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Minimal Solvers for Rectifying from
Radially-Distorted Conjugate Translations

James Pritts, Zuzana Kukelova, Viktor Larsson,Yaroslava Lochman, and Ondřej Chum

Abstract—This paper introduces minimal solvers that jointly solve for radial lens undistortion and affine-rectification using local features
extracted from the image of coplanar translated and reflected scene texture, which is common in man-made environments. The proposed
solvers accommodate different types of local features and sampling strategies, and three of the proposed variants require just one feature
correspondence. State-of-the-art techniques from algebraic geometry are used to simplify the formulation of the solvers. The generated
solvers are stable, small and fast. Synthetic and real-image experiments show that the proposed solvers have superior robustness to
noise compared to the state of the art. The solvers are integrated with an automated system for rectifying imaged scene planes from
coplanar repeated texture. Accurate rectifications on challenging imagery taken with narrow to wide field-of-view lenses demonstrate
the applicability of the proposed solvers.

Index Terms—rectification, radial distortion, minimal solvers, symmetry, repeated patterns, local features
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1 INTRODUCTION

S CENE-plane rectification is used in many classic computer-
vision tasks, including symmetry detection and discovery

of near-regular textures [1], [2]; inpainting [3]; single-view 3D
reconstruction [4]; using repetitions to improve multi-label seg-
mentation [5], [6], and single-view auto-calibration using the
Manhattan scene assumption [7], [8], [9]. In particular, the affine
rectification of a scene plane transforms the camera’s principal
plane so that it is parallel to the scene plane. This restores the affine
invariants of the imaged scene plane, which include parallelism of
lines and translational symmetries [10], [11]. There is only an
affine transformation between the affine-rectified imaged scene
plane and its real-world counterpart. The removal of the effects of
perspective imaging is helpful to understanding the geometry of
the scene plane.

Wide-angle imagery that has significant lens distortion is com-
mon since consumer photography is now dominated by mobile-
phone and GoPro-type cameras. High-accuracy rectification from
wide-angle imagery is not possible with only pinhole camera
models [8], [12]. Lens distortion can be estimated by performing a
camera calibration apriori, but a fully automated method is desir-
able. Furthermore, in the case of Internet imagery, the camera and
its metadata are often unavailable for use with off-line calibration
techniques.

This paper proposes minimal solvers that jointly estimate lens
undistortion and affine rectification using point correspondences
extracted from the image of coplanar repeated texture that is
related by translations or reflections on the scene plane. See
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GoPro Hero 4 Wide, 17.2mm

Fig. 1. Input (top left) is a distorted view of a scene plane with transla-
tional symmetries and reflections, and the outputs (top right, bottom) are
the radially undistorted image and the rectified scene plane. The method
is fully automatic.

Fig. 1 for an example rectification. The proposed solver variants
differ by the expected configuration and the number of required
point correspondences. The solvers can rectify from distorted local
features that are translated on the scene plane in one or two direc-
tions, where some of the point correspondences can translate with
arbitrary distances. There is also variant that admits reflections.
Fig. 3 shows an example of each of the four configurations of
point correspondences on the scene plane that are handled by the
proposed solvers. Fig. 2 shows these configurations in each stage
of the rectification hierarchy and that the solver variants can use
these configurations directly affine rectify the distorted image of
the scene plane. These configurations often occur in man-made
settings, where there are many symmetries. E.g., windows have
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Fig. 2. Direct Affine Rectification. The rectification hierarchy is traversed from left to right. The proposed solvers directly rectify from distorted local
features. The state-of-the art requires sampled undistortions, scene lines [8], [9], [13], or more region correspondences [14]. Color denotes how
coplanar repeats relate: blue for translation and red for reflection. Marker type denotes the possible correspondence configurations: circles for three
translated point correspondences and filled circles for two pairs of two translated point correspondences on a scene plane. Reflections (in red)
can be detected as two point correspondences translating over different distances in the same direction. The distorted and undistorted images of
the scene plane’s vanishing line are denoted l̃ and l, and the distorted and undistorted reflection axis is similarly denoted ã and a, where a is its
rectification. Point correspondences (circles) are extracted from region correspondences (solid polylines), which reduces the required input to one
or two region correspondences.

scene structure that is consistent with all four correspondence
configurations.

The straightforward application of solver generators to this
problem results in unstable solvers [15], [16], [17]. Stable solver
generation requires the elimination of some unknowns from the
formulations of each variant. The generated solvers differ signifi-
cantly in time-to-solution and noise sensitivity with respect to the
choice of eliminated unknowns. These different formulations are
derived and analyzed. In particular, an exceptionally fast and ro-
bust solver is generated compared to the solvers introduced in [18]
for feature configuration (a) of Fig. 3. All solvers are optimized in
C++ and are available at https://github.com/prittjam/repeats.

Fig. 3. The proposed solver variants can use: (a) three points translated
over the same distance in one-direction, (b) three points translated in
one direction with one point (blue) at an arbitrary distance, (c) two point
pairs translated over two distances in two directions, and (d) two point
pairs translated in two directions with one pair translating the same
distance and one pair at different distances.

Automatic scene-plane rectification is an ill-posed single-view
geometry estimation task that is further complicated if there is lens
distortion. Robust sampling schemes like RANSAC are required to
obtain high-accuracy rectifications from noisy or bad local feature
correspondences [5], [19], [20], [21]. Reducing the cardinality
of the minimal sample set can greatly reduce the number of
trials needed by RANSAC to find a good solution [10]. Region
correspondences can be used to simultaneously establish multiple
point correspondences, which reduces the the minimal sample
size of point-based solvers [22], [23], [24], [25]. The proposed
solvers are designed such that this substitution is straightforward.
The solid polylines connecting points in Fig. 3 denote the cases
in which a region correspondence can replace multiple point
correspondences. The proposed solvers require either one or two
region correspondences, have fast times-to-solution, and are robust
to noisy features, which makes them well suited for use in a
RANSAC-based estimator.

The RANSAC-based metric-rectification framework of [11]
is extended to use the proposed minimal solvers to synthesize
the fronto-parallel images presented in this paper. The extension
includes a method to use extra available point correspondence con-
structions from a region correspondence to improve rectification
accuracy. The correspondences are partitioned into complemen-
tary subsets of minimal samples and unused correspondences, and
cross validation is used to select the best rectification. In addition,
a method for reliably finding affine-rectified regions that can be
used for the estimation of the metric upgrade is proposed.

1.1 Previous Work

The problem of rectification is closely coupled with the detection
of coplanar repeats in a classic chicken-and-egg scenario: rectifica-
tion is easy if the repeats are grouped, and repeats are more easily
grouped if the affine invariants of the rectified plane are available
[11]. Most local-feature based state-of-the-art methods tentatively
group coplanar repeats by their texture, which are verified by
testing affine or metric invariants with a hypothesized rectification
[3], [20], [21], [27], [28], [29], [30], [31]. These methods assume
a pinhole camera model, which makes them of limited use on
lens-distorted images. In particular, the method of Schaffalitzky
et al. [20] is the most similar to the solvers proposed in this
paper since it also uses constraints induced by imaged translational
symmetries. A survey of minimal solvers that rectify using imaged
coplanar repeats is given in Table 3.

The state-of-the-art has extended minimal rectifying solvers to
lens-distorted images [8], [9], [14], [26]. The common choice of
parameterization for lens undistortion in ill-posed settings is the
division model since it has only one parameter and can effectively
model a wide range of radial lens undistortions [32]. The pro-
posed solvers also use the division model. The capabilities of the
proposed versus state-of-the-art solvers for affine rectification are
illustrated in Fig. 2.

Pritts et al. [14], [26] introduced solvers that rectify from the
distorted image of rigidly-transformed coplanar repeats. However,
these solvers are about 2000 times slower than the fastest of
the proposed solvers, require three region correspondences, and
cannot use individual point correspondences (they are strictly
region based). Wildenauer et al. [8] and Antunes et al. [9] are
two contour-based methods that rectify from the distorted images

https://github.com/prittjam/repeats
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TABLE 1
Scene Assumptions

Wildenauer et al. [8] Antunes et al. [9] Pritts et al. [14], [26] Proposed

Feature Type fitted circles fitted circles covariant regions points, covariant regions
Number set of 2 and 3 lines set of 3 and 4 lines 3 region correspondences 1 region correspondence

Assumption parallelism parallelism rigidly transformed translated, reflected

Solvers rectifying from distorted images by [8], [9] require distinct sets of parallel scene lines as input. Pritts et al. [14], [26] requires three
region correspondences. The proposed solvers can rectify from only one region correspondence and admit point correspondences.

of parallel scene lines. These methods require two sets of imaged
parallel lines, which must have different mutual orientations. In
particular, the solver [8] requires five lines total and [9] requires
seven. These are strong scene content assumptions. In addition,
unlike points or regions, contours cannot be reliably corresponded
based on appearance. These rectifying solvers that use the division
model of lens undistortion are compared with the proposed solvers
in Table 1.

The method of Li et al. [33] is a two-view method that jointly
estimates undistortion and the fundamental matrix. Both Li et al.
and the proposed solvers construct a matrix from the unknown lens
undistortion parameters and use the fact that it must be singular to
impose constraints on the unknowns.

The method of Pritts et al. [11] uses a non-linear refinement
step to generalize a rectification estimated under the pinhole
camera assumption to include lens undistortion. However, even
with relaxed thresholds, a robust estimator like RANSAC [19]
discards measurements around the boundary of the image since
this region is the most affected by radial distortion and cannot
be accurately modeled with a pinhole camera. Neglecting lens
distortion during the labeling of good and bad measurements, as
done during the verification step of RANSAC, can give fits that are
biased [12], which degrades rectification accuracy.

