
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 26, 2024

The Bayesian Cut

Taborsky, Petr; Vermue, Laurent; Korzepa, Maciej; Morup, Morten

Published in:
IEEE Transactions on Pattern Analysis and Machine Intelligence

Link to article, DOI:
10.1109/TPAMI.2020.2994396

Publication date:
2021

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Taborsky, P., Vermue, L., Korzepa, M., & Morup, M. (2021). The Bayesian Cut. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 43(11), 4111 - 4124. https://doi.org/10.1109/TPAMI.2020.2994396

https://doi.org/10.1109/TPAMI.2020.2994396
https://orbit.dtu.dk/en/publications/5c08d893-3245-476e-a6d6-94bb00e79646
https://doi.org/10.1109/TPAMI.2020.2994396


0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.2994396, IEEE
Transactions on Pattern Analysis and Machine Intelligence

1

The Bayesian Cut
Petr Taborsky, Laurent Vermue, Maciej Korzepa, and Morten Mørup

Abstract—An important task in the analysis of graphs is separating nodes into densely connected groups with little interaction between
each other. Prominent methods here include flow based graph cutting procedures as well as statistical network modeling approaches.
However, adequately accounting for the holistic community structure in complex networks remains a major challenge. We present a
novel generic Bayesian probabilistic model for graph cutting in which we derive an analytical solution to the marginalization of nuisance
parameters under constraints enforcing community structure. As a part of the solution a large scale approximation for integrals
involving multiple incomplete gamma functions is derived. Our multiple cluster solution presents a generic tool for Bayesian inference
on Poisson weighted graphs across different domains. Applied on three real world social networks as well as three image segmentation
problems our approach shows on par or better performance to existing spectral graph cutting and community detection methods, while
learning the underlying parameter space. The developed procedure provides a principled statistical framework for graph cutting and the
Bayesian Cut source code provided enables easy adoption of the procedure as an alternative to existing graph cutting methods.

Index Terms—normalized cut, ratio cut, graph cut, modularity, degree-corrected stochastic block modeling, Bayesian inference,
incomplete gamma function, image segmentation.

F

1 INTRODUCTION

IN the analysis of graphs, partitioning nodes into groups
that are highly intra-connected with few inter-group con-

nections has become important in disparate scientific fields
- from network science for the identification of communities
[1], [2], computer vision for image segmentation [3], [4]
and the extraction of superpixel representations [5], scene
reconstruction from large community photo collections [6],
video decomposition [7], to physics for the splitting of
materials [8]. In fact, many problems can be rephrased
as a graph partitioning problem. This includes clustering
problems based on pair-wise similarity in which graph
partitioning approaches have found to have merits over tra-
ditional k-means and agglomerative hierarchical clustering
procedures [9], and semi-supervised learning problems in
which a popular solution procedure is to use graph cuts
constrained according to the labelled observations [10], [11].

A variety of computational tools have been developed
for graph partitioning. As such, methods based on minimiz-
ing flow between the separated entities have been devised
based on various quality measures of cutting graphs. Two
prominent procedures are the ratio cut [12] and normal-
ized cut [3], for a review see also [4], [9]. On the other
end, flexible in objective function, are methods minimizing
certain classes of submodular energies in pairwise Markov
Random Fields with applications in computer vision [13]
and extended to certain nonsubmodular functions in [14].
Recently, inference in sparse graphs recovering true parti-
tions using side information was introduced in [15]. While
providing general optimisation frameworks these methods
face scaling issues. Within network science a prominent
procedure to identify communities is based on optimizing
the modularity measure proposed in [1], which contrasts
intra-group connectivity structure relative to the connectiv-
ity structure as would be expected according to the nodes’
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degree distribution. Within the social sciences identifying
subgroups in graphs has been addressed using stochastic
block-models (SBM) [16], [17] that identify homogeneous
groups with similar connectivity profiles. This framework
has been advanced to community detection by constrain-
ing parameters specifying intra-connectivity to be higher
than inter-connectivity based on an information theoretic
compression imposing intra and inter link constraints [18]
or through Bayesian modeling constraining the parameters
specifying intra and inter group link densities [19]. When
partitioning networks a limitation of the SBM is that it
is driven by grouping nodes according to their degree
distribution. This issue has been alleviated by the degree-
corrected stochastic block model (dc-SBM) proposed in [20]
and its non-parametric Bayesian counterpart defined in [21].
Recently, it has been proven that modularity is a special
case of maximum-likelihood estimation in the dc-SBM [22]
assuming a planted l-partition model [23] in which link
densities within l groups are specified only by two pa-
rameters; a within community ηin and between community
strength ηout and further assuming the network is com-
munity structured, i.e. ηin > ηout. This then corresponds
to the generalized modularity quality function proposed
in [24] in which modularity is perfectly recovered when

ηin−ηout
log(ηin)−log(ηout)

= 1 [22].

In this paper, we propose a novel computational frame-
work for cutting graphs into communities or groups that ac-
counts for parameter uncertainty through Bayesian model-
ing. Our starting point is the dc-SBM in which we explicitly
impose community structure requiring the parameters spec-
ifying intra-connectivity to be strictly larger than the cor-
responding inter-connectivity. Although less flexible than
the dc-SBM, our model is more realistic than the planted
l-partition model as we endow each community separate
link-densities. We derive a Bayesian inference procedure
and provide an analytical solution to the corresponding con-
strained integral representation. On three social networks
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TABLE 1: Summary of the notation used.

Notation Meaning Definition
A Adjacency Matrix
Aij Link strength between node i and j

bc
Hyperparameter link density gap between
the inter clusters expected link density and expected link density in community c

C Number of communities/clusters
G Undirected Graph
di Degree of node i Aii/2 +

∑
j 6=i Aij

Dc Sum of node degrees in cluster c.
∑

i:zi=c di
n Total number of nodes in graph G
nc Number of nodes in cluster c

∑
i:zi=c 1

nout Number of nodes between the clusters
√
n2 −

∑C
c=1 n

2
c

N Total number of links in the graph G
∑

i Aii/2 +
∑

i<j Aij

Nc Number of links in cluster c
∑

i:zi=c Aii/2

+
∑

i:zi=c,j<i:zj=c Aij

Nout Number of links between the clusters N −
∑C

c=1Nc

zi Cluster assignment of node i
z Set of node assignments zi for all nodes n {z1, z2, . . . , zn}
ZG Normalizing constant of the graph G

∏
i<j Aij !

∏
i
Aii
2

!2
Aii
2 .

