up-convolutional nets to invert feature maps of conv-layers
to input images. Gradient-based visualization [19], [21],
[22], [31] showed the appearance that maximized a network
output, the activation score of a specific filter, or certain neu-
ral activations in a feature map. Furthermore, Bau et al. [3]
defined and analyzed the interpretability of each filter. In
recent years, [23] provided a reliable tool to visualize filters
in different conv-layers of a CNN.



ZHANG ET AL.: EXTRACTION OF AN EXPLANATORY GRAPH TO INTERPRET A CNN

[3] selectively analyzed the semantics among the highest
0.5 percent activations of each filter. In contrast, our method
provides a solution to explaining both strong and relatively
weak activations from each filter, instead of exclusively
extracting significant neural activations.

Active Network Diagnosis. Going beyond “passive” visual-
ization, some methods “actively” diagnose a pre-trained
CNN to obtain insight understanding of CNN representa-
tions. Many statistical methods [1], [35] have been proposed
to analyze CNN features. [35] explored semantic meanings
of convolutional filters. [1], [17] computed feature distribu-
tions of different categories.

The model bias and dataset bias are typical problems in
deep learning, which has been illustrated in recent studies
of [14], [20], [24]. Zhang et al. [47] has proposed a method to
discover biased representations due to dataset bias. The
CNN usually uses unreliable contexts for classification. For
example, a CNN may extract features from hairs as a con-
text to identify the smiling attribute.

Therefore, in order to ensure the correctness of feature
representations, network-attack methods [12], [34], [35]
diagnosed network representations by computing adversar-
ial samples for a CNN. In particular, influence functions [12]
were proposed to compute adversarial samples, create
training samples to attack the learning of CNNs, fix the
training set, and further debug a CNN. [13] discovered
blind spots of CNN representations in a weakly-supervised
manner. In comparison, our method disentangles features
of object parts from a pre-trained CNN and builds an
explanatory graph to reveal object parts encoded inside the
CNN. It is because just like And-Or graphs [39], [40], [41],
our explanatory graph naturally represents the local, bot-
tom-up, and top-down information to construct a hierarchi-
cal object representation.

Diagnosis of Network Predictions. Some previous studies
aimed to explain the reason for each network prediction.
Methods of [7], [27] propagated gradients of feature maps
w.r.t. the CNN loss back to the image, in order to estimate
the image regions that directly contribute the network out-
put. The LIME [24], the SHAP [18], and [4], [42] extracted
input units that were closely related to a specific prediction.

Pattern Retrieval. Some studies retrieve specific activation
units with specific meanings from intermediate-layer fea-
ture maps. Like middle-level feature extraction [33], pattern
retrieval mainly learns mid-level representations of CNN
features. Zhou et al. [52], [53] selected activation units from
feature maps to describe scenes. In particular, [52] accu-
rately computed the image-resolution receptive field of neu-
ral activations in a feature map. Theoretically, the actual
receptive field of a neural activation is smaller than that
computed using the filter size. Simon et al. discovered
objects from feature maps of unlabeled images [29], and
selected a filter to describe each part in a supervised fash-
ion [30]. However, most methods simply assumed that
each filter mainly encoded a single visual concept, and
ignored the case that a filter in high conv-layers encoded a
mixture of object parts and textural patterns. [44], [45], [46]
extracted certain neural activation units from a filter’s fea-
ture map to describe an object part in a weakly-supervised
manner (i.e., learning from active question answering and
human interactions).
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In this study, the explanatory graph disentangles fea-
tures of different object parts from the CNN without part
annotations. Compared to raw feature maps, graph nodes
are well disentangled and more interpretable.

CNN Semanticization. Compared to the diagnosis of CNN
representations and the pattern retrieval, semanticization of
CNN representations is closer to the spirit of building inter-
pretable representations.

Hu et al. [11] designed logic rules for network outputs,
and used these rules to regularize neural networks and
learn meaningful representations. [3], [52] extracted visual
semantics from intermediate layers of a CNN. [37] distilled
representations of a neural network into an additive model
to explain the network. [53] also used additive structures,
i.e., the global average pooling layer to explain neural net-
works. [50] used a tree structure to approximate the ratio-
nale of the CNN prediction on each specific sample.
Capsule nets [26] and interpretable CNNs [49] used specific
network structures and loss functions, respectively, to make
the network automatically encode interpretable features in
intermediate layers.

In comparison, we aim to explore the compositional hier-
archy of object parts encoded inside conv-layers of a CNN.
The explanatory graph boosts the transferability of CNN
features to other part-based tasks.

2.2 Weakly-Supervised Knowledge Transferring
Knowledge transferring has been widely used in deep learn-
ing. Typical research includes end-to-end fine-tuning and
transferring CNN representations between different data-
sets [8]. In contrast, a transparent representation of the
explanatory graph will create a new possibility of transfer-
ring object-part features to other applications. Experiments
have demonstrated the superior transferability of graph
nodes in few-shot part localization.

3 ALGORITHM

A single filter is usually activated by different parts of the
object (see Fig. 2). Let us assume that given an input image,
a filter is activated at NV positions, i.e., there are NV activation
peaks on the filter’s feature map. Some peaks represent
common parts of the object. Other activation peaks may cor-
respond to background noises or textural patterns.

Our goal is to disentangle activation peaks correspond-
ing to object parts from a filter’s feature map. Le., we select
certain neural activations, which represent specific object
parts. We propose an explanatory graph for the disentangle-
ment. Each activation peak of a filter corresponding to an
object part is represented as a graph node. Let an activation
peak represent a specific object part. Then, it is assumed
that the CNN wusually contains other filters to represent
neighboring parts of the target part. Le.,, some activation
peaks of other filters must keep stable spatial relationships
with the target part. Such spatial relationships are encoded
in edges of the explanatory graph, which connect each node
in a layer to some nodes in the neighboring upper layer.

Object parts are mined layer by layer. Given object parts
mined from the upper layer, we extract activation peaks that
keep stable spatial relationships with specific upper-layer
parts through different images, as parts in the current layer.
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Fig. 2. Schematic illustration of the explanatory graph. The explanatory graph encodes spatial and co-activation relationships between object parts in
the explanatory graph. Nodes in high layers help localize nodes in low layers. From another perspective, we can regard low-layer nodes represent

compositional parts of high-layer nodes.

Nodes in high layers usually represent large-scale object
parts, while nodes in low layers mainly describe small and
relatively simple shapes, which are usually compositions of
high-layer parts. Nodes in high layers are usually discrimi-
native, and the explanatory graph uses high-layer nodes to
filter out noisy activations. Nodes in low layers are disen-
tangled based on their spatial relationship with high-layer
nodes.

3.1 Explanatory Graph
Before the introduction of technical details of the algorithm,
we first give a brief overview of the explanatory graph.

