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Abstract—Achieving human-like visual abilities is a holy grail for machine vision, yet precisely how insights from human vision can

improve machines has remained unclear. Here, we demonstrate two key conceptual advances: First, we show that most machine

vision models are systematically different from human object perception. To do so, we collected a large dataset of perceptual distances

between isolated objects in humans and asked whether these perceptual data can be predicted by many common machine vision

algorithms. We found that while the best algorithms explain�70 percent of the variance in the perceptual data, all the algorithms we

tested make systematic errors on several types of objects. In particular, machine algorithms underestimated distances between

symmetric objects compared to human perception. Second, we show that fixing these systematic biases can lead to substantial gains

in classification performance. In particular, augmenting a state-of-the-art convolutional neural network with planar/reflection symmetry

scores along multiple axes produced significant improvements in classification accuracy (1-10 percent) across categories. These

results show that machine vision can be improved by discovering and fixing systematic differences from human vision.

Index Terms—Object recognition, computational models of vision, perception and psychophysics

Ç

1 INTRODUCTION

WHEN [the Master] makes a mistake, he realizes it.
Having realized it, he admits it.
Having admitted it, he corrects it.

Tao Te Ching, v61 [1]
Convolutional neural networks (CNNs) have revolution-

ized computer vision with their impressive performance on
object recognition [2], [3], [4], [5]. Their performance, although
impressive compared to other machine learning algorithms,
is still inferior to humans [6]. The performance gap between
machines and humans is even more striking when one com-
pares top-1 accuracy: for instance, the accuracy for finding
cars in natural scenes is�80 percent for CNNs and 93 percent
for humans [7]. Can we use insights from human vision to
bridge this performance gap?While it is relatively straightfor-
ward to identify objects and images on which humans per-
form better than machines [6], using these observations to
improvemachines is non-trivial for several reasons. First, bet-
ter performance could be due to better classifiers or image fea-
tures. Second, these observations tend to be class-specific and
rarely point to generic image properties that should be
included during training. However, in the visual cortex, neu-
ral responses are modulated by task demands but feature

selectivity remains unaltered [8]. Third, classification accu-
racy is a discrete measure that is insensitive to fine-grained
variations across objects within a given object class. Finally,
although abstract principles such as Gestalt have been exten-
sively characterized in humans [9], [10], it is unclear how they
contribute to recognition, and also unclear how to determine
if they are present inmachine vision algorithms.

A simpler alternative therefore would be to measure dis-
tances between objects in feature space. In machines, this
can be done by calculating metric distances between feature
vectors. In humans, these distances can be measured experi-
mentally in behavior [11], [12], [13] or in specific brain
regions [14], [15].

Here we compared object representations in human per-
ception with machine algorithms, discovered image proper-
ties that are systematically biased in machines, and improved
state-of-the-art machine algorithms by augmenting themwith
these discovered properties. To measure feature representa-
tions in humans, we measured perceptual dissimilarity using
visual search. Visual search is an extremely intuitive task
where performance can bemeasured objectively, and the time
taken to find the search target can be taken as an index of simi-
larity. The reciprocal of search time serves as a usefulmeasure
of dissimilarity that behaves like a distance metric [12] and
combines linearly across both object properties [16], [17], [18]
as well as top-down factors [19]. Further, asymmetries and set
size systematically modulate search but do not alter the rank
ordering of search difficulty [12], [16]. Although subjects
might make multiple eye movements during search, their
search dissimilarity is predictable from the first few hundred
milliseconds of neural activity in the higher visual areas, sug-
gesting that search dissimilarity is driven largely by feedfor-
ward processing [20], [21], [22]. Finally, we note that while it
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is appealing to measure perceptual dissimilarity on natural
scenes, interpreting this data can be complicated because the
dissimilarity could be based on looking at multiple objects in
a scene. Therefore we used objects isolated from their back-
ground in the human experiments to probe their underlying
representation.

Using this approach, wemeasured a large set of perceptual
dissimilarities and compared the ability of many common
machine algorithms to explain these data. This analysis
revealed several systematic biases between machines and
human perception. The most notable bias was that symmetric
objects were more distinct in human perception compared to
mostmachine algorithms. Symmetry is an important property
in our perception [9], [10], [23] that we detect far better than
machine algorithms [24]. Symmetry detection in an image is a
challenging problem that has been studied extensively [24],
[25], [26] including more recently using neural networks [27],
[28], [29], [30], [31]. Recent studies have suggested a role for
local ribbon symmetry in contours in scene categorization
[32]. Despite these insights it is not clear whether detecting
symmetry is useful for large-scale object recognition, and
whether it is already learned byCNNs over the course of their
training. We therefore augmented CNNs with symmetry fea-
tures, and confirmed that this indeed resulted in significant
improvements in performance. Our approach is validated by
the fact that we obtained significant improvements on natural
scenes despite discovering this bias using isolated objects.
Finally, we show that CNNs represent symmetry differently
because the units that contribute the most to classification
have weaker symmetry bias and are tuned to high spatial
frequencies.

1.1 Background

Below we review previous work in comparing machine and
human vision. Machines and humans have traditionally
been compared using their performance on many vision
tasks from recognition [2], [4], [5], [6] to segmentation [33].
However comparing overall task performance is problem-
atic for inference because any difference could be due to the
underlying features or due to the underlying decision pro-
cess that produces the eventual behavioral response. More
recently, object representations have been characterized
using human behavior [11], [12], [13], [34], [35] and in dis-
tinct brain regions [14], [15]. There are two broad findings
from these studies: First, object representations in early
visual cortex are explained by Gabor filters [36] or the
Gabor-like representations found in early layers of CNNs
[37]. Second, object representations in higher visual areas in
both humans (using fMRI/MEG) and monkeys (using sin-
gle neuron activity) are explained better using SIFT [14] and
HMAX models [15], and more recently, by later layers of
CNNs optimized for object classification [15], [38], [39], [40].
The similarity between brains and CNNs predicts similar,
not inferior performance for CNNs compared to humans.
Thus these results do not explain the performance gap
between CNNs and humans.

This apparent contradiction could have arisen for two
reasons: First, most of these comparisons are based on natu-
ral objects containing many features. This could have pro-
duced a large correlation between object distances even if

the underlying features are entirely different. Second, there
may be systematic differences between machine vision algo-
rithms and brains for some types of images but not others.
For example, images of cars or images with straight lines
could show similar representations in both human percep-
tion and computer vision models whereas images of faces
or images with curved lines could show systematic differen-
ces in representations between humans and machines. To
the best of our knowledge, these issues have never been
investigated. Even if systematic differences are identified
[41], it is plausible but by no means certain that incorporat-
ing these differences will lead to tangible gains in perfor-
mance [42].