ZBC
Normalizing constant of the
constrained distribution see (5)

αc A priori assumed link counts within community c, αc ∈ R+

αout A priori assumed link counts between communities, αout ∈ R+

βc A priori assumed number of network entries within community, βc ∈ R+

βout A priori assumed number of network entries between communities, βout ∈ R+

η Set of all η parameters {η1, . . . , ηC , ηout}
γ Degree correction hyperparameter
ηc Parameter controlling expected density of links within cluster c
ηout Parameter controlling expected density of links between clusters
φi Weight of node i
φ Set of node weights φi for all nodes n {φ1, φ2, . . . , φn}
θi Node degree control weight for node i nziφi

B(x) Multivariate Beta function
∏
k Γ(xk)

Γ(
∑
k xk)

we demonstrate the importance of correctly accounting for
community-structure when clustering nodes in graphs and
that our Bayesian approach to cutting graphs have mer-
its in contrast to the prominent graph cutting procedures
outlined above. This includes better recovery of the true
underlying partitioning structure of nodes into groups and
more reliable inference. We further highlight the utility of
the procedure for image segmentation considering both the
Fast Marching Method (FMM) of [25] and the mean color
regional adjacency graph (RAG) of [26] where normalized
cut is typically applied. Notably, our results are for il-
lustrative purposes demonstrated in the context of social
network modeling in which the true partitioning structure
is known, and image segmentation in which results can
easily be visually inspected. However, we note that the com-
putational framework developed has application beyond
social network modeling and computer vision to the many
domains in which graph cuts are currently used.

2 METHOD

Let G be an undirected graph with adjacency matrix A (i.e.,
Aij = Aji) whose elements Aij are equal to the number of
links between nodes i and j for i 6= j and for computational

reasons [20] twice that number for i = j. Let further n define
the total number of nodes in the graph.

Following the dc-SBM [20] we assume that G is par-
titioned into a fixed number of C communities and the
number of links between nodes i and j follow a Poisson
distribution:

Aij =

{
Poisson(θiθjηzizj ) for i 6= j

Poisson( 1
2θ

2
i ηzizi) for i = j

, (1)

in which the parameter ηce controls the probability of links
between communities c and e, θi regulates the probability
of links connected to the node i based on the degree of that
node, and zi defines the community assignment of node i.
The factor of 1

2 for i = j results from the factor of two in
the definition of diagonal elements of the adjacency matrix.
In particular in all presented application in this paper self-
links Aii are constant. For the social networks presented
they are zeros given by data, while in image applications
with well defined similarities (following a common sense
that node/pixel is similar to itself) they obtain maximal
similarity.

As noted in [20] typically in large scale applications (i.e.
images) self-links do not play a role as their effect diminish
with scale (∼ 1/n). If necessary they can be marginalized as
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suggested in [21]. Although it may be undesired to account
for self-links they add to generality of the model that makes
computations and (approximate) optimisation easier, i.e.
[27].

In order to keep analytic tractability of the constrained
model that will be introduced later we assume all links
between different communities are generated using the
same value, i.e. ηce = ηout for c 6= e. We will also refer
to ηcc simply as ηc and η as the set of all {η1, . . . , ηC , ηout}
parameters. Accordingly, the probability of graph G can be
written as:

P (G|θ,η, z) =
∏
i<j

(θiθjηzizj )
Aij

Aij !
exp(−θiθjηzizj )

×
∏
i

( 1
2θ

2
i ηzizi)

Aii/2

(Aii/2)!
exp(−1

2
θ2
i ηzizi)

=
1

ZG
ηNoutout exp(−n

2
out

2
ηout)

×
[∏
c

ηNcc exp(−n
2
c

2
ηc)

] [∏
i

θdii

]
.

(2)

We have here used that di = Aii/2 +
∑
j 6=iAij is the

degree of node i; nc =
∑
i:zi=c

1, Nc =
∑
i:zi=c

Aii/2 +∑
i:zi=c,j<i:zj=c

Aij are respectively the number of nodes
and links in community c; n2

out = n2 −
∑C
c=1 n

2
c and

Nout = N −
∑C
c=1Nc with N =

∑
iAii/2 +

∑
i<j Aij ,

whereas ZG =
∏
i<j Aij !

∏
i
Aii
2 !2

Aii
2 . Following [21], given

partition z, we define a constraint
∑
i:zi=c

θi = nc and
parametrize θi = nziφi such that parameters (φi)zi=c for
each community c lie on a simplex. We endow all param-
eters with priors thereby accounting for uncertainty using
Bayesian modeling. Thus, for given partition z, we assign
Dirichlet priors for the (φi)zi=c parameters of each commu-
nity c. Further we impose Gamma priors for the elements of
η and we obtain:

p(φ|z) =
∏
c

1

B (γ1nc)

∏
i:zi=c

φγ−1
i ,

p(η) =
βαoutout

Γ(αout)
ηαout−1
out exp(−βoutηout)

×
∏
c

βαinc

Γ(αc)
ηαc−1
c exp(−βcηc),

(3)

where B(x) =
∏
k Γ(xk)

Γ(
∑
k xk) denotes the multivariate Beta

function, and γ is a hyperparameter that allows to infer the
optimal strength of degree correction for a given graph such
that if γ → ∞, then φi → 1

nc
and θi → 1 and the model

reduces to the corresponding SBM [21]. On the other hand,
if γ → 0, then φi∗ → 1 and θi∗ → nc for some node i∗ in
each community c and thus a network generated according
to this prior becomes dominated by a few greedy nodes.
αc and αout denotes the a priori assumed number of links
within community c and between communities (i.e., the
prior shape parameter of the Gamma distribution) whereas
βc and βout denotes the corresponding a priori imposed
number of network entries (i.e., the prior rate parameter of
the Gamma distribution) within community c and between

communities. Assuming further an uniform prior on z,
P (z) = C−n, we obtain:

P (G,z) =

∫
P (G|φ,η, z)p(φ)p(η)P (z)dηdφ

=
C−n

ZG

Γ(Nout+αout)β
αout
out(

n2
out

2 +βout
)Nout+αout

Γ(αout)

×
∏
c

Γ(Nc+αc)β
αc
c(

n2
c

2 +βc
)Nc+αc

Γ(αc)

B (γ1nc+(di)i:zi=c)

B(γ1nc)
nDcc ,

(4)

where Dc =
∑
i:zi=c

di is the sum of node degrees
in community c. The marginalized parameters η =
{η1, . . . , ηC , ηout} can be interpreted as the densities of
links within each community and between the communities
respectively.

To ensure community structure in the graph, we
presently restrict the model such that the within-community
densities are larger than the between-community density.
This has previously been considered in the context of the
SBM [18], [19] but not in the context of the dc-SBM and
without fully analytical tractable solutions to the constraints
as presently derived. We constrain η parameters such that
ηcbc ≥ ηout for each community c where each bc is a
hyperparameter within range [0, 1] specifying a density gap
between the inter and intra community densities as consid-
ered in the context of the standard SBM in [19]. We introduce
this constraint by defining the following constrained prior
on the η parameters

pBC(η) =
1

ZBC
ηαout−1
out exp(−βoutηout)

×
(

C∏
c=1

ηαc−1
c exp(−βcηc)

)
I(η),

(5)

where I(η) =
∏
c χ[0;∞[(ηc−bcηout) is an indicator function

evaluating to 1 if the constraints are satisfied and zero
otherwise (χ[a;b](x) is the standard step function evaluating
to one if x ∈ [a; b] and 0 otherwise). ZBC is the normalizing
constant of this constrained distribution. For a summary of
the notation used see table 1.

