
Scalable and Practical Natural Gradient
for Large-Scale Deep Learning

Kazuki Osawa , Student Member, IEEE, Yohei Tsuji , Yuichiro Ueno ,

Akira Naruse , Chuan-Sheng Foo , and Rio Yokota

Abstract—Large-scale distributed training of deep neural networks results in models with worse generalization performance as a

result of the increase in the effective mini-batch size. Previous approaches attempt to address this problem by varying the learning rate

and batch size over epochs and layers, or ad hocmodifications of batch normalization. We propose scalable and practical natural

gradient descent (SP-NGD), a principled approach for training models that allows them to attain similar generalization performance to

models trained with first-order optimization methods, but with accelerated convergence. Furthermore, SP-NGD scales to large mini-

batch sizes with a negligible computational overhead as compared to first-order methods. We evaluated SP-NGD on a benchmark task

where highly optimized first-order methods are available as references: training a ResNet-50 model for image classification on

ImageNet. We demonstrate convergence to a top-1 validation accuracy of 75.4 percent in 5.5 minutes using a mini-batch size of 32,768

with

1,024 GPUs, as well as an accuracy of 74.9 percent with an extremely large mini-batch size of 131,072 in 873 steps of SP-NGD.

Index Terms—Natural gradient descent, distributed deep learning, deep convolutional neural networks, image classification

Ç

1 INTRODUCTION

AS the size of deep neural network models and the data
which they are trained on continues to increase rapidly,

the demand for distributed parallel computing is increasing.
A common approach for achieving distributed parallelism in
deep learning is to use the data-parallel approach, where the
data is distributed across different processeswhile themodel
is replicated across them. When the mini-batch size per pro-
cess is kept constant to increase the ratio of computation over
communication, the effective mini-batch size over the entire
system grows proportional to the number of processes.

Keskar et al. [1] report that when the mini-batch size is
“large”, generalization performance is worse than when a
smaller mini-batch is used. Hoffer et al. [2] attribute this
generalization gap to the limited number of updates, and
suggest to train longer. Goyal et al. [3] adopt strategies such
as scaling the learning rate proportional to the mini-batch
size, while using the first few epochs to gradually warmup
the learning rate. Such methods have enabled the training
for mini-batch sizes of 8K, where ImageNet [4] with

ResNet-50 [5] could be trained for 90 epochs with little
reduction in generalization performance (76.3 percent top-1
validation accuracy) in 60 minutes. They also report that
when the mini-batch size is increased beyond a certain point
(> 8K,) the generalization performance starts to degrade
even with their strategies. Shallue et al. [6], with thorough
hyper-parameter tuning for various models and datasets,
empirically show that there is no evidence that larger mini-
batch sizes degrade the generalization performance. How-
ever, for training ResNet-50 on ImageNet, their results agree
that largermini-batch sizes (> 8K) degrade the generalization
performancewithout the use of label smoothing [7].

Since Goyal et al. [3]’s results were presented, there have
been many attempts to train ResNet-50 on ImageNet with
mini-batch sizes larger than 16K. Combining the learning
rate scaling with other techniques such as RMSprop [8]
warm-up, BatchNorm [9] without moving averages, and a
slow-start learning rate schedule, Akiba et al. [10] were able
to train the same dataset and model with a mini-batch size
of 32 K to achieve 74.9 percent accuracy in 15 minutes.

More complex approaches for manipulating the learning
rate were proposed, such as LARS [11], where a different
learning rate is used for each layer by normalizing them
with the ratio between the layer-wise norms of the weights
and gradients. This enabled the training with a mini-batch
size of 32 K without the use of ad hoc modifications, which
achieved 74.9 percent accuracy in 14 minutes (64 epochs)
[11]. It has been reported that combining LARS with counter
intuitive modifications to the batch normalization, can yield
75.8 percent accuracy even for a mini-batch size of 65 K [12].

The use of small batch sizes to encourage rapid conver-
gence in early epochs, and then progressively increasing the
batch size is yet another successful approach. Using such an
adaptive batch size method, Mikami et al. [13] were able

� Kazuki Osawa and Yohei Tsuji are with the Tokyo Institute of Technology,
Tokyo 152-8550, Japan. E-mail: {oosawa.k.ad, tsuji.y.ae}@m.titech.ac.jp.

� Yuichiro Ueno and Rio Yokota are with the Tokyo Institute of Technology,
Tokyo 152-8550, Japan, and also with the AIST-Tokyo Tech RWBC-OIL,
AIST, Tokyo 152-8550, Japan.
E-mail: ueno.y.ai@m.titech.ac.jp, rioyokota@gsic.titech.ac.jp.

� Akira Naruse is with the NVIDIA, Tokyo 107-0052, Japan.
E-mail: anaruse@nvidia.com.

� Chuan-Sheng Foo is with the Institute for Infocomm Research, A*STAR,
Singapore 138632. E-mail: foo_chuan_sheng@i2r.a-star.edu.sg.

Manuscript received 13 Oct. 2019; revised 11 Mar. 2020; accepted 19 June 2020.
Date of publication 23 June 2020; date of current version 3 Dec. 2021.
(Corresponding author: Kazuki Osawa.)
Recommended for acceptance by N. L. Roux.
Digital Object Identifier no. 10.1109/TPAMI.2020.3004354

404 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6390-9797
https://orcid.org/0000-0001-6390-9797
https://orcid.org/0000-0001-6390-9797
https://orcid.org/0000-0001-6390-9797
https://orcid.org/0000-0001-6390-9797
https://orcid.org/0000-0001-8108-2324
https://orcid.org/0000-0001-8108-2324
https://orcid.org/0000-0001-8108-2324
https://orcid.org/0000-0001-8108-2324
https://orcid.org/0000-0001-8108-2324
https://orcid.org/0000-0001-8763-2075
https://orcid.org/0000-0001-8763-2075
https://orcid.org/0000-0001-8763-2075
https://orcid.org/0000-0001-8763-2075
https://orcid.org/0000-0001-8763-2075
https://orcid.org/0000-0002-3140-0854
https://orcid.org/0000-0002-3140-0854
https://orcid.org/0000-0002-3140-0854
https://orcid.org/0000-0002-3140-0854
https://orcid.org/0000-0002-3140-0854
https://orcid.org/0000-0002-4748-5792
https://orcid.org/0000-0002-4748-5792
https://orcid.org/0000-0002-4748-5792
https://orcid.org/0000-0002-4748-5792
https://orcid.org/0000-0002-4748-5792
https://orcid.org/0000-0001-7573-7873
https://orcid.org/0000-0001-7573-7873
https://orcid.org/0000-0001-7573-7873
https://orcid.org/0000-0001-7573-7873
https://orcid.org/0000-0001-7573-7873
mailto:oosawa.k.ad@m.titech.ac.jp
mailto:tsuji.y.ae@m.titech.ac.jp
mailto:ueno.y.ai@m.titech.ac.jp
mailto:rioyokota@gsic.titech.ac.jp
mailto:anaruse@nvidia.com
mailto:foo_chuan_sheng@i2r.a-star.edu.sg

to train in 122 seconds with an accuracy of 75.3 percent,
and Yamazaki et al. [14] were able to train in 75 seconds
with a accuracy of 75.1 percent. The hierarchical synchroni-
zation of mini-batches have also been proposed [15], but
such methods have not been tested at scale to the extent of
the authors’ knowledge.

While first-order stochastic gradient descent (SGD) has
been the dominant approach for training deep neural net-
works, we explore the potential for second-order optimiza-
tion methods such as Natural Gradient Descent (NGD) [17]
that leverage curvature information to accelerate optimiza-
tion in largemini-batch settings. We found that NGD enables
training with a fewer number of steps than what was previ-
ously thought to be possible with SGD, while retaining com-
petitive generalization performance with the help of stronger
data augmentation i.e.,mixup [18]. Note that this kind of data
augmentation helps NGD much more than it does SGD, so
we are not simply increasing the baseline accuracy. Wemini-
mize the extra per-step computational overhead associated
with inverting the curvature matrices using an efficient dis-
tributed layer-wise NGD design that scales to massively par-
allel settings and large mini- batch sizes. In particular, we
demonstrate scalability to batch sizes of 32,768 over 1,024
GPUs across 256 nodes. We adopt the Kronecker-Factored
Approximate Curvature (K-FAC) method [19] for its ability
to efficiently approximate the curvature, in contrast to itera-
tive approaches like Hessian-free optimization [20], even
though these may yield more accurate curvature approxima-
tion. The two main characteristics of K-FAC are that it con-
verges faster than first-order stochastic gradient descent
(SGD) methods, and that it can tolerate relatively large mini-
batch sizeswithout any ad hocmodifications. K-FAC has been
successfully applied to convolutional neural networks [21],
distributedmemory training of ImageNet [22], recurrent neu-
ral networks [23], Bayesian deep learning [24], reinforcement
learning [25], and Transformermodels [26].