Canwe use brain data to improvemachine vision? There is
extensive evidence that augmenting images with virtually
any human annotation can yield significant improvements,
but these studies typically assume human-assisted situations
where manual annotation is always available [43], [44]. But
can human annotations be automated and then used to
improve machine vision in novel images lacking annotation?
There has been surprisingly little work to address this ques-
tion. A recent study has augmented CNNs with human-
derived contextual expectations to show improved perfor-
mance [45]. Another recent study has shown that using brain
data to constrain machine learning can lead to improved per-
formance [46]. Yet another study uses a method called Data
Distillation to generate annotations on unlabeled datasets and
increase the size of the training data in order to improve
model performance on various vision tasks [47]. These studies
show that human-derived data can improve machine vision
but do not reveal any systematic biases in machine vision that
may have been lacking in the first place.

1.2 Overview and Contributions of This Study

There are several novel aspects to this study. First, we have
shown that perceptual similarity between objects in humans
can be systematicallymeasured andmodeled using computer
vision algorithms. To this end we are making publicly avail-
able a large dataset - the IISc-Dissimilarity between Isolated
Objects Dataset - containing 26,675 perceptual distances
between 2,801 objects measured from 269 human subjects.
Second, we show that nearly all computer vision models
tested show systematic biases from human perception. In par-
ticular we show that symmetric objects are more distinct in
perception compared to all computational models. Third, we
show that augmenting state-of-the-art CNNs with symmetry
features leads to tangible gains in performance. This finding is
non-trivial because the systematic biases in humans may be
present to serve visual functions other than classification. It is
also non-trivial because state-of-the-art CNNs are already
optimized for existing datasets and therefore augmenting
themmay not improve their performance. These results are a
proof-of-principle of this approach: that fixing systematic dif-
ferences between machine and human vision can lead to con-
crete improvements in machine vision. Some of these results
have been presented previously [34], although we have
expanded upon thiswork considerably.

In Section 2,we describe the collection andvalidation of the
perceptual data and comparison with computational models.
In Section 3, we describe how CNNs can be improved by
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including symmetry features. In Section 4, we analyze CNN
unit activations to elucidate why they show a bias in repre-
senting symmetric objects, and discuss how CNNs could be
trained to overcome this bias.

2 COMPARING MACHINE AND HUMAN VISION

Here we collected a large dataset of perceived dissimilarity
measurements between pairs of images and tested a large
number of computational models for their ability to explain
these data. These analyses revealed several systematic
biases between all computational models and perception.

2.1 Dissimilarity Measurements in Humans

To compare object representations in humans and machines,
we collected a dataset of 2,801 objects containing natural
objects and silhouettes (See Fig. 1A for example objects). The
natural objects were drawn from various natural object cate-
gories like animals, vehicles and tools. For some natural
objects, there were two views: a profile (sideways) view and
an oblique view created by in-depth rotation of the profile
view. The silhouette shapes also varied in complexity from
simple to complex, and in familiarity from abstract to famil-
iar. A subset of these silhouette shapes were created by com-
bining 7 possible parts on either end of a stem to get a total of
49 objects (Fig. 5 A). The set of 2,801 objects were presented
across 32 separate experiments each typically with at least 8
subjects. In each experiment, wemeasured perceived dissim-
ilarity between pairs of objects using a visual search para-
digm as given below. In total, we measured perceived
dissimilarity for 26,675 pairs of objects across 269 human
subjects.

All participants were aged 20-30 years, had normal or
corrected-to-normal vision, naive to the purpose of the experi-
ments and gave written informed consent to an experimental
protocol approved by the Institutional Human Ethics Com-
mittee of the Indian Institute of Science. All experiments were
conducted in a darkened room. Subjects were seated approxi-
mately 60 cm from a computer monitor controlled by custom
programs written using Psychtoolbox [48] in MATLAB. At
the beginning of each trial, a fixation cross appeared at the
center of the screen for 500 ms. Following this an array of 16
items appeared in a 4x4 grid, which contained one oddball
image and 15 identical distractor images (e.g., see Fig. 1B). In
most experiments, the search array measured 21� x 21� with
the items measuring 3� along the longer dimension. The loca-
tion of the distracter was randomly chosen with equal proba-
bility of occurance in all 16 locations. We jittered the position
of items in the array to prevent alignment cues from driving
the search. Subjects were instructed to respond as quickly and
as accurately as possible to indicate the side onwhich the odd-
ball target was present using a pre-specified key press (Z for
left and M for right, on a QWERTY keyboard). To facilitate
this, all search arrays had a red vertical line running down the
middle of the display. The search array stayed on for 10 s or
until the subject responded, whichever was earlier. All
aborted or incorrect trials were repeated at a random time-
point later in the task. Depending on the experiment, subjects
performed between 2-8 correct trials for each pair of objects.
We recorded the response time for each trial.

For each search,we took the reciprocal of the average search
time as an estimate of perceived dissimilarity between the tar-
get and distractor. This measure behaves like a mathematical
distance metric [12], shows linear summation across multiple

Fig. 1. Stimuli and Experiment. (A) Example objects used in the study for measuring perceived dissimilarities in humans; (B) Example 4x4 visual
search array with one oddball target (dog) amongst multiple instances of the distractor (cougar); (C) 2D embedding of measured distances between
a set of natural images, as obtained using Multidimensional scaling (MDS). The r-value indicates the agreement between search distances and the
embedded distances (**** is p < 0.00005).
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features [17], [18] and correlates with measures of subjective
dissimilarity [17].

Search Asymmetry. It has been observed previously that, for
some object pairs, search can be asymmetric. For example,
searching for Q among O’s is significantly faster than search-
ing for O among Q’s [49]. We therefore analysed our data for
the presence of asymmetries. To this end, we selected all
object pairs with at least 8 trials (n = 200) and for each pair, we
performed an analysis of variance (ANOVA) on search reac-
tion timeswith subject and asymmetry (each item as target) as
factors. Across the 200 pairs, 27 pairs (13.5 percent) showed a
significantmain effect of asymmetry after correcting formulti-
ple comparisons (p < 0.05, Bonferroni corrected). Thus,
search asymmetries are relatively rare in our dataset.