2 PRELIMINARIES

Without loss of generality, coplanar scene points are assumed to
be on the scene plane z = 0. This permits the camera matrix
P to be modeled as the homography that changes the basis from
the scene-plane coordinate system to the camera’s image-plane
coordinate system

[
p1 p2 p3 p4

]︸ ︷︷ ︸
P3×4


X
Y
0
1

 =
[
p1 p2 p4

]︸ ︷︷ ︸
P

XY
1


︸ ︷︷ ︸

X

, (1)

where pj =
(
p1j , p2j , p3j

)>
encode the intrinsics and extrin-

sics of the camera matrix P3×4. The scene and image planes
are denoted Π and π, respectively. Scene points are denoted
X =

(
X, Y, 1

)>
and imaged points are denoted x =

(
x, y, 1

)>
,

where x, y are the image coordinates.
The image of a scene plane’s vanishing line is denoted

l =
(
l1, l2, l3

)>
and the line at infinity is l∞ =

(
0, 0, 1

)>
. The

phrase vanishing translation direction is motivated by the fact that
all imaged scene point correspondences translating in the same
direction meet at a vanishing point. A vanishing point is denoted
by either u or v and the vanishing translation directions of scene-
plane translations U or V as imaged by P, respectively. Matrices
are in typewriter font; e.g., a homography is H and a conjugate

TABLE 2
Common Denotations

Term Description

P 3× 3 camera matrix viewing z = 0 (see (1)).
X homogeneous scene point in RP2

x, x̃ homogeneous pinhole and distorted image point
x affine-rectified point (see (6))

x ↔ x′ x,x′ are in correspondence with some transformation
U,V translations in the scene plane
u,v vanishing points of the trans. U,V as imaged by P
mi join of undistorted point correspondence xi ↔ x′i

mij ,m
′
ij joins of xi ↔ xj and x′i ↔ x′j , respectively

[·]× skew-symmetric operator for computing cross products
T homogeneous translation matrix

l, l̃ image of vanishing line and distorted vanishing line
l∞ the line at infinity
H affine-rectifying homography

Hu conjugate translation in the imaged trans. direction u
λ division model parameter for undistortion (see Sec. 3.1)

Π, π the scene plane and image plane (in RP2)
R̃,R,R distorted, undistorted, and affine-rectified regions

translation (also a homography) with vanishing point u is denoted
Hu (see Sec. 4).

In general, a point correspondence x ↔ x′ is two points
x and x′ that are related by some geometric transformation. A
covariant region detection (see Sec. 7.1) is a distorted function of
some region from the pinhole image and is denoted R̃. Likewise,
a distorted point extracted from a region detection is denoted
x̃ =

(
x̃, ỹ, 1

)>
. The affine-rectified images of homogeneous

points and regions are denoted as x =
(
x, y, 1

)>
and R,

respectively. Table 2 summarizes this notation.

2.1 The Hidden Variable Trick
Each of the proposed solvers uses the hidden variable trick to
transform its polynomial constraint equations into a tractable form.
The hidden variable trick is a resultant technique in algebraic
geometry that is used to eliminate subsets of variables from
multivariate polynomial systems of equations [34]. Suppose that
a multivariate polynomial system of m equations in n unknowns
is given. The hidden variable trick works by assuming that a set
ξi of k < n unknowns are parameters that are used to construct
a coefficient matrix M(ξ1, . . . , ξk) ∈ Rm×l, such that the system
can be rewritten as

M(ξ1, . . . , ξk)y = 0, (2)

where y ∈ Rl is a vector of l monomials in the remaining n− k
unknowns (i.e., monomials of unknowns not appearing in M). A
nontrivial solution to (2) exists only if M is rank-deficient. The
problem has been simplified since the n − k unknowns in y are
eliminated from solving det M = 0. In the case where k > 1, the
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(a) GoPro Hero 4 Medium, 21.9mm (b) GoPro Hero 4 Wide, 17.2mm (c) Samyang, 7.5mm

Fig. 4. The proposed solvers give accurate undistortions and rectifications across all fields-of-view. The distorted image of the vanishing line is
rendered in green. Left-to-right with increasing levels of distortion: (a) GoPro Hero 4 at the medium-FOV setting, (b) GoPro Hero 4 at the wide-FOV
setting, (c) and a Samyang 7.5mm fisheye lens. The outputs are the undistorted (middle row) and rectified images (bottom row). Note the stability
of the undistortion estimates for the GoPro images. The rotunda image is rectified from features extracted mostly from the wrought iron fence below
the rotunda. Focal lengths are 35mm equivalents.

l × l minors of M can be used to generate the necessary number
of polynomial constraint equations to solve for the unknowns
{ ξ1, . . . , ξk }. Once ξi are recovered, the original system of
equations (2) can be solved for y by back substitution.

2.2 Solving Systems of Polynomial Equations
The polynomial systems of equations encoding the rectifying
constraints for the Eliminated Vanishing Point (EVP) solvers
are solved using an algebraic method based on Gröbner bases.
Automated solver generators using the Gröbner basis method [15],
[16] have been used to generate solvers for several camera
geometry estimation problems (see e.g. [12], [14], [15], [16],
[18], [26], [35]). However, the straightforward application of
automated solver generators to the proposed constraints resulted
in unstable solvers. In [35], Larsson et al. proposed a method for
creating polynomial solvers for problems with unwanted solutions
using ideal saturation. We use the hidden variable trick together
with ideal saturation to eliminate unknowns from the polynomial
system of equations arising in the formulations of the EVP solvers.
This results in significantly more numerically stable solvers com-
pared to the solvers generated directly from the original constraint
equations. For more details about Gröbner bases and how they are
used in polynomial solvers we refer the interested reader to [15],
[16], [34], [35].

2.3 Solver Naming Convention
We apply the solver naming convention of Pritts et al. [14], [26]
to the proposed and state-of-the-art solvers evaluated in this paper.

The minimal configuration of region correspondences is given as
the subscript to H (denoting a homography); e.g., a solver requiring
3 affine-covariant region correspondences is denoted H222. The
unknowns that are recovered by the solver are suffixed to H·,
e.g., the proposed solver requiring one region correspondence and
returning the vanishing line l and division model parameter λ of
lens distortion is denoted H2lλ.

3 PROBLEM FORMULATION

An affine-rectifying homography H transforms the image of the
scene plane’s vanishing line l =

(
l1, l2, l3

)>
to the line at infinity

l∞ =
(
0, 0, 1

)>
[10]. Thus any homography H satisfying the

constraint

ηl = H>l∞ =
[
h1 h2 h3

]0
0
1

 , η 6= 0, (3)

and where l is an imaged scene plane’s vanishing line, is an affine-
rectifying homography. Constraint (3) implies that h3 = l, and
that the image of the line at infinity is independent of rows h>1 and
h>2 of H. Thus, assuming l3 6= 0 [10], the affine-rectification of
image point x to the affine-rectified point x can be defined as

αx =
(
αx, αy, α

)>
= H(l)x

s.t. H(l) =

1 0 0
0 1 0

l>

 and α 6= 0.
(4)
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3.1 Radial Lens Undistortion
Affine rectification as given in (4) is valid only if x is imaged
by a pinhole camera. Cameras always have some lens distortion,
and the distortion can be significant for wide-angle lenses. For
a lens distorted point, denoted x̃, an undistortion function f
is needed to transform x̃ to the pinhole point x. We use the
one-parameter division model to parameterize the radial lens
undistortion function,

γx = f(x̃, λ) =
(
x̃, ỹ, 1 + λ(x̃2 + ỹ2)

)>
(5)

where x̃ =
(
x̃, ỹ, 1

)>
is a feature point with the distortion center

subtracted.
The strengths of this model were shown by Fitzgibbon [32]

for the joint estimation of two-view geometry and non-linear lens
distortion. The division model is especially suited for minimal
solvers since it is able to express a wide range of distortions (e.g.,
see second row of Fig. 4) with a single parameter (denoted λ),
as well as yielding simpler equations compared to other distortion
models.

For the remainder of the derivations, we assume that the
image center and distortion center are coincident and that x̃ is
a distortion-center subtracted point. While this may seem like
a strong assumption, Willson et al. [36] and Fitzgibbon [32]
showed that the precise positioning of the distortion center does
not strongly affect image correction. Furthermore, we will see in
the experiments in Sec. 8 that the proposed method is robust to
deviations in the distortion center. Importantly, no constraints are
placed on the location of the principal point of the camera by
these assumptions, which is an influential calibration parameter
[36]. However, the choice to fix the distortion center at the image
center does make it difficult to remove a modeling degeneracy at
the image center, which is discussed in detail in Sec. 6.2.

Affine rectified points xi can be expressed in terms of distorted
points x̃i by substituting (5) into (4), which gives

αx =
(
αx, αy, α

)>
= H(l)f(x̃, λ) =(

x̃, ỹ, l1x̃ + l2ỹ + l3(1 + λ(x̃2 + ỹ2))
)>
.

(6)

Interestingly, the rectifying function H(l)f(x̃, λ) in (6) also acts
radially about the distortion center, but unlike the division model
in (5), it is not rotationally symmetric.

The distortion function of the lens as parameterized by the
division model is denoted fd(·, λ). Under the division model, the
radially-distorted image of the vanishing line is a circle and is
denoted l̃ [13], [32], [37], [38]. Figs. 4 and 7 render the distorted
vanishing line in the source images, which affirm the accuracy of
the rectifications by the proposed solvers.

3.2 Covariant Region Parameterization
Covariant region detections reduce the number of required corre-
spondences to as few as one for the proposed solvers, but corners
or combinations of corners and covariant regions can also be used
as input. Since the proposed solvers are derived from constraints
induced by point correspondences, points are extracted from the
region correspondences as input to the proposed solvers. The
geometry of an affine-covariant region R is given by a right-
handed affine basis in the image coordinate system called a local
affine frame (LAF). The affine frame is minimally parameterized
by three points {o, x, y }. For similarity-covariant regions, there
is the additional constraint that x − o ⊥ y − o (see [39]). This

construction is also referred to as an oriented circle, where o is
the origin of the circle and x defines the circle’s orientation and
radius. Similarity-covariant regions are minimally parameterized
by two points. Examples of both frame constructions are shown in
Figs. 2, 3, and 6, and an example of affine frames constructed from
the combined methods of [40], [41], [42] are shown in Fig. 8.

