
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Multiple Trajectory Prediction of Moving Agents
with Memory Augmented Networks

Francesco Marchetti, Federico Becattini, Lorenzo Seidenari, Alberto Del Bimbo

Abstract—Pedestrians and drivers are expected to safely navigate complex urban environments along with several non cooperating
agents. Autonomous vehicles will soon replicate this capability. Each agent acquires a representation of the world from an egocentric
perspective and must make decisions ensuring safety for itself and others. This requires to predict motion patterns of observed agents
for a far enough future. In this paper we propose MANTRA, a model that exploits memory augmented networks to effectively predict
multiple trajectories of other agents, observed from an egocentric perspective. Our model stores observations in memory and uses
trained controllers to write meaningful pattern encodings and read trajectories that are most likely to occur in future. We show that our
method is able to natively perform multi-modal trajectory prediction obtaining state-of-the art results on four datasets. Moreover, thanks
to the non-parametric nature of the memory module, we show how once trained our system can continuously improve by ingesting
novel patterns.

Index Terms—Trajectory prediction, Memory Augmented Networks, Egocentric Perception, Autonomous Driving

F

1 INTRODUCTION

Sensing the surrounding environment is a key ability for
reasoning. Humans are able to achieve this mostly through
visual perception and adapting what they see to a repre-
sentation of the world built through their own experience.
Grounding what is perceived with experience, it is possible
for humans to recall previously seen episodes that are likely
to suggest state evolutions of other agents acting in the en-
vironment. A simple example can be found in a pedestrian
about to cross the road: if a car is approaching, it might
stop to let him pass, keep moving in front of him or even
make a turn without crossing paths at all. Having observed
similar behaviors in the past, the pedestrian will wait until a
safe crossing scenario is foreseeable. Similarly, other moving
agents, such as cyclists and car drivers, must apply this kind
of predictive reasoning while driving.

When egocentric perception or the reasoning grounded
on such evidence falls short, tasks such as interacting with
other objects or people become difficult if not even dan-
gerous, indoors and especially outdoors. In particular, to
be able to safely navigate an outdoor space, such as an
urban environment, it is necessary to sense its structure and
understand and predict the motion of surrounding agents
populating it. To this end, for visually impaired humans,
wearable devices are becoming a possible aid to correctly
perceive the surroundings and provide assistance for nav-
igation. If the navigating entity is not human, but instead
an intelligent agent such as a robot or an autonomous
vehicle, egocentric perception covers a pivotal role since
all its aspects must be explicitly modeled, from sensing to
prediction. In general, a moving agent, let it be human or

• F. Marchetti, F.Becattini, L. Seidenari, A. Del Bimbo are with the Media
Integration and Communication Center (MICC) of the University of
Florence, Italy.

• Authors would like to thank the research team at IMRA Europe S.A.S. for
the useful discussions and insights.

artificial, has to rely on egocentric perception to plan a safe
navigation.

The problem of predicting trajectories of navigating
agents is deeply entwined with egocentric perception and
has a central importance in guaranteeing safety for both
the observer and the observed. Moreover, predicting future
trajectories is a problem with an inherently multimodal
nature: the dynamics of a moving agent, observed from
an external point of view, can yield a variety of similarly
likely outcomes (Fig. 1). Being able to predict where oth-
ers will go, allows the observer to take counter-actions or
simply pay more attention to certain elements populating
the environment. Regardless of the nature of the observer
(a pedestrian, a cyclist, a person driving, an autonomous
vehicle) and the means of perception (the human eye, smart
helmets or wearable devices, on-vehicle ego cameras), the
problem can be cast as sensing others, represent their motion
in a reference system up to an instant identifiable as present
and infer their position in future time-steps.

As for perception, considerable steps forward have been
made in the past years for autonomous driving [1], [2], [3].
Vehicles are in fact equipped with a large array of sensors
(e.g., GPS, LiDAR, RGB cameras, stereo camera rigs) to build
a precise representation of what is observed from their point
of view. Yet, when inferring future positions of others, cur-
rent approaches still lack the ability of explicitly addressing
specific occurrences from experience. This is particularly
important to make accurate predictions and directly reflects
onto the ability of planning actions for safe navigation.