Combining priors with the likelihood function and
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marginalizing the φ and η parameters gives:

p(G, z) =

∫
p(G|φ,η, z)p(φ|z)pBC(η)p(z)dηdφ

=

∫
ηNout+αout−1
out exp

(
−ηout(

n2
out

2
+βout)

)
×
[∏
c

ηNc+αc−1
c exp

(
−ηc(

n2
c

2
+βc)

)
I(η)

×B (γ1nc+(di)i:zi=c)

B(γ1nc)
nDcc

]
d(η)× C−n

ZGZBC

=

∫ ∞
0

e−ηout(
n2
out
2 +βout)ηNout+αout−1

out

×
C∏
c=1

Γ

Nc + αc, ηout ×

 n2
c

2 + βc

bc

 dηout
×
[
C∏
c=1

(
n2
c

2
+βc

)−(Nc+αc)

×B (γ1nc+(di)i:zi=c)

B(γ1nc)
nDcc

]
× C−n

ZGZBC
,

(6)

where in the second step we used change of variables s =

ηc(
n2
c

2 +βc) to obtain each of c integrals in the form of an
upper incomplete gamma function (in the following simply
referred to as incomplete gamma function) given by [28]:

Γ (α, x) =

∞∫
x

sα−1e−sds (7)

A major challenge that remains and we presently solve
is to analytically marginalize ηout in the above expression
thereby solving analytically for the constraints specified by
I(η).

2.1 Marginalization of constrained η parameters

According to eq. (6) marginalizing under the constraint
imposed by I(η) requires the solution to an integral of the
following form:

∫ ∞
0

e−B0xxµ0−1

(
C∏
c=1

Γ(µc, Bcx)

)
dx, (8)

(Marginalizing integral)

Where we have used the following substitutions, x = ηout,
µc := Nc + αc, µ0 := Nout + αout, Bc :=

n2
c

2 + βc,

B0 :=
n2
out

2 + βout, and ignored all terms independent
on ηout. As a result, the µc and Bc elements in (8) relate
respectively to scale and rate parameters of the involved
incomplete gamma functions.

We outline what is to the best of our knowledge a
novel approach solving integrals of the form presented in
Eq.(8). We exploit the following known recurrence property
of incomplete gamma functions (see Theorem 1 in [29]):
Γ(a + 1, x) = aΓ(a, x) + xae−x for a ∈ R, a > 0. This can
be considered a generalization of Γ(n + 1) = nΓ(n) to the

incomplete Gamma function. By a simple recursion of this
property we obtain

Γ(a, x) =
Γ(a+K,x)

(a)K̇
− xae−x

K−1∑
i=0

xi

(a) ˙i+1

(K-recurrence of Γ′s)

where (a)ṅ is the Pochhammer symbol (a.k.a. ”rising fac-
torial”) defined as (a)ṅ = Γ(a + n)/Γ(a). This recursion
formalizes idea of ”shifting” of shape parameters of gamma
distribution as shown in figure 1.

The following theorem presents application of the “shift-
ing” method described above to solve the multidimensional
incomplete gamma integral in equation (8) up to an arbi-
trary precision.

Theorem 2.1. For every C ∈ N+, µi, Bi ∈ R, µi > 0, Bi > 0
for i ∈ {1, ..., C} and K ∈ N+ following equality holds:∫ ∞

0
e−xB0xµ0−1

C∏
c=1

Γ(µc, Bcx)dx (9)

=
C∑

m1=1

C∑
m2=1,
m2 6=m1

. . .
C∑

mC=1,
mC 6=m1,...,mC−1

K−1∑
i1=0

. . .
K−1∑
iC=0

C∏
w=1

B
µmw
mw (B0 +

w−1∑
j=1

Bmj )
iw

(
µ0 +

w−1∑
j=1

(µmj + ij)

) ˙iw+1

×
Γ

(
µ0 +

C∑
j=1

(µmj + ij)

)

(B0 +
C∑
j=1

Bmj )
(µ0+

C∑
j=1

(µmj+ij))

(10)

+ E(K),

(11)

where the error term E(K) satisfies limK−→∞E(K) = 0.

Proof. Detailed proof altogether with additional two proven
lemmas is to be found in appendix. (6.3)

To evaluate the joint distribution p(G, z) the integral (8)
is to be evaluated twice. First to compute prior normaliza-
tion factor of hyperparameters (α’s being gamma priors),
denoted ZBC , and second to evaluate the integral (6) with
shape parameters µ’s that are result of α’s added together
with link counts from the respective clusters.

While the former can be efficiently solved by theorem
2.1 as the prior values are typically small requiring a small
value of K, the latter imposes substantial computational
challenges especially for large and dense graphs where the
use of theorem 2.1 becomes computationally heavy as the
required K has to be in orders of magnitudes of the number
of links in the largest cluster.

Rather than resorting to analytical integration one could
opt for the use of point estimates in the large setting where
the posterior distribution can be expected to be peaked and
thereby point estimates to provide reasonable accuracy or
apply simple normal approximations through the Laplace
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Fig. 1: Decomposition of integrand of Part A in lemma 6.1
into elements and shift of original gamma pdf (dotted red)
using (K-recurrence of Γ′s) to the inadequately shifted (gray
curve K=19.5) and adequately shifted (red curve K=73.5)
with close to zero-mass area of all the considered incomplete
gamma functions (blue, green, and black curves) whereby
the product in Part A becomes close to zero. As a result, the
size of the shift controls the closeness to zero of Part A.

procedure also potentially accounting for the constraints
using the result of the work of Hartman at al. [30] from 2017.
Notably, a simple point estimate would be the maximum
a posteriori of η under the required constraint and as the
posterior is convex with convex constraints on η the MAP
estimation of the constrained η is convex. Alternatively,
ηout could be sampled and conditioned on the sampled
value of ηout, ηc could be analytically marginalized using
the incomplete Gamma function. While these approaches
are scalable they are approximate and for the large scale
setting we therefore opt for the following analytic procedure
accounting explicitly for the uncertainty of η while keeping
complexity at O(C) for evaluating (8) which is the same as
can be achieved by use of point estimates.

2.2 Large Scale Settings

Up until now there were no limitations set on values of
η and in particular of hyperparameters µ and B, besides
being real and positive. In large scale applications however,
we are often facing large values of µc,c∈{1,...,C}. In such
case, it is convenient to consider evaluation of the integral
for integer values of the µ’s. As we present in the following
theorem, for integer µ’s the integral is proportional to the
CDF of the Negative Multinomial distribution with easy
to evaluate limiting distribution. Notably, it is shown in
section 3.1 that resorting to the integer setting imposes no
significant constraints for most large scale applications.

