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SimVODIS: Simultaneous Visual Odometry,
Object Detection, and Instance Segmentation
Ue-Hwan Kim, Se-Ho Kim and Jong-Hwan Kim, Fellow, IEEE

Abstract—Intelligent agents need to understand the surrounding environment to provide meaningful services to or interact intelligently
with humans. The agents should perceive geometric features as well as semantic entities inherent in the environment. Contemporary
methods in general provide one type of information regarding the environment at a time, making it difficult to conduct high-level tasks.
Moreover, running two types of methods and associating two resultant information requires a lot of computation and complicates the
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software architecture. To overcome these limitations, we propose a neural architecture that simultaneously performs both geometric
and semantic tasks in a single thread: simultaneous visual odometry, object detection, and instance segmentation (SimVODIS).
Training SimVODIS requires unlabeled video sequences and the photometric consistency between input image frames generates
self-supervision signals. The performance of SimVODIS outperforms or matches the state-of-the-art performance in pose estimation,
depth map prediction, object detection, and instance segmentation tasks while completing all the tasks in a single thread. We expect
SimVODIS would enhance the autonomy of intelligent agents and let the agents provide effective services to humans.

Index Terms—Visual odometry (VO), data-driven VO, visual SLAM, semantic VO, semantic SLAM, semantic mapping, monocular
video, depth map prediction, depth estimation, ego-motion estimation, unsupervised learning, deep convolutional neural network

(CNN).

1 INTRODUCTION

AS technology advances, Al replaces simple repetitive
and dangerous tasks, leading people to live a better
and more convenient life. Understanding the surrounding
environment is essential for an intelligent agent to provide
meaningful services to or to interact with people [1]. In the
process, the intelligent agent must be able to understand the
semantic entities inherent in the environment as well as the
geometry of the environment in order to perform high-level
tasks such as errands, cleaning, cooking, and answering
questions [2]]. If the intelligent agent collects only one type of
information among the physical information and semantics
of the surrounding environment, it can only perform simple
tasks and cannot provide meaningful services to humans.

Methods for the intelligent agent to understand the sur-
rounding environment include extracting geometric infor-
mation such as visual odometry (VO) [3], [4] and SLAM [5],
[6] and recognizing semantics such as object detection [7],
[8] and semantic mapping [9]], [10]. Algorithms that collect
only geometric information are merely suitable for simple
tasks such as navigation and path planning because they
lack semantic information to provide high-level services. On
the other hand, methods for obtaining semantic information
in general process one image at a time making it difficult
to provide a practical service in the real-world contexts.
Recently proposed approaches combine two techniques to
associate geometric and semantic information [11], [12].
However, running both algorithms simultaneously requires
a lot of computation resources and complicates the software
structure [13].
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Fig. 1. Overview of the proposed SimVODIS. SimVODIS receives a
set of three consecutive images and then estimates semantics (object
classes, bounding boxes and object masks), relative poses between
input images, and the depth map of the center image.

To overcome the above-mentioned limitations, we pro-
pose Simultaneous Visual Odometry, Object Detection, and
Instance Segmentation (SimVODIS). SimVODIS is a neural
network that concurrently estimates geometry and seman-
tics of the surrounding environment (Fig. [I). SimVODIS
evaluates the following information when it receives a set
of image frames: 1) relative pose between image frames, 2)
depth map prediction, 3) object classes, 4) object bounding
boxes, and 5) object masks. To the best of our knowledge,
SimVODIS is the first fully data-driven semantic VO algo-
rithm. We expect SImVODIS would prompt the develop-
ment of data-driven semantic VO/SLAM since data-driven
VO algorithms would advance from geometric VO to se-
mantic VO as conventional feature-based VO/SLAM have
evolved.

We design the SimVODIS network on top of the Mask-
RCNN architecture [8]. Since Mask-RCNN derives common
features to perform both geometric and semantic tasks,
these features allow the design of a multi-task network
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that performs both geometric and semantic tasks. We devise
two network branches utilizing the features for pose esti-
mation and depth map prediction. Because SimVODIS is
an unsupervised learning framework, training SimVODIS
requires just unlabeled image sequences. In the training
phase in which pretrained Mask-RCNN is employed, each
input image frame is warped using the estimated relative
pose and the predicted depth map, and training losses are
calculated using the correspondence between the warped
image and the original image.

Previous studies have mainly used the KITTI dataset [14]
which captures outdoor scenes to train the networks for
joint estimation of ego-motion and depth map prediction.
However, intelligent agents would work in both outdoor
and indoor environments such as autonomous cars that
run on the outside roads and park inside a building. We
supplement a set of datasets and investigate the effect of
the dataset heterogeneity on model performance in mixed
outdoor and indoor scenarios. In addition, we analyze
model performance according to various training conditions
through the ablation study.

Specifically, the main contributions of our work are as
follows.

1) Research Scenario: We define a fully data-driven se-
mantic VO algorithm, SimVODIS, for the first time.
We expect SimVODIS would provoke the evolution
of data-driven VO towards semantic VO/SLAM.

2) Network Architecture Design: We design the
SimVODIS network which simultaneously performs
both geometric and semantic tasks. The network
conducts multiple tasks utilizing shared feature
maps and runs in one thread.

3) Studying the Effect of Dataset Heterogeneity: We
employ multiple datasets for training the proposed
SimVODIS and investigate the effect of dataset het-
erogeneity on the performance of ego-motion esti-
mation and depth map prediction.