Humans can address this task by implicit learning, i.e.,
exploiting procedural memory (knowing how to do things)
from similar scenarios of previous experience, without ex-
plicit and conscious awareness. For machines, instead, this
task is much harder. Common machine learning models,
such as the LSTM variant of Recurrent Neural Networks,
have been applied with some success to predict trajectories
and produce probabilistic information about the future lo-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

PAST
MEMORY

FUTURE
MEMORY

TOP-K

MEMORY NETWORK

OBSERVED TRAJECTORY MULTIPLE PREDICTED TRAJECTORIES

CONTEXT
MEMORY

Fig. 1. MANTRA addresses multimodal trajectory prediction. We obtain multiple future predictions given an observed past and its context, relying
on a Memory Augmented Neural Network.

cations of vehicles [4], [5] or pedestrians [6], [7], [8]. LSTMs
have been capable of storing past information into a single
hidden representation, updated at every time step, and
make predictions based on long term patterns.

In this paper, we present MANTRA: a Memory Aug-
mented Neural TRAjectory predictor. In contrast to the solu-
tions referred above, MANTRA addresses vehicle trajectory
prediction by following a novel approach and implementing
a persistent Memory Augmented Neural Network (MANN)
[9]. In our model, an external, associative memory is trained
to write useful and non-redundant trajectories. Instead of
a single hidden representation addressable as a whole, our
memory is element-wise addressable and permits to selec-
tively access only relevant pieces of information at runtime.

The model incrementally creates a knowledge base that
is used as experience to perform meaningful predictions,
combining information from the past dynamics of the vehi-
cle and the environment in which it is moving. This mimics
the way in which implicit human memory works. Since the
knowledge base is built from trajectory samples, it can also
include instances observed while the system is running,
after it has been trained. In this way the model gains
experience online, increasing its accuracy and capability to
generalize at no training cost.

Samples are stored in memory by separating past, future
and context information. In this way, at test time the actual
coordinates are obtained by decoding a future read from
memory, conditioned with the observed past and context.
Therefore, the output is not a simple copy of previously
seen examples, but is instead a newly generated trajectory
obtained from both the system experience (i.e., its memory)
and the observed instance. By reading multiple futures from
memory, diverse meaningful predictions can be obtained.
The main contributions of this paper are the following:
• We propose a novel architecture for multiple trajectory

prediction of moving agents in urban environments based
on Memory Augmented Neural Networks. The model is
equipped with memory controllers for writing and read-
ing only relevant samples. To the best of our knowledge

we are the first to adopt MANNs for trajectory prediction.
• Our formulation, exploiting an encoder-decoder pipeline

augmented with an associative memory, is easier to in-
spect and provides naturally multimodal predictions, ob-
taining state-of-the-art results on four traffic datasets.

• Our model is able to improve incrementally, after it has
been trained, when observing new examples online. This
trait is important for industrial automotive applications
and is currently lacking in other state of the art predictors.

A preliminary version of our model was described in
[10]. The model presented in this work differs substantially
from [10] in several ways: (i) feature encoding now includes
context instead of just trajectories; (ii) feature decoding
is trained with a multi-task loss using a cross-entropy to
reconstruct semantic maps in addition to the MSE to recon-
struct future trajectories; (iii) memory keys are now made
by tuples of past and context; (iv) memory access is done
through a trainable reading controller. Furthermore, we use
an additional metric, taking into account all predictions,
without limiting the evaluation to the best-of-K. We also
provide a more comprehensive review of related works and
report an extended evaluation, including an additional new
and challenging dataset [11].