Next we present main result of this section: exact evalu-
ation of the integral (8) in case of integer shape parameters
of involved gamma densities:

Theorem 2.2. For C ∈ N+, µi ∈ N+ and Bi ∈ R+,
i ∈ {0, ..., C} integral (8) is proportional to the cumulative distri-

bution function of the Negative Multinomial (NMn) distribution
and the following equality holds:∫ ∞

0
e−xB0xµ0−1

∏
i∈{1,...,C}

Γ(µi, Bix)dx

=

C∏
c=0

Γ(µc)

Bµ0

0

× (12)

×
µ1−1∑
i1=0

· · ·
µc−1∑
ic=0

Γ(µ0+i1+. . .+ ic)

Γ(µ0)i1!. . . ,ic!

(
B0

B

)µ0 C∏
c=1

(
Bc
B

)ic
,

(13)

where B :=
∑C
i=0Bi

Proof. To be found in Appendix (6.4). For Negative Multino-
mial distribution definition and properties refer to [31].

The connection to Negative Multinomial distribution
shown in theorem 2.2 also allows for an interpretation of
the marginalized posterior (8) probability. If we consider
sequence of independent multinomial trials in each of which

event Ei occurs with probability pi,i∈{0,...,C} ,
C∑
i=0

pi = 1

and let Xi be the frequency of Ei,i∈{1,...,C} ”successes”
before predefined number µ0 of X0 ”failures” appears, then
(X0, X1, ..., XC) follows the Negative Multinomial distribu-
tion NMn [31].

Hence integral (8) is proportional to the likelihood of
observing µi ”successes” (links within clusters) before num-
ber of ”failures” (links between clusters) reaches at most µ0,
given that number of links in graph follows multinomial
distribution with probability of links appearing in cluster c
being Bc

B , which is positively related to the relative size of a
cluster (proportion of nodes in cluster) c.

In the following section we make use of favourable
asymptotics of the Negative Multinomial distribution to
derive a fast evaluation of the integral for the large scale
setting.

3 INFERENCE

We presently show how to efficiently evaluate Theorem 2.1
for C = 2 clusters. In this case, the formula (omitting the
error term) can be written as:

Bµ1

1 Bµ2

2 Γ(µ0)
2∑

m=1

K−1∑
i1=0

K−1∑
i2=0

(1 +Bm)i2

(1 +B1 +B2)µT+i1+i2

× (µ0 + i1 + 1)(µm−1)Γ(µT + i1 + i2)

Γ(µ0 + µm + i1 + i2 + 1)
,

where µT = µ0+µ1+µ2. If we apply substitution v = i1+i2,
we can rewrite the above expression as:

Bµ1

1 Bµ2

2 Γ(µ0)
2∑

m=1

2(K−1)∑
v=0

(1 +Bm)vΓ(µT + v)

(1 +B1 +B2)µT+v

×
min(v,K−1)∑

i1=0

(µ0 + i1 + 1)(µm−1)

(1 +Bm)i1
.

We notice that the sums dependent on v or i1 can be
evaluated independently in O(K) time which allows for
efficient evaluation compared to the original O(K2) time.
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With regards to control of the approximation error The-
orem 2.1 gives for arbitrary error thresholds ε the existence
of K that evaluates this integral up to ε precision. However,
the Theorem is not explicit about the choice of a sufficient
value of K. One simple approach for finding K to control
approximation error we used to produce the results pre-
sented in section 2.1 is to set K such that the mode of
inter cluster link density µ0+K−1

B0
is equal or greater than

the q-quantile of all gamma distributions controlling intra
clusters link densities. An accuracy is then controlled by
setting values of q. Results of this application on karate
network are shown in figure 2. There are many alternative
choices for K, however, we found this approach to be easy
and efficient in practice. For the purpose of error evaluation
we compared results of Theorem 2.1 with results of the
scipy.integrate.quad function from the scipy 1.2.0 python
package. From the figure we can observe how increasing
K, corresponding to increasing the q-quantile according to
the method described above, controls the absolute error on
the evaluation of the integral. For the results obtained in the
following we used q = 0.9999, given that this guarantees
an absolute error close to 10−5, but in most cases will range
around 10−9.

Fig. 2: Maximum and median absolute approximation error
and corresponding number of added observations T for
karate network based on 100 chains with 100 samples each.

Typically, a graph cut is obtained by optimizing a given
cost function. In case of Bayesian Cut, the cost function is
defined by the posterior distribution p(z|G) which specifies
probability of every possible partition of graph G. While
the full posterior would provide lots of insight into different
ways of cutting the graph, due to its high complexity, it is
not possible to determine it fully. Instead, the most reason-
able approach is to search for the maximum of the posterior
(MAP) zMAP = argmaxzp(z|G). While one could opt for
optimization of the posterior distribution of z possibly
making use of wide arsenal of approximation methods i.e.
[14], [13], [32] or other discrete optimisation methods [33] to
this NP hard problem, we advocate using MCMC sampling
(for reference see [34], Chapter 11) before performing opti-
mization for a few reasons. First of all, optimization might
get stuck in local maxima while sampling given enough
time will find the global maximum. In practice, within the
sampling budget, the sampler will likely focus on some high
density region of the posterior, but it will still explore mul-
tiple modes within that region. A comparison of only using
optimization compared to using the sampler can be found in
the appendix, see section 6.3. Secondly, by using sampling
we are able to infer values of specific hyperparameters to
create a more plausible model that explains the observed
data better and thus learn about the underlying structure

of the problem. Finally, sampling produces not only a point
estimate but an approximation of the true posterior (more
or less accurate depending on its complexity and sampling
budget) that can be used to answer more complex questions
than what the most probable cut is. To perform MCMC
sampling, we use Gibbs sampling and sample each element
zi of z independently:

p(zi|G) =
p(G, z)

p(G, z−i)
∝ p(G, z).

We treat the hyperparameter γ as a random variable while
fixing other parameters to a constant value. We use the non-
informative prior p(γ) = γ−1 and after each Gibbs sweep
over all nodes in the graph, we perform 20 Metropolis-
Hastings (MH) updates using the proposal distribution
γ∗ = γ exp(ε), ε ∼ N(0, σ = 0.1). Alternatively, if one is not
interested in inferring γ, it can be set to 1 which assumes
any configuration of node-specific parameters (φi)zi=c of
community c is equally probable (i.e., corresponding to the
uniform distribution over the (nc−1)-simplex). Furthermore,
we fix all α and β parameters to a non-informative value
0.01 and set b to 1 unless specified otherwise. After running
out of the sampling budget, we apply deterministic opti-
mization by switching node assignments only when it leads
to higher likelihood and we stop when in a full sweep over
all nodes we do not observe any further improvement.