A preliminary version of this manuscript was published
previously [27]. Since then, the performance optimization of
the distributed second-order optimization has been studied
[28], and our distributed NGD framework has been applied
to accelerate Bayesian deep learning with the natural gradi-
ent at ImageNet scale [29]. We extend the previous work
and propose Scalable and Practical Natural Gradient Descent
(SP-NGD) framework, which includes more detailed analy-
sis on the FIM estimation and significant improvements on

the performance of the distributed NGD. Although we
adopt K-FAC to approximate the FIM, we believe that our
SP-NGD framework can work in combination with any
kind of NGD approximation that explicitly constructs cur-
vature matrices (e.g., KFLR [30].)

Our contributions are:

� Extremely large mini-batch training. We were able to
show for the first time that approximated NGD can
achieve similar generalization capability compared to
highly optimized SGD, by training ResNet-50 on
ImageNet classification as a benchmark. We con-
verged to over 75 percent top-1 validation accuracy
for large mini-batch sizes of 4,096, 8,192, 16,384,
32,768 and 65,536.We also achieved 74.9 percent with
an extremely large mini-batch size of 131,072, which
took only 873 steps.

� Scalable natural gradient. We propose a distributed
NGD design using data and model hybrid parallel-
ism that shows superlinear scaling up to 64 GPUs.

� Practical natural gradient. We propose practical NGD
techniques based on analysis of the FIM estimation
in large mini-batch settings. Our practical techniques
make the overhead of NGD compare to SGD almost
negligible. Combining these techniques with our dis-
tributed NGD, we see an ideal scaling up to 1,024
GPUs as shown in Fig. 5.

� Training ResNet-50 on ImageNet in 5.5 minutes. Using
1,024 NVIDIA Tesla V100, we achieve 75.4 percent
top-1 accuracy with ResNet-50 for ImageNet in 5.5
minutes (1,760 steps = 45 epochs, including a valida-
tion after each epoch). The comparison is shown in
Fig. 1 and Table 1.

2 RELATED WORK

With respect to large-scale distributed training of deep neu-
ral networks, there have been very few studies that use sec-
ond-order methods. At a smaller scale, there have been
previous studies that used K-FAC to train ResNet-50 on
ImageNet [22]. However, the SGD they used as reference
was not showing state-of-the-art Top-1 validation accuracy
(only around 70 percent), so the advantage of K-FAC over
SGD that they claim was not obvious from the results. In
the present work, we compare the Top-1 validation

Fig. 1. Top-1 validation accuracy versus the number of steps to converge (left) and versus training time (right) of ResNet-50 on ImageNet (1000 class)
classification by related work with SGD and this work with Scalable and Practical NGD (SP-NGD).

OSAWA ETAL.: SCALABLE AND PRACTICAL NATURALGRADIENT FOR LARGE-SCALE DEEP LEARNING 405

accuracy with state-of-the-art SGD methods for large mini-
batches mentioned in the introduction (Table 1).

The previous studies that used K-FAC to train ResNet-50
on ImageNet [22] also were not considering large mini-
batches and were only training with mini-batch size of 512
on 8 GPUs. In contrast, the present work uses mini-batch
sizes up to 131,072, which is equivalent to 32 per GPU on
4,096 GPUs, and we are able to achieve a much higher Top-1
validation accuracy of 74.9 percent. Note that such large
mini-batch sizes can also be achieved by accumulating the
gradient over multiple iterations before updating the param-
eters, which can mimic the behavior of the execution on
manyGPUswithout actually running them onmanyGPUs.

The previous studies using K-FAC also suffered from
large overhead of the communication since they used a
parameter-server approach for their TensorFlow [31] imple-
mentation of K-FAC with a single parameter-server.1 Since
the parameter server requires all workers to send the gra-
dients and receive the latest model’s parameters from the
parameter server, the parameter server becomes a huge
communication bottleneck especially at large scale. Our
implementation uses a decentralized approach using MPI/
NCCL2 collective communications among the processes.
The decentralized approach has been used in high perfor-
mance computing for a long time, and is known to scale to
thousands of GPUs without modification. Although, soft-
ware like Horovod3 can alleviate the problems with param-
eter servers by working as a TensorFlow wrapper for
NCCL, a workable realization of K-FAC requires solving
many engineering and modeling challenges, and our solu-
tion is the first one that succeeds on a large scale task.

3 NOTATION AND BACKGROUND

3.1 Mini-Batch Stochastic Learning

Throughout this paper, we use E½�� to denote the empirical
expectation among the samples in the mini-batch fðxx; ttÞg,

and compute the cross-entropy loss for a supervised learning
as LðuuÞ ¼ E½�log puuðttjxxÞ� ; (1)

where xx; tt are the training input and label (one-hot vector),
puuðttjxxÞ is the likelihood of each sample ðxx; ttÞ calculated by
the probabilistic model using a feed-forward deep neural
network (DNN) with the parameters uu 2 RN .

For the standard mini-batch stochastic gradient descent
(SGD), the parameters uu are updated based on the gradient
of the loss function at the current point

uuðtþ1Þ uuðtÞ � hrLðuuðtÞÞ ; (2)

where h > 0 is the learning rate.

3.2 Natural Gradient Descent in Deep Learning

Natural Gradient Descent (NGD) [17] is an optimizer which
updates the parameters using the first-order gradient of the
loss function preconditioned by the Fisher information matrix
(FIM) of the probabilistic model

uuðtþ1Þ uuðtÞ � h FF þ �IIð Þ�1rLðuuðtÞÞ : (3)

The FIM FF 2 RN�N of a DNN with the learnable parameter
uu 2 RN is defined as

FF :¼ Exx�q Eyy�puu r log puuðyyjxxÞr log puuðyyjxxÞ>
h ih i

: (4)

Ev½�� is an expectation w.r.t. the random variable v, and q is
the training data distribution. To limit the step size, a damp-
ing value � > 0 is added to the diagonal of FF before invert-
ing it. In the training of DNNs, the FIM may be a curvature
matrix in parameter space [17], [19], [30], [32].

To realize an efficient NGD training procedure for deep
neural networks, we make the following approximations to
the FIM that have also been used in previous work [19]:

� Layer-wise block-diagonal approximation. We assume
that the correlation between parameters in different
layers (Fig. 2) is negligible and can be ignored. This
assumption significantly reduces the computational
cost of inverting FF especially when N is large.

TABLE 1
Training Time and Top-1 Single-Crop Validation Accuracy of ResNet-50 for ImageNet Reported by Related Work and This Work

Hardware Software Batch size Optimizer # Steps Time/step Time Accuracy

Goyal et al. [3] Tesla P100 � 256 Caffe2 8,192 SGD 14,076 0.255 s 1 hr 76.3%
You et al. [11] KNL � 2048 Intel Caffe 32,768 SGD 3,519 0.341 s 20 min 75.4 %
Akiba et al. [10] Tesla P100 � 1024 Chainer 32,768 RMSprop/SGD 3,519 0.255 s 15 min 74.9 %
You et al. [11] KNL � 2048 Intel Caffe 32,768 SGD 2,503 0.335 s 14 min 74.9 %
Jia et al. [12] Tesla P40 � 2048 TensorFlow 65,536 SGD 1,800 0.220 s 6.6 min 75.8 %
Ying et al. [16] TPU v3 � 1024 TensorFlow 32,768 SGD 3,519 0.037 s 2.2 min 76.3%
Mikami et al. [13] Tesla V100 � 3456 NNL 55,296 SGD 2,086 0.057 s 2.0 min 75.3 %
Yamazaki et al. [14] Tesla V100 � 2048 MXNet 81,920 SGD 1,440 0.050 s 1.2 min 75.1 %

This work

Tesla V100 � 128

Chainer

4,096

SP-NGD

10,948 0.178 s 32.5 min 74.8 %
Tesla V100 � 256 8,192 5,434 0.186 s 16.9 min 75.3 %
Tesla V100 � 512 16,384 2,737 0.149 s 6.8 min 75.2 %
Tesla V100 � 1024 32,768 1,760 0.187 s 5.5 min 75.4 %
n/a 65,536 1,173 n/a n/a 75.6 %
n/a 131,072 873 n/a n/a 74.9 %

1. The current version of the TensorFlow K-FAC implementation
(https://github.com/tensorflow/kfac) supports other methods for dis-
tributing computations, including a decentralized approach for TPUs.