4) Ablation Study: We vary the training conditions
in multiple ways and evaluate how different train-
ing environments affect the performance of the
SimVODIS network.

5) Open Source: We contribute to the corresponding
research society by making the source code of the
proposed SimVODIS network and the pretrained
network parameters publi

The rest of this manuscript is structured as follows.
Section II reviews previous research outcomes related to
SimVODIS. Section III describes the proposed SimVODIS
network and the training scheme. Section IV delineates
the evaluation setting and Section V illustrates the evalu-
ation results with corresponding analysis. Section VI dis-
cusses future research directions for further improvement of
SimVODIS and concluding remarks follow in Section VII.

2 RELATED WORKS

We review previous research outcomes relevant to the pro-
posed SImVODIS in this section. We discuss the main ideas

1. https:/ / github.com /Uehwan/SimVODIS
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of previous works, compare them with SimVODIS and point
out the novelty of SiImVODIS.

2.1

Conventional VO/SLAM methods effectively provide in-
telligent agents with physical information for pose estima-
tion and navigation. However, intelligent agents equipped
with conventional VO/SLAM methods lack any semantic
information and require additional recognition processes for
reasoning-enabled high-level Al applications. To enable in-
telligent agents to understand the semantics of surrounding
environments and perform various tasks, researchers have
attempted to associate semantics from recognition modules
with physical information from VO/SLAM modules. For
this, a semantics thread with a recognition module is added
to the original motion thread to implement semantic Map-
ping/SLAM. The recognition module is either feature-based
or CNN-based. Fig. Pal shows the architecture of semantic
Mapping/SLAM.

Semantic Mapping/SLAM

2.1.1 Feature-based Methods

Feature-based methods utilize hand-crafted features to rec-
ognize semantic entities. Most commonly, monocular cam-
eras are employed since monocular cameras provide an in-
expensive and easy-to-deploy way to collect visual informa-
tion of the surrounding environment. Dense feature maps
such as SIFT descriptors [15] are extracted from monocular
video sequences or bags of binary words with a database of
3D object models [16] are exploited for recognition of objects
or other entities. At the expense of cost and an additional
calibration step, the usage of RGB-D cameras enhances
the performance of semantic Mapping/SLAM compared to
the methods with monocular cameras [17], [18], since the
additional depth information makes the extracted features
richer.

However, feature-based recognition modules are grad-
ually giving their ways to CNN-based methods for a cou-
ple of reasons. First, feature-based methods display lower
accuracy than deep learning based state-of-the-art meth-
ods [19]]. With the improved computation power and the
availability of bigger datasets, the features learned by deep
neural networks surpass the performance of hand-crafted
features. Next, feature-based methods require manual work
for designing features. Designing features takes much time
and effort in addition to a lot of experience.

2.1.2 CNN-based Methods

CNN-based recognition modules are prevailing due to their
high performance and CNN-based methods are replacing
the feature-based recognition modules of semantic Map-
ping/SLAM methods. Current semantic Mapping/SLAM
methods employ both off-the-shelf object classifiers [2], [20],
[21] and fine-tuned modules [10]], [12] to extract semantic
information. Nonetheless, CNN-based methods suffer from
increased system complexity and computation time, since
such methods run in two threads: motion and seman-
tic threads. The increased system complexity could lead
to maintenance problem and the prolonged computation
time could hinder real-time applications. The proposed
SimVODIS, in contrast, run in one thread to extract both
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Fig. 2. SimVODIS compared to conventional methods. (a) Semantic Mapping/SLAM, (b) Data-driven VO, (c) Proposed SimVODIS

pose and semantic information, minimizing the growth of
the system complexity and computation time.

2.2 Data-Driven VO

The recognition modules of semantic Mapping/SLAM are
replaced with data-driven (CNN-based) methods as afore-
mentioned. However, the VO (pose estimation) part of se-
mantic Mapping/SLAM has not been completely replaced
with data-driven methods, since the research on the data-
driven VO is in the early stage at the moment. Researchers
have started to show its feasibility and the field is under
active research. Data-driven VO can be categorized into two
classes: supervised and unsupervised VO.

2.2.1 Supervised VO

The research on the data-driven VO has started with the
supervised learning scheme. At first, researchers have for-
mulated the pose estimation with deep neural networks
(DNN) as a regression problem and trained DNNSs to regress
the pose of the current image frame for a re-localization
purpose [23]. Later, DNNs have been trained to evaluate
the relative pose between two consecutive image frames
and showed satisfactory performance as an initial study
[24], [25]. Nonetheless, the research on the data-driven VO
is moving towards the unsupervised VO due to a few
limitations: Supervised VO requires labeled data for training

and securing labeled data for VO necessitates the usage of
extra sensor tools [14].

2.2.2 Unsupervised VO

Unsupervised VO does not require labeled data for training.
It utilizes image reconstruction from different camera views
as a supervision signal. Unsupervised VO jointly trains two
CNNs, pose estimation and depth map prediction networks,
since the image reconstruction needs both relative pose and
depth map. Unsupervised VO deals with two types of input
image sequences: monocular and stereo image sequences.
The unsupervised VO with monocular image sequences
[22], [26], entails the scale ambiguity problem, while
the unsupervised VO for stereo image sequences [28],
requires a more expensive device and additional calibration
steps. The proposed SimVODIS extends unsupervised VO
with monocular image sequences because the development
process for a SLAM system starts from a monocular VO and
develops towards a stereo and rgb-d VO and a final SLAM
system.