3.1 Inference for large graphs
Posterior distribution of η (expected density of links) in BC
model has the same form as prior (due to the conjugacy
between Poisson and Gamma) where ‘shape’ µc and ‘rate’
Bc, in general positive real parameters of the involved
gamma densities, are by definition priors αc ∈ R+ and
βc ∈ R+ updated by the added number of links and nodes in
cluster c respectively. This often results in large, in general
real, values when dealing with large graphs. In order to
find a fast evaluation algorithm first let us note that for
the cutting of large graphs limiting ourselves to integer
shape hyperparameters of both prior and posterior gamma
densities while updating real ‘rate’ impose any relevant
constraints in most applications as the prior is overwhelmed
by the observed data. Technicaly speaking transformation
from µ′ = dµe, B′ = dµe

µ B keeps mean of posterior gamma

distribution unchanged ( µ
′

B′ ) while increases its variance (or
uncertainty) ( µ

′

B′2
) by factor diminishing with scale. There-

fore and especially with uninformative priors resorting to
integer ‘shape’ should have an insignificant and asymptoti-
cally zero effect on posterior for large values of µ and if not
the general Theorem (2.1) should be applied.

Secondly, as shown in [31], a limiting distribution of the
negative multinomial decomposes into a product of Poisson
distributions as µ0 →∞. Making use of this limiting distri-
bution we obtain a large scale (asymptotic) solution of our
integral. In the following we make use of the fact that the
cummulative density function (cdf) of a Poisson distributed
variable FPois(λ)(µi − 1) can be written as Γ(µi − 1;λ). Let
m denote the threshold beyond which the asymptotic is ap-
plied. To determine m we analyze in Figure 3 how well the
asymptotic approximation of the marginalized integral (8)
behaves. The figure shows that absolute error of log integral
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is close to zero but for the bipartite setting, correspond-
ing to a graph in which all links/similarities are between
clusters while there is zero density of link/similarity within
clusters. In such setting it is still possible to evaluate the
integral exactly using Theorem (2.2) with complexity O(N).
However, if the observed graph G has bipartite structure
(can be detected prior to application of the method) then
the proposed asymptotic becomes expensive. This does not
impose any issues for most applications, in particular, for
image segmentation where bipartite structures are unlikely.
Formally, proposed method to evaluate the marginalized
integral (8) in large scale settings depends on sum of weights
(in our case number of links) between clusters, µ0:

Fig. 3: Error of logarithm of integral (8) evaluated by
“shifted” method of theorem (2.1) with bounded error of
10−5 and logarithm of same integral evaluated by asymp-
totic method of section (3.1). For experiments we fixed
B0 = 60 and B1 = B2 = 70 while ranging µout ∈ (51, 103)
and µ1 = µ2 = µin ∈ (0, 103).

Large µ0 > m: If µ0 is sufficiently large, then (41) resolves
asymptotically into:

C∏
i=1

Γ(µi − 1;µ0Bi/B0) (14)

Small µ0 ≤ m: In this case there are 2 options:

• In case the smallest of µc’s, c∈{1,...,C}, is sufficiently
large min

c
(µc) > m we apply ‘per-partes’ on (41) to

rotate elements of integral and asymptotic decompo-
sition on each of C summands resulting in:

B−µ0

0

C∏
i=0

Γ(µi)−
C∑
j=1

C∏
i=0,
i6=j

Γ(µi−1;αjBi/B0) (15)

• Else, when one or more µc’s, c∈{1,...,C}, are small
(min
c

(µc) < m), asymptotic properties of NMn are of
no use. This corresponds to a degenerated case when
nodes within one or more clusters are dissimilar
or respective clusters contain few nodes. In either
case this does not correspond to a preferable cut.
Let’s note that it is unlikely that the Metropolis -

Hastings/ Gibbs MCMC sampler appears to be sam-
pling from an assignment corresponding to this case
unless observed graph has aforementioned bipartite
structure. In degenerate case sampler would need to
accept low probability proposals against the imposed
constraints on the link densities. So unless initial
assignments of sampler are degenerate or number
of clusters C is extremely large compared to nodes
in the considered graph, it is unlikely to end up in
such case during sampling. Anyway, in such case we
evaluate the integral of theorem 2.2 directly at cost of
higher complexity O(N) instead of O(C).

In the procedure above m represents a threshold above
which asymptotic apply. In our image experiments (non
bipartite structure) we applied m = 50 given results of fig.
3, striking balance between accuracy and runtimes. More
elaborate and/or conservative choices may be better suited,
depending on use.

3.2 Reference methods

We contrast the proposed BC to the corresponding dc-
SBM without community constraints given by (4) as well
as to modularity optimization (Mod), ratio-cut (RC) and
normalized cut (NC). The solutions obtained by RC and
NC were derived using the spectral clustering procedure
described in [9] whereas the modularity objective was opti-
mized using the spectral approach described in [1]. We note
that the spectral optimization procedure may be suboptimal
to other inference approaches, however, we presently use
these solutions for illustrative purposes to characterize the
methods and contrast favourable configurations by these
approaches to the favorable configurations using the pro-
posed BC procedure.

To evaluate the modularity score of a given partition we
use the modularity objective function described in [1], given
by

Q(z) =
1

4m

C∑
c=1

 ∑
i:zi=c

 ∑
j:zj=c

(Aij −
kikj
2m

)

−
∑
j:zj 6=c

(Aij −
kikj
2m

)

 , m =
1

2

n∑
i=1

ki

(16)

To evaluate solutions in the domain of NC and RC we use
their respective cost functions as defined in [9]

RC(z) =
1

2

C∑
c=1

1

nc

∑
i:zi=c

∑
j:zj 6=c

Aij , (17)

NC(z) =
1

2

C∑
c=1

1

Kc

∑
i:zi=c

∑
j:zj 6=c

Aij . (18)

3.3 Visualization technique for solution landscape

To show the solutions supported by each procedure we
plot the solution landscapes similar to the method proposed
in [35]. These landscapes were created by obtaining a set
of V z vectors for the models under scrutiny. This set of
vectors is expanded by 50% to cover the in between solution

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 26,2021 at 09:14:46 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.2994396, IEEE
Transactions on Pattern Analysis and Machine Intelligence

8

space through pseudo-random vectors, i.e. a new vector is
generated by randomly taking two distinct z vectors and
combining half of the elements of each vector. The score
or likelihood for each vector is subsequently obtained by
running the specified model with each unique z vector. As
measure of distance between partition vectors we use the
Variation of Information [36] between all V vectors. The
resulting V × V dimensional distance matrix is reduced
to two dimensions using Multidimensional Scaling [37].
Discrete Sibson Interpolation [38] is subsequently used to
obtain a meshgrid of the remaining two dimensions.

4 RESULTS AND DISCUSSION

In the following we analyze the properties of the proposed
Bayesian Cut (BC) model for community detection in social
networks and image segmentation for computer vision.

We first present results on a set of simple synthetic net-
works (Section 4.1) followed by results for community de-
tection in social networks (Section 4.2) that have an advan-
tage of available “ground truth” as well as unified definition
of an adjacency matrix across methods we compare with.
Hence presented comparison provides insights on graph
cutting performance more clearly than in the subsequent
image applications where cuts are used in connection with
disparate similarity matrices. In Section 4.3 two often used
similarity matrices are presented to demonstrate utility of
BC model as a generic tool for graph cuts. We further apply
multiple cluster solutions on the images.