2. https://developer.nvidia.com/nccl
3. https://github.com/horovod/horovod

406 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022

https://github.com/tensorflow/kfac
https://developer.nvidia.com/nccl
https://github.com/horovod/horovod

� Stochastic natural gradient. We approximate the
expectation over the input data distribution Exx�q½��
using the empirical expectation over a mini-batch
E½��. This enables estimation of FF during mini-batch
stochastic learning.

� Monte Carlo estimation. We approximate the expecta-
tion over the model predictive distribution Eyy�puu ½��
using a single Monte Carlo sample (a single back-
ward-pass). We note that for a K-class classification
model, K backward-passes are required to approxi-
mate FF .

Using these approximations, we estimate the FIM FF‘ 2
RN‘�N‘ for the ‘th layer using a Monte Carlo sample yy �
puuðyyjxxÞ for each input xx in amini-batch as

FF‘ � F̂F ‘ :¼ E rww‘
log puuðyyjxxÞrww‘

log puuðyyjxxÞ>
h i

: (5)

With this F̂F ‘, the parameters ww‘ 2 RN‘ for the ‘th layer are
then updated using the FIM preconditioned gradients

ww
ðtþ1Þ
‘ ww

ðtÞ
‘ � h F̂F

ðtÞ
‘ þ �II

� ��1
rww‘
LðtÞ : (6)

Here rww‘
LðtÞ 2 RN‘ denotes the gradient of the loss function

w.r.t. ww‘ for ww‘ ¼ ww
ðtÞ
‘ .

3.3 K-FAC

Kronecker-Factored Approximate Curvature (K-FAC) [19]
is a second-order optimization method for deep neural net-
works, that is based on an accurate and mathematically rig-
orous approximation of the FIM. Using K-FAC, we further
approximate the FIM FF‘ for ‘th layer as a Kronecker prod-
uct of two matrices (Fig. 2)

FF‘ � F̂F ‘ ¼ GG‘ 	AA‘�1 : (7)

This is called Kronecker factorization and GG‘;AA‘�1 are called
Kronecker factors.GG‘ is computed from the gradient of the loss
w.r.t. the output of the ‘th layer, and AA‘�1 is computed from
the activation of the ð‘� 1Þth layer (the input of ‘th layer).

The definition and the sizes of the Kronecker factors
GG‘=AA‘�1 depend on the dimension of the output/input and
the type of layer [19], [21], [23], [26].

3.3.1 K-FAC for Fully-Connected Layers

In a fully-connected (FC) layer of a feed-forward DNN, the
output ss‘ 2 Rd‘ is calculated as

ss‘ WW‘aa‘�1; (8)

where aa‘�1 2 Rd‘�1 is the input to this layer (the activation
from the previous layer), and WW‘ 2 Rd‘�d‘�1 is the weight
matrix (the bias is ignored for simplicity). The Kronecker
factors for this FC layer are defined as

GG‘ :¼ E rs‘ log puuðyyjxxÞrs‘ log puuðyyjxxÞ>
h i

;

AA‘�1 :¼ E aa‘�1aa>‘�1
� �

;
(9)

and GG‘ 2 Rd‘�d‘ ; AA‘�1 2 Rd‘�1�d‘�1 [19]. From this definition,
we can consider that K-FAC is based on an assumption that
the input to the layer and the gradient w.r.t. the layer output
are statistically independent.

3.3.2 K-FAC for Convolutional Layers

In a convolutional (Conv) layer of a feed-forward DNN, the
output S‘ 2 Rc‘�h‘�w‘ is calculated as

MMA‘�1 im2colðA‘�1Þ 2 Rc‘�1k2‘�h‘w‘ ;

MMS‘ WW‘MMA‘�1 2 Rc‘�h‘w‘ ;

S‘ reshapeðMMS‘Þ 2 Rc‘�h‘�w‘ ;

(10)

where A‘�1 2 Rc‘�1�h‘�1�w‘�1 is the input to this layer, and
WW‘ 2 Rc‘�c‘�1k2‘ is the weight matrix (the bias is ignored for
simplicity). c‘; c‘�1 are the number of output, input chan-
nels, respectively, and k‘ is the kernel size (assuming square
kernels for simplicity). For each example in the mini-batch,
the im2col operator4 converts the input tensor to a matrix
so that we can get the result of a convolution by a matrix
multiplication. The Kronecker factors for this Conv layer
are defined as

GG‘ :¼ E rMMS‘ log puuðyyjxxÞrMMS‘ log puuðyyjxxÞ
>

h i
;

AA‘�1 :¼ 1

h‘w‘
E MMA‘�1MM

>
A‘�1

h i
;

(11)

and GG‘ 2 Rc‘�c‘ ; AA‘�1 2 Rc‘�1k2‘�c‘�1k2‘ [21].

3.3.3 Inverting Kronecker-Factored FIM

By the property of the Kronecker product and the factored
Tikhonov damping technique used in [19], the inverse of

Fig. 2. Illustration of Fisher information matrix approximations for feed-forward deep neural networks used in this work.

4. See Chainer documentation (https://docs.chainer.org/en/stable/
reference/generated/chainer.functions.im2col.html) for detail.

OSAWA ETAL.: SCALABLE AND PRACTICAL NATURALGRADIENT FOR LARGE-SCALE DEEP LEARNING 407

https://docs.chainer.org/en/stable/reference/generated/chainer.functions.im2col.html
https://docs.chainer.org/en/stable/reference/generated/chainer.functions.im2col.html

F̂F ‘ þ �II is approximated by the Kronecker product of the
inverse of each Kronecker factor

F̂F ‘ þ �II
� ��1 ¼ GG‘ 	AA‘�1 þ �IIð Þ�1

� GG‘ þ 1

p‘

ffiffiffi
�
p

II

	
�1
	 AA‘�1 þ p‘

ffiffiffi
�
p

II
� ��1

;

(12)

wherep2
‘ is the average eigenvalue ofAA‘�1 divided by the aver-

age eigenvalue ofGG‘ (which can be computed using the trace).
p > 0 because both GG‘ and AA‘�1 are positive-semidefinite
matrices as defined above.

4 PRACTICAL NATURAL GRADIENT

K-FAC for FC layer (9) and Conv layer (11) enables us to real-
ize NGD in training deep ConvNets [21], [22]. For deep and
wide neural architectures with a huge number of learnable
parameters, however, due to the extra computation for the
FIM, evenNGDwith K-FAChas considerable overhead com-
pared to SGD. In this section, we introduce practical techni-
ques to accelerate NGD for such huge neural architectures.
Using our techniques, we are able to reduce the overhead of
NGD to almost a negligible amount as shown in Section 7.

4.1 Fast Estimation With Empirical Fisher

Instead of using an estimation by a single Monte Carlo
sampling defined in Eq. (5) (F̂F ‘;1mc), we adopt the empirical
Fisher [19] to estimate the FIM FF‘

FF‘ � F̂F ‘;emp :¼ E rww‘
log puuðttjxxÞrww‘

log puuðttjxxÞ>
h i

: (13)

We implemented an efficient F̂F ‘;emp computation in the
Chainer framework [33] that allows us to compute F̂F ‘;emp dur-
ing the forward-pass and the backward-pass for the lossLðuuÞ5
Therefore, we do not need an extra backward-pass to compute
F̂F ‘;emp, while an extra backward-pass is necessary for computing
F̂F ‘;1mc. This difference is critical especially for a deeper net-
workwhich takes longer time for a backward-pass.