2 RELATED WORK

Egocentric Perception A large variety of applications has
been studied in literature regarding egocentric perception:
assistance for visually impaired people [12], [13], lifelogging
[14], [15], [16], navigation [17], [18], [19], mixed reality [20],
[21]. Although the nature of these applications is different,
they all share the usage of a camera for capturing what an
agent observes. Typically, said agent is human and uses
a wearable device to get assistance in everyday life or
experience an augmented or mixed reality as entertainment.
Egocentric perception, though, is not limited to humans,
and can focus on intelligent agents such as robots or au-
tonomous cars. In particular, it has been playing a relevant
role in aiding navigating agents, e.g. humans with visual

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

impairment, robots or vehicles [22], [23], [24], [25]. This
stems from the need to accurately perceive the surrounding
environment and react accordingly. Two macro-areas can
be distinguished: indoor and outdoor navigation. Indoor
navigating agents must perceive objects and be able to
interact with them [17], [19], [26], [27], [28], [29], [30], [31].
In fact, the final goal is usually to handle daily life activities,
such as cooking or washing dishes [32], which require to
correctly interact with several elements of the environment.
Interaction is not limited to objects and may also involve
other humans, especially during social [33], [34] or sport
activities [35]. A notable subfield of research is egocentric
perception for cultural heritage [36], [37], [38], where user
interests and behaviors are tracked to offer enhanced mu-
seum visits.

When focus shifts to outdoor navigation, such as urban
environments, egocentric perception has to be defined dif-
ferently. Whereas navigation in indoor settings is a mean
to an end (cooking, interacting with something/someone),
the goal of outdoor agents is more focused on navigation
itself, which needs to be performed safely without harming
or being harmed by other navigating agents (e.g., avoiding
collisions and complying with road traffic regulations) [18],
[39]. Interaction is still a matter of primary importance but
is now considered as the analysis of social patterns that
determine how groups move together in a shared space
[6], [7], [40]. At the same time, for urban navigation, agents
need to infer the layout of the scene, recovering possible
occlusions that they might have from their point of view
[41], [42]. A correct understanding of both context and other
agents is pivotal for safety, since it enables the anticipation
of dangerous situations such as car accidents [43]. Several
works have dealt with the problem of predicting future
agent locations, often focusing on ego-motion [23], [44], [45].
In this paper, rather than focusing on ego-motion, we are
interested in the ability to look at other agents from an
egocentric point of view and forecast how they will act in
the near future.

Trajectory Prediction Significant effort has been made
in the past years regarding trajectory prediction. Several
researchers have focused on trajectories of pedestrians [6],
[7], [46], [47], [48], either regarded as individuals or crowds,
also exploiting social behaviors and interactivity between
individuals [6], [7], [46], [47], [49], [50].

For vehicle trajectory prediction, the focus shifts on the
observation of motion of individual agents (their past tra-
jectory) and the understanding of the surrounding environ-
ment [11], [51], [52]. Traffic dynamics likely reduce to sim-
pler scenarios where movement is limited and constrained
by the environment. Efforts have been made to understand
and predict vehicle trajectories in urban scenarios [40], [51],
[52], [53], [54], [55], [56], [57], [58], [59], also taking into
account social interactions. Although, from the empirical
evidence presented in [11], [51], the explicit modeling of
social interactions for vehicles was shown not to provide
valuable improvements in trajectory prediction. A notable
exception is estimating lane changes on highways [60], [61].

Distinguished systems that provide multiple trajectory
prediction in complex environments are DESIRE [51] and
INFER [52]. DESIRE uses a Conditional Variational Au-
toencoder for estimating a distribution from which future

trajectories can be sampled. A large number of predictions
is needed to cover all the search space and Inverse Optimal
Control is then used to extract a final ranked subset. INFER
instead exploits a fully convolutional model that takes into
account intermediate semantic representations and gener-
ates multimodal heatmaps of possible future locations, then
looking for peaks of the distribution.

In our work, we address multiple trajectory prediction of
agents navigating in an urban scenario. Examples of urban
contexts where such multiple predictions may be necessary
are roundabouts and crossroads where vehicles might take
different, equally possible paths.

We train a Memory Augmented Neural Network model
to generate multimodal trajectories, which to the best of
our knowledge has never been used for this purpose. The
usage of MANNs has two main advantages: (i) multiple
futures can be read from memory for a given observation,
making the model compliant to the multimodal nature of
the problem; (ii) by retrieving a likely future from memory
we can rely on an oracle that suggests what is going to
happen in the near future. Differently from prior work,
our trajectory prediction model is also capable of growing
online, improving incrementally its performance from new
observations after it has been trained.