The Bayesian Cut source code used for these experiments
is provided through a public source code repository, hosted
on Github (https://github.com
/DTUComputeCognitiveSystems
/bayesian cut), and through the Python Package In-
dex (https://pypi.org/project/bayesian-cut/) to allow a
straightforward installation of the package. To ensure ac-
cessibility and reproducibility of the results, the repository
includes image of “bears” used in experiments (original
downloaded from: https://images.app.goo.gl
/Mvdra73AwjfRfp629) and the software, that is accompa-
nied by instructions on how to use the package and Jupyter
Notebooks that show how the results were obtained.

4.1 Synthetic networks
We test the proposed algorithm on synthetic networks to
demonstrate the effect of imposed connectivity constraint
on the inference. In this experiment, we fix the total num-
ber of nodes to n = 100 and links to N = 1000. We
assume networks are partitioned into two communities
having equal number of nodes (n1 = n2 = n

2 ) and links
(N1 = N2 = Nin). For different values of intra- to inter-
community link density ratio (ηin/ηout= 2Nin

Nout
), we generate

network to match these predefined properties. We fix γ to
106 (to remove effects of degree correction), αout to 10−6

(to remove the difference coming from marginalizing the
constrained vs. unconstrained prior) while keeping values
of the other hyperparameters as specified in Section 3. In
Figure 4, we show the posterior densities (up to a constant)
of the partition for a wide range of ηin/ηout density ratios
for a constrained (Bayesian Cut) and corresponding uncon-
strained (dc-SBM) model to demonstrate the effect of the

constraint. Condition ηin/ηout < 1 represents an extent of
constraint violation - the closer it is to 0, the stronger the
violation. At extreme of 0, the partition represents a bipartite
network which is a structure exactly opposite to a commu-
nity structure. As it can be seen in the figure, unconstrained
dc-SBM assigns very high probability to partitions where
there is very distinct difference between intra- and inter-
community densities, even if inter-community density is
higher. On the other hand, the constrained model penalizes
partitions that violate the constraint and assigns them even
lower probability than to partitions with the density of links
uniformly distributed over the whole graph.

Fig. 4: Experiment on synthetic networks confirms that con-
strained BC model “Bayesian cut” strongly penalizes parti-
tions that violate graph connectivity constraint, ηin ≥ ηout,
compared to unconstrained “dc-SBM” model that assigns
very high probability to partitions where there is very
distinct difference between intra- and inter-community den-
sities, even if inter-community density is higher.

4.2 Community detection in social networks

For community detection the properties of the proposed
Bayesian Cut (BC) model are analyzed based on three
real world social networks and contrasted to ratio-cut,
normalised cut, modularity and the unconstrained dc-SBM.
The networks considered are:
Karate: A social undirected network studied by Zachary
[39] of ties in a Karate club that turned out to split in two.
The network consists of 34 nodes and 78 edges and was
partitioned using modularity in [1].
Polblogs: The political blogosphere (Polblogs) network
on US politics assembled by [40]. We consider the largest
connected component of the network in the undirected
form used in the dc-SBM analysis of [20] which contains
1222 nodes and 16714 edges.
HIV-1: Sexual partnership network extracted from the first
study (Colorado Springs Project 90) in HIV Transmission
Network Metastudy Project [41]. We consider the largest
connected component of the network consisting of 1888
nodes and 2096 edges.

In all analyses we used C = 2 corresponding to the
ground-truth structure of the split in Karate club and po-
litical blogs along party line. Notably, when C = 2 there
is only one ηout parameter in the dc-SBM and our analyses
correspond to the dc-SBM parametrization with and with-
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Fig. 5: Comparison of the dc-SBM (left column) and BC (right column) solution landscapes based on p(z|G) as well as
the resulting cuts performed on the three networks. The outer right column shows the trace plots obtained running each
model with 15 chains and 1000 samples. The dc-SBM model exhibits for all three networks modes and thus resulting cuts
that violate the constraint ηin ≥ ηout. In the corresponding adjacency matrices it can be seen that whenever the constraint
is violated (lower adjacency matrix/network for each example), the off-diagonal blocks have a higher density than at least
one of the diagonal blocks. In contrast, the proposed BC model gives those regions of the solution landscape that violate
the constraint lower likelihoods, which leads only to modes and thus resulting cuts that do not violate the constraint.

out the community constraint. For model inference in the
dc-SBM and BC we use Gibbs sampling to infer z.

4.2.1 Comparison of dc-SBM and BC
Figure 5 shows the results of the unconstrained dc-SBM
and our Bayesian Cut (BC) procedure for b1 = b2 = 1,
i.e. imposing the constraint η1 ≥ ηout and η2 ≥ ηout.
Furthermore, a non-informative prior is used, i.e. αin =
αout = βin = βout = 0.01. For the Karate network (top
panel) we observe that the conventional Bayesian dc-SBM
(given by the likelihood in (4)) creates a substantially differ-
ent solution from our proposed BC. While our BC peaks
around the true split of the Karate network, we observe
that the samples of the conventional dc-SBM concentrate
around two modes of the distribution in which the other
mode represents a configuration that does not comply with

the notion of community structure, but has a significantly
higher likelihood.

For the larger Polblogs network we again observe that
the dc-SBM exhibits one mode that does not comply with
the community structure and creates a split leading to one
community with high link density and one community
with a bipartite structure, while the mode shared with our
proposed model corresponds well to a separation along
political orientation (i.e., democrat vs. republican). In the
bottom panel for the HIV-1 network we observe a substan-
tial difference between the dc-SBM and our proposed BC
procedure with no shared modes. Here the unconstrained
model identifies a bipartite structure in which one com-
munity has very low link density as compared to the inter
community link density, whereas the constrained model by
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Fig. 6: Gamma inference and resulting node degree correction (theta) of the dc-SBM and BC for all three networks. The
dc-SBM and BC models show substantial differences, since the parameter inference resulting from the BC model is more
reliable, because it contrary to the dc-SBM does not get stuck in local optima that violate the constraint.

only giving community structure support strives to separate
the network according to identifying separate communities.

Overall it can be seen that the BC with its constraints
is more in line with the natural splits in the Karate and
Polblogs networks and suggests a more sensible split for
the HIV-1 network. The sub-optimal congruity of the un-
constrained model can be attributed to the local modes of
the posterior observed in Figure 5 that are unsupported by
the BC procedure.

On the outer right side in Figure 5 the convergence of
the dc-SBM and BC is illustrated for 15 chains and 1000
samples. Notably, we observe that for the Karate and politi-
cal blogosphere networks the unconstrained model explores
the mode not complying with community structure. For the
political blogosphere the inference for most of the chains
is stuck in the local sub-optimal mode of the posterior
distribution, incapable of escaping this mode by the Gibbs
sampler and recovering the underlying correct structure
leading to the lower cut shown in the middle panel of
figure 5. In contrast all chains of the BC model converge
to the underlying partitioning structure for both networks.
When considering the HIV-1 network it can be observed
that the solution space supporting community structure
is consisting of a vast number of local optima, contrary
to the non-community supporting structure, which has a
strong global mode. This is causing the community structure
inferred to be less reliable and the chains to end in local
modes of the community constrained posterior.