We are given a CNN, which is learned using a set of
training samples I. We construct an explanatory graph G
based on this CNN and all training samples in I. As Fig. 4
illustrates, G contains several layers, each corresponding to
a single conv-layer in the CNN. Each layer of the explana-
tory graph is composed of hundreds/thousands of nodes,
which represent object parts encoded in this conv-layer.
Each node is linked with some graph nodes in the upper
layer. The linkage/edge indicates that object parts of the
two linked nodes usually co-appear in the image with stable
spatial relationship. In this way, an explanatory graph can
be considered as a dictionary of object parts, which are
extracted from various images.

In the training phase, each node in G is supposed to dis-
entangle a part from a conv-layer’s feature maps. In infer-
ence phase, given feature maps of an input image I, the
explanatory graph G uses its nodes to localize neural activa-
tions corresponding to different parts.

3.2 Top-Down lterative Learning of the Explanatory
Graph

Given all training images I, we expect that (i) all nodes in
the explanatory graph can be well fitted to feature maps of
all images, and (ii) nodes in the lower layer always keep
consistent spatial relationships with nodes in the upper
layer given each input images. Therefore, the learning of an
explanatory graph is conducted in a top-down manner as
follows.

The learning of an explanatory graph is conducted layer
by layer. We first disentangle parts from the top conv-layer
of the CNN and construct the top layer of the explanatory
graph. Then, we conduct position inferences for all nodes in

the top layer (the inference process will be introduced in
Section 3.3). We use inference results to help disentangle
parts from the neighboring lower conv-layer. In this way,
the lower layer of the explanatory graph is constructed
using inference results of the neighboring upper layer.

Construction of the Lth® Layer. In the following para-
graphs, we will introduce how to recursively learn the Lth
layer of the explanatory graph given the (L + 1)-th layer.

Our method disentangles the dth filter of the Lth conv-
layer into Ny 4 parts. These parts are modeled as a set of
Npq nodes in the Lth layer of G, denoted by (..
Qr = U8 4 denotes the entire node set for the Lth layer. In
following paragraphs, we can simply omit the subscript L
without ambiguity. 6 represents parameters of nodes in the
Lth layer, which mainly encode spatial relationships
between these nodes and nodes in the (L + 1)-th layer.
Table 1 summarizes the notation used in this paper.

Given an input image I € I, the Lth conv-layer of the
CNN generates a feature map', denoted by X’. Then, for
each node V' € (), the explanatory graph infers whether or
not the part indicated by V appears in the dth channel' of
X, as well as its part location (if the part appears).

For each node V' in the Lth layer, our method learns the
following two terms: (i) the parameter iy € 6 and (ii) a set
of nodes Ey € 6 in the upper layer that are connected to V.
wy € 0 denotes the prior location of V. Thus, for each node
V'€ By, uy — puyr corresponds the prior displacement
between V and node V” in the upper layer. The explanatory
graph uses the displacement 11, — 7 to model the spatial
relationships between nodes.

Just like an EM algorithm, we use the current explana-
tory graph to fit feature maps of training images. Then, we
use matching results as feedback to modify the prior loca-
tion uy- and edges Ey of each node V in the Lth layer, in
order to make the explanatory graph better fit the feature
maps. We repeat this process iteratively to obtain the opti-
mal prior location and edges for V.

In other words, our method automatically extracts pairs
of related nodes and learns the optimal spatial relationships

2. Note that our method is not limited to using consecutive conv-
layers to learn the explanatory graph. People can select inconsecutive
conv-layers. Without loss of generality, the Lth ranked layer among all
conv-layers, which are selected from the CNN, is termed as the Lth
conv-layer for simplicity.
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TABLE 1
Notation

\4 A node in the explanatory graph

Np.4 (or Ny) The node number extracted from the dth channel of the Lth
conv-layer

Qr .4 (or Q) The node set extracted from the dth channel of the Lth
conv-layer

Q; (or Q) The node set extracted from the Lth conv-layer

0 Parameters of nodes in the Lth layer

x! The feature maps of the Lth conv-layer given input image T

reX! A neural activation unit in the feature map X'

R/ Position inference results of nodes in the L + 1th layer,
which are represented using spatial coordinates.

o The center of the receptive field in the image plane of the
neural activation unit =

Py The position inference result (i.e., the spatial coordinate) in
the image plane of the node V’ given input image 7

y The average position of the node V' in the image plane

Ey The set of parent nodes of node V, which are localized in the
upper layer.

between them during the iterative learning process, which
best fit feature maps of training images.

Therefore, the objective function of learning the Lth layer
is formulated as

Il
argmngIeIP(X IR',0). (1

Let us focus on the feature map X’ of image I. Without
ambiguity, we ignore the superscript I to simplify nota-
tions in following paragraphs. We can regard X as a dis-
tribution of “neural activation entities.” The neural
response of each unit z € X can be considered as the
number of “activation entities.” In other words, each
neural activation unit z in the feature map X is identi-
fied by its spatial position p,” and its channel number d,
(i.e., an activation unit of the d,-th filter). We use
F(z) = - max{f,,0} to measure the number of activation
entities at the location p,, where f, is the normalized
activation value of z; B is a constant. We use R to repre-
sent position inference results of all nodes in the upper
conv-layer (i.e., the L + 1-th conv-layer).

Just like a Gaussian mixture model, all nodes in {); com-
prise a mixture model, which explains the distribution of
activation entities on the dth channel of X.

B H;I'GXP(p:r, ‘R7 G)P(f)
RIS

Ve U{Vaone}
where each node V € (), is treated as a hidden variable or
an alternative component in the mixture model to describe
activation entities. P(V) = is a constant prior probabil-

P(X|R.6)

e )
no)

d=d,

Ny+1 =
ity. P(p,|V.R,0) measures the compatibility of using node V/
to describe an activation entity at p,. In particular, we add a
dummy node V. to the mixture model for noisy activations,
in order to explain neural activations unrelated to object parts,
e.g., those of noises and textural patterns. The compatibility

3. To make unit positions in different conv-layers comparable with
each other (e.g., 17y in Eq. (4)), we project the position of unit z to
the image plane. We define the coordinate p, on the image plane,
instead of on the feature-map plane.

EXTRACTION OF AN EXPLANATORY GRAPH TO INTERPRET A CNN
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between V and p, is based on spatial relationship between V'
and its connected nodes in G, which is approximated as

A
p(pm|v7 R,0)= {V HV’eEV P(px|pv’7 0) Vv ede 3)
YT, V= Vnonc
P(Px|Pv’»O)ZN(Px|MV'—>V70%//)- (€Y

In the above equations, V has M related nodes in the upper
layer. The set of nodes Ey € 6 connected to V' would be
determined during the learning process. The overall com-
patibility P(p,|V.R,0) is divided into the spatial com-
patibility between node V and each related node V7,
P(p,|py,0). VV' € Ey, py» €R denotes the position infer-
ence result of V7, which have been given. A = % is a constant
for normalization. y is a constant, which roughly ensures
JP(p,|V,R,0)dp, =1 and can be eliminated during the
learning process.