2.2.3 Comparison with SimVODIS

The contemporary data-driven VO methods, as conven-
tional feature-based VO and SLAM in the early stage, only
extract physical information and do not offer semantic in-
formation. Thus, intelligent agents cannot solely rely on the
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contemporary data-driven VO for versatile performance. In
contrast, the proposed SimVODIS provides both physical
and semantic information in one thread allowing intelligent
agents to understand the surrounding environment in a
deeper manner.

3 SimvVODIS

In this section, we illustrate the proposed network archi-
tecture of SimVODIS built on top of Mask-RCNN and the
framework for unsupervised learning of depth and ego-
motion from monocular videos.

3.1 Problem Formulation

We represent ego-motion in R? as a motion vector as fol-
lows:

Utarget,source — [tTarT]Ta (1)
where t = [Axz, Ay, Az]T is a translation vector and
r = [A0, Ag, Ay]T is a rotation vector expressed in Euler

angle. We express the rotation vector as an Euler angle
rather than a quaternion, since the Euler representation
boosts the performance of the motion estimation compared
to the quaternion representation [22]. A motion vector cor-
responds to a transformation T' in R3, an element in the
special Euclidean group SE(3):

B R t
:T:[O J, @)

where R is a rotation matrix in the special orthogonal group
SO(3).

The proposed SimVODIS aims to maximize the condi-
tional probability of the motion, u;:—1, and depth image,
D,, given a pair of monocular images (I;_1, I;) at time step
t as follows:

(ﬁt,tflal’jt) = (argmaX)P(ut,t—l»Dt|ItvIt71)~ 3)
wy 1,04

Since SImVODIS performs with two additional separate
branches, one for motion estimation and the other for depth
map prediction, the probabilities of motion and depth given
(I4_1, I) are independent. Thus, the conditional probability
becomes

P(uy—1, D)1, Ii—1) = P(ugp—1 |y, Ii—q1) - P(Dy| 1, I—q)
= P(ut,t—1|ItaIt—1) 'P(Dt\It)-
4)

In practice, we input a set of three consecutive images
when estimating motion vectors because this setting ensures
robustness and enhances performance [22], [26]. With this
setting, SImVODIS estimates two motion vectors at a time
and the target function of SimVODIS becomes

(U4, Dy) = argmaxP(Uy|Iy1, I, Ii—1) - P(Dy|I), (5)
(U¢,Dy)

where Ut = [Ut_’tfl; ut,t+1]-

TABLE 1
Configuration of the VO branch

Layer Size Padding Stride Channels
convl 7x7 0 1 256 x 3
conv2 5x5 0 1 256
convd 3 x3 0 1 128
convd T7x7 0 1 64

3.2 Network Architecture

Fig. |3| describes the conceptualized architecture of the pro-
posed SimVODIS network. We design the SimVODIS net-
work based on the following ideas: 1) Mask-RCNN extracts
general features for both semantic and geometric tasks such
as region proposal, class labeling, bounding box regression
and mask extraction and 2) we could use these rich features
to estimate the relative pose and predict the depth map
since the extracted features are useful for both semantic
and geometric tasks. For SimVODIS, we design two net-
work branches: pose and depth branches. The pose branch
estimates the relative pose between three consecutive image
sequences using the rich features from the feature pyramid
network (FPN). Table[l|displays the detailed network archi-
tecture of the pose branch. The increase in the total amount
of parameters due to the pose branch is minimal.

Next, Fig. [ shows the architecture of the depth branch
for depth map prediction. The depth branch predicts the
inverse depth map rather than directly estimating depth
values for numerical stability. The depth branch exploits
feature maps at all scales to capture both macroscopic and
microscopic characteristics. Previous works predict depth
maps in four different scales during training to cope with
the gradient locality problem. In contrast, SimVODIS only
generates one depth map whose scale equals to the in-
put image, since rich features are already extracted from
FPN and the gradient locality problem does not occur for
SimVODIS.

3.3 Loss Functions

During the training procedure, the SimVODIS network
searches for the optimal hyper-parameters, (@pose; Odeptn ),
that maximize

(0;()567 eéepth) = arginax [P(Ut|It+1a It> Itfl; 01)086)'
pose Bdepth)

P(Dt ‘It; gdepth)] .
(6)

To learn the optimal hyper-parameters, we employ three
loss functions to get minimized.

3.3.1 Image Reconstruction Loss

The image reconstruction loss takes the fundamental role in
training the networks with unlabeled video sequences in an
unsupervised manner. We reconstruct the center image (1)
seen from two nearby camera views using the estimated
motion vectors and the predicted depth map of I;. For the
image reconstruction, we project each pixel in I; onto the
nearby views as follows:

pn:K"jjt,n'ﬁt(pt)'Kil'pt’ (7)
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where n € {t — 1,¢t + 1}, K is the camera intrinsic matrix
and p; represents the homogeneous coordinate of each pixel
in I;. Since p,, contain continuous values while coordinates
of digital images deal with discrete values, we use the
differentiable bilinear sampling [30]. Then, the center image
is reconstructed as follows:

jrecon(pt) = In(pn) = Z Z wijI"(p" )’

i€H jEV

®)

where p¥ is the 4-pixel neighbors of p,, w;; denotes the
spatlal proximity between p,, and p/ and 2w =1,

= {left,right}, and V = {top,bottom}. Fmally, the
reconstructlon loss is

Z |Irecont It( )| (9)

T@COTL
where p is the set of pixel coordinates.