Although it is insisted that F̂F ‘;emp is not a proper approxi-
mation of the FIM, and F̂F ‘;1mc is better estimation in the liter-
ature [35], [36], we do not see any difference in the
convergence behavior nor the final model accuracy between
NGD with F̂F ‘;emp and that with F̂F ‘;1mc in training deep Con-
vNets for ImageNet classification as shown in Section 7.
This could be because F̂F ‘;emp is effectively being used as a
pre-conditioning matrix to accelerate optimization, which
only requires it to capture aspects of the FIM; in particular it
also leads to parameterization invariant updates as dis-
cussed in [32].

4.2 Practical FIM Estimation for BatchNorm Layers

It is often the case that a deep ConvNet has Conv layers that
are followed by BatchNorm layers [9]. The ‘th BatchNorm
layer after the ð‘� 1Þth Conv layer has scale gg‘ 2 Rc‘�1 and
bias bb‘ 2 Rc‘�1 to be applied to the normalized features.
When we see these parameters as learnable parameters, we
can define

ww‘ :¼ g‘;1 b‘;1 . . . g‘;c‘�1 b‘;c‘�1
� �>2 R2c‘�1 ; (14)

where g‘;i and b‘;i are the ith element of gg‘ and bb‘, respec-
tively (i ¼ 1; . . .; c‘�1). For this BatchNorm layer, the FIM FF‘

(5) is a 2c‘�1 � 2c‘�1 matrix, and the computation cost of
inverting this matrix can not be ignored when c‘�1 (the
number of output channels of the previous Conv layer) is
large (e.g., cout ¼ 1024 for a Conv layer in ResNet-50 [37]).

4.2.1 Unit-Wise Natural Gradient

We approximate this FIM by applying unit-wise natural gra-
dient [38] to the learnable parameters of BatchNorm layers
(Fig. 2). A “unit” in a neural network is a collection of input/
output nodes connected to each other. The “unit-wise” natu-
ral gradient only takes into account the correlation of the
parameters in the same node. Hence, for a BatchNorm layer,
we only consider the correlation between g‘c and b‘;c of the
same channel c

FF‘ � F̂F ‘

¼ FF‘;unitBN

:¼ diag FF
ð1Þ
‘ . . .FF

ðiÞ
‘ . . .FF

ðc‘�1Þ
‘

� �
2 R2c‘�1�2c‘�1 ;

(15)

where

FF
ðiÞ
‘ ¼ E

rðiÞ2gg‘ rðiÞgg‘rðiÞbb‘
rðiÞbb‘r

ðiÞ
gg‘ rðiÞ2gg‘

2
4

3
5 2 R2�2 : (16)

rðiÞgg‘ ,rðiÞbb‘ are the ith element ofrgg‘ log puuðyyjxxÞ,rbb‘ log puuðyyjxxÞ,
respectively. The number of the elements to be computed
and communicated is significantly reduced from 4c2‘�1 to
4c‘�1, and we can get the inverse FF‘;unit BN þ �II

� ��1
with lit-

tle computation cost using the inverse matrix formula

a b
c d

� ��1
¼ 1

ad� bc

d �b
�c a

� �
: (17)

We observed that the unit-wise approximation on FF‘ of
BatchNorm does not affect the accuracy of a deep ConvNet
on ImageNet classification as shown in Section 7.

4.3 Natural Gradient With Stale Statistics

To achieve even faster training with NGD, it is critical to uti-
lize stale statistics in order to avoid re-computing the matri-
ces AA‘�1; GG‘ and FF‘;unitBN (Fig. 2) at every step. Previous
work on K-FAC [19] used a simple strategy where they
refresh the Kronecker factors only once in 20 steps. How-
ever, as observed in [27], the statistics rapidly fluctuate at
the beginning of training, and this simple strategy causes
serious defects to the convergence. It was also observed that
the degree of fluctuation of the statistics depends on the
mini-batch size, the layer, and the type of the statistics (e.g.,
statistics with a larger mini-batch fluctuates less than that
with a smaller mini-batch). Although the previous strategy
[27] to reduce the frequency worked without any degrada-
tion of the accuracy, it requires the prior observation on the
fluctuation of the statistics, and its effectiveness on training
time has not been well studied.

5. The same empirical Fisher computation can be implemented on
PyTorch [34].

408 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022

4.3.1 Adaptive Frequency to Refresh Statistics

We propose an improved strategy which adaptively deter-
mines the frequency to refresh each statistics based on its
staleness during the training. Our strategy is shown in Algo-
rithm 1.We calculate the timing (step) to refresh each statistics
based on the acceptable interval (steps) estimated in Algo-
rithm 2 (Fig. 3). In Algorithm 2, matrix A is considered to be
similar tomatrixBwhen kA�BkF =kBkF < a, where k � kF is
Frobenius norm, and a > 0 is the threshold.6 We tuned a by
running training for a few epochs to check if the threshold is
not too large (preserves the same convergence). And it aims
to find the acceptable interval D where the statistics X calcu-
lated at step t ¼ tX þ D is similar to that calculated at step
t ¼ tX. With this strategy, we can estimate the acceptable inter-
val for each statistics and skip the computation efficiently— it
keeps almost the same training time as the original, while
reducing the cost for constructing and inverting AA‘�1; GG‘ and
FF‘;unitBN as much as possible. Note that S in Algorithm 1 is
the set of the inverses of damped matrices AA‘�1; GG‘ and
FF‘;unitBN . That is, we observe the staleness of the inverse
matrices. This significantly reduces the overhead of NGD.We
observe the effectiveness of our approach in Section 7.7

Algorithm 1.Natural Gradient With the Stale Statistics

input : set of the statistics S (damped inverses)
input : initial parameters uu
output : parameters uu
t 1
foreachX 2 S do
tX 1

end
while not converge do
foreachX 2 S do
if t ¼¼ tX then
refresh statistics X
D;D�1 Algorithm 2ðX;X�1; X�2;D;D�1Þ
tX tX þ D
X�1; X�2 X;X�1

end
update uu by natural gradient (6) using S
t tþ 1

end
return uu

5 SCALABLE NATURAL GRADIENT

Based on the practical estimation of the FIM proposed in the
previous section, we designed a distributed parallelization

scheme among multiple GPUs so that the overhead of NGD
compare to SGD decreases as the number of GPUs (pro-
cesses) is increased.

Algorithm 2. Estimate the acceptable Interval Until Next
Refresh Based on the Staleness of Statistics

input : statisticsX,X�1 (last),X�2 (before the last)
input : last interval D�1, interval before the last D�2
output : next interval D, last interval D�1
ifX is not similar toX�1 then
D max 1; bD�1=2cf g

else ifX is not similar toX�2 then
D D�1

else
D D�1 þ D�2

end
return D, D�1

5.1 Distributed Natural Gradient

Fig. 4 shows the overview of our design, which shows a sin-
gle step of training with our distributed NGD. We use the
term Stage to refer to each phase of computation and com-
munication, which is indicated at the top of the figure. Algo-
rithm 3 shows the pseudo code of our distributed NGD
design.

Algorithm 3. Distributed Natural Gradient

while not converge do
// Stage 1

foreach ‘ ¼ 1; . . . ; L do
forward in ‘th layer
if ‘th layer is Conv or FC then
compute AA‘�1

end
// Stage 2

ReduceScatterV AA0:L�1ð Þ
foreach ‘ ¼ L; . . . ; 1 do
backward in ‘th layer
if ‘th layer is Conv or FC then
compute GG‘

else if ‘th layer is BatchNorm then
compute FF‘;unitBN

end
// Stage 3

ReduceScatterV GG1:L=FF 1:L;unitBNandrww1:L
L� �

// Stage 4

for ‘ ¼ 1; . . . ; L do in parallel
update ww‘ by natural gradient (6)

end
// Stage 5

AllGatherV ww1:Lð Þ
end
return uu ¼ ww>1 ; . . . ; ww

>
L

� �>

In Stage 1, each process (GPU) receives a different part
of the mini-batch and performs a forward-pass in which the
Kronecker factor AA‘�1 is computed for the received samples,
if ‘th layer is a Conv layer or a FC layer.

In Stage 2, two procedures are performed in parallel —
communication among all the processes and a backward-

Fig. 3. Estimate the interval (steps) D until the next step tXnext to refresh
the statisticsX.

6. a ¼ 0:1 for all the experiments in this work.
7. For each mini-batch size, we do not use the decayed average of

the FIM (Kronecker factors) as opposed to the previous K-FAC papers
[19], [21], [22]. When training with extremely large batches, we
observed that the decayed average has little effect.