A conceptually similar research direction to ours is the
one of intention-based methods [54], [55], [56]. In these
works, some representative anchor information (such as
trajectories, actions or locations) are predefined and then
used to guide predictions after estimating a probability
distribution over each candidate. In [54], predictions on
human agents are conditioned by the state of a robot agent,
for which a goal is given or estimated. The authors of [55]
propose a model specialized on intersections that generates
a likelihood over 5 fixed map zones, which entail different
motion patterns (go straight, turn left, turn right, stop and
reach the middle of the intersection). These anchors though
are very coarse and tied to a single context. In [56], anchor
trajectories are created running k-means over training data
and then performing uniform random sampling to reduce
redundancy. To some extent, memory entries in our model
can be interpreted as anchors encoding physically plausible
futures instead of intentions. Differently from the described
approaches though, we perform estimates based on any
kind of past dynamics and road layout, without having
to choose a reference agent to condition predictions or
restrict the applicability to constrained scenarios. Moreover,
the set of samples that we write in memory is chosen in
order to explicitly take into account reconstruction error
through a learned controller, thus minimizing redundancy
in a principled manner.

Memory Networks Neural Networks with memory ca-
pabilities have been introduced to solve several machine
learning problems which require to model a temporal di-
mension. The most common models are Recurrent Neural
Networks (RNN) and their variants such as Long-Short
Term Memories (LSTM) [62] and Gated Recurrent Units
(GRU) [63]. However, in these models, memory is a single
hidden state vector that encodes all the temporal informa-
tion. So memory is addressable as a whole and they lack
the ability to address individual elements of knowledge,
necessary to apply algorithmic manipulation and rapid in-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Past trajectory

Top-view
semantic map

ENCODER

PAST
MEMORY

FUTURE
MEMORY

TOP-K

MEMORY NETWORK

CONTEXT
ENCODER

Multimodal
Prediction

CONTEXT
MEMORY

READING
CONROLLER

PAST
ENCODER

FUTURE
DECODER

Fig. 2. Architecture of MANTRA. The encodings of an observed past trajectory and its contexts are used as key to read likely future encodings from
memory. A multimodal prediction is obtained by decoding each future encoding, conditioned by the observed past and the context.

ference. Moreover, state to state transition is unstructured
and global. Being the state updated at each time-step, even-
tually it fails to model very long term dependencies. Finally,
the number of parameters is tied to the size of the hidden
state. So, adding knowledge from the external environment,
necessarily implies increasing the size of the state.

Recent works have proposed Memory Augmented Neu-
ral Networks, or simply Memory Networks, to overcome
the limitations of RNNs [9], [64], [65], [66], [67], [68], [69],
[70], [71]. The principal characteristic of these models is the
usage of a controller network with an external element-
wise addressable memory. This is used to store explicit
information and access selectively relevant items. The mem-
ory controller is trained to dynamically manage memory
content, optimizing predictions. Differently from RNNs,
state to state transitions are obtained through read/write
operations and a set of independent states is maintained.
An important consideration is that in Memory Networks
the number of parameters is not tied to the size of the
memory, i.e., increasing the memory slots will not increase
the number of parameters.

While introduced recently, a number of applications of
these models have already appeared in literature. The first
embodiment of a Memory Network was proposed in Neural
Turing Machines (NTM) [9] to perform algorithmic tasks,
such as sorting or copying, which require sequential ma-
nipulation steps. Thanks to a fully differentiable controller,
the model interacts with the memory through read/write
operations. The architecture was later extended to perform
one-shot learning in [65]. Differently from NTM, they
trained the MANN to implement a Least Recently Used
memory access strategy to write into rarely used locations.

In [67], MANNs have been proved to be able to effec-
tively address Question Answering tasks, where the model
has to answer questions related to a series of sentences.
In [66], the same problem is solved with an End-to-End
Memory Network with attention weights to shift impor-
tance from one sentence to another. Recent approaches have
proposed a MANN to address the more complex problem of
Visual Question Answering [69], [70], training the MANN
to learn uncommon question-answer pairs. Online learning
has also been tackled using Memory Networks. Rebuffi

et al. [68] learn a classifier adding classes incrementally.
MANNs for object tracking have been proposed, where the
model is trained to memorize templates, which are updated
as the object is tracked [71].