4 CONJUGATE TRANSLATIONS

Assume that the scene plane Π and a camera’s image plane π are
related point-wise by the camera P so that αx′ = PX′, where
α is a non-zero scalar, X′ ∈ Π and x′ ∈ π. Furthermore,
let X and X′ be two points on the scene plane Π such that
U = X′ − X =

(
ux, uy, 0

)>
. By encoding U in the homo-

geneous translation matrix T(U), the points X and X′ as imaged
by camera P can be expressed as

αx′ =PX′ = PT(U)X = PT(U)P−1x = Hux

s.t. T(U) =

1 0 ux
0 1 uy
0 0 1

 , (7)

where the homography Hu = PT(U)P−1 is called a conjugate
translation because of the form of its matrix decomposition, and
points x and x′ are in correspondence (denoted x ↔ x′ ) with
respect to the conjugate translation Hu [10], [20].

Decomposing Hu into its projective components gives

αx′ = Hux =

PI3P−1 + P

uxuy
0

P−>
0

0
1

>
x

= [I3 + suul>]x

(8)

where I3 is the 3 × 3 identity matrix, and, also consulting Fig. 5
to relate the unknowns to the geometry,
• line l is the imaged scene plane’s vanishing line,
• point u is the vanishing point of the translation direction,
• and scalar su is the magnitude of translation in the direction
u for the point correspondence x̃ ↔ x̃′ [20].

4.1 Meets of Joins
Let mi be the join of the conjugately translated point correspon-
dence xi ↔ x′i Then mi can be expressed in terms of the camera
matrix P, joined scene point correspondences Xi ↔ X′i , and
scene translation direction U as

αmi = α (xi × x′i) = (PXi × PX′i)/|P| =
(PXi × P(Xi + U))/|P| = P−>(Xi + U),

(9)

where α 6= 0 and |P| = det P.
Using (9) to express the meet of joins mi and mj in terms of

the camera P and joined scene point correspondences Xi ↔ X′i
and Xj ↔ X′j gives

αimi × αjmj =
(
P−>(Xi + U)

)
×
(
P−>(Xj + U)

)
=

P((Xi + U)× (Xj + U))/|P| =

P
(
U>(Xi ×Xj)

)
U/|P| = βPU = ηu,

(10)

where β = U>(Xi ×Xj)/|P|, η is non-zero and U>(Xi ×Xj)
is non-zero for non-degenerate point configurations (see Fig. 5).
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Fig. 5. The Geometry of a Radially-Distorted Conjugate Translations. A translation of coplanar scene points {Xi,Xj ,Xk } by U induces a
conjugate translation Hu in the undistorted image as viewed by camera P. Joined conjugately-translated point correspondences xi ↔ x′

i , xj ↔ x′
j

and xk ↔ x′
k must meet at the vanishing point u. Vanishing line l is the set of all vanishing points of translation directions. The division model

images lines as circles, thus the distorted vanishing point ũ is given by the intersection of three circles, two of which are coincident with the radially-
distorted conjugately-translated point correspondences x̃i ↔ x̃′

i ,x̃j ↔ x̃′
j and x̃k ↔ x̃′

k , and the third is given by the distorted vanishing line l̃.
Radially-distorted conjugately-translated points are related by fd(Huf(x̃, λ), λ), where fd(·, λ) is the division-model distortion function.

In general (10) shows that the image of all joined scene point
correspondences translating in the same direction meet at the
vanishing point of their translation direction, i.e. ηu = βPU.
Note that if correspondence xk ↔ x′k from Fig. 5 were used in
lieu of xj ↔ x′j in (10), then U>(Xi×Xk) = 0, which implies
that η = 0. This is a degenerate configuration of the solvers and
is discussed in detail in Sec. 6.

Since U is coincident with l∞ by construction (see Fig. 5)
and point-line incidence is invariant under projection by P [10], u
and l are also coincident,

l>u = 0. (11)

The EVL solver introduced in 5.2 uses the relation between
conjugately-translated points and vanishing points derived in (9)
and (10) and the vanishing point-vanishing line incidence equation
of (11) to place constraints on l.

4.2 Radially-Distorted Conjugate Translations
Conjugate translations as defined in (8) can be written in terms
of radially-distorted conjugately-translated point correspondences
undistorted by (5) as

αf(x̃′, λ) = Huf(x̃, λ) = [I3 + suul>]f(x̃, λ), (12)

x̃ ↔ x̃′ is a radially-distorted point correspondence that is
consistent with the conjugate translation Hu. We call x̃ ↔ x̃′

a radially-distorted conjugately-translated point correspondence
going forward.

Each of the EVP solvers introduced in Sec. 5.1 uses the
relation defined in (12) and the vanishing point-vanishing line
incidence equation of (11) to place constraints on l and λ.

5 SOLVERS

This section introduces five different minimal solvers for different
geometric configurations of radially-distorted conjugate transla-
tions, which are distinguished by the number of directions and
magnitudes of translations that the proposed solver variants admit.
The designs of the solver variants are motivated by the types of
covariant feature detectors that can be used to extract point corre-
spondences, which give the constraints needed to jointly solve for
the division model parameter of lens undistortion, vanishing line
and the vanishing point of the translation direction(s).

Each of the proposed minimal solvers exploits the following
properties of radially-distorted conjugate translations: (i) The

affine-rectified image of the meet of the joins of conjugately–
translated point correspondences is on the line at infinity, and
(ii) a radially-distorted conjugate translation is a transformation
with exactly four degrees of freedom.

The proposed solvers can also be differentiated by the choice
to use the hidden variable trick to either eliminate the unknown
parameters of the vanishing point of the imaged translation
direction or the imaged scene plane’s vanishing line from the
solver’s polynomial system of equations [34]. The solver groups
are eponymously named after their eliminated unknowns.

The group of Eliminated Vanishing Point (EVP) solvers hide
the lens undistortion parameter and vanishing line parameters
and have the vanishing point eliminated. They provide flexible
sampling in a RANSAC-based estimator: they can jointly recover
undistortion and rectification from radially-distorted conjugate-
translations in one or two directions, where some of the point
correspondences can translate with arbitrary distance (see Fig. 3).
In addition, there is an EVP variant that admits reflections.

The Eliminated Vanishing Line (EVL) solver hides the lens
undistortion parameter and eliminates the vanishing line param-
eters (the vanishing points are recovered by construction). The
EVL solver jointly recovers undistortion and rectification from
radially-distorted conjugately-translated point correspondences in
one direction. The elimination of the vanishing line results in a
solver that is exceptionally fast, stable and robust to feature noise.

Table 3 summarizes the geometric assumptions, inputs and
complexity of the proposed solvers with respect to the state
of the art. From the undistorting solvers, the proposed solvers
require the fewest correspondences, and are much simpler than
the undistorting and rectifying solver of [14].

The following sections show significant differences between
the two groups with respect to solver complexity, time to solution,
stability and noise sensitivity. The following sections describe how
the solvers are generated, and, in particular, detail how either the
vanishing point of the translation direction or the vanishing line
is eliminated to simplify the systems of polynomial equations that
arise from constraints induced by radially-distorted conjugately-
translated local features.

5.1 The Eliminated Vanishing Point (EVP) Solvers
The model for radially-distorted conjugate translations in
(12) defines the unknown geometric quantities: (i) division–
model parameter λ, (ii) imaged scene-plane vanishing line
l =

(
l1, l2, l3

)>
, (iii) vanishing point of the translation direction
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TABLE 3
Proposed Solvers (shaded in grey) vs. State of the Art

# Correspondences
Reference Rectifies Undistorts Motion Regions Points # Solutions Size

H2l [20] X translation 1 2 1 closed form
H22l [21] X rigid 2 N/A 1 closed form
H2lλ X X translation 1 3 4 closed form

H2luλ X X translation 1 3 4 14× 18
H2lus

uλ X X translation 1 3 2 24× 26
H22luvλ X X translation 2 4 6 54× 60

H22luvs
vλ X X translation 2 4 4 76× 80

H22λ [32] X rigid1 2 5 18 18× 18

H22λ1λ2 [12] X rigid1 2 5 5 16× 21

HDES
222 lλ [14], [26] X X rigid 3 9 54 133× 187

1 The preimages of both region correspondences must be related by the same rigid transform in the scene plane.

The proposed solvers require a few as 1 region correspondence instead of three and are significantly simpler than the undistorting and rectifying
solver HDES

222 lλ of [14], [26]. The homography solvers of [12], [32] do not directly recover the vanishing line and require two affine-covariant
region correspondences or five points, all of which have the same relative orientation, which restricts sampling.

u =
(
u1, u2, u3

)>
, (iv) scale of translation su for correspon-

dence x̃ ↔ x̃′ , (v) and the homogeneous scale parameter α.
The solution for the vanishing line l is constrained to the affine

subspace l3 = 1 of the real-projective plane, which makes it
unique. This inhomogeneous choice of l is unable to represent
the pencil of lines that pass through the image origin; however,
the degeneracy remains even with a homogeneous representation
of l. See Sec. 6 for a more detailed discussion of the degeneracies.

The vanishing direction u must meet the vanishing line l,
which defines a subspace of solutions for u. The magnitude of
u is set to the magnitude of conjugate translation su1 of the first
correspondence x̃1 ↔ x̃′1 , which defines a unique solution

l>u = l1u1 + l2u2 + u3 = 0 ∧ ‖u‖ = su1 . (13)

The relative scale of translation s̄ui for each correspondence
x̃i ↔ x̃′i with respect to the magnitude of ‖u‖ is defined
so that s̄ui = sui /‖u‖. Note that s̄u1 = 1. The relationship
between magnitude of translation in the scene plane and the
magnitude of conjugate translation is derived in the Sec. 8.1.2
in the supplemental materials.

Two one-direction solvers are proposed, which require 3
radially-distorted conjugately-translated point correspondences.
A radially-distorted conjugately-translated affine-covariant region
correspondence provides the necessary 3 point correspondences.
Solver H2luλ assumes that all point correspondences have the
same relative scales of translation, i.e. s̄u1 = s̄u2 = s̄u3 = 1.
Solver H2lus

uλ relaxes the equal relative scale of translation
assumption of the H2luλ solver. In particular, solver H2lus

uλ
assumes that two of the point correspondences have the same
magnitude of conjugate translation (i.e. s̄u1 = s̄u2 = 1), and the
third point correspondence has an unknown relative scale of the
translation s̄u3 . The H2lus

uλ admits combinations of similarity-
covariant regions (defining 2 point correspondences) and corner
detections for flexible sampling of complementary features.