The influence of BC and dc-SBM on inferring the param-
eter controlling for degree (γ) is shown in figure 6. Here
the gamma inference as well as the node degree correction
distribution of each chain of both the dc-SBM and BC
model is shown for the three networks. Focusing on the
left column, a substantial difference within the inference of
the γ parameter, i.e. controlling the degree correction, is
observable. Subsequently, the derived θ parameters differ
based on the modes preferred by the models. As previously
shown, the dc-SBM model often gets stuck in local modes
or exhibits globally preferred modes that do not support the

community structure. Accordingly, the parameter inference
is biased by the modes in the non-community structure
region in those cases. In the above analysis we used non-
informative priors on η, however, we could also impose
an informed prior favoring community structure in the dc-
SBM. This and role of constraint parameter b is further ad-
dressed exemplary on the karate network in the appendix,
section 6.4.

TABLE 2: Comparison of Cuts running 100 chains with 1000
samples without and with (in parenthesis) deterministic
optimization in terms of their modularity value (Mod.) and
correspondence to ground truth partition structure (avaible
for Karate and Polblogs) as quantified using normalized
mutual information (NMI). 〈·〉 denotes average value and
d·e maximum value.

Score RC NC MOD dc-SBM BC

K
ar

at
e 〈NMI〉 0.415 0.732 - 0 (0) 0.837 (0.837)

dNMIe 0.578 0.732 0.837 0 (0) 0.837 (0.837)
〈Mod.〉 0.236 0.356 - -0.267 (-0.258) 0.371 (0.371)
dMod.e 0.313 0.356 0.371 -0.267 (-0.258) 0.371 (0.371)

Po
lb

lo
gs 〈NMI〉 0.017 0.017 - 0.143 (0.146) 0.717 (0.718)

dNMIe 0.017 0.017 0.693 0.727 (0.737) 0.739 (0.739)
〈Mod.〉 0.001 0.001 - -0.057 (-0.062) 0.426 (0.426)
dMod.e 0.001 0.001 0.424 0.426 (0.426) 0.426 (0.426)

H
IV 〈Mod.〉 0.045 0.045 - -0.363 (-0.365) 0.185 (0.411)

dMod.e 0.045 0.045 0.190 -0.357 (-0.359) 0.385 (0.463)

4.2.2 Comparison of dc-SBM and BC to Modularity, NC and
RC
In Table 2 we quantify the correspondence as measured by
normalized mutual information (NMI) between the inferred
partitions and the partition defined by the underlying split
with highest support for each of the considered methods
in the Karate network and separation according to party
line in Polblogs. Furthermore, we measure the adherence
to community structures of each model by calculating the
modularity for the inferred partitions using the formula
defined in eq. 16. For each calculated metric and network
we point out the average and maximum score achieved by
that particular method.
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Fig. 7: Solution landscape comparison of BC, dc-SBM, Modularity, NormCut, RatioCut on the three networks. To explore the
space, 100 samples from 15 chains were taken for the Bayesian methods, while for the spectral cuts 200 different solutions
were generated for each method by randomly alternating 1% of the links within the networks. The costs of Normcut and
Ratiocut are inverted to allow for direct landscape comparisons.
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We observe here that the BC achieves superior or on
par performance on all three networks. In these results we
again observe that the BC differs substantially from the
dc-SBM, which is explained by the underlying supported
configurations of the model likelihood P (z|G) shown in
figure 5. In figure 7 we explore the solution space also of the
ratio-cut (RC), normalized cut (NC) and modularity (Q) and
how these solutions are supported by their corresponding
objective functions.

We notice that the solutions supported (and thus the in-
ference landscape) by the proposed BC is more in agreement
with these existing community detection/graph partition-
ing procedures than the dc-SBM. However, we also observe
notable differences of the proposed Bayesian Cut (BC) and
these alternative partitioning procedures. In particular, nei-
ther RC nor NC provide as balanced solutions as the BC
and they provide higher support for solutions further away
from the underlying community structure. Here we pay
particular attention to the cuts proposed for the Polblogs
and HIV-1 network as these appear unsubstantiated due to
the fact that they exclude a very small group of persons from
the overall population.

For Polblogs both RC and NC exhibit very extreme and
local optima in their solution landscape, which lead to a cut
that excludes 4 persons from the other 1218 persons in both
cases. In the case of RC, defined in eq 17, the dominance
of the cost by the flow, i.e. links between two groups, is
obvious. Since these two group are only connected by 1
inter-link the cost for performing this is cut is extremely
low. In contrast, the true cut along party lines leads to one
group with 662 nodes and one with 560, which share 1217
inter-links. To obtain lower costs, no-more than 76 inter-
links would be allowed.

One way of alleviating this strong influence of the cut
flow is to use NC, defined in eq. 18, which does not divide
the cut flow by the number of nodes, but according to the
degree of the cluster. However, even though this subtle dif-
ference changes the solution landscape in non-community
supporting regions as shown in figure 7, the preference for
cuts that separate unbalanced groups having very low flow
remains. In this case the extreme cut leaves the small group
with a degree of 5 and the bigger group with a degree of
16710, which results in very low costs. The above mentioned
cut of our model results in a degree of 9464 and 8467 for the
group with 662 nodes and 560 nodes respectively. In this
case 894 inter-links would already give lower costs for our
cut, which shows the improvement over RC, but still is not
sufficient.

The highest congruence can be found between the BC
and the Modularity method, confirming the community
detection support of our proposed BC. Here we observe that
both methods exhibit almost identical solution landscapes,
which is reflected in the identical or very similar solution
landscapes obtained by the methods. Interestingly, for the
HIV-1 network the BC obtains a solution with a significantly
higher modularity than the spectral modularity method
itself identifies. In addition, this solution seems to be more
balanced, since it achieves almost equally sized groups,
while the proposed solution of the spectral modularity
method partitions the network into a small and a large
group. This highlights that BC strives for balanced modular

structures.

4.3 Image Segmentation
In following we present results of image segmentation suit-
able for foreground-background or scene recognition. We
compare BC model to NC and dc-SBM (with shared density
of links out ηout in case of more than two segments C > 2).

NC implementations are often in practice combined
with specific similarity matrices and we make use of the
following two widely used procedures:

Mean color RAG: Mean color Regional Adjacency Graph is
used to compute similarity matrices on super pixel graphs
(RAG) [26] that serves as an input for NC in popular python
package for image processing skimage https://scikit-
image.org/docs/dev/api/skimage.future.graph.html. To
compare with the BC method “cameraman” image and
“coffee”available in the skimage package was used.
Fast Marching Method (FMM): This method
(a.k.a. geodesical distance) is besides many used
in the Graclus software presented in [25]. We
used the MATLAB implementation of Jianbo Shi
from https://www.cis.upenn.edu/j̃shi/software/
to generate the FMM similarity matrix. Graclus
software optimizes normcut objective in a hier-
archical manner [25] with results presented at
https://www.cis.upenn.edu/j̃shi/software/demo2.html.
For comparison purposes we use the public image of
“baby” from the same site.