3.3.2 Structural Similarity Loss

The image reconstruction loss implicitly assumes that the
scenes are Lambertian, thus the brightness remains the
same for all observation angles. Violation of this assumption
could lead to corrupted gradients, spoiling the training
procedure. For improvement of robustness, we use the
structural similarity metric defined as

(2papy + €1)(2ptay + c2)
(B2 + 15 +c1)(oz + oy +c2)’

SSIM (x,y) = (10)

where = and y are image patches, p and o are patch means
and variances, ¢; = 0.012, and ¢y = 0.032. We extract 3 x 3
image patches from I; and I;ccon,+ and minimize

Lsmooth - Zl - SSIM( ( recon ta )7S(It7p))a
p

where s(I,p) = {I(p® +1i,p¥+j)|i,j € {—1,0,1}} samples
a patch of size 3 x 3 centered at p from an image I.

(1)

3.3.3 Depth Smoothness Loss

We regularize the depth map estimate to encourage smooth-
ness without which random sharp lines appear in the pre-
dicted depth map. By imposing a loss on the gradients
of the depth map, we can achieve smoothness over the
depth map. In addition, we penalize the smoothness loss
by inversely weighting it with the gradients of the input
image as follows:

Lsmooth = Z |ath| - €

The weighting allows discontinuities for the regions where
discontinuities appear in the input image.

“10 Ll 19, Dy| - e 10T (12)

3.4 Training Scheme

For training SimVODIS, we first freeze the parameters of
Mask-RCNN and initialize the parameters of the pose es-
timation and the depth map prediction branches. Then,
we feed a set of three consecutive images at a time. The
SimVODIS network takes in the three images as a batch,
which keeps the computation time not to increase. The pose
branch estimates the camera motion vectors (U;). The depth
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map prediction branch uses only the center image and esti-
mates the depth map. Using the estimated depth map, the
depth smoothness loss is evaluated. Finally, the estimated
motion vectors and depth map lead to image reconstruction
where the reconstruction and SSIM losses are calculated.
In the process of calculating the reconstruction loss, we
apply the auto-masking technique and the minimum (min)
reprojection loss approach [27]]. Bounding boxes, class labels,
and masks of objects in each input image are detected in the
process as well.

Conventional methods apply all loss functions at four
different scales to overcome the gradient locality. The scale
ranges from the input image resolution to 1/8 of the input
resolution (1, 1/2, 1/4, and 1/8). However, we do not
employ such an approach and use a single image resolution
that matches the input resolution. Since the majority of the
SimVODIS network is already trained and the pose estima-
tion and the depth map prediction branches are shallow, the
problem of gradient locality does not occur.

The final loss function is a weighted sum of the three
losses:

Lfinal = )\1 : Lrecon + >\2 . LSSI]VI + A3 : Lsmoot}u (13)

where Aj, A2, and A3 are weights. We empirically set A} =
0.15, Ao = 0.85 and A3 = 0.001.

4 EVALUATION

We delineate the evaluation settings and methods for the
verification of the performance of SiImVODIS in this section.
Since the weights of the Mask-RCNN part of SimVODIS are
frozen and the detection and segmentation performance of
SimVODIS matches that of the state-of-the-art, we focus on
evaluating the performance of pose estimation and depth
map prediction.

4.1

Unlike previous works, we use a set of monocular video
datasets for training SimVODIS since intelligent agents
would work in both outdoor and indoor environments. In
total, our study includes seven datasets: five for mainly
training (main datasets) and two for additional testing (ex-
tra datasets). Fig. [5| shows sample images from the main
datasets and Table 2| summarizes the characteristics of each
main dataset. First of all, we train SimVODIS on the KITTI
dataset following the convention [27]. Then, we compare the
performance of pose estimation and depth map prediction
against baselines using the standard KITTI split [31]. Next,
we train SimVODIS on the combinations of main datasets.
In total, we generate five versions of SimVODIS and test
them on various datasets. This allows the examination of
the effect of the dataset heterogeneity on the performance of
joint estimation of ego-motion and depth map prediction.

Datasets

4.1.1 Description of Main Datasets
We employ the following five datasets as main datasets for
training SimVODIS and verification of performance.

e KITTI [14]: The KITTI benchmark is one of the most
well-known public datasets for evaluating the per-
formance of VO and visual SLAM algorithms. It

6

was collected during an outdoor car driving scenario
using a stereo camera. Since a number of dynamic
objects appear in the scenes and the car moves fast,
the KITTI benchmark poses a challenge for VO and
visual SLAM algorithms. It consists of 22 sequences
and 11 of them (sequence 0-10) provide ground-truth
camera motion.

e Mialaga [32]: Similar to the KITTI benchmark, the
Malaga dataset was collected during an urban car
driving scenario using a stereo camera. It consists of
15 sequences whose ground-truth camera motion is
not available. Instead, it offers other sensor data such
as Lidar and GPS.

e ScanNet [33]: The ScanNet dataset encompasses
1,513 indoor RGB-D sequences. The dataset offers
rich information regarding the scenes including cam-
era motion, surface reconstruction, and semantic an-
notation. Thus, a number of vision tasks can utilize
the dataset for training and evaluation.

e NYU depth [34]: The NYU depth dataset (Version
2) includes 464 RGB-D sequences. It targets indoor
scene understanding and it does not provide ground-
truth camera motion data. The dataset deals with
various types of indoor spaces such as kitchen, office
room, living room, etc.

e RGB-D SLAM [35]: The RGB-D SLAM dataset com-
prises 39 indoor RGB-D sequences. Its original pur-
pose is for the development and evaluation of VO
and SLAM systems. It provides ground-truth camera
pose data measured by a high-quality motion cap-
ture system. The camera was held by either humans
or robots during the data collection process.