Dataset Consistency. Since the complete dataset was col-
lected from many human subjects, we were concerned that
themeasurementsmay not be representative of the perceptual
distances within any given subject. However this is unlikely
for the following two reasons: First, comparing the average
dissimilarity between two random halves of the subjects
yielded an extremely high correlation (r = 0.84, p < 0.00005;
Pearson’s product-moment correlation coefficient). Second, in
a separate experiment, we measured perceptual distances for
a random subset of 400 image pairs from the full dataset
in four human subjects. These perceptual distances were
strongly correlated with the original dataset (r = 0.80, p <
0.00005; Pearson’s product-moment correlation coefficient).
Further, the distributions of perceived distances measured in
the main and control experiments were not significantly dif-
ferent (median perceptual distances: 0.98s�1 for the control
experiment and 0.94s�1 for the main experiment; p = 0.9 for a
ranksum test on perceived distances).

2.2 Computer Vision Models

We tested a total of 23 popular computer vision models. We
grouped these models roughly into five categories for ease of
exposition: pixel-based, boundary-based, feature-based, sta-
tistical and biologically-inspired network models. For most
models, we extracted the feature vector for each image and
calculated the euclidean (or city-block) distance between the
feature vectors. For some models (like, Curvature Scale Space
model) which were specified in terms of a distance metric
rather than a feature vector, we computed the pairwise distan-
ces directly. All images in the dataset were scaled to a square
frame of 140 pixels (or model-specific size esp. for convolu-
tional neural networks) before giving as input to each model.
Eachmodel has been described in detail previously [34].

2.3 Model Evaluation

Because some of the computer vision models we tested are
already optimized for classification (e.g., CNNs), we evalu-
atedmodels in twoways. First, we calculated the direct corre-
lation between model distances and observed perceptual
distances. Second, we fit eachmodel to the perceptual data by
weighting its features to obtain the best match to the data. We
used a standard cross-validation approach where the model
was trained on 80 percent of the data and tested on the
remaining 20 percent.

To equate predictive power across all models, we per-
formed dimensionality reduction using Principal Component

Analysis (PCA) and reduced eachmodel’s feature representa-
tion into a 100-dimensional feature vector per image.We then
asked if a weighted sum of distances along these 100 principal
components could explain the observed perceptual data
better. Specifically, if x1 ¼ ½x1;1 x1;2 x1;3 . . . x1;100� and x2 ¼
½x2;1 x2;2 x2;3; . . . x2;100� are the 100-dimensional feature vectors
corresponding to two images, then our model predicts the
observed distance y12 between these two images to be

y12 ¼ w1jx1;1 � x2;1j þ w2jx1;2 � x2;2j þ . . .þ w100jx1;100 � x2;100j;
(1)

where w1, w2 etc represent the contribution of that particular
principal component to the overall perceptual distance.

In addition to the 23 individual models, we askedwhether
combining all models would yield better predictions of the
observed perceptual data. To this end, we tested two com-
bined models. In the first combinedmodel (hereafter, comb1),
we concatenated z-scored feature vectors from 15 individual
models (out of the 23 models considered, we excluded 4 net-
work based models in favor of VGG-16 as it on its own
yielded better fit to the observed data; among the other 4
excluded models, SSIM does not have explicit feature repre-
sentation, CSS and GB have very few features and the V1
model had too many features to perform PCA). We then fur-
ther reduced the concatenated feature representation to 100
dimensions using PCA. We repeated the weighted summa-
tion and cross-validation procedures as described above to
characterize themodel performance.

In the second combined model (hereafter, comb2), we pre-
dicted perceptual distances as a weighted sum of individual
model distances. Specifically, we solved a matrix equation of
the form y ¼ Xb, where y is a 26,675 x 1 vector containing
observed distances, X is a 26,675 x 23 matrix containing (fea-
ture unweighted) distances predicted by each of the 23 mod-
els and b is an unknown 23 x 1 weight vector representing the
relative contribution of eachmodel to the observed distances.

2.3.1 Evaluating Model Quality-of-Fit

Weestimated the amount of explainable variance or reliability
of the observed data by calculating the split-half correlation.
Specifically, we separated the subjects into two random
groups and calculated the perceptual distances separately.
We then computed the correlation between perceptual distan-
ces for these two groups and reasoned that the degree to
which these two random groups are correlated would be the
upper limit for any model fit. However, split-half correlation
computed this way cannot be used directly as it may underes-
timate the true reliability of the data. This is because split-half
correlation is based on comparing two randomly selected
halves of the data whereas models are trained on the entire
dataset. We therefore corrected the split-half correlation using
the Spearman-Brown formula, given by rc ¼ 2r

ð1þrÞ, where r is
the split-half correlation and rc is the corrected correlation.
We calculated a composite measure of model performance as
the squared ratio between model correlation and corrected
split-half correlation.

% variance explained ¼
� rm
rc

�2

; (2)
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where rm is the model correlation with the observed data.
All correlation coefficients reported in this study are
Pearson’s product-moment correlation coefficients.

2.3.2 Strength of Symmetry

Throughout, by ’symmetry’ we mean the specific case of
planar reflection symmetry about any axis in the image
plane [50]. To quantify the strength of symmetry of an
object, we computed the degree to which two halves of the
object are mirror images of each other. Specifically, the
pixel-wise difference between two halves of a symmetric
object, mirrored about the axis of symmetry, will be zero.
Thus, we defined the strength of symmetry about the verti-
cal axis for an object A as

Sv ¼ 1� SabsðA� flipvðAÞÞ
SabsðAþ flipvðAÞÞ : (3)

Where flipvðAÞ represents the object mirrored about the verti-
cal axis, and abs() is the absolute value, and the summation is
taken over all pixels. This strength of symmetry measure is 0
when the object and its vertical mirror reflection do not over-
lap at all, and is 1when the object and its verticalmirror reflec-
tion are identical in every pixel (i.e., when the object is
symmetric). In addition to this, we also calculated strength of
symmetry about the horizontal axis ðShÞ in a similar manner.
For each pair of objects, we calculated the strength of symme-
try about vertical axis averaged over both objects, and simi-
larly strength of symmetry about horizontal axis averaged
over both objects. The overall strength of symmetry for a
given pairwas computed as the larger of the vertical and hori-
zontal symmetrymeasures. This way ofmeasuring symmetry
is appropriate in our case because all objects were centered in
the image and hence had their axes of symmetry passing
through the center of the image. Further, we did not account
for skew-symmetry as only few natural objects in our dataset
showed out of picture plane rotations.