OSAWA ETAL.: SCALABLE AND PRACTICAL NATURALGRADIENT FOR LARGE-SCALE DEEP LEARNING 409

pass in each process. Since Stage 1 is done in a data-parallel
fashion, each process computes the statistics only for the
different parts of the mini-batch. In order to compute these
statistics for the entire mini-batch, we need to average these
statistics over all the processes. This is performed using a
ReduceScatterV collective communication, which transi-
tions our approach from data-parallelism to model-parallel-
ism by reducing (taking the sum of) AA‘�1 for different ‘ to
different processes. This collective is much more efficient
than an AllReduce , where AA‘�1 for all ‘ are reduced to all
the processes (Fig. 4). While AA‘�1 is communicated, each
process also performs a backward-pass to get the gradient
rww‘
L, the Kronecker factor GG‘ for Conv, FC layers, and

FF‘;unitBN for BatchNorm layer, for each ‘.
In Stage 3, GG‘; FF‘;unitBN and rww‘

L are communicated in
the same way as AA‘ by ReduceScatterV collective. At this
point, only a single process has the FIM estimation F̂F ‘ and
the gradient rww‘

L with the statistics for the entire mini-
batch for the ‘th layer. In Stage 4, only the process that has
the FIM computes the matrix inverse and applies the NGD
update (6) to the weights ww‘ of the ‘th layer. Hence, these
computations are performed in a model-parallel fashion.
When the number of layers is larger than the number of pro-
cesses, multiple layers are handled by a process.

Once the weights ww‘ of each ‘ are updated, we synchro-
nize the updated weights among all the processes by calling
an AllGatherV (Fig. 4) collective, and we switch back to
data-parallelism. Combining the practical estimation of the
FIM proposed in the previous section, we are able to reduce
a significant amount of communication required for the Kro-
necker factors AA‘�1; GG‘ and FF‘;unitBN . Therefore, the amount
of communication for our distirbuted NGD is similar to dis-
tributed SGD, where the AllReduce for the gradient rww‘

L
is implemented as a ReduceScatter+AllGather.

5.2 Further Acceleration

Our data-parallel and model-parallel hybrid approach
allows us to minimize the overhead of NGD in a distributed
setting. However, NGD still has a large overhead compared
to SGD. There are two hotspots in our distributed NGD
design. The first is the construction of the statistics AA‘�1; GG‘,
and FF‘;unitBN , that cannot be done in a model-parallel fash-
ion. The second is the communication (ReduceScatterV)
for distributing these statistics. In this section, we discuss
how we accelerate these two hotspots to achieve even faster
training time.

Mixed-Precision Computation. We use the Tensor Cores in
the NVIDIA Volta Architecture.8 This more than doubles
the speed of the calculation for this part. One might think
that this low-precision computation affects the overall accu-
racy of the training, but in our experiments we do not find
any differences between training with half-precision float-
ing point computation and that with full-precision floating
point computation.

Symmetry-Aware Communication. The statistics matrices
AA‘�1; GG‘, and FF‘;unitBN are symmetric matrices. We exploit
this property to reduce the amount of communication with-
out loss of information. To communicate a symmetric
matrix of size N �N , we only need to send the upper trian-
gular matrix with NðN þ 1Þ=2 elements.

In addition to these two optimizations, we also adopted
the performance optimizations done by [28]:

� Explicitly use NHWC (mini-batch, height, width, and
channels) format for the input/output data (tensor)
of Conv layers instead of NCHW format. This makes
cuDNNAPI to fully benefit from the Tensor Cores.

� Data I/O pipeline using the NVIDIA Data Loading
Library (DALI).9

� Hierarchical AllReduce collective proposed by
Ueno et al. [39], which alleviates the latency of the
ring-AllReduce communication among a large
number of GPUs.

� Half-precision communication for AllGatherV

collective.

6 TRAINING FOR IMAGENET CLASSIFICATION

The behavior of NGD on large models and datasets has not
been studied in depth. Also, there are very few studies that
use NGD (K-FAC) for large mini-batches (over 4 K) using
distributed parallelism at scale [22]. Contrary to SGD, where
the hyperparameters have been optimized by many practi-
tioners even for large mini-batches, there is very little insight
on how to tune hyperparameters for NGD. In this section,
we have explored some methods, which we call training
schemes, to achieve higher accuracy in our experiments. In
this section, we show those training schemes in our large
mini-batch trainingwith NGD for ImageNet classification.

Fig. 4. (Left) Overview of our distributed natural gradient descent (a single step of training). (Right) Illustrations of AllReduce, ReduceScatterV,
and AllGatherV collective. Different colors correspond to data (and its communication) from different data sources.

8. https://www.nvidia.com/en-us/data-center/tensorcore/
9. https://developer.nvidia.com/DALI

410 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022

https://www.nvidia.com/en-us/data-center/tensorcore/
https://developer.nvidia.com/DALI

6.1 Data Augmentation

To achieve good generalization performance while keeping
the benefit of the fast convergence that comes from NGD,
we adopt the data augmentation techniques commonly
used for training networks with large mini-batch sizes. We
resize all the images in ImageNet to 256� 256 ignoring the
aspect ratio of original images and compute the mean value
of the upper left portion (224� 224) of the resized images.
When reading an image, we randomly crop a 224� 224
image from it, randomly flip it horizontally, subtract the
mean value, and scale every pixel to ½0; 1�.

Running Mixup. We extend mixup [18] to increase its reg-
ularization effect. We synthesize virtual training samples
from raw samples and virtual samples from the previous
step (while the original mixupmethod synthesizes new sam-
ples only from the raw samples)

~xxðtÞ ¼ � � xxðtÞ þ ð1� �Þ � ~xxðt�1Þ ; (18)

~ttðtÞ ¼ � � ttðtÞ þ ð1� �Þ � ~ttðt�1Þ ; (19)

xxðtÞ; ttðtÞ is a raw input and label (one-hot vector), and ~xxðtÞ;~ttðtÞ

is a virtual input and label for t th step. � is sampled from
the Beta distribution with the beta function

Bða;bÞ ¼
Z 1

0

ta�1ð1� tÞb�1 dt ; (20)

where we set a ¼ b ¼ amixup.
Random Erasing With Zero Value. We also implemented

Random Erasing [40]. We set elements within the erasing
region of each input to zero instead of a random value as
used in the original method. We set the erasing probability
p ¼ 0:5, the erasing area ratio Se 2 ½0:02; 0:25�, and the eras-
ing aspect ratio re 2 ½0:3; 1�. We randomly switch the size of
the erasing area from ðHe;WeÞ to ðWe;HeÞ.

6.2 Learning Rate and Momentum

The learning rate used for all of our experiments is sched-
uled by polynomial decay. The learning rate hðeÞ for e th epoch
is determined as follows:

hðeÞ ¼ hð0Þ � 1� e� estart
eend � estart

	
pdecay

; (21)

hð0Þ is the initial learning rate and estart; eend is the epoch
when the decay starts and ends. The decay rate pdecay guides
the speed of the learning rate decay.

We use the momentum variant [3] for NGD updates.
Because the learning rate decays rapidly in the final stage of
the training with the polynomial decay, the current update
can become smaller than the previous update. We adjust
the momentum rate mðeÞ for e th epoch so that the ratio
betweenmðeÞ and hðeÞ is fixed throughout the training

mðeÞ ¼ mð0Þ

hð0Þ
� hðeÞ ; (22)

where mð0Þ is the initial momentum rate. The weights are
updated as follows:

ww
ðtþ1Þ
‘ ww

ðtÞ
‘ � hðeÞ F̂F

ðtÞ
‘ þ �II

� ��1
rww‘
LðtÞ þmðeÞvvðtÞ ;

(23)

where vvðtÞ ¼ ww
ðtÞ
‘ � ww

ðt�1Þ
‘ .

6.3 Weights Rescaling

We found that the choice of learning rate is very sensitive to
the ratio of the (approximate) natural gradient norm to the
weight norm. Although it is argued that weight decay regu-
larization helps to control the effective damping value for
NGD [41], tuning the learning rate with weight decay is dif-
ficult because it indirectly controls the weight norm. To alle-
viate this difficulty, we adopt the Normalizing Weights [42]
technique, which directly controls the weight norm, to the
ww‘ of FC and Conv layers. We rescale the ww‘ to have a normffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � dout
p

after (23)

ww
ðtþ1Þ
‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � dout

p
� ww

ðtþ1Þ
‘

kwwðtþ1Þ‘ k þ �
; (24)

where we use � ¼ 1 � 10�9 to stabilize the computation. dout
is the output dimension or channels of the layer.