In addition, two two-direction solvers are proposed that re-
quire 4 coplanar point correspondences, 2 of which have the
vanishing point of translation direction u and the remaining 2
a different vanishing point v. Two similarity-covariant region
correspondences consistent with two radially-distorted conjugate
translations provide 2 pairs of 2 point correspondences and thus

provide the necessary 4 point correspondences.
Solver H22luvλ requires four points and assumes equal rel-

ative scales of conjugate translation in both directions, namely
s̄u1 = s̄u2 = 1 with respect to ‖u‖ = su1 and s̄v3 = s̄v4 = 1 with
respect to ‖v‖ = sv3 .

Solver H22luvs
vλ requires four point correspondences,

equivalently, two similarity-covariant region correspondences, and
relaxes the assumption of the H22luvλ solver that both point
correspondences in the v direction have the same magnitudes of
conjugate translation. In particular, H22luvsvλ assumes that the
first two point correspondences translate in the direction u with
the same relative scale of translation, i.e., s̄u1 = s̄u2 = 1. The
remaining two point correspondences translate in the direction
v with arbitrary translation magnitudes, i.e., the relative scales
of translations of these two correspondences with respect to
‖v‖ = sv3 are s̄v3 = 1 and an unknown relative scale s̄v4 . In
the case that similarity-covariant regions are extracted from the
image and its reflection, reflected covariant regions can be used
for jointly solving for undistortion and rectification (see Fig. 3).

In all of the proposed solvers the scalar values αi are elimi-
nated from (12). This is done by multiplying (12) by the skew-
symmetric matrix [f(x̃′, λ)]×. The fact that the join of a point x
with itself [x]×x is 0 gives, 0 −w̃′i ỹ′i

w̃′i 0 −x̃′i
−ỹ′i x̃′i 0


1 + s̄ui u1l1 s̄ui u1l2 s̄ui u1

s̄ui u2l1 1 + s̄ui u2l2 s̄ui u2
s̄ui u3l1 s̄ui u3l2 1 + s̄ui u3

x̃iỹi
w̃i

 = 0,

(14)

where w̃i = 1 + λ(x̃2i + ỹ2i ) and w̃′i = 1 + λ(x̃′2i + ỹ′2i ). The
matrix equation in (14) contains three polynomial equations from
which only two are linearly independent since the skew-symmetric
matrix [f(x̃′, λ)]× is rank two.

To solve the systems of polynomial equations resulting from
the presented problems, we use the Gröbner basis method [34].
In particular, we used the automatic generators proposed in [15],
[16]; however, for our problems the coefficients of the input
equations are not fully independent. This means that using the
default settings for the automatic generator [15], [16], which
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initialize the coefficients of equations by random values from Zp,
does not lead to correct solvers. Correct problems instances with
values from Zp are needed to initialize the automatic generator to
obtain working Gröbner basis solvers.

The straightforward application of the automatic genera-
tor [15], [16] to the needed constraints with correct coefficients
from Zp resulted in large templates and unstable solvers, espe-
cially for the two-direction problems. The Gröbner basis solvers
generated for the original constraints have template matrices with
sizes 80 × 84, 74 × 76, 348 × 354, and 730 × 734 for the
H2luλ, H2lusuλ, H22luvλ and H22luvs

vλ problems, respec-
tively. Therefore, we use the hidden-variable trick to eliminate
the vanishing translation directions together with ideal saturation
to eliminate parasitic solutions [34], [35]. The reformulated con-
straints are simpler systems in only 3 or 4 unknowns, and the
solvers generated by the Gröbner basis method are smaller and
more stable. The reduced elimination template sizes for the sim-
plified solvers are summarized in Table 3, and wall clock timings
for the simplified solvers are reported in Sec. 8.2. Optimized C++
implementations for all the proposed solvers are provided.

Next, we describe the solvers based on the hidden-variable
trick in more detail.

5.1.1 One-Direction EVP Solvers

For the one-direction H2lus
uλ solver we have s̄u1 = s̄u2 = 1.

Therefore the constraints (14) result in two pairs of linearly inde-
pendent equations without the scale parameter s̄ui for i = 1, 2, and
two linearly independent equations with an unknown relative scale
s̄u3 for the third point correspondence, i.e., i = 3. Additionally,
we have the orthogonality constraint in (13). All together we have
seven equations in seven unknowns (l1, l2, u1, u2, u3, s̄

u
3 , λ).

Note, that these equations are linear with respect to the
vanishing translation direction u. Therefore, we can rewrite the
seven equations as

M(l1, l2, s̄
u
3 , λ)


u1
u2
u3
1

 = 0, (15)

where M(l1, l2, s̄
u
3 , λ) is a 7 × 4 matrix whose elements are

polynomials in (l1, l2, s̄
u
3 , λ).

Since M(l1, l2, s̄
u
3 , λ) has a null vector, it must be rank defi-

cient. Therefore, all the 4 × 4 cofactors of M(l1, l2, s̄
u
3 , λ) must

equal zero. This results in
(7
4

)
= 35 polynomial equations which

only involve four unknowns.
Unfortunately, the formulation (15) introduces a one-

dimensional family of false solutions. These are not present in
the original system and correspond to solutions where the first
three columns of M become rank deficient. In this case there exist
null vectors to M such that the last element of the vector is zero,
i.e., not of the same form as in (15).

These false solutions can be removed by saturating [35] any of
the 3 × 3 cofactors from the first three columns of M. The matrix
M has the following form,

M(l1, l2, s̄
u
3 , λ) =



m11 m12 0 m14

m21 m22 0 m24

m31 0 m33 m34

m41 0 m43 m44

m51 m52 0 m54

m61 0 m63 m64

l1 l2 1 0


, (16)

where mij are polynomials in l1, l2, s̄
u
3 and λ. We choose to

saturate the 3 × 3 cofactor corresponding to the first, second and
last row since it reduces to only the top-left 2 × 2 cofactor, i.e.,
m11m22 −m12m21, which is only a quadratic polynomial in the
unknowns. The other 3×3 determinants are more complicated and
leads to larger polynomial solvers. Using the saturation technique
from Larsson et al. [35], we were able to create a polynomial
solver for this saturated ideal. The size of the elimination template
is 24 × 26. Note that without using the hidden-variable trick the
elimination template was 74×76. The number of solutions is two.

For the H2luλ solver we can use the same hidden-variable
trick. In this case s̄u1 = s̄u2 = s̄u3 = 1; therefore, the matrix M
in (15) contains only three unknowns l1, l2 and λ. This problem
is over-constrained, and one of the two constraints from a point
correspondence goes unused. Thus, for this problem we can drop
one of the equations from (14), e.g., for i = 3, and the matrix
M in (15) has size 6 × 4. In this case all 4 × 4 cofactors of M
result in 15 equations in 3 unknowns. Similar to the 3 point case,
this introduces a one-dimensional family of false solutions. The
matrix M has a similar structure as in (16) and again it is sufficient
to saturate the top-left 2 × 2 cofactor. For this formulation we
were able to create a solver with template size 14× 18 (compared
with 80× 84 without using hidden-variable trick). The number of
solutions is four.

5.1.2 Two-Direction EVP Solvers
In the case of the two-direction H22luvsvλ solver, the input equa-
tions for two vanishing translation directions u =

(
u1, u2, u3

)>
and v =

(
v1, v2, v3

)>
can be separated into two sets of equations,

i.e., the equations containing u and the equations containing v.
Note that in this case we have two equations of the form (13), i.e.,
the equation for the direction u and the equation for the direction
v and we have an unknown relative scale s̄v4 . Therefore, the final
system of 10 equations in 10 unknowns can be rewritten using two
matrix equations as

M1(l1, l2, λ)


u1
u2
u3
1

 = 0, M2(l1, l2, s̄
v
4 , λ)


v1
v2
v3
1

 = 0, (17)

where M1 and M2 are 5 × 4 matrices such that the elements are
polynomials in (l1, l2, λ) and (l1, l2, s̄

v
4 , λ), respectively.

Again all 4 × 4 cofactors of M1 and M2 must concurrently
equal zero. This results in 5 + 5 = 10 polynomial equations in
four unknowns (l1, l2, s̄

v
4 , λ). In this case, only 39 additional false

solutions arise from the hidden-variable trick. The matrices M1 and
M2 have a similar structure as in (16) and again it is sufficient to
saturate the top-left 2× 2 cofactors to remove the extra solutions.
By saturating these determinants we were able to create a solver
with template size 76 × 80 (previously 730 × 734). The number
of solutions is four.

Finally, for the H22luvλ two-direction solver, s̄u1 = s̄u2 = 1
and s̄v3 = s̄v4 = 1. This problem is over-constrained, so we can
drop one of the equations from constraint (14), e.g., for i = 4.
Therefore, the matrix M2 from (17) has size 4× 4, and it contains
only three unknowns (l1, l2, λ). All 4 × 4 cofactors of M1 and
M2 result in 5 + 1 = 6 polynomial equations in three unknowns
(l1, l2, λ).

For this case we get 18 additional false solutions. Investiga-
tions in Macaulay2 [43] revealed that for this particular formula-
tion, it is sufficient to only saturate the top-left 2×2 cofactor of M1
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Fig. 6. The Geometry of the EVL Constraints. The scene plane Π contains the preimage of radially-distorted conjugately-translated affine-covariant
regions, equivalently, 3 translated points in the direction U. This configuration had 3 additional translation directions V1,V2,V3 that can be used to
design a solver. In the image plane π, the joins of each of the images of the 3 pairs of parallel lines (colored red, green and blue) meet at the imaged
scene plane’s vanishing line l. Each incidence of a vanishing point u,v1,v2 and v3 with l generates a scalar constraint equation. Two equations
are needed to estimate l and three are necessary to jointly estimate l and λ. Note that u can be estimated from one of 3 meets of distinct joins of
undistorted point correspondences, but only 1 such meet can be used as a constraint in the EVL formulation.

and the top-left element of M2. Generating the polynomial solver
with saturation resulted in a template size of 54× 60 (previously
348× 354). The number of solutions is six.