All these MANNs rely on episodic memories. The sys-
tem learns to write and read from memory, but the stored
data is limited only to the current set of observations (such
as a list of numbers to be sorted in [9] or a collection
of sentences for question answering in [67]). Differently
from prior work, we build a MANN with a memory that
is not episodic. Instead, it acts like a persistent memory
which stores an experience of relevant data to perform
accurate predictions for any observation and not just for
a restricted episode or set of samples. The rationale behind
this approach is that instead of solving simple algorithmic
tasks as a Neural Turing Machine, we learn how to create a
pool of samples to be used for future trajectory predictions.
The proposed model learns to store in memory only what is
strictly needed to perform accurate predictions. Our usage
of MANN is close to [72], but differs substantially. While
they exploit the decoupling of embeddings to better fit data,
we leverage the disjoint representation to create multiple
outputs from a single input, leading to a fully multimodal
predictive capability of the overall system.

3 MODEL

We formulate the task of predicting trajectories of moving
agents as the problem of estimating P (x̂F |xP , c), where x̂F is
the predicted future trajectory, xP is the observed trajectory
(or past) and c is a representation of the context (e.g., roads,
sidewalks). The focus of our work lies on vehicles, but
also includes other moving agents such as cyclists and
pedestrians. We consider agent trajectories as a sequence of
2-dimensional spatial coordinates. The past xP is given by its
positions observed up to some reference point identified as
present. Similarly, the future xF is the sequence of positions
in which it will find itself at the next time steps.

3.1 Memory Based Trajectory Prediction
Given a sample trajectory xi = [xiP , x

i
F], let πi = Π(xiP) and

φi = Φ(xiF) be two encoding functions that map the 2D

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

CONTEXT
DECODER

Past trajectory

Context

ENCODER

CONTEXT
ENCODER

PAST
ENCODER

Future trajectory

ENCODER
FUTURE

ENCODER

FUTURE
DECODER

Fig. 3. Representation learning: past, context and future are encoded
separately; a decoder reconstructs future trajectory and context.

coordinates of past and future trajectories into two separate
latent representations. Similarly, let γi = Γ(ci) be an en-
coding function that generates a latent vector representing
the top-view map ci of the surrounding context. Finally, let
ΨF (πi, γi, φi) and ΨC(πi, γi, φi) be two decoding functions
that take as input a triplet of past, context and future
encodings. ΨF and ΨC respectively decode the input into
the future sub-trajectory xiF and the context ci.

We define M = {πi, γi, φi} as an associative key-value
memory containing |M | triplets of past, context and future
encodings. Past and context tuples (πi, γi) act as keys to
access memory and future embeddings φi are the values.
When a new trajectory xkP is observed, its encoding and con-
text encoding (πk, γk) are used as key to retrieve meaningful
samples from memory. Note that observed trajectories are
all considered to be past trajectories, since the future coun-
terpart is yet to be observed and is what we want to predict.
Memory addressing is performed by a reading controller
that transforms a memory key into a read probability P (r)i

for each stored sample. The controller is trained in order
to maximize the read probability for samples that exhibit
similar past and context to the observed one.

According to these similarity scores, the future encod-
ings of the top-K elements φj are separately combined with
the encodings of the observed past πk and context γk. The
novel triplets of encodings are transformed into 2D coordi-
nates using the decoding function ΨF : x̂jF = ΨF (πk, γk, φj),
with j = 1, ...,K .

Note that πk and γk are fixed while φj varies depending
on the sample read from memory. Future encodings φj

are used to suggest possible outcomes based on the past
observation. This strategy allows the model to look ahead
into likely futures in order to predict the correct one. Since
multiple φj can be used independently, we can decode
multiple futures and obtain a multimodal prediction in case
of uncertainty (e.g., a bifurcation in the road). An overview
of the model is shown in Fig. 2.