2.4 Results

2.4.1 Comparing Perception and Computer Vision

Models

We measured perceived dissimilarity for 26,675 pairs of
objects taken from 2,801 objects across 269 human subjects
using a visual search paradigm (See Fig. 1 A for example
objects and Fig. 1 B for an example visual search array). We
only tested a subset of all object pairs due to experimental
constraints as well as to avoid testing completely dissimilar
objects that would yield only extreme values in the range.
Specifically, the reciprocal of search reaction time was used
as a measure of perceived dissimilarity [12].

Subjects were highly consistent in their performance, as
evidenced by a strong correlation between the distances
measured from two halves of subjects across all object pairs
(split-half correlation: r = 0.81, p < 0.0005). This degree of
consistency is striking, particularly considering that eye
movement patterns, attentional engagement could have
varied across subjects, and target eccentricity and item spac-
ing were not held constant across experiments.

To visualize these dissimilarities, we used Multidimen-
sional Scaling (MDS) to embed objects into two dimensions

such that their distances best approximated the observed
distances (Fig. 1 C). In the resulting plot, nearby objects rep-
resent hard searches. Interestingly, profile and oblique
views of natural objects are close together, indicative of
viewpoint invariance in human perception. It can also be
seen that animate objects form a cluster indicative of their
shared features.

Next, we asked whether distances between objects in
computational models (without fitting to the data) are corre-
lated with perceptual data. For each model, we took the fea-
ture vectors that are typically used for classification, and
calculated distances between objects using the euclidean
distance between the corresponding feature vectors. As
described in the previous section, we quantified model per-
formance (or % variance explained) as the squared ratio
between model correlation and corrected split-half correla-
tion. All computational models showed a significant positive
correlation with perceptual data with the VGG-16 model
achieving the best performance (r = 0.68, p < 0.00005). This
model explained 55.1 percent of the explainable variance in
the data. Interestingly, GoogLeNet did not do better than
VGG-16 on this dataset even though it achieves significantly
better classification results on the ImageNet dataset [2], [4],
[5]. Further, when we allowedmodels to fit to the perceptual
data by re-weighting their features (100-dimensional feature
vectors from PCA, see previous section), most models
improved in their performance. Still, VGG-16 was the best
model and explained 62.6 percent of the explainable variance
(r = 0.72, p < 0.00005). Further, the observed trend in model
fits remained similar when we used feature vectors with 50
dimensions instead of 100 dimensions.

Does combining all models in some way produce even
better fit to the data? To answer this, we quantified how the
two combined models (comb1 and comb2) fit to the percep-
tual data. It has to be noted here that all the tested models
(including the combined models) have access to the entire
dataset and cross-validated in the same way. We found that
the comb1 model, in which features were concatenated
before performing PCA, yielded a performance worse than
even some individual models. We speculate that this may
have been because concatenating many model features
leads to correlated but irrelevant variations that are cap-
tured in the PCA. By contrast, the comb2 model, in which
the net distance is a weighted distance of all individual
models, gave the best match to perceptual data (% variance
explained = 68.1%; r = 0.74, p < 0.00005; Fig. 2 A). To iden-
tify the models that contributed the most and least to the
comb2 model, we inspected the weights associated with
each model. VGG-16 and V1 model distances contributed
the most, while Fourier Descriptor and Curvature Length
model distances contributed the least.

2.4.2 Systematic Residual Error Patterns Across

All Models

It is evident from the above analyses that even the best
model doesn’t explain all the explainable variance in the
data. To investigate this gap in greater detail, we calculated
the residual error for each pair of objects as the signed dif-
ference between the observed distance and predicted dis-
tance. We then examined all image pairs whose residual
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Fig. 2. Model performance on perceptual data and residual patterns. (A) Correlation between predicted and observed distances for the best model
(comb2) for all 26,675 pairs. Object pairs whose dissimilarity is underestimated by the model (residual error more than 1 standard deviation above
the mean) are shown as filled black circles with example pairs highlighted in orange. Pairs whose dissimilarity is overestimated by the model (residual
error less than 1 standard deviation below the mean) are shown as filled black diamonds with example pairs highlighted in blue. Pairs whose dissimi-
larity is explained by the model (residual error within 1 standard deviation of the mean) are shown as gray circles with example pairs highlighted in
green. **** is p < 0.00005. (B) Examples of under-estimated pairs of objects; (C) Examples of over-estimated pairs of objects; (D) Correlation
between strength of symmetry and residual error across object pairs for each model. Error bars indicate bootstrap estimates of standard deviation (n
= 10). All correlations are significant with p < 0.005 unless indicated by n.s (not significant); (E) Correlation between area ratio and residual error
across object pairs for each model; (F) Average residual error across image pairs with zero, one or two shared parts; (G) Average residual error for
object pairs related by view, mirror-reflection, shape and texture.
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error was one standard deviation away from model predic-
tions. This revealed some systematic patterns. Image pairs
whose dissimilarity was underestimated by the model (i.e.,
predicted < observed) frequently contained symmetric
objects or pairs with objects having large area differences
(Fig. 2 B). Image pairs whose dissimilarity was overesti-
mated by the model (i.e., predicted > observed) contained
objects that frequently shared features (Fig. 2 C). We found
that these residual error patterns are not artefactual: using
data from one half of the subjects to predict the other half
revealed no such systematic errors.

To confirm that the above systematic error patterns were
indeed present across all image pairs and in all models, we
quantified these image properties and asked whether residual
error increases systematically. These error patterns are investi-
gated in greater detail in our previous study [34] and are only
summarized here. First, we considered the specific case of
symmetry. For each image pair, we calculated the average
strength of symmetry in both images (see Section 2.3.2) and
askedwhether this symmetry strength correlateswith residual
error for all models. A positive correlation wouldmean that as
objects in a pair becomemore symmetric, model residual error
increases–thereby confirming that symmetric objects are more
distinctive in perception than in models. Indeed, all models
including the best combined model (comb2) showed a signifi-
cant positive correlation between strength of symmetry and
residual error (Fig. 2 D). There were only two exceptions to
this trend: the SSE and SIFT models, which showed no signifi-
cant correlation. GoogleNet, though a better model at object
recognition than VGG-16, doesn’t capture perceptual dissimi-
larities as well as other deep models. As a consequence, Goo-
gleNet shows stronger residual error correlation. Further, the
Coarse Footprint model captures differences in the overall
shape of objects by blurring the internal details and hence,
shows stronger residual error pattern as a result of underesti-
mating dissimilarities (for both symmetric and asymmetric
object pairs). In sum, almost all computational models under-
estimate the dissimilarity between symmetric objects.