5.2 The Eliminated Vanishing Line (EVL) Solver
Suppose { x̃i ↔ x̃′i }3i=1 are point correspondences extracted
from a radially-distorted conjugately-translated affine-covariant
region correspondence as shown in Fig. 6. Then their preimages
{Xi ↔ X′i }3i=1 on the scene plane Π are in correspondence with
a translation, denote it U, which is color coded cyan in Fig. 6.
This point configuration has three additional translation directions
V1,V2 and V3, (colored red, green and blue, respectively),
where each of the four imaged translation directions induces four
radially-distorted conjugate translations in the distorted image.

A vanishing point, i.e., u, v1, v2, v3, can be recovered from
each meet of joins of pairs of conjugate-translations that share the
same translation direction in the scene plane, e.g.,

γv1 = (x1 × x3)× (x′1 × x′3). (18)

There are six such pairs to choose from, one for each of v1,v2

and v3 and three for u, which is the vanishing point of the
translation direction for the undistorted point correspondences
{xi ↔ x′i }3i=1.

As proved in Sec. 4.1, each meet of joins puts a constraint
on the vanishing line l. It will be shown that only three of the
six vanishing point constructions are necessary to solve for the
undistortion parameter λ and vanishing line l. It will also be shown
that exactly one of any of the three meets of joins of conjugate
translations from {xi ↔ x′i }3i=1 can be used to constrain l.

Without loss of generality, we use the joins of pairs of conju-
gate translations meeting at v1,v2, and v3, which are substituted
into the vanishing point-vanishing line incident constraint of (11)

v>i l =
(
(xi × xj)× (x′i × x′j)

)>
l = 0, (19)

where i < j and i, j ∈ { 1 . . . 3 }. The homogeneity of (19)
is used to eliminate any non-zero scalars. Substituting radially-
distorted points for undistorted points in (19) using (5) gives

(f(x̃i, λ)× f(x̃j , λ))×
(
f(x̃′i, λ)× f(x̃′j , λ)

)>
l = 0. (20)

The skew-symmetric operator, denoted [·]×, is used to transform
(20) into the homogeneous matrix-vector equation([

[f(x̃i, λ)]× f(x̃j , λ)
]
× [f(x̃′i, λ)]× f(x̃′j , λ)

)>
l = 0, (21)

where where i < j and i, j ∈ { 1 . . . 3 }. Independent scalar
constraint equations of the form (21) can be stacked to add the
necessary number of constraints for jointly estimating l and λ.

5.2.1 Creating the Solver
Each vanishing point u,v1,v2 and v3 generates one scalar con-
straint on the vanishing line l. There are four unknowns in
constraint (21), namely l =

(
l1, l2, l3

)>
and the division model

parameter λ. The vanishing line l is homogeneous, so it has
only two degrees of freedom. Thus 3 scalar constraint equations
of the form (21) generated by 3 vanishing points from the set
{u,v1,v2,v3 } are needed, which, as shown in (21), can be
concisely encoded in the matrix M(λ) ∈ R3×3 as

M(λ)

l1l2
l3

 = 0. (22)

Note that only 1 of the 3 meets of joins of conjugately-translated
point correspondences from {xi ↔ x′i }3i=1 can be used since
there is no constraint included that enforces

((xi × x′i)× (xj × x′j))× ((xi × x′i)× (xk × x′k)) = 0,

where i, j, k ∈ { 1 . . . 3 } and i 6= j. Therefore, at least two of
v1,v2, and v3 must be used, and the two chosen meets can be
combined with exactly one of the meets the can be constructed
from {xi ↔ x′i }3i=1. Including the case where each of v1,v2,
and v3 is used gives 3

(3
2

)
+ 1 = 10 possible combinations

of meets. Selecting the optimal meets for the most accurate
rectification is addressed in Sec. 5.2.2.

The division model parameter λ is hidden in (22) using the
hidden-variable trick in the entries of coefficient matrix M, which
are polynomials only in λ [34]. Thus l has been eliminated, which
motivates the EVL name.

Matrix M(λ) is rank deficient since it has a null vector, which
implies that det M(λ) = 0. The determinant constraint defines a
univariate quartic with unknown λ, which can be solved in closed
form. After λ has been recovered, the vanishing line l is obtained
by solving for the null space of M. The EVL solver is denoted
H2lλ.

5.2.2 Best Minimal Solution Selection
The EVL geometry of Fig. 6 has 10 meets that can be used to
generate scalar constraint equations in (21). However, only 3 meets
are needed to jointly estimate l and λ. Since the time to solution
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(a) Nikon D300, 16mm (b) Nikon D300, 15mm (c) unknown (d) Olympus E M1, 15mm (e) Nikon D810, 14mm

Fig. 7. EVL Solver Results on Fisheye Images. The distorted image of the vanishing line is rendered in green in the input images on the top
row. Results were produced using the H2lλ with 1-correspondence sampling in a RANSAC framework. The H2lλ solver runs in 0.5 µs. Surprisingly,
reasonable rectifications are possible using the 1-parameter division model for the extreme distortions of fisheye lenses. Focal lengths are reported
as 35mm equivalent.

for the H2lλ is only 0.5 µs, the solutions for all minimal subsets
of meets can be verified against the unused constraints, e.g., if
the meets of joins of the radially-distorted conjugately-translated
correspondences associated with v1,v2, and v3 are used, then
the correspondences associated with u (cyan direction) can be
used for verification. The minimal subset of meets is chosen that
minimizes the sum of symmetric transfer errors∑

i

d(x̃i, f
d(H−1f(x̃′i, λ), λ))2 + d(fd(Hf(x̃i, λ), λ), x̃′i)

2,

(23)
where x̃ ↔ x̃′ are radially-distorted conjugately-translated point
correspondences that are not included in a minimal configuration
for estimating rectification. We call this approach best minimal
solution selection.

Evaluating the quality of the minimal solution on (23) has sev-
eral benefits: (i) Near degenerate correspondence configurations
can be rejected, (ii) Correspondences with geometric properties
that are more robust to noise will be preferred, e.g., regions
that are further apart, (iii) and expensive RANSAC consensus set
construction can be preempted, if there is no minimal solution that
has sufficiently small symmetric transfer error as defined in (23).

Best minimal solution selection is evaluated in the sensitivity
studies in Sec. 8. The solver incorporating best minimal solution
selection is denoted in the standard way, H2lλ. For comparison
we introduce a baseline solver, denoted HRND

2 lλ, which randomly
selects from the 10 possible constraint configurations associated
with the EVL geometry (see Fig. 6). As expected, the H2lλ
performs better than HRND

2 lλ on all sensitivity measures.

5.2.3 Optimal Estimate of the Vanishing Point

Unlike the EVP solvers in Sec. 5.1, which jointly estimate the
vanishing point u (shown in Fig. 6) using all constraints from
the set of conjugate translations {xi ↔ x′i }3i=1 (see (14)), the
H2lλ solver maximally uses two joins from {xi ↔ x′i }3i=1 and

possibly none if only the red, green and blue translation directions
in Fig. 6 are selected as the best minimal solution.

The vanishing point u of the cyan translation direction can be
recovered after the vanishing line l and division model parameter λ
are estimated (e.g., by H2lλ) by solving a constrained least squares
system that includes all constraints induced by {xi ↔ x′i }3i=1

(see Fig. 6). The incidence of u with l is explicitly enforced by
including (11) into the constraints. Define h1>

u ,h2>
u , and h3>

u to
be the rows of a conjugate translation,

αx′ = Hux =
[
h1
u h2

u h3
u

]>
x =

[
I3 + ul>

]
x. (24)

The homogeneous scale in (24) can be eliminated by substituting
h3>
u x for α, and the system can be rearranged such that

x>h1
u = (x′x>)h3

u

x>h2
u = (y′x>)h3

u .
(25)

Collecting the terms of vanishing point after expanding the dot
products in (25) for each pair of {xi ↔ x′i }3i=1 along with an
incidence constraint l>u = 0 gives the constrained least squares
problem

minimize
u

‖Mu − y‖2

subject to l>u = 0,

where M =


...

−l>xi 0 x′(lTxi)
0 l>xi y′(l>xi)

...

 , y =


...

xi − x′
yi − y′

...



Since the matrix
[
M> l

]>
has linearly independent columns,
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and l> is trivially row independent, u is recovered by solving[
M>M l
l> 0

](
u
z

)
=

(
M>y

0

)
, (26)

where z is a nuisance variable [44]. Surprisingly, a superior
estimation of the vanishing point u is given by using (26) after
rectifying with the EVL H2lλ solver than by jointly solving for
the rectification, vanishing point, and division model parameter
as done with the EVP group of solvers (see the transfer error
sensitivity study Fig. 10a).

6 DEGENERACIES

We identified three important degeneracies for the solvers: Two
geometric configurations of features such that there exists either
a subspace of rectifications or no valid solution, and a modeling
degeneracy introduced by the use of the expression (4) for the
affine-rectifying homography, which requires l =

(
l1, l2, l3

)>
such that l3 6= 0 [10]. The proposed solvers and the state-
of-the-art solvers of Pritts et al. in [14], [26] suffer from this
modeling degeneracy. It is shown that addressing this degeneracy
requires increasing the complexity of the solvers. There are likely
additional degeneracies between the EVL and EVP solver, but an
exhaustive analysis is a difficult theoretical problem.

6.1 Degenerate Feature Configurations
Suppose that (i) H is a rectifying homography other than the iden-
tity matrix, (ii) that the image has no radial distortion, (iii) and that
all corresponding points from repeated affine-covariant regions
fall on a single circle centered at the image center. Applying the
division model of lens undistortion uniformly scales the points
about the image center. Given λ 6= 0, for a transformation by
f(·, λ) defined in (5) of the points lying on the circle there is a
scaling matrix S(λ) = diag(1/λ, 1/λ, 1) that maps the points
back to their original positions. Thus there is a 1D family of
rectifying homographies given by HS(λ) for the corresponding
set of undistorted images given by f(·, λ).

Secondly, suppose that the conjugately-translated point corre-
spondences xi ↔ x′i and xk ↔ x′k are collinear as shown
in Fig. 5. Let mi = xi × x′i and mk = xk × x′k. Then
mi ×mk = 0, which is not a point in the real-projective plane
RP2, and cannot be used to place a constraint on l. Unfortunately,
this point configuration is common, e.g., consider a row of
windows on a facade. It is possible that the feature extraction
pipeline will establish collinear correspondences. However, affine
frames constructed from covariant region detections are typically
not in this degenerate configuration since the origin is defined by
blob’s center of mass or peak response in scale space and one of
the extents is constructed as a right angle to the first linear basis
vector (see Fig. 8). Regardless, the degeneracy can be avoided by
using different meets.