As Fig. 3 shows, an intuitive idea is that the relative dis-
placement between V' and V’ should not change a lot among
different images. Then, p,, — py» will approximate to the prior
displacement (1, — w7, if node V' can well fit the activation at
p.- Given Ey, we assume the spatial relationship between 1/
and V' follows a Gaussian distribution in Eq. (4), where we
define py_,y = uy — pyr + pyr as the prior localization of V/
given V'. The variation 0%, can be estimated from data.*

Algorithm 1. Learning Sub-Graph in the Lth Layer

Inputs: feature map X of the Lth conv-layer, inference results
R in the upper conv-layer.
Outputs: uy, Ey for VV € Q.
Initialization: YV, Ey = {Viummy }, @ random value for p,
foriter = 1toT do
VYV € Q, compute P(p,, V|R,6).
forV e QO do
Update p via an EM algorithm,
(iter) (iter—1)
v =My

(0)

+ n ZIEI zeX EP(V‘pziR,O)
F(z) - W] .

oy

Select M nodes from the upper layer V' € Q. to
construct Ey based on a greedy strategy, which maximize
[[;aP(XIR,0).
end for
end for

The explanatory graph is learned in a top-down manner,
and the learning process is summarized in Algorithm 1.
Our method first learns nodes in the top-layer of G, and
then learns for the neighboring lower layer. For the sub-
graph in the Lth layer, our method recursively estimates j,
and Ey for nodes in the sub-graph.

The special case is the node in the top conv-layer. For
each node V in the top conv-layer, we simply define

EV {‘/dummy} /“Lmen“ pV;huumy =0, where ulummy 1S a

4. We can prove that for each V € Q, (pI\VR 0) o< N(p,|py+

~9 Py — iyt 1
Ay, o“) where A;y = ZV’EF‘ Lo & /ZerF‘ z 7 O’L = I/EV’eEV

O'
Therefore, we can either directly use 63 as 0%, or compute the variation
of p, — pny — Ary w.r.t. different images to obtain a‘
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Fig. 3. Schematic illustration of related nodes V and V. The related nodes keep similar spatial relationships among different images. Circle centers
represent the prior part positions, e.g., ;- and y». Red arrows denote relative displacements between the inferred positions and prior positions,
e.g., py — iy In particular, the middle sub-figure illustrates different variables in a one-dimensional space for simplicity.

node in the dummy layer above the top conv-layer. Based
on Egs. (3) and (4), we obtain P(p,|V,R,0) = N (p,|uy,0%).

3.3 Part Localization

Given feature maps of an input image, we can assign nodes
with different activations peaks on feature maps, in order to
infer object parts represented by these neural activations.
The explanatory graph simply assigns node V € {); with
the unit # = argmax,cx.;, 451, on the feature map as
the inference of V. S{,  =F(x)P(p,|V,;R,6) denotes the
score of assigning V' to x. Accordingly, py» = p; represents
the inferred location of V. In particular, in Eqn. (1), we

define R = {pV’}V’EQL+1 .

4 EXPERIMENTS

In this section, we conducted several experiments to demon-
strate the effectiveness, board applicability, and the high
accuracy of our method. We learned explanatory graphs to
interpret four types of CNNSs, i.e., the VGG-16 [32], the 50-
layer and 152-layer Residual Networks [10], and the encoder
of the VAE-GAN [15]. These CNNs learned using a total of
37 animal categories in three datasets, which included the
ILSVRC 2013 DET Animal-Part dataset [44], the CUB200-
2011 dataset [38], and the VOC Part dataset [5]. As discussed
in [5], [44], animals usually contain non-rigid parts, which
presents a key challenge for part localization. Thus, we
selected animal categories in the three datasets for testing.
We designed three experiments to evaluate the explana-
tory graph from different perspectives. In the first experiment,
we visualized object parts corresponding to nodes in the
explanatory graph. The second experiment was designed to
evaluate the interpretability of nodes, i.e., checking whether
or not a node consistently represents the same object part
among different images. We compared our nodes with three
types of middle-level features and network features. In the
third experiment, we used our graph nodes for the task of

Fig. 4. Afour-layer explanatory graph. For clarity, we put all nodes of differ-
ent filters in the same conv-layer on the same plane and only show 1 per-
cent of the nodes with 10 percent of their edges from two perspectives.

few-shot part localization, in order to test the transferability of
nodes. We learned an And-Or graph (AOG) with very few
part annotations, which associated the well learned nodes
with explicit part names. We used the AOG to conduct part
localization and compared its performance with fourteen
baselines.

4.1 Implementation Details

We first trained /fine-tuned a CNN using object images of a
category, which were cropped using object bounding boxes.
Then, we set parameters t=0.1, M =15(except for results in
Table 9), T'=20, and f=1 to learn an explanatory graph for
the CNN.

We learned explanatory graphs for the VGG-16, residual
networks, and the VAE-GAN. We mainly extracted object
parts from high conv-layers of these neural networks, because
as discussed in [3], high conv-layers contain large-scale parts.

e VGG-16: The VGG-16 was first pre-trained using the
1.3M images in the ImageNet dataset [25]. We then fine-tuned
all conv-layers of the VGG-16 using object images in a cate-
gory. The loss for fine-tuning was for binary classification
between the target category and background images. The
VGG-16 has thirteen conv-layers and three fully connected
layers. We selected the ninth, tenth, twelfth, and thirteenth
conv-layers of the VGG-16 as four valid conv-layers, and
accordingly, we built a four-layer graph. We extracted Ny
nodes from the dth filter of the Lth layer, where we set
Ny =40 for all channels of the first and second conv-layers
(L =1, or 2) and set N; = 20 for all channels of the third and
fourth conv-layer (L = 3, or 4).

e Residual Networks: Two residual networks, i.e., the 50-
layer and 152-layer ones, were used in experiments. The
fine-tuning process for each network was exactly the same
as that for VGG-16. We built a three-layer graph based on
each residual network by selecting the last conv-layer with
a 28 x 28 x 128 feature output, the last conv-layer with a
14 x 14 x 256 feature map, and the last conv-layer with a
7 x 7 x 512 feature map as valid conv-layers. We set N; as
40, 20, and 10 for all channels in the first, second, and third
conv-layers, respectively.

e VAE-GAN: For each category, we used the cropped
object images to train a VAE-GAN. We learned a three-layer
graph based on all three conv-layers of the encoder of the
VAE-GAN. We set N, as 52, 26, and 13 for all channels for
the first, second, and third conv-layers, respectively.