Next, we quantified our observation that object pairs
with large area differences are more distinct in perception.
For each image pair, we computed the ratio of area of the
larger object to area of the smaller object and correlated this
ratio with the residual error for each computer vision
model. We found that almost all models show significant
positive correlation confirming that image pairs with large
area differences show larger residual errors (Fig. 2 E). Here,
the only exception was the comb2model (r = -0.03, p = 0.08).

Finally, we quantified our observation that dissimilarities
between objects with shared parts are underestimated by
computational models. To this end, we measured the average
residual error for pairs of objects that shared two parts, one
part or no part at all. We found that, for many models, the
residual error was large and negative for objects sharing two
parts, smaller but still negative for objects sharing one part
and almost zero for objectswith no shared parts (Fig. 2 F). Fur-
ther, we found that the residual error was systematically neg-
ative for pairs that were constituted by two different views of
the same object, pairs with mirror images of the same object,
and pairs with either shared shape or texture (Fig. 2 G). Thus,
objects with shared features or shared parts are more similar
in perception compared to computationalmodels.

2.4.3 Generalization to Novel Experiments

How robust are the above results to the set of object pairs cho-
sen? The good cross-validation prediction of perceptual data
by the best model (comb2) may not accurately represent its
ability to generalize to novel images. This is because, the
model is trained each time on 80 percent of the image pairs
which may contain all the images in the dataset. To address
this concern, we made use of the fact that our dataset of per-
ceptual dissimilarities was compiled from 32 experiments
with largely non-overlapping sets of images. We tested the
performance of comb2 model on each experiment after train-
ing it on all other experiments. This revealed a systematic
trend–the model generalized poorly to experiments contain-
ing very similar natural objects, multiple views of various
objects, and symmetric objects (Fig. 3). Further, we set out to
explore if these generalization trends hold even when the
model was trained to predict data from the same experiment.
We considered 16 experiments which had perceptual data for
at least 1000 image pairs and trained the comb2 model on 800
image pairs for each individual experiment with the testing
done on the remaining 200 image pairs. We repeated this pro-
cess 10 times to obtain an estimate of average variance
explained. Here too, we saw similar trends as observed before
with larger generalization errors for experiments containing
similar natural images and symmetric objects.

3 AUGMENTING CNNS WITH SYMMETRY

FEATURES

In the previous section we described how computational
models deviate systematically from human perception. In
particular, one systematic bias is that symmetric objects are
more distinct in perception compared to all computational
models. If symmetry is represented differently in perception
compared to computational models and in particular CNNs,
then we reasoned that augmenting a state-of-the-art CNN
with symmetry featureswould improve its performance.

3.1 CNN and Dataset Selection

We selected two CNNs – RCNN [51] and VGG-16 [3] which
were trained on PASCAL VOC 2007/2012 and ImageNet
dataset respectively. We used the MATLAB implementation
of faster-RCNN that gave a mean average precision (mAP)
of 59.9 percent on the PASCAL VOC 2007/2012 dataset.
Similarly, we downloaded a pre-trained VGG-16 network
which has a top-1 error of 24.4 percent on ImageNet Chal-
lenge 2014. To evaluate if augmenting with symmetry fea-
tures improves the performance of the network on training
images, we used the PASCAL VOC and ImageNet datasets.
Specifically we used 17,125 images from 20 categories from
the PASCAL VOC 2012 trainval set and 544,546 images from
1,000 categories from the ImageNet training set (with
ground-truth bounding box).

3.2 Symmetry Feature Extraction and Augmentation

To extract symmetry features, we computed symmetry with
respect to horizontal (Sh) and vertical (Sv) axis as explained
in previous section (see Section 2.3.2 and Equation (3)). In
addition, to account for variations in the orientation of sym-
metry axis, we computed symmetry score for 8 orientation
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axes uniformly sampled between 0� and 180�. All classifiers
were trained using existing MATLAB functions (fitcdiscr)
using 10-fold cross-validation.

3.2.1 PASCAL-VOC Dataset

We ran all of the PASCAL-VOC 2012 trainval images through
theRCNNand collected the output detections (both bounding
boxes and detection confidence). In all, we had 135,157 detec-
tions from 17,125 images (for a detection threshold of 0.2). We
kept the detection threshold considerably low to get as many
hits as possible. Each detection can either be a true detection
or false alarm depending on the ground truth labels. We then
collected hits and false alarms for each category and trained
linear classifiers to segregate true from false detections. First,
we trained a linear classifier on the RCNN detection confi-
dence scores. Then, we trained a linear classifier on symmetry
scores calculated using Equation (3). Finally, we trained a lin-
ear classifier on the combined representation of RCNN detec-
tion confidence score and the confidence score of the classifier
trained on symmetry features.

3.2.2 ImageNet Dataset

We took 544,546 images spanning 1,000 categories from the
ImageNet dataset with ground-truth bounding box annota-
tions and extracted activations from the penultimate fully con-
nected layer of VGG-16. We calculated the symmetry scores
for all images using Equation (3). We then trained linear classi-
fiers to separate positive from negative examples. Positive
examples were drawn from same category images based on
the ground truth labels (n � 500) and equal number of nega-
tive examples were drawn from images belonging to the rest
of the categories.We trained linear classifiers on the activations
extracted from the last fully connected layer of the VGG-16

network and on symmetry scores separately. We then trained
another linear classifier on the confidence scores of the two
classifiers. Finally, we tested these classifiers on the ImageNet
validation set with 50 images in each class.

Although we used only a subset of the ImageNet dataset
with ground-truth bounding box annotations and computed
symmetry scores on pixels within the bounding box, we
found similar gains in performance when symmetry scores
were computed on the entire image. Thus, we are reporting
the results of the latter case.

3.2.3 Augmentation Procedure

We used an augmentation procedure similar to the one used
in [45]. Specifically, we first trained a binary linear classifier on
the CNN representations (feature representation in the final
fully connected layer of VGG-16 for ImageNet and RCNN
detection confidence scores for PASCAL-VOC) and obtained
posterior probability scores for both positive and negative
examples. We then trained another binary linear classifier on
symmetry features and obtained another set of posterior prob-
ability scores for both positive and negative examples. Finally,
we trained a third binary linear classifier on the set of posterior
probability scores computed from the first two classifiers to
obtain predicted class labels. This augmentation pipeline is
summarised in Fig. 4 A.