3.2 Feature Representation Learning
The encoding-decoding functions Π,Γ,Φ,ΨF ,ΨC are
trained jointly as an autoencoder, as shown in Fig. 3. The
encoders Π and Φ learn to map past and future points into
a meaningful representation and the decoder ΨF learns to
reconstruct the future. To aid this process, we also include

knowledge about the context, represented as a top-view
semantic map. Instead of using just the future as input, we
condition the reconstruction process also with an encoding
of the past and the context. This is useful for two aspects.
First, we are able to train different encoders and therefore
learn meaningful representations for each component. We
need this in order to obtain separate representations for both
keys (past and context) and values (future) in memory.

Second, despite not explicitly constraining the decoding
process, we observe that the usage of both past and context
influences future reconstruction, depending on the size of
the autoencoder latent state, as discussed in more detail in
Section 5.3.

In general, this conditioned reconstruction of the future,
also allows to generate trajectories that differ from the
ones in memory and are not just a simple copy of already
observed samples. We observed that the model was not
able to represent contexts effectively, focusing just on the
past and future coordinates. To avoid this and be able to
condition reconstructed futures also with top-view maps,
we added the auxiliary decoder ΨC that reconstructs the
input context ck. We use this decoder only for training
effective representations and we ignore it in the rest of the
model.

3.3 Memory Writing Controller
Traditional Memory Augmented Neural Networks [9], [66],
[67] are designed to observe collections of data, usually
referred to as episodes. The models are equipped with a
working memory to store relevant information about the
episode in order to generate a meaningful output. Yet mem-
ory is cleared for each episode and what is trained is the
controller that decides what to read/write. The supervision
for training stems from the cost function at the end of the
episode, tracing gradients back to the controller.

As in standard memories, we train a controller to emit a
write probability P (w) every time that a sample is observed,
but, differently from these approaches, we build a compact
and permanent memory.

Training such a controller might be challenging since
P (w) does not depend only on the intrinsic importance of
the observed sample but also on the current state of the
memory. To solve this issue, we do not rely on the prediction
loss for supervision. We instead feed the reconstruction
error e to the controller, which decides if the network
reconstruction was sufficiently close to the ground truth. To
enforce this behavior we define the writing controller loss
Lw as:

Lw = e · (1− P (w)) + (1− e) · P (w) (1)

where e is assumed to have values in [0, 1]. When the error
is low, i.e., e→ 0, then

Lw ≈ P (w) (2)

therefore the write probability is minimized.
Conversely, when e→ 1, then

Lw ≈ 1− P (w) (3)

and the controller maximizes the write probability.
In this way the controller adaptively learns a threshold

on the reconstruction error, that allows to store in memory

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

0.5m

1m

1.5m
2m

Fig. 4. The writing controller estimates a bounded trajectory error as an
adaptive miss-rate. For further timesteps an increasingly higher error is
tolerated.

only what is useful for predicting accurately, limiting re-
dundancy. If the model exhibits a large prediction error, the
controller writes the current sample with its ground truth
future encoding in memory. When this happens, it indicates
that the memory lacks samples to accurately reconstruct
the future, hence, by writing the sample in memory, the
model will improve its prediction capacity. This behavior
is ensured by the reconstruction capabilities of the model.
In fact we use a pretrained decoder ΨF that is trained on
the same samples used to populate the memory (and will
therefore have a small reconstruction error). Without a well
trained decoder, the controller might risk to store redundant
samples without improving the overall prediction capabil-
ities of the system. More details on training and memory
population are provided in Sec. 3.5.

To satisfy the assumption of a bounded error function
with values in [0, 1] for the writing controller loss of Eq. 1,
we introduce an adaptive miss rate error function with a
threshold depending on the timestep:

e = 1− 1

N

N∑
i=1

1i(x̂F , xF) (4)

where 1i(x̂F , xF) is an indicator function equal to 1 if the
i-th point of the prediction x̂F lies within a threshold th
from the ground truth and 0 otherwise. We use a different
threshold for each timestep, allowing a given uncertainty
for the farthest point (4 seconds) and linearly decreasing
towards 0 for previous ones. Interestingly, we have noticed
that changing these thresholds affects memory size, intro-
ducing redundancy when a small radius is used. In our
experiments, we use th4s equal to 2 meters, which offers
a good balance between memory size and prediction error
(Fig. 4).