4.2 Experiment 1: Part Visualization
The global structure of an explanatory graph for a VGG-16
network is visualized in Fig. 4. Fig. 12 shows the histogram
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The CNN is learned to classify a single category from random images.
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The CNN is learned to classify multiple categories from random images
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Fig. 5. Image patches corresponding to different nodes in explanatory graphs. We visualized nodes in explanatory graphs that were learned for two
types of CNNs, i.e., CNNs learned for a single category and CNNs for multiple categories. (1) The top nine layers visualized nodes corresponding to
CNNs, each Iearned for a single category. We used two methods to infer the i image patch for each node In top nine rows, part location was inferred as
& = argmax,cx.4,_4St_., In following three rows, parts were localized via & = argmax,cx.q,—q| [+ 2| (2) The bottom four layers visualized image
patches of graph nodes, when the CNN was learned to classify multiple categories. In this case, eacﬁ node usually encoded parts shared by different
categories. Texts before each group of image patches indicate their corresponding categories. Part location was inferred as & = argmaxlex:dlzds{,ﬁ

Please read texts for detailed explanations.

of P(p,|py,0) values among all edges in an explanatory
graph. In general, the distribution of P(p,|py,0) satisfied
the assumption of the Gaussian distribution. Fig. 13 demon-
strates the convergence of our method.

We visualized object parts of graph nodes from the fol-
lowing three perspectives.

Top-Ranked Patches. For each image I, we performed the
part localization on its feature maps. For a node V, we
extracted a patch at the location of pi,VS with a fixed scale of
70 pizels x 70 pizels to represent V. Fig. 5 shows a part’s
image patches that had highest inference scores. In this
figure, we used two different methods to infer the object part
for each node. The first method was & = argmax,cx.q,—4Sy_.,
as mentioned before. The second method incorporated gra-
dients to localize parts, ie., & = argmax,.x.;—q4|fz" fTL/T |,
where y and f, denote the classification output of the target

5. We projected the unit to the image to compute its position.

class and the activation value of the neural activation unit z,
respectively. | f, - ;% | is a classical evaluation of the numeri-
cal attribution of the neural activation unit « [47].

Note that in this study, we assumed that the CNN was
learned to classify a single category from random images.
However, it would be quite interesting if we visualized
graph nodes corresponding to a CNN encoding parts of mul-
tiple categories. To this end, we learned a VGG-16 network to
classify six animal categories (bird, cat, cow, dog, horse, sheep)
from other fourteen categories in the VOC Part dataset [5]
and built an explanatory graph for the CNN. Fig. 5 also visu-
alizes nodes in this explanatory graph. Each node usually
represented parts that were shared by multiple categories

Heatmaps of the Distribution of Object Parts. Given part
localization results w.r.t. a cropped object image I, we drew
heatmaps to show the spatial distribution of the inferred
parts. We drew a heatmap for each layer L of the graph. Each
part V € () was visualized as a weighted Gaussian distribu-
tion « - N (1 = py,0%)° on the heatmap, where o« = S}.__.
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Fig. 6. Heatmaps of the distribution of object parts. We use a heatmap to visualize the spatial distribution of the top-50 percent object parts in the Lth layer
of the explanatory graph with the highest inference scores. We also compare heatmaps with the grad-CAM [27] of the feature map. Unlike the grad-CAM,
our heatmaps mainly focus on the foreground of an object and uniformly pay attention to all parts, rather than only focus on most discriminative parts.
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Fig. 7. Image synthesis based on the activation of nodes on an image. The explanatory graph only encodes major parts encoded in conv-layers with
considerable information loss. Synthesis results demonstrate that the nodes are automatically learned to represent foreground appearance, and

ignore background noises and trivial details of objects.

Fig. 6 shows heatmaps of the top-50 percent parts with the
highest scores of S{._ .. Due to the lack of the ground truth
for explanations, it is difficult to evaluate the attribution/
attention/saliency map of a neural network. In general, two
terms have to be considered in the evaluation, i.e., (1)
whether or not the attribution map fits the human cognition
and (2) whether or not the attribution map objectively
reflects true reasons for the network prediction. From this
perspective, in Fig. 6, results of the Grad-CAM better fit
human cognition than our method. On the other hand, Fig. 6
visualizes the distribution of graph nodes, whose semantic
meanings were verified in experiments. Therefore, the
explanatory graph can better show object parts encoded in
the CNN than the Grad-CAM method.

Node-Based Image Synthesis. We used the up-convolutional
network [6] to visualize parts of graph nodes. Given an object
image I, we used the explanatory graph for part localization,
i.e., assigning each node V' with a certain neural activation unit
iy as its position inference’. We considered the top-10 percent
nodes with highest scores of S, as valid ones. We filtered
out all neural responses of units, which were not assigned to
valid nodes, from feature maps (setting these responses to
zero). We selected the filtered feature map corresponding to
the second graph layer and used the up-convolutional network
to synthesize the filtered feature map to the input image. Fig. 7
shows image-synthesis results, which can be regarded as the
visualization of the inferred nodes.

4.3 Experiment 2: Semantic Interpretability
of Nodes

In this experiment, we evaluated whether or not each node
consistently represented the same object part through dif-
ferent images. Four explanatory graphs were built for a
VGG-16 network, two residual networks, and a VAE-GAN.
These networks were learned using the CUB200-2011 data-
set [38]. We used the following two metrics to measure the
interpretability of nodes.

Part Interpretability of Nodes. The evaluation metric was
inspired by Zhou et al. [52]. For each given node V, we used
to localize object parts among all images. We regarded infer-
ence results with the top-K inference scores S|/ among all
images as valid representatlons of V. We requlred the K high-

est inference scores Sv on images {[1,..., [} to take about
30 percent of the inference energy, ie., we use S.X, Sl =
0.3",.1 S& to compute K. We asked human raters to count
the number of inference results, which described the same
object part, among the top K, in order to compute the purity
of part semantics of node V. In addition, as mentioned before,
|fo - %| is a classical evaluation of the numerical attribution
of the neural activation unit = [47]. Thus, we designed a base-
line method, namely Ours with top- mnked |fe 5 J |, to select
inference results with top—ranked Ifo 5 f L Values that took 30
percent of the total | f;, - ;’ | score of all images.

The table in Fig. 8(top-left) shows the semantic purity of
the nodes in the second layer of the graph. Let the second
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Fig. 8. Purity of part semantics (top-left). We compared object parts corresponding to nodes in the explanatory graph with features of raw filters. We
draw raw feature maps of filters (left), the highest activation peaks on feature maps of filters (middle), and image regions corresponding to each node
in the explanatory graph (right). Based on such visualization results, we use human users to annotate the semantic purity of each nodef/filter.

graph layer correspond to the Lth conv-layer with D filters.
The raw filter maps baseline used all neural activation in the
feature map of a filter to describe a part. The raw filter peaks
baseline considered the highest peak on a filer’s feature map
as the part detection. Like our method, the two baselines also
visualized top-K’ part inferences (the K’ feature maps’ neu-
ral activations took 30 percent of activation energies over all
images). We back-propagated the center of the receptive field
of each neural activation to the image plane and draw the
image region corresponding to each neural activation. Fig. 8
compares the image region corresponding to each graph
node and image regions corresponding to feature maps of
each filter. Our graph nodes represented explicit object parts,
but raw filters encoded mixed semantics.