7 EXPERIMENTS

We train ResNet-50 [37] for ImageNet [4] in all of our experi-
ments. We use the same hyperparameters for the same mini-
batch size. The hyperparameters for our results are shown in
Table 2.We implement all of our methods using Chainer [33].
Our Chainer extenstion is available at https://github.com/
tyohei/chainerkfac. We initialize the weights by the HeNor-
mal initializer of Chainer 10with the default parameters.

7.1 Experiment Environment

We conduct all experiments on the AI Bridging Cloud Infra-
structure (ABCI)11 operated by the National Institute of
Advanced Industrial Science and Technology (AIST) in
Japan. ABCI has 1,088 nodes with four NVIDIA Tesla V100
GPUs per node. Due to the additional memory required by
NGD, all of our experiments use a mini-batch size of 32 per
GPU. We were only given a 24 hour window to use the full
machine so we had to tune the hyperparameters on a smaller
number of nodes while mimicking the global mini-batch size
of the full node run. For large mini-batch size experiments
which cannot be executed directly (BS=65 K, 131 K requires
2048, 4096 GPUs, respectively) ,we used an accumulation
method to mimic the behavior by accumulating the statistics
AA‘�1; GG‘; FF‘;unitBN , andrww‘

L overmultiple steps.

7.2 Extremely Large Mini-Batch Training

We trained ResNet-50 for ImageNet classification task with
extremely large mini-batch size BS={4,096, 8,192, 16,384,
32,768, 65,536, 131,072} and achieved a competitive top-1
validation accuracy (
 74:9%) compared to highly-tuned
SGD training. The summary of the training is shown in
Table 1. For BS={4K, 8K, 16K, 32K, 65K}, the training con-
verges in much less than 90 epochs, which is the usual num-
ber of epochs required by SGD-based training of ImageNet
[3], [10], [11], [12], [13]. For BS={4K,8K,16K}, the required
epochs to reach higher than 75 percent top-1 validation

10. https://docs.chainer.org/en/stable/reference/generated/
chainer.initializers.HeNormal.html

11. https://abci.ai/

OSAWA ETAL.: SCALABLE AND PRACTICAL NATURALGRADIENT FOR LARGE-SCALE DEEP LEARNING 411

https://github.com/tyohei/chainerkfac
https://github.com/tyohei/chainerkfac
https://docs.chainer.org/en/stable/reference/generated/chainer.initializers.HeNormal.html
https://docs.chainer.org/en/stable/reference/generated/chainer.initializers.HeNormal.html
https://abci.ai/

accuracy is 35 epochs. Even for a relatively large mini-batch
size of BS=32K, NGD still converges in 45 epochs, half the
number of epochs compared to SGD. Note that the calcula-
tion time is still decreasing while the number of epochs is
less than doublewhenwe double themini-batch size, assum-
ing that doubling themini-batch corresponds to doubling the
number of GPUs (and halving the execution time). When we
increase the mini-batch size to BS={32K,65K,131K}, we see a
significantly small number of steps it takes to converge. At
BS=32 K and 65 K, it takes 1,760 steps (45 epochs) and 1,173
steps (60 epochs), respectively. At BS=131 K, there are less
than 10 iterations per epoch since the dataset size of Image-
Net is 1,281,167, and it only takes 873 steps to converge (90
epochs). None of the SGD-based training of ImageNet have
sustained the top-1 validation accuracy at this mini-batch
size. Furthermore, this is the first work that uses NGD for
the training with extremely large mini-batch size BS=
{16K,32K,65K,131K} and achieves a competitive top-1 valida-
tion accuracy.

7.3 Scalability

We measure the scalability of our distributed NGD imple-
mentation for training ResNet-50 on ImageNet. Fig. 5 shows
the time for one step with different number of GPUs and

different techniques proposed in Section 7.4. Note that since
we fix the number of images to be processed per GPU (=32),
doubling the number of GPUs means doubling the total
number of images (mini-batch size) to be processed in a step
(e.g., 32 K images are processed with 1,024 GPUs in a step).
In a distributed training with multiple GPUs, it is consid-
ered ideal if this plot shows a flat line parallel to the x-axis,
that is, the time per step is independent of the number of
GPUs, and the number of images processed in a certain
time increases linearly with the number of GPUs. From 1
GPU to 64 GPUs, however, we observed a superlinear scal-
ing. For example, the time per step with 64 GPUs is 300 per-
cent faster than that with 1 GPU for emp+fullBN. This is
the consequence of our model-parallel design since ResNet-
50 has 107 layers in total when all the Conv, FC, and Batch-
Norm layers are accounted for. With more than 128 GPUs,
we observe slight performance degradation due to the com-
munication overhead comes from ReduceScatterV and
AllGatherV collective. Yet for emp+unitBN+stale, we
see almost the ideal scaling from 128 GPUs to 1,024 GPUs.
Moreover, with 512 GPUs, which corresponds to BS=16 K,
we see a superlinear scaling, again. We discuss this in the
next sub-section.

7.4 Effectiveness of Practical Natural Gradient

We examine the effectiveness of our practical NGD
approaches proposed in Section 7.4 for training ResNet-50
on ImageNet with extreamely large mini-batch. We show
that our practical techniques makes the overhead of NGD
close to a negligible amount and improves training time sig-
nificantly. The summary of the training time is shown in
Table 1 and Fig. 1.

Natural Gradient by Empirical Fisher. We compare the time
and model accuracy in training by NGD with empirical
Fisher and that with a Fisher estimation by a single Monte
Carlo sampling (F̂F ‘;emp versus F̂F ‘;1mc) . In Fig. 5, the time per a
step by each training is labeled as emp and 1mc, respectively.
Due to the extra backward-pass required for constructing
F̂F ‘;1mc, 1mc is slower than emp at any number of GPUs. We
do not see any difference in the convergence behavior (accu-
racy versus steps) and the final accuracy for training ResNet-
50 on ImageNet with BS={4K,8K,16K,32K,65K,131K}. Note
that we used the same hyperparameters tuned for emp for
each BS (shown in Table 2) for the limitation of computational
resource to tune for 1mc.

Unit-Wise Natural Gradient.Wealso compare trainingwith
natural gradient and that with unit-wise natural gradient on

TABLE 2
The Hyperparameters of the Training With Large Mini-Batch Size (BS) Used for Our Schemes in Section 7.2

and Top-1 Single-Crop Validation Accuracy of ResNet-50 for ImageNet

BS amixup pdecay estart eend hð0Þ mð0Þ � # steps top-1 accuracy reduction # speedup "
4K 0.4 11.0 1 53 8:18 � 10�3 0.997 2:5 � 10�4 10,948 75.2 %! 74.8 % 23.6 % � 1:33
8K 0.4 8.0 1 53.5 1:25 � 10�2 0.993 2:5 � 10�4 5,434 75.5 %! 75.3 % 15.1 % � 1:32
16K 0.4 8.0 1 53.5 2:5 � 10�2 0.985 2:5 � 10�4 2,737 75.3 %! 75.2 % 5.4% � 1:68
32K 0.6 3.5 1.5 49.5 3:0 � 10�2 0.97 2:0 � 10�4 1,760 75.6 %! 75.4 % 7.8 % � 1:40
65K 0.6 2.9 2 64.5 4:0 � 10�2 0.95 1:5 � 10�4 1,173 75.6 % n/a n/a
131K 1.0 2.9 3 100 7:0 � 10�2 0.93 1:0 � 10�4 873 74.9 % n/a n/a

reduction and speedup correspond to the reduction rate of the communication amount and the speedup comes from that, respectively, for emp+unitBN
+stale compare to emp+unitBN in Fig. 5.

Fig. 5. Time per step for trainig ResNet-50 (107 layers in total) on Image-
Net with our scalable and practical NGD. Each GPU processes 32
images. 1mc and emp correspond to NGD with F̂F ‘;1mc and that with
F̂F ‘;emp, respectively. fullBN and unitBN correspond to NGD and unit-
wise NGD on BatchNorm parameters, respectively. stale corresponds
to NGD with the stale statistics.