4.1.2 Description of Extra Datasets

We adopt two additional datasets to test the performance of
SimVODIS in unseen environments.

e Make3D [36]: The Make3D dataset provides 134 pairs
of an outdoor image and the corresponding depth
map. The images are not consecutive but capture
separate views. The resolutions of the images and
the depth maps are 1,704 x2,272 and 55x305, respec-
tively and the depth maps are acquired with a laser
device.

e 7 Scenes [37]: As the name implies, the dataset
consists of seven indoor sequences. Each sequence
contains a record of a continuous stream of tracked
RGB-D camera frames. The lengths of sequences
range from 500 to 1,000. Both images and depth maps
have the resolution of 640x480.

4.1.3 Combination of Datasets for Training and Testing

We combine the main datasets in five ways and gener-
ate five variants of SimVODIS. Table [ describes how the
datasets are combined and the subscriptions in the table
represent KITTI (k), outdoor (o), RGB-D (r), indoor (i), and
all (a), respectively. First of all, we use the KITTI dataset
for performance verification (SimVODIS;, corresponds to
SimVODIS,,;;) compared to baselines. For this, we split the
dataset into train, validation and test sets as conventional
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TABLE 2
Summary of Datasets for Training
Dataset Publisher Modality FPS Resolution Sequences  Environment
KITTI [14] KIT Stereo 10Hz 1241x376 21 Outdoor
Maélaga || MRPT Stereo 2x20Hz 1024 x768 or 800x 600 15 Outdoor
ScanNet || Stanford RGB-D 15 or 30Hz 1296 x968 1513 Indoor
NYU Depth I\ NYU RGB-D 20-30Hz 640x480 464 Indoor
RGB-D SLAM [35] TUM RGB-D 30Hz 640480 39 Indoor

on the model performance by combining the datasets as
described in Table 5] We analyze the model performance on
both KITTI (outdoor) and RGB-D SLAM (outdoor) test sets.
We select a part of image frames from the RGB-D SLAM
dataset on which the models are not trained to assess the
performance in indoor environments. In addition, we use
the extra datasets for testing the performance. Since we do
not train SimVODIS on the extra datasets, testing SimVODIS
models on the extra datasets reveals the generalization per-
formance according to the dataset heterogeneity of training
data.

KITTI

Malaga

4.2 Metrics

For intuitive comparison of the proposed SimVODIS against
baselines, we employ both quantitative and qualitative
methods. We describe the metrics of the quantitative analy-
sis for clarity in this subsection.

ScanNet

4.2.1 Pose Estimation

We quantitatively evaluate the performance of the pose
estimation by Absolute Trajectory Error (ATE) [35]. For
convenience, we briefly summarize ATE as follows:

NYU Depth

1 )
ATE = (NZ |Ap,]1?)z, (14)

(3

RGB-D SLAM

where N is the number of estimated states and Ap, is the
position difference (error) between the estimated state and
the ground-truth at the i-th step.

Fig. 5. Sample images from the mixture of datasets used for training \ g
and testing. The mixture of datasets consists of KITTI, ScanNet, EuRoC, 4.2.2 Depth Map Prediction

Malaga and NYU depth. The following metrics represent quantitative performance of
depth map prediction: Absolute Relative Difference (ARD)

TABLE 3 , Squared Relative Difference (SRD), Root Mean Square

SimVODIS Variants and Corresponding Datasets Error (RMSE) , RMSE log [31] and three classes of

Thresholds (§ < v, v € {1.25,1.25?,1.25°}) [39]. By letting

Model Name | KITTI | Malaga | ScanNet | NYU | RGB-D D and D denote the ground-truth depth map and the
SimVODISy, v - - - - predicted depth map, respectively, we calculate each metric
SimVODIS, v v - - - as follows:
SimVODIS - : - . v .
T 1 D(p)— D(p
SimVODIS; - - v v v ARD = > D) @)l (15)
. N(p) D(p)
SimVODIS,, v v v v v p
1 D(p) — D(p)|?
SRD — 3 |D(p) — D(p)| (16)
methods [22]. Then, we use sequences 9 and 10 to demon- N(p) I3 D(p)

strate the pose estimation performance and 697 images

selected to verify the depth map prediction performance. RMSE — 1 Z |D(p) — D(p)|? (17)
Next, we examine the effect of dataset heterogeneity N
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TABLE 4
Baselines and Their Functionalities
Method Pose | Depth Features
Zhou et al. [22] v v Unsupervised
Mahjourian et al. [26] v v Unsupervised
Ranjan et al. [40] v v Unsupervised
Casser et al. [41] v v Unsupervised
Godard et al. [27] - v Unsupervised
ORB-SLAM [6] v - Hand-crafted
Eigen et al. [31] - v Supervised
Liu et al. [42] - v Supervised
Fu et al. [43] - v Supervised
SimVODIS v v Unsupervised