3.3 Results

The pipeline used to augment convolutional neural networks
with symmetry features is summarized in Fig. 4 A and
described in detail in the previous section. All three classifiers
in the augmentation procedurewere tested on an independent
held-out set of images. Thus, if symmetry features are already
learned by CNNs, then this procedure should not improve

Fig. 3. Generalization of the best model to novel experiments. Each bar represents the amount of variance explained by the best model (comb2)
when it was trained on all other experiments and tested on that particular experiment. The text inside each bar summarizes the images and image
pairs used, and the image centered below each bar depicts two example images from each experiment.
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cross-validated detection accuracy. However, this was not the
case. We observed significant gains in performance using
VGG-16 on ImageNet validation set (average improvement:
0.82 percent across 1,000 categories; Fig. 4 B). In fact, this
improvement in classification accuracy was significant as
assessed through statistical testing (median accuracy: 94 and
95 percent for VGG-16 before and after symmetry feature aug-
mentation respectively; p < 0:000005 for a ranksum test on
classification accuracies across 1,000 categories of ImageNet
validation set). Many categories showed an improvement
when the VGG-16 scores were augmented with symmetry
scores. Interestingly, 101 categories showed improvements of
3 percent ormore with ’coil, helix’ category showing improve-
ments as high as 10 percent. Symmetry features by themselves
yielded above-chance classification (average classification
accuracy = 58% compared to chance accuracy = 50%).

This improvement in classification was not specific to the
VGG-16 on the ImageNet dataset. On the PASCAL VOC
2012 trainval images, the classification performance of the
RCNN improved upon including symmetry features (aver-
age improvement = 0.13% across all 20 categories; Fig. 4 C).
Some categories showed improvements greater than 0.5 per-
cent (improvement in classification accuracy: 1.3 percent for
tv-monitor and 0.55 percent for motorbike). Here too, sym-
metry features by themselves yielded above-chance classifi-
cation (average classification accuracy = 53.32% with chance
accuracy = 50%). Thus, augmenting CNNs with symmetry
features leads to significant improvements in performance.

The smaller gains in classification accuracy after aug-
mentation can be due to two reasons. First, it could be a rea-
son intrinsic to symmetry itself. Symmetry as a property
can never perfectly discriminate object identity because it
does not contain shape information. Second, it could be
because our measure of symmetry is not perfect. The Image-
Net dataset does not contain objects segmented from the
background, so our symmetry scores may be corrupted by
background pixels. The symmetry score may also be cor-
rupted by image skew due to 3D rotations, natural shading

variations across the image or by occlusion. The fact that we
obtained an accuracy improvement even with our rudimen-
tary measure of symmetry suggests that more sophisticated
measures would lead to even better improvements.

We next asked why symmetry feature augmentation
showed smaller gains on PASCAL VOC compared to Image-
Net. One reason could be that images in PASCALVOCdataset
are less symmetric compared to images in ImageNet. Indeed,
we found that ImageNet has a larger range of symmetry scores
across categories compared to PASCAL VOC and the average
symmetry score for each category significantly differed from a
common mean for both datasets (p < 0.00005, for Kruskal-
Wallis test on symmetry scores with category labels as factor).
Further, we found that ImageNet has more symmetric images
than PASCAL VOC (average symmetry score, mean � std:
0.78 � 0.04 and 0.73 � 0.03 for ImageNet and PASCAL
VOC dataset respectively, p < 0.00005 for rank-sum test on
category-wise average symmetry scores). Thus, augmenting
with symmetry features leads to smaller gains on PASCAL
VOC compared to ImageNet dataset. In general, the augmen-
tation procedure can lead to significant gains in performance
depending on the biases present in the dataset.

Why does augmenting with symmetry improve CNN
accuracy? We examined two possibilities. First, we asked
whether augmenting with symmetry improved categories
on which the VGG-16 network performed badly. This was
indeed the case: improvements in accuracy were negatively
correlated with VGG-16 classification accuracy (correlation
between improvement in classification accuracy and VGG-
16 accuracy: r = -0.50, p < 0.00005 across 1,000 categories in
ImageNet). Second, we surmised that highly symmetric or
highly asymmetric objects would experience the greatest
increases in accuracy. Indeed, objects such as coil, dragon-
fly, solar dish, park bench, and flagpole showed the largest
improvement. To quantify this pattern, we asked whether
the average strength of symmetry for each object category
(calculated as the average score across all positive exam-
ples) was correlated with performance improvement. This

Fig. 4. Augmenting CNNs with symmetry features. (A) Schematic of the pipeline used to augment symmetry information to CNN feature representa-
tion. Baseline CNN accuracy and symmetry classifier accuracy is shown for both ImageNet and PASCAL-VOC datasets; (B) Plot of improvement in
classification performance of VGG-16 on augmenting with symmetry features computed on the validation set; (C) Similar plot as in (B) for RCNN on
PASCAL-VOC dataset.
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revealed a positive correlation (r = 0.28, p < 0.000005 across
1,000 categories in ImageNet), suggesting that, as expected,
symmetric objects benefited the most from augmenting
CNNs with symmetry features.

Finally, we note that there are other ways of incorporating
symmetry features into the CNN,whichmaywell yield better
improvements in performance. We explored one appealing
alternative: We concatenated the activations of the final fully
connected layer with symmetry features (after z-scoring each
feature across images) and used this augmented feature vec-
tor (with 1,000 features from VGG-16 and 8 symmetry score
features) to learn a new object classifier.We evaluated the per-
formance of this classifier by training binary linear classifiers
on equal numbers of positive and negative examples in each
category using 5-fold cross-validation. Interestingly, this pro-
duced no improvement in accuracy (average improvement
across 1,000 categories: -0.007 � 0.22%). Thus, augmenting
classifiers produces better performance than augmenting fea-
tures themselves. A similar result has been reported previ-
ously in comparing early versus late fusion of features [52].

4 UNDERSTANDING WHY CNNS UNDERESTIMATE

SYMMETRY

So far we have shown that machine vision algorithms
show systematic biases from human vision, and that fixing
one of these biases by augmenting CNNs with symmetry
features leads to significant improvements in performance.
These results show that symmetric objects are more distinct
in perception compared to CNNs but do not explain why
this is so.

To address this issue, we systematically analyzed object
representations in the penultimate fully-connected layer of
VGG-16 for a subset of objects in the dataset. We chose the
penultimate fully-connected layer activations for this analy-
sis as this can be considered the last representational layer
whose output is used for classification. The subset of objects
used for the analysis, shown in Fig. 5 A, consists of 7 arbi-
trary parts combined in all possible ways to create a total of
49 objects. We measured visual search dissimilarities as
well as VGG-16 feature distances for all possible pairs of
these 49 objects (n = 49C2 = 1,176 pairs).