These methods produce similarity matrices S with ele-
ments in [0; 1]. To convert them into graphs with countable
links required by the BC model we follow similar proce-
dure as aforementioned Graclus software [25]. Graclus runs
A = d100 ∗ Se while BC implements A = b100 ∗ Sc, both
element wise.

Results of the BC model applied on images of “cam-
eraman” and “bears” using RAG can be found in figure
(8), “coffee” is presented in Appendix (13) and the results
on “baby” using FMM can be found in figure (9). Notably
BC model was applied on similarity matrices produced by
respective implementations of RAG and FMM described
above without further adjustments. In case of RAG and
“bears” we adjust sigma for the Gaussian similarity kernel
1 in case of “cameraman” we leave it on default setting.
“Cameraman” and “bears” experiments with Mean Color
RAG have been ran with no degree correction (corresponds
to hyper parameter γ set extremely large 107).

In all applications mentioned BC performs on par or
superior to the compared methods (not necessarily state of
the art though). In two partitions version considered for
the “cameraman” the BC method separates objects from
sky. In case of the four partition scenario used on “bears”
BC recognizes foreground objects (cub and surrounding),
background and adult bear while the other methods only
partially succeed. For the “coffee cup” in appendix the BC

1. future.graph.rag mean color(img, labels1, mode=’similarity’,
sigma=70**2, segmentation.slic(img, compactness=0.3,
n segments=100)
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Fig. 8: Top panel, Cameraman: Resulting cut of BC model for C=2 (e) segments compared with unconstrained dc-SBM
with shared ηout as well as spectral Norm cut. Fig (b) shows for reference RAG super pixel graph that is used to compute
similarity matrix. Results demonstrate on par or better results of BC against referenced methods. Also it shows effect of
constraint included in the model (we emphasized the effect of constraint by setting b=10 corresponding to 10x times higher
within segment links density compared to links density among segments): (e) vs (d) a constraint model improves the
results. Resulting cuts were obtained from 50 MCMC chains, 1000 samples each.
Bottom panel, Bears: Resulting cut of BC model for C=4 segments (j) compared with unconstrained dc-SBM with shared
ηout (i) as well as spectral Norm cut (h) applied on mean color RAG similarity matrix. Similar to previous results figures
BC demonstrates on par or better results against referenced methods. Resulting cuts were obtained from 50 MCMC chains,
1000 samples each with hyperparameters set on b = 103 and without degree correction

(a) (b) (c)

Fig. 9: Bayesian cut (BC) applied on similarity matrix ob-
tained by fast marching method implemented by Jianbo
Shi from https://www.cis.upenn.edu/j̃shi/software/. Re-
sulting cut is sampled MAP obtained from 20 MCMC
chains, 1000 samples each. (a) original, (b) C = 2, b = 10,
with degree correction hyper parameter γ being inferred.
Maximum of its posterior obtained at: γMAP = 4.07, (c)
C = 2, b = 10, γ = 0.0001.

removes more of the background than the unconstrained
dc-SBM and captures more of the coffee cup object than NC.
In case of the “baby” image see figure 9 the effect of degree
correction parameter γ controlling “greediness” of clusters
is showed. In the more greedy settings, (c) as opposed to
gamma being inferred in option (b), fixing it to “greedy”
mode recognizes focal object’s boundary more complete yet
produces artifacts.

In summary, the presented image segmentation results

by BC are on-par or superior to NC and the unconstrained
version. However, we noted during experiments that the
multiple MCMC runs produced slightly different cuts con-
firming that the inference is prone to sub optimal solutions
and multiple restarts are therefore recommended.

5 CONCLUSION

We have proposed the Bayesian Cut (BC) advancing the
degree-corrected stochastic block-model (dc-SBM) to explic-
itly account for community structure. In contrast to the dc-
SBM only one parameter specified inter-group connectivity
strength (ηout), however, in contrast to the generalized mod-
ularity as conforming to an l-partition model with shared
link density across communities the proposed BC include
more flexible community specific link-densities. We derived
a fully Bayesian procedure and demonstrated that the im-
posed community constraints are analytically tractable even
for large graphs by deriving a novel general solution to in-
tegrals involving multiple incomplete gamma functions. We
expect the presented small and large scale solutions to the
integral will have applications beyond community detec-
tion in social networks and image segmentation considered
in this paper. For instance, for collapsed inference in the
performance analysis of cognitive radio networks [42]. We
observed that the constraints had significant impact on the
inference providing more reliable results in compliance with
ground truth for network exhibiting community structure
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and it was also empirically confirmed that the constraint
had merits for image segmentation in computer vision. We
also observed that strictly enforcing community structure
enabled to identify configurations where traditional block-
modeling would identify bipartite structure. Notably, our
Bayesian Cut provides favorable partitions when compared
to traditional graph cutting procedures such as the ratio
and normalized cut. In particular, we empirically observed
that our BC procedure has meritorious properties balancing
the partitions more favorable than these existing graph
partitioning procedures. We have also derived fast large
scale multiple cluster solution that presents generic tool for
Bayesian inference.

We presently considered a uniform prior on the partition
P (z) = C−n to highlight the influence of the specification
of the likelihood p(G|z) in identifying partitions. However,
we note that within the Bayesian modeling framework other
(non-uniform) priors could be applied including the Pólya-
urn (i.e., marginalized Dirichlet-Categorical) representation
and its infinite limit given by the non-parametric Chinese
restaurant process (CRP) also used in stochastic block-
modeling [43].

Overall this work presents generic graph based cluster-
ing method that can be applied on wide range of similarity
matrices. For illustrative purposes we presently applied
our BC approach in the context of identifying communi-
ties in social networks and image segmentation, however,
the approach extends to the many applications in which
graph cuts are used. Flexibility with regards to similarity
matrix allows for possible applications in areas such as
scene reconstruction from large set of community photos
[6], where the image set is partitioned into groups of related
images, based on the visual structure represented in the
image connectivity graph for the collection. Connectivity
graph and corresponding similarity matrix is based on scale
invariant feature transform, SIFT [44], that extracts image
representative features that are used to find matches and
define similarity between each image pair. Another possible
area of application is Video summarization and scene de-
tection [7], where similarity used for graph partitioning are
based on color similarity and temporal frame distance.

In the outlook, although MCMC sampling are suitable
for network structure inference, in order to find optimal
cuts, future work should investigate alternatives while
keeping the properties of the proposed framework. Further
concerning image segmentation, this work made use of
two popular similarities, Fast Marching Method and Mean
Color, that rather relate pixels based on color intensities as
opposed to spatial features. As suggested above we leave
as future work to explore possibilities of BC applied on
other existing or new similarities as well as extension of
hereby presented bayesian generative hierarchical BC model
to allow for contextual spatial or other features [34].
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