6.2 The Pencil of Vanishing Lines Through the Distor-
tion Center
If the vanishing line passes through the image origin, i.e. l =(
l1, l2, 0

)>
, then the radial term in the homogeneous coordinate

of (6) is canceled. In this case, it is not possible to recover the
division model parameter λ from the systems of equations (16),
(17) or (22) solved by any of the proposed solvers. However, the
degeneracy does not arise from the problem formulation. An affine

transform can be applied to the undistorted image such that the
vanishing line l in the affine-transformed space has l3 6= 0.

The division model requires the image origin to be the dis-
tortion center [32]. The derivations in this paper assume that
image center, distortion center and image origin are coincident.
The proposed and state-of-the-art solvers of Pritts et al. [14], [26]
formulate joint undistortion and rectification in terms of (6), which
leaves the distortion center stationary.

Directional cameras see only points in front of the camera
[45], so the vanishing line cannot intersect the convex hull of
measurements. Therefore, changing basis in the undistorted space
such that any point in the convex hull of the undistorted feature
points (i.e., affine covariant region detections) is the image origin
guarantees that vanishing line will not pass through the origin.
Furthermore, if a point is in the convex hull of measurements in
the distorted space, then it is also in the convex hull of undistorted
measurements. However, the change of basis (i.e., a translation)
is a function of the undistorted point, and thus a function of the
unknown division model parameter λ, so applying the coordinate
transform increases the complexity of the solvers. Empirically we
did not find this degeneracy to be a problem. E.g., Figs. 4c, 7c,
and 7e show good undistortions of images and rectifications of
imaged scene planes that have vanishing lines passing close to the
center of distortion, which suggest that in these near-degenerate
cases the division-model parameter is sufficiently observable.
Thus we choose to preserve the simplicity of the solvers (see
Table 4). A new origin in the undistorted space can be defined
by a distorted measurement in the convex hull of measurements,
which will reduce the chance of encountering the degeneracy, but
not eliminate it.

7 ROBUST ESTIMATION

The solvers are used in a LO-RANSAC-based robust-estimation
framework [11], [46]. Affine rectifications and undistortions are
jointly hypothesized by one of the proposed solvers. A metric
upgrade is attempted and models with maximal consensus sets are
locally optimized by an extension of the method introduced in
[11]. The metric-rectifications are presented in the results.

(a) MSER detection (b) Normalized Frame (c) LAF representation

Fig. 8. Repeat Detection, Description, and Representation. (a) Center
of gravity (white cross) and curvature extrema (orange circles) of a
detected MSER (orange contour [40]). Patches are normalized to a
square and oriented to define an affine frame as in [41], (b) Bases
are reflected for detecting axial symmetries. The RootSIFT transform
embeds the local texture [47], [48]. (c) Affine frames are mapped to the
image.

7.1 Local Features and Descriptors
Covariant region detectors are highly repeatable on the same im-
aged scene texture with respect to significant changes of viewpoint
and illumination [49], [50]. Their proven robustness in the multi-
view matching task makes them good candidates for representing
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the local geometry of repeated textures. In particular, we use the
Maximally-Stable Extremal Region and Hessian-Affine detectors
[23], [40]. The affine-covariant regions are given by an affine basis
(see Sec. 3.2), equivalently three distinct points, in the image space
[42]. The image patch local to the affine frame is embedded into a
descriptor vector by the RootSIFT transform [47], [48]. See Fig. 8
for a visualization.

7.2 Detection, Description, and Clustering
Affine frames are tentatively labeled as repeated texture by their
appearance. The appearance of an affine frame is given by the
RootSIFT embedding of the image patch local to the affine frame
[47]. Affine-covariant regions are also extracted and embedded in
the reflected image, where the detections in are transformed into
the original image space and have a left-handed representation.

The RootSIFT descriptors are agglomeratively clustered,
which establishes pair-wise tentative correspondences amongst
connected components. Since the proposed H2luλ, H2lus

uλ,
H2lλ, and H22luvλ solvers do not admit reflections, the
appearance-clusters are partitioned based on the handedness of
the affine frames associated with the clustered embedded regions.
Reflection partitioning is not necessary for the H22luvsvλ, which
admits reflections of similarity-covariant regions. Each appearance
cluster has some proportion of its indices corresponding to affine
frames that represent the same coplanar repeated scene content,
which are the inliers of that appearance cluster. The remaining
affine frames are the outliers.

7.3 Sampling
Sample configurations for the proposed minimal solvers are illus-
trated in Figs. 1, 3, and 6 as well as detailed in Secs. 5.1 and 5.2.
For each RANSAC trial, appearance clusters are selected with the
probability given by its relative cardinality to the other appearance
clusters, and the required number of correspondences are drawn
from the selected clusters.

7.4 Metric Upgrade and Local Optimization
The affine-covariant regions that are members of the minimal
sample are affine rectified by each feasible model returned by the
solver; typically there is only 1. Correspondences for the selected
solver are sampled as detailed in Sec. 7.3. The affine rectification
estimated by the minimal solver is used to build an affine-rectified
scale consensus set. The scale consensus set is built by using the
scale constraint of affine-rectified space: two instances of rigidly-
transformed coplanar repeats occupy identical areas in the scene
plane and in the affine rectified image of the scene plane [10], [14],
[21], [26], [29]. Note that if clustered left and right-handed regions
were partitioned for sampling with the H2luλ, H2lusuλ, H2lλ,
and H22luvλ solvers, then they are merged so they are jointly
verified for scale consistency. Absolute scales are calculated to
account for handedness. The log-scale ratio of the each region in
a cluster is computed with respect to the median affine-rectified
scale. Note that covariant regions extracted from imaged rigidly-
transformed coplanar texture can enter the scale consensus set
since they will be equi-scalar after affine rectification, too. This
admits the possibility of a full-metric upgrade. Regions with near
0 log-scale ratio with respect to the median scale of their cluster
are considered tentatively inlying, and are used as inputs to the
metric upgrade of Pritts et al. [11], which restores congruence.

The congruence consensus set is measured in the metric-
rectified space by verifying the congruence of the linear basis vec-
tors of the corresponded affine frames. Congruence is an invariant
of metric rectified space and is a stronger constraint than, e.g.,
the equal-scale invariant of affine-rectified space that was used to
derive the solvers proposed in [14], [21], [26]. The metric upgrade
essentially comes for free by inputting the covariant regions that
are members of the scale consensus set to the linear metric-
upgrade solver proposed in [11]. By using the metric upgrade,
the verification step of RANSAC can enforce the congruence of
corresponding covariant region extents (equivalently, the lengths
of the linear basis vectors) to estimate an accurate consensus set.
A model with the maximal congruence consensus set at the current
RANSAC iteration is locally optimized in a method similar to [11].

8 EXPERIMENTS

We compare the proposed solvers to the bench of state-of-the-
art solvers listed in Table 3. We apply the denotations for the
solvers introduced in Sec. 2.3 to all tested solvers. Included is the
state-of-the-art joint undistorting and rectifying solver HDES

222 lλ of
Pritts et al. [14], [26], which requires 3 correspondences of affine-
covariant regions extracted from the image of rigidly-transformed
coplanar repeated scene textures. While 6 variants of undistorting
and rectifying solvers are proposed in [14], [26], we test only the
HDES
222 lλ solver since all variants are reported to have similar noise

sensitivities. Also included is the H2l solver of Schaffalitzky et
al. [20], which incorporates similar constraints from conjugate
translations that are used to derive the proposed solvers. Two
full-homography and radial-undistortion solvers are included: the
H22λ solver of Fitzgibbon et al. [32] and the H22λ1λ2 solver of
Kukelova et al. [12], which are used to assess the benefits of
jointly solving for radially-distorted conjugate translations (and
lens undistortion) from the minimal problem, as done with the
proposed solvers, versus the over-parameterized problem as in
[12], [32]. The solvers are evaluated on synthetic scenes and
challenging real images.

8.1 Synthetic Data
The sensitivity studies evaluate the solvers on noisy measurements
over 3 task-related performance metrics: (i) the transfer error,
which measures the accuracy of radially-distorted conjugate trans-
lation estimation (ii) the warp error which measures rectification
accuracy, and (iii) the relative error of the division-model param-
eter estimate, which reports the accuracy of the lens undistortion
estimate. A solver stability study evaluates the proposed solvers by
the warp error on noiseless measurements. The study demonstrates
the benefit of constraint simplification by the hidden-variable trick,
which is used to derive both the EVP solvers and EVL solver, and
shows that it improves the stability of all solvers, and, in fact, it is
sometimes necessary to generate usable solvers [34].

These studies are evaluated on 1000 synthetic images of 3D
scenes with known ground-truth parameters. A camera with a
random but realistic focal length is randomly placed with respect
to a scene plane such that it is mostly in the camera’s field-
of-view. The image resolution is set to 1000x1000 pixels. The
noise sensitivities of the solvers are evaluated on imaged translated
coplanar repeats. Affine frames are generated on the scene plane
such that their scale with respect to the scene plane is realistic.
The modeling choice reflects the use of affine-covariant region
detectors on real images. The image is distorted according to the
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(a) Warp Error for Noiseless Features
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(b) Warp Error for Noisy Features
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Fig. 9. (a) The log10 RMS warp error ∆warp
RMS is reported for noiseless scenes generated as described in Secs. 8.1.1 and 8.1.3. Hidden variable trick

solvers are solid; solvers generated without simplified constraints equations are dashed. The hidden-variable trick increases stability. The EVL H2lλ
solver is the most stable since it does not require solving a complicated polynomial system of equations. (b) Reports the RMS error ∆warp

RMS after 25
iterations of a simple RANSAC for the bench of solvers with increasing levels of white noise added to the affine-covariant region correspondences,
where the normalized division model parameter is set to -4, which is similar to the distortion of a GoPro Hero 4. Results are for radial-distorted
conjugate translations. The proposed solvers demonstrate excellent robustness to noise, and the EVL solver H2lλ is competitive with HDES

222 lλ, which
requires two more correspondences. The H2lλ solver uses best minimal solution selection, which improves its performance compared to HRND

2 lλ,
which randomly selects a solution.

division model. For the sensitivity experiments, isotropic white
noise is added to the distorted affine frames at increasing levels.