Because the baselines simply averaged the semantic
purity among the D filters, we also computed average
semantic purities using the top-D nodes with the highest
scores of Y, ; SI. to enable a fair comparison.

Location Instability of Inference Positions. We defined the
location instability for each node as another evaluation metric
of interpretability. Note that we used the localization of object
parts, rather than the localization of entire objects, to evaluate
the clarity of semantic meanings of each node. We assumed
that if a node was always activated by the same object part
through different images, then the distance between the
node’s inference position and a ground-truth landmark of the
object part should not change a lot among various images.

As Fig. 9 shows, given a testing image I, dj**d, dy**, and
d' denote the distances between the inferred position of V
and ground-truth landmark positions of head, back, and tail

o Inferred
position

o Annotated
landmark

Fig. 9. Notation for the computation of location instability.

parts, respectively. These distances were normalized by the
diagonal length of input images. Then, the node’s location

instability was given as (\/ var(did) + \/ var(dy9)+
\/var(d@h)) /3, where var(di**) denotes the variation of di**!

over different images.

We compared its location instability of an explanatory
graph with three baselines. The first baseline treated each
filter in a CNN as a detector of a certain part. Thus, given
the feature map of a filter (after the ReLu operation), we
used the method of [52] to localize the unit with the highest
response value as the part position. The other two baselines
were typical methods to extract middle-level features from
images [33] and extract parts from CNNs [30], respectively.
For each baseline, we chose the top-500 parts, i.e., 500 nodes
with top scores in the explanatory graph, 500 filters with
strongest activations in the CNN, and the top-500 middle-
level features. For each node, we selected position infer-
ences on the top-20 images with highest scores to compute
the location instability. Table 2 compares the location insta-
bility of different baselines. Nodes in the explanatory graph
had significantly lower location instability than baselines.

4.4 Experiment 3: Few-Shot Part Localization
4.4.1  Hybrid And-Or Graph for Semantic Parts

The explanatory graph makes it plausible to transfer
intermediate-layer features of a CNN to semantic object

TABLE 2
Location Instability of Nodes

ResNet-50 ResNet-152 VGG-16 VAE-GAN

Raw filter [52]  0.1328 0.1346 0.1398 0.1944
Ours 0.0848 0.0858 0.0638 0.1066
[33] 0.1341
[30] 0.2291
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Fig. 10. Schematic illustration of an And-Or graph for semantic object
parts. The AOG encodes a four-layer hierarchy for each semantic part,
i.e., the semantic part (OR node), part templates (AND node), latent parts
(OR nodes, those from the explanatory graph), and neural activation units
(terminal nodes). In the AOG, the OR node of semantic part contains a
number of alternative appearance candidates as children. Each OR node
of alatent part encodes a list of neural activation units as alternative defor-
mation candidates. Each AND node (e.g., a part template) uses a number
of latent parts to describe its compositional regions.

parts. In this section, we further designed a hybrid And-Or
graph (AOG) to connect the explanatory graph, and the
AOG associated nodes in the explanatory graph with
explicit part names.

We used the AOG to test the transferability of nodes in the
explanatory graph. It is because the AOG has been demon-
strated as a classical model, which is suitable for representing
the compositional hierarchy of objects [28], [54]. Adapting
nodes in the explanatory graph enabled us to evaluate the
clarify of compositional hierarchy that was encoded in a pre-
trained CNN.

The structure of the AOG is inspired by [48], and the learn-
ing of the AOG was originally proposed in [44]. As Fig. 10
shows, the AOG encodes a four-layer hierarchy for each
semantic part, i.e., the semantic part (OR node), part templates
(AND node), latent parts (OR nodes, i.e., nodes in the explana-
tory graph), and neural activation units (terminal nodes).

Layer Name Node type Notation
1 semantic part OR node Jsem

2 part template AND node ytmp g 0P
3 latent part OR node Viat ¢ Qlat
4 neural unit Terminal node zeQm

where latent parts correspond to nodes from the explana-
tory graph.

In the AOG, each OR node (e.g., a semantic part or a latent
part) contains a list of alternative appearance (or deformation)
candidates. Each AND node (e.g., a part template) uses a
number of latent parts to describe its compositional regions.

e The OR node of a semantic part contains a total of m
part templates to represent alternative appearance or
pose candidates of the part.

e  Each part template (AND node) retrieve K latent parts
from the explanatory graph as children. These latent
parts describe compositional regions of the part.

e FEach latent part (OR node) has all units in its corre-
sponding filter’s feature map as children, which rep-
resent its deformation candidates on image /.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 11, NOVEMBER 2021

Technical Details. Based on the AOG, we use the extracted
latent parts to infer semantic parts in a bottom-up manner.
We first compute inference scores of different units at the
bottom layer w.r.t. different latent parts, and then we propa-
gate inference scores up to the layers of part templates and
the semantic part for part localization.

The top OR node of the semantic part V" contains a
total of m part templates to represent alternative appearance
or pose candidates of the part. We manually define the com-
position of the M part templates. During part-inference pro-
cess, given an image I, V**™ selects its best child as the true
part template:

max Sv‘mup
Vimp eChild(Vsem) (5)

S ysem =
Pysem = P,

where Sjx, X € {sem, tmp, lat, unit} denotes the inference
score of V~.

Then, each part template VP yses a number of latent
parts to describe sub-regions of the part. In the scenario of
one-shot learning, we only annotate one part sample
belonging to the part template. Then, we retrieve latent
parts (nodes) that are related to the annotated part from all
nodes in the disentangling graph. Given the inference score
Sy and inferred position pyi of each latent part V' on I,
we retrieve the top K latent parts with the highest scores of
SN (Pyiat [t = Pyuwp,0°) as  children of V™. p¥.
denotes the annotated position of the part V™?; o2 = (0.3 x
image width)2 is a constant variation.

When we have extracted a set of latent parts for a part
template, given a new image, we can use inference results
of the latent parts to localize the part template:

S ylat
ViateChild(Vtmp) )

) {pvlat + Apvlat‘vtmp }

S tmp —
\4

mean

pvtmp =
ViateChild(vtmp

where Apy yup denotes a constant displacement from V't
to Ve,

Each latent part V'* has a channel of units as children,
which represent its deformation candidates on image /. The
score of each unit = is given as Sy, = F(z)P(p,|V™,
R, 6). The OR node of V" selects the unit with the maxi-
mum score as its deformation configuration:

S ylat = maxx:VlatEer S Viat g 7
Pylat = Pj;-

Please see [44] for details of the AOG.