412 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022

BatchNorm parameters (FF‘ versus FF‘;unitBN) . In Fig. 5, the
time per step for each method is labeled as fullBN and
unitBN, respectively. From 1 GPU to 16 GPUs, we can see
that unitBN effectively accelerates the time per step com-
pare to fullBN. For more than 32 GPUs, we can see only a
slight improvements since inverting statistics (AA‘�1; GG‘ and
FF‘) for all the layers are already distributed among enough
number of processes, and inverting FF‘ is no longer a bottle-
neck of processing a step.We do not see any difference in the
convergence behavior (accuracy versus steps) and the final
accuracy for training ResNet-50 on ImageNet with BS=
{4K,8K,16K,32K,65K,131K}.

Natural Gradient With Stale Statistics. We apply our adap-
tive frequency strategy described in Section 7.4 to training
ResNet-50 on ImageNet with BS={4K,8K,16K,32K}. In Fig. 5,
the time per a step with all the practical techniques is labeled
as emp+unitBN+stale. The model accuracy before and
after applying this technique, reduction rate (smaller is bet-
ter) of the communication volume for the statistics, and
speedup (emp+unitBN versus emp+unitBN+stale) is
shown in Table 2. The communication amount (bytes) in the
ReduceScatterV collective in each step during a training
and the reduction rate are plotted in Fig. 6. With
BS=16K,32K, we can reduce the communication amount for
the statistics (AA‘�1; GG‘ and FF‘) to 5.4,7.8 percent, respectively.
Wemight be able to attribute this significant reduction rate to
the fact that the statistics with larger BS (16K,32K) is more
stable than that with smaller BS (4K,8K). Note that though
we show the reduction rate of the amount of communication,
this rate is also applicable to estimate the reduction rate of
the amount of computation for the statistics, and the cost for
inverting them is also removed. With these improvements
on NGD, we see almost an ideal scaling from 128 GPUs to
1,024 GPUs, which corresponds to BS=4 K to 32 K.

7.5 Training ResNet-50 on ImageNet With NGD in
5.5 Minutes

Finally, we combine all the practical techniques — empirical
Fisher, unit-wise NGD and NGD with stale statistics. Using
1,024 NVIDIA Tesla V100, we achieve 75.4 percent top-1
accuracy with ResNet-50 for ImageNet in 5.5 minutes (1,760
steps = 45 epochs, including a validation after each epoch).
We used the same hyperparameters shown in Table 2. The
training time and the validation accuracy are competitive
with the results reported by related work that use SGD for
training (the comparison is shown in Table 1). We refer to
our trainingmethod as Scarable and Practical NGD (SP-NGD).

8 DISCUSSION AND FUTURE WORK

In this work, we proposed a Scalable and Practical Natural Gra-
dient Descent (SP-NGD), a framework which combines i) a
large-scale distributed computational design with data and
model hybrid parallelism for the Natural Gradient Descent
(NGD) [17] and ii) practical Fisher information estimation
techniques including Kronecker-FactoredApproximate Cur-
vature (K-FAC) [19], that alleviates the computational over-
head of NGD over SGD. Using our SP-NGD framework, we
showed the advantages of the NGD over first-order stochas-
tic gradient descent (SGD) for training ResNet-50 on Image-
Net classification with extremely large mini-batches. We
introduced several schemes for the training using the NGD
withmini-batch sizes up to 131,072 and achieved over 75 per-
cent top-1 accuracy in much fewer number of steps com-
pared to the existing work using the SGD with large mini-
batch. By using strong data augmentation (i.e., mixup [24]),
we were able to show that solutions found by a second-order
method generalize as well as that of SGD, even for extremely
large mini-batches. Note that this data augmentation helps
second-order methods more than they do SGD, so it is not a
matter of simply increasing the baseline accuracy through
data augmentation. Our SP-NGD framework allowed us to
train on 1,024GPUs and achieved 75.4 percent in 5.5minutes.
This is the first work which observes the relationship
between the FIM of ResNet-50 and its training on large mini-
batches ranging from 4 to 131 K.

More Accurate and Efficient FIM Estimation. We showed
that NGD using the empirical Fisher matrix [19] (emp) is
much faster than that with an estimation using a single
Monte Carlo (1mc), which is widely used by related work
on the approximate natural gradient. Although it is stated
that emp is not a good approximation of the NGD in the lit-
erature [35], [36], we observed the same convergence behav-
ior as 1mc for training ResNet-50 on ImageNet. We might
be able to attribute this result to the fact that emp is a good
enough approximation to keep the behavior of the true
NGD or that even 1mc is not a good approximation. To
know whether these hypotheses are correct or not and to
examine the actual value of the true NGD, we need a more
accurate and effcient estimation of the NGD with less
computational cost.

Towards Bayesian Deep Learning.NGD has been applied to
Bayesian deep learning for estimating the posterior distribu-
tion of the network parameters. For example, K-FAC [19]
has been applied to Bayesian deep learning to realize Noisy
Natural Gradient [24], and our distributed NGD has been

Fig. 6. The communication amount (bytes) for the statistics (AA‘�1; GG‘; FF‘;unitBN) in each step in training ResNet-50 on ImageNet with BS=
{4K,8K,16K,32K} (stacked graph — the amount for G/F is stacked on the amount for A). A and G/F correspond to the communication amount for
AA‘�1 and GG‘=FF‘;unitBN , respectively. The reduction rate (smaller is better) of the communication amount for all the statistics throughout the training is
shown with the percentage (%).

OSAWA ETAL.: SCALABLE AND PRACTICAL NATURALGRADIENT FOR LARGE-SCALE DEEP LEARNING 413

applied to that at ImageNet scale [29]. We similarly expect
that our SP-NGD framework will accelerate Bayesian deep
learning research using natural gradient methods.

ACKNOWLEDGMENTS

Computational resource of AI Bridging Cloud Infrastructure
(ABCI) was awarded by “ABCI Grand Challenge” Program,
National Institute of Advanced Industrial Science and Tech-
nology (AIST). This work was supported by JSPS KAKENHI
Grant Number JP18H03248 and JP19J13477. This work was
also supported by JST CREST Grant Number JPMJCR19F5,
Japan. Part of this work was conducted as research activities
of AIST - Tokyo Tech Real World Big-Data Computation
Open Innovation Laboratory (RWBC-OIL). This work was
supported by “Joint Usage/Research Center for Interdisci-
plinary Large-scale Information Infrastructures” in Japan
(Project ID: jh180012-NAHI). This research used computa-
tional resources of the HPCI system provided by Tokyo Tech
through the HPCI System Research Project (Project ID:
hp190122). The authorswould like to thank Yaroslav Bulatov
(South Park Commons) for helpful comments on the
manuscript.

REFERENCES

[1] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and
P. T. P. Tang, “On large-batch training for deep learning: Gen-
eralization gap and sharp minima,” in Proc. Int. Conf. Learn.
Representations, 2017, Art. no. 16.

[2] E. Hoffer, R. Banner, I. Golan, and D. Soudry, “Normmatters: Effi-
cient and accurate normalization schemes in deep networks,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 2018, pp. 2160–2170.

[3] P. Goyal et al., “Accurate, large minibatch SGD: Training Image-
Net in 1 hour,” 2017, arXiv: 1706.02677.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classi-
fication,” in Proc. Int. Conf. Comput. Vis., 2015, pp. 1026–1034.

[6] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and
G. E. Dahl, “Measuring the effects of data parallelismon neural net-
work training,” J. Mach. Learn. Res., vol. 20, no. 112, pp. 1–49, 2019.

[7] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.

[8] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the
gradient by a running average of its recent magnitude,” COUR-
SERA: Neural Netw. Mach. Learn., vol. 4, pp. 26–31, 2012.

[9] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc.
32nd Int. Conf. Int. Conf. Mach. Learn., 2015, pp. 448–456.

[10] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely large minibatch
SGD: Training ResNet-50 on ImageNet in 15 minutes,” 2017,
arXiv: 1711.04325.

[11] Y. You, I. Gitman, and B. Ginsburg, “Large batch training of con-
volutional networks,” 2017, arXiv: 1708.03888.