In addition, the convergence speed of RANSAC is compared
with respect to the use of each of the proposed and state-of-the-
art solvers to hypothesize models. In particular, convergence is
evaluated by plotting rectification accuracy with respect to trial
number.

8.1.1 Warp Error
Since the accuracy of scene-plane rectification is a primary
concern, an extended version of the warp error for rectifying
homographies proposed by Pritts et al. [5] that incorporates the
division model for radial lens distortion of Fitzgibbon [32] is used
to evaluate a solver’s stability and robustness to noise. A scene
plane is tessellated by a 10x10 square grid of points {Xi }100i=1 and
imaged as { x̃i }100i=1 by the lens-distorted ground-truth camera.
The tessellation ensures that error is uniformly measured over the
scene plane. A round trip between the image space and rectified
space is made by affine-rectifying { x̃i }100i=1 using the estimated
division model parameter λ̂ and rectifying homography H(̂l) (see
(4)) and then imaging the rectified plane by the ground-truth
camera P. Ideally, the ground-truth camera P images the rectified
points {xi }100i=1 onto the distorted points { x̃i }100i=1. There is an
affine ambiguity, denoted A, between H(̂l) and the ground-truth
camera matrix P. The ambiguity is estimated during computation
of the warp error,

∆warp = min
A

∑
i

d2(x̃i, f
d(PAH(̂l)f(x̃i, λ̂)), λ), (27)

where d(·, ·) is the Euclidean distance, fd is the inverse of the
division model (the inverse of (5)). The root mean square warp
error for { x̃i }100i=1 is reported and denoted as ∆warp

RMS.
Note that the H22λ solver of [32] and the H22λ1λ2 solver of

[12] are omitted from the warp error since the vanishing line is
not directly estimated.

8.1.2 Transfer Error

The geometric transfer error measures the accuracy of the esti-
mated radially-distorted conjugate translation. The scene plane is
tessellated by a 10x10 grid of points spaced one unit apart. The
tessellation ensures that the geometric transfer error is uniformly
sampled across the image. Denote the tessellation as {Xi }100i=1.
Suppose that x ↔ x′ are conjugately-translated points that
are consistent with Hu = [I3 + ul>]. The preimage U of the
vanishing translation direction u is recovered as βU = P−1u =

β
(
ux, uy, 0

)>
. The tessellation is translated by U/‖U‖ on the

scene plane. Let T(U/‖U‖) be a homogeneous translation matrix
as defined in (7). Then by (8) the image of the unit-magnitude
translation on the scene plane in the direction of correspondences
x ↔ x′ is

Hu/‖U‖ = [I3 +
u

‖U‖
l>]. (28)

The unit conjugate translation Hu/‖U‖ can be written in terms
of Hu as

I3 +
u

‖U‖
l> = I3 +

1

‖U‖
[I3 + ul> − I3]

= I3 +
1

‖U‖
[Hu − I3].

(29)

The points are distorted with the ground-truth division-model
parameter λ as x̃i = fd(xi, λ) and x̃′i = fd(x′i, λ), where fd

transforms from pinhole points to radially-distorted points. Then
the geometric transfer error is defined as

∆xfer = d(fd([I3 +
1

‖U‖
(Ĥu − I3)]f(x̃, λ̂1), λ̂2), x̃′), (30)

where d(·, ·) is the Euclidean distance and Ĥu and λ̂1, λ̂2 are the
estimated conjugate translations and division model parameters,
respectively. All solvers except H22λ1λ2 have the constraint that
λ̂1 = λ̂2 [12].
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(a) Transfer Error for Noisy Features
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(b) Relative Error of Undistortion for Noisy Features
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Fig. 10. Comparison of two error measures after 25 iterations of a simple RANSAC for different solvers with increasing levels of white noise added
to the affine covariant region correspondences, where the normalized division model parameter is set to -4 (see Sec. 3.1), which is similar to the
distortion of a GoPro Hero 4. Results are for imaged translated coplanar repeats: (a) Reports the root mean square transfer error ∆xfer

RMS. With the
exception of the HDES

222 lλ solver, the proposed solvers are significantly more robust for both types of repeats on both error measures; however HDES
222 lλ

requires the most correspondences, and (b) reports the relative error of the estimated division model parameter. The H2lλ solver uses best minimal
solution selection, which improves its performance compared to HRND

2 lλ, which randomly selects a solution.

The root mean square transfer error ∆xfer
RMS for radially-

distorted conjugately-translated correspondences x̃i ↔ x̃′i is
reported. For two-direction solvers, the transfer error in the second
direction is included in ∆xfer

RMS. The transfer error is used in the
sensitivity study, where the solvers are tested over varying noise
levels with a fixed division model parameter.

8.1.3 Numerical Stability
The stability study measures the RMS warp error ∆warp

RMS of solvers
for noiseless radially-distorted conjugately-translated affine frame
correspondences across realistic scene and camera configurations
generated as described in the introduction to this section. The
normalized ground-truth division-model parameterλ is drawn uni-
formly at random from the interval [−6, 0]. For a reference, the
division parameter of λ = −4 is typical for wide field-of-view
cameras like the GoPro Hero 4, where the image is normalized by
1/(width + height). Fig. 9a reports the histogram of log10 warp
errors ∆warp

RMS.
For the proposed EVP solvers we evaluate a solver gener-

ated from constraints derived with (solid histogram) and without
(dashed histogram) the hidden-variable trick. The hidden-variable
trick significantly improves the stability of the proposed solvers.
The increased stabilities of the hidden-variable solvers most likely
result from the reduced size of the Gauss-Jordan elimination prob-
lems needed by these solvers. The hidden-variable EVP solvers
are used for the remainder of the experiments. The proposed
EVL solver H2lλ is derived with the hidden-variable trick as well,
which results in a quartic. The superior stability of the H2lλ solver
demonstrates the benefits of the elementary formulation.

8.1.4 Noise Sensitivity
The accuracy of the proposed and state-of-the-art solvers is mea-
sured by the warp error, transfer error, and relative error of lens
undistortion with respect to increasing levels of white noise added
to radially-distorted conjugately-translated point correspondences.

The amount of white noise is given by the standard deviation of
a zero-mean isotropic Gaussian distribution, and the solvers are
tested at noise levels of σ ∈ { 0.1, 0.5, 1, 2 }. The ground-truth
normalized division model parameter is set to λ = −4, which is
typical for GoPro-type imagery in normalized image coordinates.

The solvers are wrapped by a basic RANSAC estimator that
minimizes either the RMS warp error ∆warp

RMS (see Fig. 9b), the
RMS transfer error (see Fig. 10a) ∆xfer

RMS, or the relative error of
lens distortion (see Fig. 10b) over 25 minimal samples of affine
frames. The RANSAC estimates are summarized in boxplots for
1000 synthetic scenes. The interquartile range is contained within
the extents of a box, and the median is the horizontal line dividing
the box.

The proposed solvers—H2luλ,H2lusuλ,H22luvλ,H22luvsvλ,
and H2lλ—demonstrate excellent robustness to noisy features
across all three error measures. In particular, the H2lλ solver
is the least sensitive to noise of the proposed solvers and gives
the best undistortion estimates of any solver in the bench (see
Fig. 10b). All proposed solvers estimate the correct lens distortion
parameter more than half the time. Fig. 9b shows that at the 2
pixel noise level, all the proposed solvers rectify with less than 5
pixel RMS warp error ∆warp

RMS more than half the time. Fig. 10a
shows that radially-distorted conjugate translations are estimated
with less than 3 pixel RMS transfer error ∆xfer

RMS error more than
half the time.

For both the warp error and transfer error studies, the H2l
solver of Schaffalitzky et al. [20] shows significant bias since it
does not model lens distortion, making it essentially unusable as
a minimal solver at GoPro-like levels of radial lens distortion.
As expected, the overparameterized radial-distortion homography
solvers of H22λ [32] Fitzgibbon and H22λ1λ2 [12] of Kukelova
et al. have significantly higher transfer errors with respect to the
proposed solvers, which suggests that the extraneous degrees of
freedom are used to explain feature noise by incorrect geometry.
In fact, at the two pixel noise level of the transfer error study in



15

GoPro Hero 4
Wide, 17.2mm
λgt = −0.2823

H22l [11]
1.2% inliers
λ̂ = −0.0326

HDES
222lλ [14], [26]
2.1% inliers
λ̂ = −0.3479

H2lλ

2.6% inliers
λ̂ = −0.3086

H2luλ

2.4% inliers
λ̂ = −0.2501

H2lusuλ

2.2% inliers
λ̂ = −0.2651

H22luvλ

1.9% inliers
λ̂ = −0.2674

H22luvsvλ

2.0% inliers
λ̂ = −0.3118

Fig. 11. The bench of solvers is evaluated on an image with poorly corresponded repeated regions. The leftmost column shows the original image
(top) and its undistortion using ground truth (bottom) for comparison. The proposed solvers are highlighted in gray. The estimated rectifications and
undistorted images are synthesized, and the normalized values of the division-model parameter and ratio of inliers are reported. The H2lλ solver
gives the best result, and all proposed solvers perform better than the state-of-the-art.

Fig. 10a, the performance of these solvers is worse than the H2l
solver, which does not model radial lens distortion.

The state-of-the art solver HDES
222 lλ of Pritts et al. [14], [26]

shows slightly better noise robustness than the proposed solvers
on the warp and transfer error sensitivity studies. However, the
proposed solvers are competitive and require fewer correspon-
dences. In particular, the H2lλ reaches near parity with the HDES

222 lλ
solver and requires only one region correspondence versus three
required by the HDES

222 lλ solver. As is shown in Sec. 8.2, the
proposed solvers are magnitudes faster in wall clock time. Given
their competitive performance in the sensitivity studies and the
fact that they require fewer correspondences and have faster times
to solution, the proposed solver should be preferred to the HDES

222 lλ
solver for images with radially-distorted conjugate translations.