4.4.2 Experimental Settings of Three-Shot Learning

Given a fine-tuned VGG-16 network, we learned an explan-
atory graph and built the AOG upon the explanatory graph
following the scenario of few-shot learning in [44]. For each
category, we set three templates for the head part (m = 3)
and used three part-box annotations for the three templates.
Note that we used object images without part annotations
to learn the explanatory graph, and we used three part
annotations provided by [44] for each part to build the
AOG. All these object-box annotations and part annotations



ZHANG ET AL.: EXTRACTION OF AN EXPLANATORY GRAPH TO INTERPRET A CNN

3873

Fig. 11. Localization results based on AOGs that are learned using three annotations of the head part.

were equally provided to all baselines to enable fair com-
parisons (besides part annotations, all baselines also used
object annotations contained in the datasets for learning).
We set K=0.13, ;N4 to learn AOGs for categories in
the ILSVRC Animal-Part and CUB200 datasets and set
K =043%7, ;Npq4 for VOC Part categories. Then, we used
the AOGs to localize semantic parts on objects.

Baselines. We compared AOGs with a total of fourteen
baselines for part localization. The baselines included (i)
approaches for object detection (i.e., directly detecting target
parts from objects), (ii) graphical/part models for part local-
ization, and (iii) the methods selecting CNN features to
describe object parts.

The first baseline was the standard fast-RCNN [9],
namely Fast-RCNN (1 ft), which directly fine-tuned a VGG-
16 network based on part annotations. Then, the second
baseline, namely Fast-RCNN (2 fts), first used massive
object-box annotations in the target category to fine-tune the
VGG-16 network with the loss of object detection. Then,
given part annotations, Fast-RCNN (2 fts) further fine-tuned
the VGG-16 to detect object parts. We used [30] as the third
baseline, namely CNN-PDD. CNN-PDD selected certain fil-
ters of a CNN to localize the target part. In CNN-PDD, the
CNN was pre-trained using the ImageNet dataset [25]. Just
like Fast-RCNN (2 ft), we extended [30] as the fourth base-
line CNN-PDD-ft, which fine-tuned a VGG-16 network
using object-box annotations before applying the technique
of [30]. The fifth and sixth baselines were DPM-related
methods, ie., the strongly supervised DPM (SS-DPM-
Part) [2] and the technique in [16] (PL-DPM-Part), respec-
tively. Then, the seventh baseline, namely Part-Graph, used

TABLE 3
Normalized Distance of Part Localization
on the CUB200-2011 Dataset [38]

Method obj.-box fine-tune
not learn SS-DPM-Part [2] N  0.3469
A PL-DPM-Part [16] N 0.3412
parts Part-Graph [5] N  0.4889
learn® CNN-PDD [30] N 0.2333
unsuper-learn™ | eNN-PDD-ft [30] Y 0.3269
parts Ours Y  0.0862
fc7+linearSVM Y 0.3120
super-learn fc7+sp+linearSVM Y 0.3120
parts Fast-RCNN (1 ft) [9] N 04517
Fast-RCNN (2 fts) [9] Y 0.4131

The second column indicates whether the baseline used all object-box annota-
tions in the category to fine-tune a CNN.

a graphical model for part localization [5]. For weakly super-
vised learning, “simple” methods are usually insensitive to
model over-fitting. Thus, we designed six baselines as fol-
lows. First, we used object-box annotations in a category to
fine-tune the VGG-16 network. Then, given a few well-
cropped object images, we used the selective search [36] to
collect image patches, and used the VGG-16 network to
extract fc7 features from these patches. The baselines fc7+line-
arSVM, fc7+RBF-SVM, fc7+NN used a linear SVM, an RBF-
SVM, and the nearest-neighbor method (selecting the
patch closest to the annotated part), respectively, to
detect the target part. The other three baseline fc7+sp+lin-
earSVM, fc7+sp+RBF-SVM, fc7+sp+NN combined both the
fc7 feature and the spatial position (z,y) (=1 <z,y <1)
of each image patch as features for part detection. The
last competing method is weakly supervised mining of
parts from the CNN [44], namely supervised-AOG. Unlike
our method (unsupervised), supervised-AOG used part
annotations to extract parts.

Comparisons. We divided all baselines into three groups.
The first group, namely not-learn parts, included traditional
methods without using deep features, such as SS-DPM-
Part, PL-DPM-Part, and Part-Graph. These methods did not
learn deep features®. The second group, termed super-learn
parts, contained Fast-RCNN (1 ft), Fast-RCNN (2 ft), CNN-
PDD, CNN-PDD-ft, supervised-AOG, fc7+linearSVM, and
fc7+sp+linearSVM. These methods learned deep features
using part annotations, e.g., fast-RCNN methods used part
annotations to learn features; supervised-AOG used part
annotations to select filters from the CNN to localize parts.
The third group (unsuper-learn parts) included CNN-PDD,
CNN-PDD-ft, and our method. These methods learned
deep features using object-level annotations, rather than
part annotations.

Fig. 11 visualizes localization results based on AOGs,
which were learned using three annotations of the head part
of each category. We used the normalized distance (used in
[30], [44]) and the traditional intersection-over-union (IoU)
criterion to evaluate the localization performance. Tables 3,
4,5, 6, and 7 show part-localization results on the CUB200-
2011 dataset [38], the VOC Part dataset [5], and the ILSVRC
2013 DET Animal-Part dataset [44]. AOGs based on our
graph nodes exhibited outperformed all baselines in few-
shot learning. Note that our AOGs simply localized the