1 ~
RMSElog = \/]V(p) Z | IOgD(p) - 10gD(p)|2 (18)
p

(19)

4.3 Ablation Study

To investigate the effect of each design choice of SimVODIS,
we train SimVODIS in multiple ways. We control the fol-
lowing components of SimVODIS: auto-masking, min loss,
SSIM loss, number of depth map scales during training
(either 1 or 4), and input image size (either 416 x 128 or
640 x 192). For the full SimVODIS model, we apply all
the auto-masking technique, the min loss, and the SSIM
loss and use one depth map scale and the input image of
size 640 x 192. In total, we train five variants of SimVODIS
and each variant differs one training condition from the full
SimVODIS model (SimVODISy,).

4.4 Baselines

Table |4]lists the baselines that we compare with SimVODIS.
A part of the baselines performs both pose estimation and
depth map prediction, while the other part of the baselines
conducts either pose estimation or depth map prediction.
All the baselines are based on deep feature learning except
ORB-SLAM [6] which uses hand-crafted features. The seven
out of ten deep feature learning methods take unsupervised
learning settings, while the other requires depth supervision
for training depth map prediction networks.

5 RESULTS AND ANALYSIS

In this section, we present the evaluation results of
SimVODIS in a number of conditions, analyze the results
in a thorough manner and establish the effectiveness of
SimVODIS.

5.1 Ablation Study

Tables [5] and [p] describe the results of ablation study. First
of all, the automasking technique, the min loss, and the
SSIM loss all contribute to clean gradient for training the
networks. Missing one of the techniques degrades the per-
formance of both depth map prediction and pose estimation.
The gradient gets deteriorated by moving objects, occluded
views and illumination variation without the automasking
technique, the min. loss and the SSIM loss, respectively.
Among the three remedies for the corrupted gradient, the
effect of the SSIM loss is overwhelming as the performance
degradation is the greatest without the SSIM loss. From
this, we could infer that the illumination variation is more
common than moving objects and occluded views.

Next, comparing the performance of SimVODIS¢,,;; and
SimVODIS with N(scales) = 4 reveals that SimVODIS
does not entail the problem of gradient locality. Employing
pretrained Mask-RCNN allows the design of shallower net-
works for depth map prediction and pose estimation and
using rich features from FPN accelerates the training pro-
cedure. The performance of SImVODIS with N (scales) =
4 almost matches that of SimVODISy,; in depth map
prediction though the performance of SimVODIS with
N (scales) = 4 in pose estimation slightly drops.

The last two rows of Tables [f| and [f] indicate that using
smaller images marginally reduces the performance of both
depth map prediction and pose estimation. We assume that
the networks could receive more context as the input images
get larger and this helps improve the performance. This
tendency corresponds to the result reported in the previous
work [27].

5.2 Comparison Against Baselines

Tables [7] and [§ depict the quantitative performance of
SimVODIS compared to baseline models. SimVODIS out-
performs or performs on par with baselines in both depth
map prediction and pose estimation. Although the depth su-
pervised method [43] achieves the performance of the state-
of-the-art, five out of seven metrics indicate that SimVODIS
outperforms unsupervised depth map prediction methods.
In addition, SimVODIS could perform both depth map
prediction and pose estimation, while the depth supervised
method cannot. For pose estimation, the performance of
SimVODIS outperforms or matches baselines. Since the
scenes of the KITTI dataset contain multiple dynamic ob-
jects, the performance of pose estimation would improve by
tackling dynamic objects.

Fig. [f] presents the qualitative depth map prediction re-
sult of SimVODIS and baselines for intuitive understanding.
The qualitative results imply that SimVODIS extracts fine-
grained depth maps and recovers the depth of objects with
higher accuracy compared to baselines. The depth maps
from SimVODIS include the outlines of objects and objects
can be recognized even from depth maps. In contrast, the
outlines of objects get crumbled in depth maps from base-
lines and they cannot be recognized.

Fig. [/] displays the depth map prediction results for
the scenes containing people and moving objects. Although
people and moving objects in the scenes hinder the predic-
tion of depth maps for baselines, SimVODIS could recover
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TABLE 5
Quantitative Depth Evaluation Results According to Various Training Conditions
Training Condition Cap || ARD SRD RMSE RMSE,, | §<125 §<1.25%2 §<1.25
SimVODIS w/o automasking 80m 0.129  0.865 4.905 0.199 0.844 0.957 0.983
SimVODIS w/o min. loss 80m || 0.127 0.853  4.876 0.199 0.846 0.955 0.982
SimVODIS w /o SSIM loss 80m 0.136  0.876 4.997 0.205 0.832 0.955 0.983
SimVODIS with N (scales) =4 | 80m 0.126  0.824 4.823 0.196 0.847 0.958 0.984
SimVODIS with 416x128 80m 0.128  0.852 4976 0.200 0.844 0.956 0.983
SimVODIS,;; 80m 0.123  0.797 4.727 0.193 0.854 0.960 0.984
TABLE 6 scenes with depth values less than 15m, we did not test

Quantitative Pose Estimation Evaluation Result According to Various
Training Conditions

Method Seq. 09 Seq. 10
SimVODIS w/o automasking 0.019 £ 0.010 | 0.013 &£ 0.008
SimVODIS w /o min. loss 0.014 £ 0.008 | 0.012 + 0.008
SimVODIS w /o SSIM loss 0.017 £ 0.010 | 0.014 £ 0.011
SimVODIS with N (scales) =4 | 0.014 & 0.007 | 0.013 £ 0.008
SimVODIS with 416x128 0.014 £ 0.007 | 0.011 =+ 0.008
SimVODIS f,,;; 0.012 + 0.006 | 0.011 & 0.008

the depths of people and moving objects. In most cases, one
can even count the number of people presented in the scenes
only looking at the predicted depth maps. We conjecture
that the features from FPN contain the information of objects
and these features help deal with moving objects for depth
map prediction.