To visualize these representations, we used multidimen-
sional scaling. The resulting plot for perceptual dissimilarities

is shown in Fig. 5 B – in this plot, nearby objects represent
hard visual searches. It can be seen that objects that share parts
are closer together, and that symmetric objects are far apart.
The resulting plot for the VGG-16 representation is shown in
Fig. 5 C – in this plot, nearby objects are those that evoked sim-
ilar activation across the penultimate fully connected layer. It
can be seen that the VGG-16 representation shares many fea-
tures with the perceptual representation: objects that share
parts are again closer to each other, and symmetric objects are
further apart in general. There was a strong positive correla-
tion between pairwise object distances of the VGG-16 repre-
sentationwith perception (r = 0.68, p < 0.00005).

To quantify the observation that symmetric objects are far
apart, we compared the distance between pairs of symmetric
objects (7C2 = 21 pairs) with distances between pairs of
objects differing in two parts (pairs of the form AB-CD; n =
420 pairs). This revealed a statistically significant difference
(mean � std distance: 1.36 � 0.24 s�1 for symmetric pairs,
and 1.16 � 0.21 s�1 for asymmetric pairs, p < 0.0005, rank-
sum test on distances; Fig. 6 A). This was true for the VGG-16
penultimate fully-connected layer (mean � std of distance:
0.74� 0.17 for symmetric pairs and, 0.61� 0.09 for asymmet-
ric pairs, p < 0.005, rank-sum test on distances; Fig. 6 B). We
also confirmed this trend for vertically-oriented objects cre-

Fig. 5. Representation of symmetric and asymmetric objects in perception and CNNs. (A) Set of 49 two-part objects used to explore representation of
symmetric objects in both perception and CNNs. Symmetric objects are highlighted in red. (B) Visualization of perceptual space using Multidimen-
sional Scaling (MDS). r indicates the Pearson’s correlation coefficient between perceived distances and distances in the 2D plot, **** is p < 0.00005
(C) Similar plot as in (B) for the penultimate fully connected layer of VGG-16. (D) Similar plot as in (C) for VGG-16 trained without data augmentation.

Fig. 6. Symmetry advantage in perception and CNNs. (A) Perceptual
dissimilarity in humans for both horizontal and vertical symmetric and
asymmetric object pairs. Asterisks represent statistical significance of
comparisons: * is p < 0.05, ** is p < 0.005 and *** is p < 0.0005. (B)
Similar plot as in (A) for the penultimate fully connected layer of VGG-
16. n.s. is not significant and ***** is p < 0.000005. (C) Similar plot as in
(A) for the penultimate fully connected layer of a VGG-16 network
trained without data augmentation.
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ated by rotating the objects shown in Fig. 5 A counter-clock-
wise by 90�. That is, symmetric object pairs were statistically
more dissimilar than asymmetric object pairs both in percep-
tion (mean � std distance: 1.31 � 0.26 s�1 for symmetric
pairs, and 1.15 � 0.2 s�1 for asymmetric pairs, p < 0.005,
rank-sum test on distances; Fig. 6 A) and the penultimate
fully-connected layer of VGG-16 (mean � std of distance:
0.74� 0.17 for symmetric pairs and, 0.61� 0.09 for asymmet-
ric pairs, p < 0.005, rank-sum test on distances; Fig. 6 B).
Interestingly, we found that horizontal symmetric objects
were significantly more dissimilar than vertical symmetric
objects in perception (p < 0.05 for a rank-sum test on dissim-
ilarities; Fig. 6 A) but not in VGG-16 (p = 0.07 for a rank-sum
test on dissimilarities; Fig. 6B). This difference between hori-
zontal and vertical symmetry is verywell established in liter-
ature where symmetry about the vertical axis is detected
faster than symmetry about the horizontal axis [22], [53],
which in turn is believed to be related to the distinctiveness
of these objects [22].

Thus, symmetric objects are distinctive both in percep-
tion and in VGG-16.

4.1 Are Symmetric Objects Special in CNNs Trained
Without Image Flipping?

The fact that symmetric objects are more distinctive com-
pared to asymmetric objects in VGG-16 could be due to the
nature of its training, where each image and its mirror-
reflected version are used for robustness. Alternatively it
could be present due to mirror images present in the dataset
itself, due to the presence of bilaterally symmetric objects
that produce mirror images across views. Therefore we
wondered whether the symmetry advantage would still be
present if the VGG-16 network was trained without mirror-
flip data augmentation.

To investigate this issue, we trained a VGG-16 network
from scratch on the ImageNet training dataset containing
�1.2 million images from 1,000 object categories to perform
object classification. The network was trained for 100 epochs
with a batch-size of 20 using PyTorch framework on NVI-
DIA TITAN-X/1080i GPUs. The generalization capability of
the model was tested on the ImageNet validation set which
has 50,000 images from the same 1,000 object categories as
in the training set. The VGG-16 network trained without
data augmentation showed good generalization (average �
std of top-1 accuracy: 56% � 19% and top-5 accuracy: 80%
� 14% over 1,000 object categories). By contrast, the VGG-16
network trained with augmentation has better generaliza-
tion (average top-1 accuracy: 75.6 percent and top-5 accu-
racy: 92.9 percent; [3]).

Next we analyzed symmetric and asymmetric object rep-
resentations in the VGG-16 network trained without data
augmentation using the same set of two-part objects as
before (Fig. 5 A). To visualize the underlying representation,
we used multidimensional scaling as before. In the resulting
plot (Fig. 5 D), it can be seen that objects that share the left
part cluster together separately from objects that share the
right part, and there is no apparent advantage of symmetric
objects. Indeed, distances between symmetric objects were
no greater than between other asymmetric objects (mean �
std of distance: 1.92 � 0.45 and 1.96 � 0.3 for 21 pairs of

symmetric and 420 pairs of asymmetric objects respectively;
p = 0.93 for a rank-sum test on distances; Fig. 6 C). This
trend remained true even for vertical objects (mean � std of
distance: 1.95 � 0.49 and 1.99 � 0.31 for 21 pairs of symmet-
ric and 420 pairs of asymmetric objects respectively; p =
0.87 for a rank-sum test on distances; Fig. 6 C). The regular-
ity in arrangement of objects as shown in Fig. 5 D might
arise from position-dependent shape tuning in the network
trained without mirror-flipped images.

We conclude that CNNs trained without mirror-flip data
augmentation do not show the symmetry advantage.

4.2 Understanding the CNN-Perception Difference

The results above show that the standard VGG-16 CNN
(trained with data augmentation) shows a symmetry advan-
tage just like in perception, albeit lower in magnitude. This
difference may partially explain why augmenting with sym-
metry improved its performance. A further reason why aug-
menting worked could be that units that contribute more to
object classification show a weaker symmetry advantage.