6. Representation learning in these methods only used object-box
annotations, which is independent to part annotations. A few part
annotations were used to select off-the-shelf pre-trained features.
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TABLE 4
Normalized Distance of Part Localization on the VOC Part Dataset [5]
obj.-box fine-tune | bird cat cow dog  horse sheep  Avg.
not learn SS-DPM-Part [2] N | 0.356 0.270 0.264 0.242 0.262 0.286 0.28
arts PL-DPM-Part [16] N | 0294 0328 0.282 0312 0.321 0.840 0.396
P Part-Graph [5] N | 0.360 0.208 0.263 0.205 0.386 0.500 0.320
unsuper-learn® CNN-PDD [30] N | 0.301 0.246 0220 0.248 0.292 0.254 0.260
p ¢ CNN-PDD-ft [30] Y | 0.358 0.268 0.220 0.200 0.302 0.269 0.269
parts Ours Y | 0152 0.121 0303 0.135 0.231 0.246 0.198
fc7+linearSVM Y | 0.247 0.174 0.251 0217 0.261 0.317 0.244
super-learn fc7+sp+linearSVM Y | 0247 0.174 0.249 0217 0.261 0.317 0.244
parts Fast-RCNN (1 ft) [9] N | 0.324 0324 0325 0.272 0.347 0314 0.318
Fast-RCNN (2 fts) [9] Y | 0.350 0295 0.255 0.293 0.367 0.260 0.303
The second column indicates whether the baseline used all object-box annotations in the category to fine-tune a CNN.
TABLE 5
Accuracy of Part Localization Evaluated by “IoU > 0.5” on the Pascal VOC Part dataset [5]
obj.-box fine-tune | bird cat cow dog horse sheep Avg.
not learn SS-DPM-Part [2] N | 0.0 1.3 1.6 1.9 1.1 3.3 1.5
arts PL-DPM-Part [16] N | 05 1.1 44 0.4 0.0 0.0 1.1
p Part-Graph [5] N | 29 226 121 11.0 3.2 0.0 8.6
unsuper-learn® | Ours Y | 202 349 82 338 10.0 14.5 20.3
parts fc7+linearSVM Y| 80 276 71 104 16.1 6.2 12.6
fc7+sp+linearSVM Y | 80 276 71 104 16.1 6.2 12.6
fc7+RBF-SVM Y | 53 260 7.7 8.9 14.7 8.3 11.8
super-learn fc7+sp+RBF-SVM Y 50 263 71 8.8 15.1 8.7 11.8
parts fc7+NN Y | 1.9 210 38 4.7 3.6 5.0 6.7
fc7+sp+NN Y | 19 21.0 38 4.7 3.6 5.0 6.7
Fast-RCNN (1 ft) [9] N | 21 2.2 2.2 1.9 14 7.0 2.8
Fast-RCNN (2 fts) [9] Y | 77 240 187 18.0 5.0 194 155
The second column indicates whether the baseline used all object annotations in the category to pre-finetune a CNN before learning the part.
TABLE 6
Normalized Distance of Part Localization on the ILSVRC 2013 DET Animal-Part Dataset [44]
obj.-box fine-tune | gold.  bird frog turt. liza.  koala lobs. dog fox cat lion
not learn SS-DPM-Part N (0297 0.280 0.257 0255 0.317 0.222 0.207 0.239 0.305 0.308 0.238
: PL-DPM-Part N (0273 0.256 0.271 0321 0.327 0242 0.194 0.238 0.619 0.215 0.239
parts Part-Graph N [0363 0316 0241 0322 0419 0205 0218 0218 0.343 0242 0.162
) ¢« | CNN-PDD N 10316 0.289 0.229 0260 0.335 0.163 0.190 0.220 0.212 0.196 0.174
unsuperiearn | CNN-PDD-ft Y 0302 0236 0261 0231 0350 0.168 0.170 0.177 0.264 0.270 0.206
parts Ours Y [0.090 0.091 0.095 0.167 0124 0.084 0.155 0.147 0.081 0.129 0.074
fc7+linearSVM Y [0.150 0.318 0.186 0.150 0.257 0.156 0.196 0.136 0.101 0.138 0.132
super-learn fc7+sp+linearSVM | Y [0.150 0.318 0.186 0.150 0254 0.156 0.196 0.136 0.101 0.138 0.132
parts Fast-RCNN (1 ft) N [0.261 0.365 0.265 0310 0.353 0365 0.289 0.363 0.255 0.319 0.251
Fast-RCNN (2 fts) | Y [0.340 0.351 0.388 0.327 0411 0.119 0.330 0.368 0.206 0.170 0.144
tiger ~ bear rabb. hams. squi. horse zebra swine hippo catt. sheep
not learn SS-DPM-Part N [0.144 0.260 0.272 0.178 0.261 0.246 0.206 0.240 0.234 0.246 0.205
¢ PL-DPM-Part N [0.136 0.323 0.228 0.186 0.281 0.322 0.267 0297 0.273 0.271 0413
parts Part-Graph N [0.127 0.224 0.188 0.131 0.208 0.296 0.315 0.306 0.378 0.333 0.230
) s | CNN-PDD N ]0.160 0.223 0.266 0.156 0.291 0.261 0.266 0.189 0.192 0.201 0.244
unsuperiearnt | CNN-PDD-ft Y 0256 0.178 0.167 0286 0237 0310 0321 0216 0.257 0220 0.179
parts Ours Y [0.102 0.121 0.087 0.097 0.095 0.189 0212 0212 0.151 0.185 0.124
fc7+linearSVM Y 0163 0.122 0.139 0.110 0.262 0.205 0.258 0.201 0.140 0.256 0.236
super-learn fc7+sp+linearSVM | Y [0.163 0.122 0.139 0.110 0262 0205 0.258 0.201 0.140 0.256 0.236
parts Fast-RCNN (1 ft) N [0.260 0.317 0.255 0255 0.169 0374 0322 0285 0.265 0.320 0.277
Fast-RCNN (2 fts) | Y [0.160 0.230 0.230 0.178 0.205 0.346 0.303 0.212 0.223 0.228 0.195
ante. camel ofter arma. monk. elep. redpa. gia.pa. Avg.
not learn SS-DPM-Part N (0224 0.277 0.253 0283 0.206 0219 0256 0.129 0.242
¢ PL-DPM-Part N [0.337 0.261 0.286 0295 0.187 0264 0.204 0.505 0.284
parts Part-Graph N |0216 0317 0227 0341 0159 0294 0276 0.094 0.257
1 « | CNN-PDD N 0208 0.193 0.174 0299 0236 0214 0222 0.179 0.225
unsuper-earn’ | CNN-PDD-ft Y [0229 0253 0.198 0308 0273 0.189 0208 0.275 0.240
parts Ours Y [0.093 0.120 0.102 0.188 0.086 0.174 0.104 0.073 0.125
fc7+linearSVM Y |0.164 0.190 0.140 0252 0.256 0.176 0215 0.116 0.184
super-learn fc7+sp+linearSVM | Y [0.164 0.190 0.140 0250 0256 0.176 0215 0.116 0.184
parts Fast-RCNN (1 ft) N [0.255 0.351 0.340 0.324 0334 0.256 0336 0.274 0.299
Fast-RCNN (2 fts) | Y [0.175 0.247 0.280 0.319 0.193 0.125 0.213 0.160 0.246