Fig. 8| illustrates failure cases of SimVODIS. SimVODIS
occasionally predicts small values for the depths of the sky.
This phenomenon is not consistent but occurs infrequently.
Thus, SimVODIS produces reasonably large values for the
depths of the sky for other cases. Though the depths of the
sky are not precise in a few scenes, SImVODIS could con-
sistently recover the boundaries of objects when predicting
depth maps.

5.3 Effect of Dataset Heterogeneity

Although it is straightforward that testing on a different
dataset from the training dataset would inevitably reduce
the performance, no study has investigated how much the
performance drop is in the context of joint estimation of ego-
motion and depth map. In addition, it is crucial to guarantee
the generalization of trained models for robust performance.
We aim to investigate the effect of dataset heterogeneity in
this section.

We focus on depth map prediction when analyzing the
effect of dataset heterogeneity for two reasons. First, each
sequence imposes a different level of difficulty for pose
estimation, thus pose estimation does not provide absolute-
scale performance metrics. Second, the performance of
depth map prediction and pose estimation shows a similar
tendency as illustrated in the ablation study and the com-
parative study.

Table [9] summarizes the effect of dataset heterogeneity
on the performance. Since indoor sequences only provide

SimVODIS,. and SimVODIS;, which were trained on indoor
scenes, on outdoor sequences. Comparing model perfor-
mance on KITTI and Make3D indicates that increased het-
erogeneity of training dataset tends to reduce overfitting in
the case of outdoor scenes. The order of model performance
is inversely proportional to the number of datasets used
for training in the case of KITTI, while the order is directly
proportional in the case of Make3D.

However, the trend is not obvious for indoor scenes.
Although SimVODIS, and SimVODIS; performs the best for
RGB-D as expected, the performance order of SimVODIS,
SimVODIS, and SimVODIS, is maintained when tested
on KITTI and when tested on RGB-D. Moreover, the per-
formance order is the same for RGB-D and 7 Scenes. We
presume that the statistical correspondence between color
images and depth maps is similar among KITTI, RGB-D and
7 Scenes. Plus, the low RMSE of 7 Scenes suggests that the
average depth value of 7 Scenes is lower than that of RGB-
D.

6 DiISCUSSION

SimVODIS concurrently estimates camera motion vectors
and semantics (bounding boxes, class labels and object
masks), and predicts depth maps in one thread rather than
two threads. SimVODIS provides an unsupervised learning
framework with which it learns the optimal parameters
from unlabeled video sequences. SimVODIS shows state-
of-the-art or comparable performance in motion estimation
and depth map prediction. However, there still exist a few
future works for further improvement of the performance.

First of all, we could extend SimVODIS to a SLAM
system. SiImVODIS similar to other VO systems accumulates
estimation errors over the course of camera movement.
Integrating a loop-closure algorithm offsets the accumulated
errors and the system could robustly perform for a longer
sequence of observations. Moreover, the SLAM system with
SimVODIS could possibly improve the performance of the
loop closure detection by utilizing the rich semantics ex-
tracted in addition to the conventional geometric features.
Current SLAM methods, in general, rely on a visual bag of
words for the loop closure detection [6].

Next, we could investigate the application of SimVODIS
in dynamic environments. Although SimVODIS itself allows
intelligent agents to perform various tasks, the performance
gets deteriorated when moving entities appear in the en-
vironment. A number of SLAM approaches for dynamic
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Fig. 6. Qualitative comparison of single-view depth map prediction. SimVODIS extracts fine-grained depth maps compared to baselines. The
contours of objects are clearly seen in the depth maps from SimVODIS. On the other hand, the contours of objects get crumbled in depths maps
from baselines.
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TABLE 7
Quantitative Depth Evaluation Results Compared to Baselines

Method Supervision Cap || ARD SRD RMSE RMSE,, | §<125 §<1.25% §<1.25°
Eigen et al. [31] Coarse Depth 80m || 0214 1.605  6.563 0.292 0.673 0.884 0.957
Eigen et al. [31] Fine Depth 80m || 0.203 1548  6.307 0.282 0.702 0.890 0.958
Liu et al. [42] Depth 80m || 0.201 1584  6.471 0.273 0.680 0.898 0.967
Fu et al. [43) Depth 80m || 0.072 0307 2727 0.120 0.932 0.984 0.994
Zhou et aﬂgh - 80m || 0.208 1768  6.856 0.283 0.678 0.885 0.957
Mahjourian et al. - 80m || 0.163 1.240  6.220 0.250 0.762 0.916 0.968
Ranjan et al. \| - 80m || 0.148 1.149 5464 0.226 0.815 0.935 0.973
Casser et al. IEI - 80m 0.141  1.026 5.291 0.215 0.816 0.945 0.979
Godard et al. [27] - 80m || 0115 0903  4.863 0.193 0.877 0.959 0.981
SimVODIS - 80m || 0.123 0.797  4.727 0.193 0.854 0.960 0.984