4.2.1 Identifying Units Important for Classification

To address this issue, we calculated a measure of overall con-
tribution towards classification for each unit [54]. We ran-
domly selected 20 images from the ImageNet validation set
from different classes that were classified correctly by the
VGG-16 network. We computed the importance of each unit
ni in the penultimate fully-connected layer as follows. First,
we removed the contribution of unit ni towards classification
by zeroing the weights going out from ni to all units in the
final fully-connected layer. We then passed all 20 images
through this modified VGG-16 network and also the original
VGG-16 network and computed the change in output class
probabilities. Finally, we defined the importance of ni as

dðniÞ ¼ 1

20

X20
j¼1

ðpoðcjÞ � pmðcjÞ
�� ��; (4)

where dðniÞ is the importance of unit ni, poðcjÞ is the output
probability for image j corresponding to the true class cj for
the original VGG-16 network, and pmðcjÞ is the correspond-
ing class probability for themodified VGG-16 network.

4.2.2 Symmetry Advantage in Units Important

for Classification

Next we asked whether the units with high importance
show a weaker symmetry advantage. To this end we calcu-
lated a symmetry modulation index (SMI) as

SMI ¼ dsym � dasym
dsym þ dasym

; (5)

where dsym and dasym are the average distances for symmet-
ric and asymmetric object pairs respectively. We estimated
the average symmetry modulation index by bootstrap i.e.,
by randomly sampling with replacement 21 symmetric
object pairs and 420 asymmetric object pairs. We repeated
this procedure to get 10,000 bootstrap estimates of symme-
try modulation index each for perception, all units in the
penultimate fully-connected layer of VGG-16, top-100 and

238 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 1, JANUARY 2022



bottom-100 units in the penultimate fully-connected layer of
VGG-16, and all units in the penultimate fully-connected
layer of VGG-16 trained without data augmentation.

The average SMI for both horizontal and vertical objects
are shown in Fig. 7 A. The symmetry modulation index was
highest for perception, followed by VGG-16, bottom-100
units, top-100 units and VGG-16 trained without data aug-
mentation. As hypothesized, SMI for the top-100 units were
smaller compared to the bottom-100 units for both horizon-
tal and vertical objects indicating that units important for
classification show weaker symmetry advantage.

4.2.3 Feature Analysis of Units Important

for Classification

The above result shows that the top-100 units in the penulti-
mate fully connected layers are systematically different
from the remaining units in terms of representation of sym-
metry. Are they selective for different features compared to
the rest of the units? We investigated this issue by compar-
ing top-100 and bottom-100 units in the VGG-16 network
using a widely used feature analysis technique from neuro-
science, as detailed below.

We wondered whether the top-100 and bottom-100 units
differed in their spectral power preferences. To assess this
possibility, we created Gabor images (see some examples in
Fig. 7 B) with 8 orientations (uniformly sampled from 0 to
180 degrees) and 6 spatial frequencies (0.06, 0.09, 0.17, 0.25,
0.33 and 0.5 cycles/pixel) and obtained CNN unit activa-
tions to these images from the top-100 and bottom-100 units.
For each unit, we computed its average activation for each
spatial frequency by averaging its activation across orienta-
tions. The average behaviour of the top-100 and bottom-100
units is shown in Fig. 7 C. The average activity of the top-
100 units was relatively low for low spatial frequencies and
increased for high spatial frequencies. In contrast, the bot-
tom-100 units showed a steady response to high spatial fre-
quencies. To quantify the relative preference for high over
low spatial frequencies for each unit ni, we calculated a spa-
tial frequency modulation index as

MIðniÞ ¼ Ahsf �Alsf

Ahsf þAlsf
; (6)

where Ahsf is the average activation for unit ni computed
for high spatial frequency images (0.25, 0.33 and 0.5 cycles/
pixel) and Alsf is the average activation for unit ni com-
puted for low spatial frequency images (0.06, 0.09 and 0.17
cycles/pixel). The average spatial frequency modulation for
top-100 units was significantly larger compared to the bot-
tom-100 units (Fig. 7 D; p < 0.0005 for a rank-sum test on
modulation indices for top-100 and bottom-100 units).
Thus, VGG-16 units important for classification respond
more to high spatial frequencies compared to low spatial
frequencies, indicating that they may be tuned to spatially
local features. We surmise that this could be the reason for
their weaker symmetry advantage.

5 DISCUSSION

Here we have compared perceptual dissimilarity in humans
with a variety of computational models. Our main finding is
that all machine algorithms tested show systematic biases
from human perception. Furthermore, fixing one of these
biases (symmetry) can improve CNN performance. We have
further shown that CNNs show aweak advantage for symme-
try particularly among the units important for classification.
In a recent study,we showed that the advantage for symmetry
in perception arises due to similar part selectivity on either
side of an object [22]. We therefore propose that consistent
part selectivity could be imposed as a constraint during learn-
ing, and that doing sowill improve performance.

Our improvements in performance may have been small
due to noisy estimates of symmetry features. Recent advan-
ces in geometry processing using classical methods as well
as deep learning have led to better symmetry detectors both
on 3D models of objects [25], [29], [31] and 2D objects
embedded in natural scenes [26], [30]. Further, there have
been efforts to reduce the sample complexity of deep neural
networks by designing convolutional filters that capture
various symmetries in the training data [27], [28]. Although
these are significant advances in symmetry detection, they
haven’t been tested on large-scale datasets in the context of
object recognition tasks. We speculate that combining our
insights about human perception with better symmetry
measures will lead to larger improvements in performance,
particularly on real-world vision tasks.

Fig. 7. Symmetry advantage in units important for classification. (A) Symmetry modulation index (Eq. (5)) for horizontal and vertical objects. (B)
Example gabor images used for the spatial frequency analysis (C) Average activity evoked by Gabors of varying spatial frequency for top-100 and
bottom-100 units in the penultimate fully-connected layer of VGG-16. Error bars indicate s.e.m. across units; (D) Spatial frequency modulation index
(Eq. (6)) for top-100 and bottom-100 units. Error bars indicate s.e.m. ***** is p < 0.000005.
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Finally, we note that symmetry is not the only systematic
difference we have observed between human perception and
machine vision. Objects with large area differences, mirror
images and objects with shared features all show systematic
deviations. Augmenting CNNs with these properties is less
straightforward but one possibility is to use perceptual data
as an additional constraint during learning [55].
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