[12] X. Jia et al., “Highly scalable deep learning training system with
mixed-precision: Training ImageNet in four minutes,” 2018, arXiv:
1807.11205.

[13] H. Mikami, H. Suganuma, P. U-chupala, Y. Tanaka, and
Y. Kageyama, “Massively distributed SGD: ImageNet/ResNet-50
training in a flash,” 2018, arXiv: 1811.05233.

[14] M. Yamazaki et al., “Yet another accelerated SGD: ResNet-50 train-
ing on ImageNet in 74.7 seconds,” 2019, arXiv: 1903.12650.

[15] T. Lin, S. U. Stich, and M. Jaggi, “Don’t use large mini-batches, Use
Local SGD,” in Proc. Int. Conf. Learn. Representations, 2020. [Online].
Available: https://openreview.net/forum?id=B1eyO1BFPr

[16] C. Ying, S. Kumar, D. Chen, T. Wang, and Y. Cheng, “Image clas-
sification at supercomputer scale,” 2018, arXiv: 1811.06992.

[17] S.-I. Amari, “Natural gradient works efficiently in learning,”
Neural Comput., vol. 10, pp. 251–276, 1998.

[18] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup:
Beyond empirical risk minimization,” in Proc. Int. Conf. Learn. Rep-
resentations, 2018. [Online]. Available: https://openreview.net/
forum?id=r1Ddp1-Rb

[19] J. Martens and R. Grosse, “Optimizing neural networks with Kro-
necker-factored approximate curvature,” in Proc. 32nd Int. Conf.
Int. Conf. Mach. Learn., 2015, pp. 2408–2417.

[20] J. Martens, “Deep learning via Hessian-free optimization,” in Proc.
27th Int. Conf. Mach. Learn., 2010, pp. 735–742.

[21] R. Grosse and J. Martens, “A Kronecker-factored approximate
fisher matrix for convolution layers,” in Proc. 33rd Int. Conf. Int.
Conf. Mach. Learn., 2016, pp. 573–582.

[22] J. Ba, R. Grosse, and J. Martens, “Distributed second-order optimi-
zation using Kronecker-factored approximations,” in Proc. Int.
Conf. Learn. Representations, 2017. [Online]. Available: https://
openreview.net/forum?id=SkkTMpjex

[23] J. Martens and M. Johnson, “Kronecker-factored curvature
approximations for recurrent neural networks,” in Proc. Int. Conf.
Learn. Representations, 2018. [Online]. Available: https://
openreview.net/forum?id=HyMTkQZAb

[24] G. Zhang, S. Sun, D. Duvenaud, and R. Grosse, “Noisy natural
gradient as variational inference,” in Proc. 35th Int. Conf. Mach.
Learn., 2018, pp. 5852–5861.

[25] Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba, “Scalable trust-
region method for deep reinforcement learning using Kronecker-
factored approximation,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2017, pp. 5279–5288.

[26] G. Zhang et al., “Which algorithmic choices matter at which batch
sizes? Insights from a noisy quadratic model,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2019, pp. 8196–8207.

[27] K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, R. Yokota, and S. Matsuoka,
“Large-scale distributed second-order optimization using Kro-
necker-factored approximate curvature for deep convolutional neu-
ral networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 12 359–12 367.

[28] Y. Tsuji, K. Osawa, Y. Ueno, A. Naruse, R. Yokota, and S. Matsuoka,
“Performance optimizations and analysis of distributed deep learn-
ingwith approximated second-order optimizationmethod,” in Proc.
48th Int. Conf. Parallel Process.Workshops, 2019, pp. 21:1–21:8.

[29] K. Osawa et al., “Practical deep learning with Bayesian
principles,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019,
pp. 4287–4299.

[30] A. Botev, H. Ritter, and D. Barber, “Practical Gauss-Newton opti-
misation for deep learning,” in Proc. 34th Int. Conf. Mach. Learn.,
2017, pp. 557–565.

[31] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. 12th USENIX Symp. Operating Syst. Des. Imple-
mentation, 2016, pp. 265–283.

[32] J. Martens, “New insights and perspectives on the natural gradi-
ent method,” 2014, arXiv:1412.1193.

[33] S. Tokui et al., “Chainer: A deep learning framework for accelerat-
ing the research cycle,” in Proc. 25th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2019, pp. 2002–2011.

[34] A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2019, pp. 8024–8035.

[35] V. Thomas, F. Pedregosa, B. van Merrienboer, P.-A. Mangazol,
Y. Bengio, and N. L. Roux, “Information matrices and general-
ization,” 2019, arXiv: 1906.07774.

[36] F. Kunstner, L. Balles, and P. Hennig, “Limitations of the empiri-
cal fisher approximation,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2019, pp. 4156–4167.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[38] S.-I. Amari, R. Karakida, and M. Oizumi, “Fisher information and
natural gradient learning in random deep networks,” in Proc.
22nd Int. Conf. Artif. Intell. Statist., 2019, pp. 694–702.

[39] Y. Ueno and R. Yokota, “Exhaustive study of hierarchical All-
Reduce patterns for large messages between GPUs,” in Proc.
19th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput., 2019,
pp. 430–439.

[40] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random
erasing data augmentation,” in Proc. AAAI Conf. Art. Intl.,
2020, pp. 13001–13008.

414 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022

https://openreview.net/forum?id=B1eyO1BFPr
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=SkkTMpjex
https://openreview.net/forum?id=SkkTMpjex
https://openreview.net/forum?id=HyMTkQZAb
https://openreview.net/forum?id=HyMTkQZAb

[41] G. Zhang, C. Wang, B. Xu, and R. Grosse, “Three mechanisms of
weight decay regularization,” in Proc. Int. Conf. Learn. Representa-
tions, 2018. [Online]. Available: https://openreview.net/forum?
id=B1lz-3Rct7

[42] T. van Laarhoven, “L2 regularization versus batch and weight
normalization,” 2017, arXiv: 1706.05350.

Kazuki Osawa (Student Member, IEEE) received
the BS and MS degrees from the Tokyo Institute of
Technology, Tokyo, Japan, in 2016 and 2018,
respectively. He is currently working toward the
PhD degree at the Tokyo Institute of Technology,
Tokyo, Japan and a research fellow of Japan Soci-
ety for the Promotion of Science (JSPS). His
research interests include optimization, approxi-
mate Bayesian inference, and distributed comput-
ing for deep learning.

Yohei Tsuji received the BS andMS degrees from
the Tokyo Institute of Technology, Tokyo, Japan, in
2017 and 2019, respectively. He is currently work-
ing toward the PhD degree at the Tokyo Institute of
Technology, Tokyo, Japan. His research interests
include high performance computing for machine
learning, probabilistic programming.

Yuichiro Ueno received the BS degree from the
Tokyo Institute of Technology, Tokyo, Japan, in
2019. He is currently working toward the master’s
degree at the Tokyo Institute of Technology, Tokyo,
Japan. His research interests include a range of
high-performance computing, such as GPU com-
puting and networking, and its application to deep
learning.

Akira Naruse received the MS degree in com-
puter science from Nagoya University, Nagoya,
Japan. He is currently a senior developer tech-
nology engineer with NVIDIA. Prior to joining NVI-
DIA, he was a research engineer with Fujitsu
Laboratory and was involved in various high per-
formance computing projects. His main interests
include performance analysis and optimization of
scientific computing and deep learning applica-
tions on very large systems.

Chuan-Sheng Foo received the BS, MS, and PhD
degrees from Stanford University, Stanford, Califor-
nia. He is currently a scientist with the Institute for
Infocomm Research, A*STAR. His research inter-
ests include developing deep learning algorithms
that can learn from less labeled data, inspired by
applications in healthcare andmedicine.

Rio Yokota received the BS, MS, and PhD
degrees from Keio University, Tokyo, Japan, in
2003, 2005, and 2009, respectively. He is cur-
rently an associate professor with GSIC, Tokyo
Institute of Technology. His research interests
include high performance computing, hierarchical
low-rank approximation methods, and scalable
deep learning. He was part of the team that won
the Gordon Bell Prize for Price/Performance, in
2009.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

OSAWA ETAL.: SCALABLE AND PRACTICAL NATURALGRADIENT FOR LARGE-SCALE DEEP LEARNING 415

https://openreview.net/forum?id=B1lz-3Rct7
https://openreview.net/forum?id=B1lz-3Rct7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