The second column indicates whether the baseline used all object-box annotations in the category to fine-tune a CNN.
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TABLE 7
Accuracy of Part Localization Evaluated by “IoU > 0.5” on the ILSVRC 2013 DET Animal-Part Dataset [44]
obj.-box finetune | gold. bird frog turt. liza. koala lobs. dog fox «cat lion tiger bear rabb. hams. squi.
SS-DPM-Part [2] N| 1.5 00 12 26 07 88 14 52 00 109 134 204 70 0.5 6.5 0.5
PL-DPM-Part [16] N| 00 10 00 06 00 33 00 33 00 238 88 36 00 16 223 00
Part-Graph [5] N| 20 55 59 65 74 121 35 90 19 187 407 561 150 273 377 214
fc7+linearSVM Y| 200 20 135 208 74 302 14 275 559 394 433 270 465 443 605 88
fc7+RBF-SVM Y| 45 00 24 247 59 340 07 156 299 425 531 393 190 448 414 09
fc7+NN Y| 1.0 00 12 71 22 284 14 52 194 202 521 398 5.0 175 326 05
fc7+sp+linearSVM Y|200 20 135 208 74 302 14 275 559 394 433 270 465 443 605 88
fc7+sp+RBF-SVM Y| 45 00 18 247 44 344 07 147 299 415 531 388 190 443 419 09
fc7+sp+NN Y| 1.0 00 12 71 22 284 14 52 194 202 521 398 50 175 326 05
Fast-RCNN (1 ft) [9] [N| 50 05 18 26 37 33 0 05 289 114 222 117 25 202 279 363
Fast-RCNN (2 fts) [9]| Y| 45 50 24 45 22 688 14 9.0 460 508 613 658 290 301 563 409
Ours Y| 33.0 403 488 182 214 619 3.5 303 621 264 619 495 36.0 65.6 647 256
horse zebra swine hippo catt. sheep ante. camel otter arma. monk. elep. red pa. gia.pa. Avg.
SS-DPM-Part [2] N| 95 1.1 0.6 11 70 147 124 09 05 45 124 118 22 49.1 7.0
PL-DPM-Part [16] N| 58 00 06 05 05 00 00 00 00 00 91 26 281 0.0 3.9
Part-Graph [5] N| 100 13.0 49 43 70 190 230 56 182 6.6 183 26 162 586 15.9
fc7+linearSVM Y| 163 107 220 319 49 202 263 237 353 116 124 368 228 486 25.7
fc7+RBF-SVM Y| 79 271 73 144 27 141 253 163 374 136 108 224 268 54.5 21.3
fc7+NN Y| 21 226 12 1.1 22 61 23 88 406 106 7.0 53 211 55.9 14.0
fc7+sp+linearSVM Y| 163 107 220 319 49 202 263 237 353 121 124 368 224 486 25.7
fc7+sp+RBF-SVM Y| 79 271 73 144 27 141 194 163 374 136 91 224 276 550 21.0
fc7+sp+NN Y| 21 226 12 11 22 61 23 88 406 106 7.0 53 211 55.9 14.0
Fast-RCNN (1 ft) [9] [N| 32 68 110 112 16 74 230 19 21 25 38 118 145 195 10.0
Fast-RCNN (2 fts) [9]| Y| 63 153 39.0 346 362 436 465 205 267 131 366 56.6 478 573 319
Ours Y| 379 356 152 41.0 276 399 535 158 209 283 554 329 518 67.3 39.1

The second column indicates whether the baseline used all object annotations in the category to pre-finetune a CNN before learning the part.

center of an object part without sophisticatedly modeling the
scale of the part. Thus, detection-based methods, which also
estimated the part scale, performed better in very few cases.
Table 8 compares the unsupervised and supervised learning
of parts. In the experiment, our method outperformed all
baselines, even including approaches that learned part fea-
tures using part annotations. Finally, Table 9 compares the
part-localization performance when we set different edge
numbers M for each node. It shows that explanatory graphs

TABLE 8
Normalized Distance of Part Localization
ILSVRC DET vVOC CUB200
Dataset )
Animal Part -2011
Supervised-AOG 0.1344 0.1767 0.0915
Ours (unsupervised) 0.1250 0.1765 0.0862
We compared supervised and unsupervised mining of parts.
TABLE 9
Effects of the Edge Number M
Normalized distance

bird cow cat dog horse sheep Avg.
M=10 0.148 0.118 0.309 0.132 0.229 0.240 0.196
M=15 0.152 0.121 0.303 0.135 0.231 0.246 0.198
M=20 0.145 0.119 0.288 0.132 0.220 0.227 0.189
M=25 0.152 0.121 0.283 0.133 0.220 0.218 0.188

Accuracy of part localization

bird cow cat dog horse sheep Avg.
M=10 20.7 332 8.2 33.5 11.1 13.2 20.0
M=15 20.2 34.9 8.2 33.8 10.0 14.5 20.3
M=20 199 335 8.2 32.8 9.7 13.6 19.6
M=25 18.6 34.2 8.2 33.1 9.7 13.6 19.6

with each node containing 15 edges usually performed better
in the perspective of the intersection-over-union (IoU)
criterion, and explanatory graphs with each node containing
25 edges exhibited lower normalized distances of part
localization.

Note that we tested the explanatory graph and its corre-
sponding AOG from the perspective of part localization,
instead of evaluating their performance of object recogni-
tion. It is because the explanatory graph was proposed to
explain object-part semantics in intermediate layers of the
CNN, and the AOG was designed for part localization (i.e.,
estimating the part location under the condition that the
image contains the target part), instead of object recognition
(i.e., identifying whether or not the target object appears).
Moreover, theoretically, it was difficult for nodes in the
explanatory graph to outperform the original CNN, because
the explanatory graph selectively retrieved part-alike neural
activations from high conv-layers, and ignored other activa-
tions, whereas fully-connected layers in the CNN used all
information (including both object parts and textures) to
recognize objects. Le., the original CNN used much richer
information than the explanatory graph.

Edges between the
1% and 2™ layers

Edges between the
2" and 3" layers

Edges between the
3" and 4™ layers

x10* 10><104 6x1o4
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4
5 5
2
0 0 0
0.01 0.02 0.03 0 0.02 0.04 0.06 0.02 0.03 0.04
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Fig. 12. Histogram of P(p, |py~,#) values among all edges in an explana-
tory graph for the cat category.
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Fig. 13. Convergence of the learning process. We showed the average
value of log P(X!|R!,0) after different iterations during the leaming
process.

5 CONCLUSION AND DISCUSSIONS

In this paper, we have developed a simple yet effective
method to learn an explanatory graph that reveals the com-
positional hierarchy of object parts encoded inside conv-
layers of a pre-trained CNN. The explanatory graph filters
out noisy activations, disentangles object parts from each fil-
ter, and models co-activation relationships and spatial rela-
tionships between parts. Experiments showed that our
graph nodes had significantly higher stability than baselines.
More crucially, our method can be applied to different types
of networks, including the VGG-16, residual networks, and
the VAE-GAN, to explain their conv-layers.

The transparent representation of the explanatory graph
boosts the transferability of CNN features. Part-localization
experiments well demonstrated the good transferability of
graph nodes. Our method even outperformed the super-
vised learning of part representations. Nevertheless, the
explanatory graph is just a rough representation of the CNN.
It is still difficult to well disentangle textural patterns from
filters of the CNN.
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