Each of the H2lλ and HDES
222 lλ solvers requires the ex-post

estimation of vanishing point of the translation direction, which
is computed by the method proposed in Sec. 5.2.3. Surprisingly,
the sequential estimation used by the proposed H2lλ and the
HDES
222 lλ solver of [14], [26] achieve the best performances on

the transfer error ∆xfer
RMS. This is explainable by the improved

performance of the H2lλ EVL solver with respect to the EVP
solvers on all measures, and the fact that the HDES

222 lλ solver uses
three correspondences, the most of any in the bench of solvers (see
Table 3).

The benefit of best minimal solution selection as proposed in
(5.2.2) can be seen by comparing the HRND

2 lλ and H2lλ solvers in
all sensitivity studies. To quickly recap, The HRND

2 lλ solver ran-
domly selects a minimal solution from 10 possible solutions given
by the EVL geometry shown in Fig. 6, while the H2lλ chooses
the solution that minimizes a geometric error on the unused con-
straints. The sensitivity improvements using best minimal solution
selection are considerable: at the 2 pixel noise levels, the RMS
warp error ∆warp

RMS (Fig. 9b) and RMS transfer error (Fig. 10a)
decreased by 26% and 28%, respectively, and the interquartile
range of division model parameter estimates decreased by 61%.
In fact, the incorporation of best minimal solution selection puts
the performance of the H2lλ solver on par with the HDES

222 lλ solver,
which requires two more region correspondences.

8.1.5 RANSAC convergence study
The speed of convergence of RANSAC is evaluated using each of
the proposed and state-of-the-art rectifying solvers to hypothesize
models. Each RANSAC variant is run on a set of thirty synthetic
scenes generated as described in Sec. 8.1 with one-pixel white
noise and with corresponded sets of regions corrupted by 50%

outliers. Fig. 12 reports the mean RMS warp error ∆warp
RMS over

all scenes at each iteration for the bench of solvers. The proposed
H2lλ solver converges fastest, which demonstrates its robustness
to noise and the advantage of one-correspondence sampling com-
bined with best minimal-solution selection. The HDES

222 lλ performs
second best, despite requiring three region correspondences; how-
ever, it not so surprising since its robustness is known (e.g., see
Fig. 10 and [14], [26]). As expected, the solver of [20] performs
poorly since it does not estimate lens undistortion. The solvers of
[12], [32] are omitted from this study since they do not directly
recover the vanishing line. In theory, it is possible to use a rank-
one decomposition to recover the estimated vanishing line from a
full homography for warp error computation, but we found this to
give poor results.

8.2 Computational Complexity

Table 4 lists the wall-clock time to solution for the optimized C++
implementations of the proposed solvers and the HDES

222 lλ solver
[14], [26], which was the only competitive solver from the sensi-
tivity experiments reported in Figs. 10a, 9b, and 10b. Also reported
for easy comparison are the relative speeds with respect to the
H2lλ solver and the elimination template sizes, where applicable.
The proposed EVL H2lλ solver is an astounding 2153.6× faster
than the HDES

222 lλ solver and significantly faster than all EVP solvers
(H2luλ,H2lusuλ,H22luvλ, and H22luvs

vλ), which require the
Gröbner basis method to solve polynomial systems of equations.
All of the proposed solvers are much faster than the HDES

222 lλ solver,
making them more suitable for fast sampling in RANSAC for
scenes containing translational symmetries.

TABLE 4
Runtime Analysis

Solver Wall Clock Relative Speed Template Size

H2lλ 0.5 µs 1.0× N/A
H2luλ 3.7 µs 7.4× 14× 18

H2lus
uλ 6.1 µs 12.2× 24× 26

H22luvλ 34.6 µs 69.2× 54× 60
H22luvs

vλ 66.1 µs 132.2× 76× 80
HDES
222 lλ [14], [26] 1076.8 µs 2153.6× 133× 187

Wall-clock times are reported for optimized C++ implementations of
the proposed solvers versus HDES

222 lλ of [14], [26], which was the only
competitive solver from the noise sensitivity experiments. The EVL
solver is 2153.6× faster than HDES

222 lλ, and the other proposed variants
are orders of magnitude faster.
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Fig. 12. Each solver is used to generate models for RANSAC on a sets
of synthetic noisy region correspondences with 50% outliers. The mean
RMS warp error ∆warp

RMS over all scenes at each iteration is shown. The
H2lλ gives the most accurate rectifications the fastest.

8.3 Real Images

In the experiments on real images shown in Figs. 1 and 4,
we tested the proposed solvers on GoPro4 Hero 4 images with
increasing field-of-view settings—medium and wide, where the
wider field-of-view setting generates more extreme radial distor-
tion since the full extent of the lens is used. To span the gamut of
lens distortions in the field-of-view study of Fig. 4, we included a
Samyang 7.5mm fisheye lens. The consistency of the undistortion
estimate at the same GoPro Hero4 field-of-view setting can be
seen by comparing the undistortions between the medium GoPro
Hero 4 images in Fig. 4a and the undistortions between the wide
GoPro images in Figs. 1 and 4b. Regardless of the significantly
different image content and sensor orientation, the undistortions
are of comparable magnitude at the same setting. Rectification
are accurate for all GoPro Hero 4 images, and the image of the
distorted vanishing line is correctly positioned (rendered in green)
in the original images. Despite using the 1-parameter division
model for lens undistortion, an excellent rectification is achieved
for the fisheye distorted image taken with the Samyang 7.5mm
lens in Fig. 4c, and the horizon line is perfectly estimated.

Fig. 7 shows results obtained with 1-correspondence sampling
using the proposed H2lλ EVL solver on very challenging fisheye
images. Images from five distinct fisheye lenses are evaluated with
Figs. 7b, 7c, and 7e having highly oblique viewpoints of the
dominant scene plane. Accurate rectifications and undistortions
are achieved for all images, and the distorted image of the
vanishing line (rendered in green) is correctly positioned. The
limitations of the 1-parameter division model can be seen with
extreme radial distortions, as, e.g., Figs. 7c and 7d exhibit some
mustache distortion, which cannot be modeled with 1 parameter.
However, the local optimizer of [11] could be modified to regress
a higher-order distortion model using the results of Fig. 7 as an
initial guess. We leave this for future work.

Figs. 4c, 7c, and 7e contain imaged scene planes with vanish-
ing lines that pass near the image origin (equivalently, center of
distortion), which is a degeneracy of the solver (see Sec. 6). Still
excellent results are achieved, which empirically demonstrates
that even for vanishing lines passing very close to the image
center, the lens distortion is sufficiently observable. In practice
the degeneracy does not seem to be a problem.

The distorted image evaluated in Fig. 11 has a very low
inlier ratio of corresponded coplanar regions, which is typical
for repeated content that is clustered by appearance. The low-
inlier example is rectified with the five proposed solvers and
the solvers HDES

222 lλ of [14], [26] and H22l of [21]. All solvers
were used within an extension to the coplanar repeat detection
and rectification framework of Pritts et al. [11]. The ground
truth division-model parameter λgt was obtained using calibration
software and chessboard images. The proposed H2lλ gives the best
undistortion and rectification both quantitatively and qualitatively.
The estimation framework using the H2l solver, which does not
solve for lens undistortion, is unable to recover a reasonable lens
undistortion. In general, the solvers requiring more correspon-
dences and having more degrees of freedom give less accurate
results. The experiment demonstrates the non-convexity of the
problem, and emphasizes the need for a good initial guess by
the minimal solver for the local optimizer of [11].

The narrow field of view and diverse content experiment of
Fig. 13 shows the performance of the proposed method on imagery
typical from cell phone cameras and near rectilinear lenses. The
left 3 columns of the study are challenging since the conjugate
translations and reflections are extracted a small strip of the image.
Still the rectifications are accurate.

9 CONCLUSIONS

This paper proposes a suite of simple high-speed solvers for jointly
undistorting and affine-rectifying images containing radially-
distorted conjugate translations. The proposed solvers contain
variants that relax the assumptions that the preimages of radially-
distorted conjugately-translated point correspondences are trans-
lated by the same magnitude in the scene plane, and that all point
correspondences translate in the same direction. Furthermore, a
variant is proposed that admits reflections of similarity-covariant
region correspondences, which is helpful for searching for corre-
spondences for semi-metric rectification.

The EVL H2lλ solver admits the same point configuration
as the one-direction EVP solver H2luλ, but is much simpler
(i.e., does not require the Gröbner bases method), more stable,
and is 7.4× faster in terms of wall-clock time to solution. The
improvement is given by the choice to eliminate the vanishing
line instead of the vanishing point. The significant difference
emphasizes the importance of care in solver design; in particular,
the need to simplify the constraint equations. While Gröbner bases
related methods are powerful and somewhat general, their blind
application for solver generation can result in slow and unstable
solvers. E.g., Pritts et al. in [14], [26] were unable to reduce the
degree of their constraint equations used for the HDES

222 lλ solver,
which resulted in slow solver (see Table 4). Furthermore, stability
sampling was required to generate useful solvers [17].

Synthetic experiments show that the EVP and EVL solvers
are significantly more robust to noise in terms of the accuracy of
rectification and radially-distorted conjugate translation estimation
than the radial-distortion homography solvers of Fitzgibbon and
Kukelova et al. [12], [32]. The experiment verifies the importance
of solving the minimal problem since the extraneous degrees
of freedom of the radial-distortion homography solvers are free
to explain the noise with incorrect geometry. Furthermore, the
proposed solvers are competitive with the robustness of the state-
of-the-art HDES

222 lλ solver of [14], [26] despite the fact that the
HDES
222 lλ solver requires two more region correspondences as input
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Fig. 13. The proposed solvers works well on images with small lens distortions. Input images are on the top row; undistorted images are on the
middle row, and the rectified images are on the bottom. Results were generated with the H2luλ solver.

(compared to H2lλ,H2luλ, and H2lus
uλ). The advantage of the

proposed solvers is more pronounced if the combinatorics of the
robust RANSAC estimator are considered, where one correspon-
dence sampling makes it possible to solve scenes with a very-low
proportion of good correspondences.

Experiments on difficult images with large radial distortions
confirm that the solvers give high-accuracy rectifications if used
inside a robust estimator. By jointly estimating rectification and
radial distortion, the proposed minimal solvers eliminate the need
for sampling lens distortion parameters in RANSAC.
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