SImVODIS Semantics

Zhouat al. [22]

Godardetal [27]  StructzDepth[41]  Ranjan stal [40]  Vid2Depth [26]

Fig. 7. Single-view depth map prediction for scenes containing people and moving objects. SimVODIS captures the outlines of people and moving
objects and they can be recognized even in depth maps. On the other hand, baselines cannot recover the depth information of people and moving

objects.
TABLE 8
Quantitative Evaluation Result of Pose Estimation Compared to
Baselines
Method Seq. 09 Seq. 10
ORB-SLAM (full) [@ 0.014 £ 0.008 | 0.012 & 0.011
ORB-SLAM (short) [El[ 0.064 + 0.141 | 0.064 £ 0.130
Mean Odom. 0.032 + 0.026 | 0.028 £ 0.023
Zhou et al. (5-frame) 0.021 £ 0.017 | 0.020 % 0.015
Mabhjourian et al. w/o ICP I\ 0.014 + 0.010 | 0.013 £ 0.011
Mahjourian et al. with ICP 0.013 £ 0.010 | 0.013 + 0.011
Ranjan et al. || 0.012 + 0.007 | 0.012 £ 0.008
Casser et al. 0.011 £ 0.006 | 0.011 + 0.010
SimVODIS 0.012 £ 0.006 | 0.011 + 0.008

environments employ semantic SLAM in addition to hand-
crafted features to handle moving entities [44], [45]. We
expect SImMVODIS would show satisfactory performance in
dynamic environments with a few add-ons since SimVODIS
already extracts semantic information as well as physical

information (ego-motion and depth map) in an efficient
manner.

In addition, we could improve the accuracy of
SimVODIS by enforcing consistency over multiple image
frames. Multiple observations of the same entity from
multiple views could compensate for recognition errors.
Such methods include bundle adjustment and consis-
tency over multi-views [47]. In the following research, we
could design a computational method that utilizes multiple
observations to enhance the performance of SimVODIS.
Moreover, we would consider batch-based computation and
parallel processing between GPU and CPU to ensure com-
putational efficiency while enhancing the performance.

Furthermore, we could devise a training scheme for
employing multiple training datasets to secure the robust
performance of SimVODIS in both indoor and outdoor
environments. The investigation of the effect of dataset
heterogeneity in our study implies that the current training
approach for data-driven VO would not guarantee versatile
performance when the environment varies. We plan to col-
lect a number of datasets for training SimVODIS and design
a training method for effective feature extraction from a set
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Fig. 8. Failure cases of single-view depth map prediction. SimVODIS do not recover the depth of the sky from time to time.

TABLE 9

SimVODIS Variants and

Corresponding Datasets

Model KITTI (outdoor) Make3D (outdoor) RGB-D (indoor) 7 Scenes (indoor)
ARD | SRD | RMSE | ARD | SRD | RMSE | ARD | SRD | RMSE | ARD | SRD | RMSE
SimVODIS,, | 0.123 | 0.797 4.727 0.392 | 5.407 8.958 0.322 | 2971 5.797 0.253 | 0.249 0.682
SimVODIS, | 0.131 | 0.823 4.850 0.383 | 4.913 8.615 0.335 | 2.624 5.813 0.340 | 0.484 0.936
SimVODIS, - - - - - - 0.285 | 2.302 5.632 0.196 | 0.119 0.454
SimVODIS; - - - - - - 0.297 | 2.391 5.765 0.215 | 0.143 0.496
SimVODIS, | 0.203 | 1.451 | 7.001 | 0.367 | 4.267 | 8.388 | 0.339 | 2.675 | 6.046 | 0.296 | 0.362 | 0.783

of training datasets.

Last but not least, we could enhance the architecture of
SimVODIS to support different types of imaging modalities
such as rgb-d and stereo cameras. The current implemen-
tation of SimVODIS supports monocular image sequences
that provide less amount of information compared to rgb-d
and stereo cameras. We would investigate ways to extract
and exploit the extra information inherent in those imaging
modalities while keeping the support for monocular cam-
eras. This would solve the scale ambiguity problem and
greatly improve the accuracy of pose estimation as well
as depth map prediction. Moreover, we expect the data-
driven VO following this development pathway will replace
the conventional feature-based VO/SLAM in the end with
better performance.

7 CONCLUSION

We proposed SimVODIS which concurrently estimates both
semantics and physical information inherent in environ-
ments when receiving a set of monocular image frames.
SimVODIS is the first fully data-driven semantic VO.
In contrast to conventional approaches where semantics,
poses and depth maps are evaluated in separate mod-
ules, SimVODIS extracts all the information in one thread.
SimVODIS achieves the state-of-the-art performance in both
depth map prediction and pose estimation and its per-
formance in object detection and instance segmentation

matches that of state-of-the-art. The depth maps from
SimVODIS clearly depict object boundaries which were
mashed in conventional methods. Moreover, we examined
the effect of dataset heterogeneity on model performance
and identified the future research direction to guarantee
the generalization of trained models. We expect intelligent
agents could realize practical services for humans by deeply
understanding surrounding environments with SimVODIS.
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