Since the memory controller is learned exploiting re-
construction errors, it stores embeddings corresponding to
previously unseen futures. These are representations of both
frequent and rare trajectories. Keeping rare trajectories in
an element-wise addressable memory is desirable, as they
are necessary to predict similar instances that may happen
again in the future. However, in a real world scenario, en-
codings of spurious trajectories due to the early perception
modules may be written in memory (e.g., bad trajectories
caused by detector or tracker failures). This could lead to
noisy future reconstructions. However, this negative impact
is mitigated by the fact that observed trajectories pass
through an encoding-decoding process before being stored
in the memory, which attenuates the effect of noise.

3.4 Memory Reading Controller
To access memory we use a reading controller. The reading
controller uses both the observed past trajectory and the
context (πk, γk) as key and generates a read probability
P (r)i over each memory location i. An ablation study of
controller variants is reported in Sec. 5.1.

Our reading controller is based on cosine similarity
between the observed sample and memory keys. We first
compute a past read similarity sπ and a context read simi-
larity sγ as follows:

siπ =
πk · πi

‖πk‖‖πi‖
i = 0, ..., |M | (5)

siγ =
γk · γi

‖γk‖‖γi‖
i = 0, ..., |M | (6)

We then feed siπ and siγ to a multilayer feed-forward neural
network F that blends the read similarities, weighing past
and context importance and is trained to output high scores
for relevant samples and low scores for the others. The final
read probability is therefore obtained by:

P (r)i = F (siπ, s
i
γ) (7)

Since each memory sample can be read and decoded in-
dependently, to obtain multimodality, we simply read the
top-K samples with the highest P (r)i at inference time.

3.5 Training
We train our model to observe 2 seconds trajectories and
predict up to 4 seconds in the future. To achieve translation
and rotation invariance, each trajectory is normalized by
shifting the present in the origin and rotating the trajectory
in order to make it tangent with the Y-axis in the origin. In
this way all futures start from (0, 0) in an upward direction.

First, a pretraining of both the encoders and the decoders
is done jointly as an autoencoder. To do so, we feed triplets
comprising past trajectories xP , future trajectories xF and
their context c, all belonging to the same observation. The
context is a semantic top-view map of 120px× 120px which
covers an area of 60 × 60 meters in front of the moving
agent. The decoders reconstruct only future coordinates and
the semantic map.

We then train the memory controllers, exploiting the
learned past encoder and future decoder. The trained writ-
ing controller allows the memory to be filled with useful
and non-redundant training samples by iterating over the
training set and measuring reconstruction errors. While in
principle the order in which samples are presented to the
memory for writing may result in different final content, in
our experiments we found that this does not affect the final
prediction. During training, we reset the memory after each
epoch until convergence.

The reading controller is trained to output a read prob-
ability for memory samples. For each training sample to
be predicted, we select a memory subset taking the top-K
elements with the highest similarity according to the past.
In fact, past is a stronger cue than context for reconstructing
plausible trajectories, as will be shown in Sec. 5.1. In our ex-
periments, we setK = 20 for training the reading controller,
in order to obtain a set of diverse samples that have similar

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

dynamics with the observed one. Some of these trajectories
will likely go off road since context is not observed yet. We
identify the best and worst candidate in the set by decoding
and comparing their reconstructions to the ground truth.
We then use these memory elements as training samples
for the controller: we train the reading controller F with
a binary cross-entropy, assigning a positive label to the
best candidate and a negative label to the worst one. The
architecture of the reading controller is a simple Multi-Layer
Perceptron (MLP) with two layers, separated by a ReLU
activation. The controller takes two inputs (past and context
similarities), projects them in a 4-dimensional space with
the first layer of the MLP and then blends them into a single
output. This allows us to obtain a simple non-linear fusion
of past and context similarities which is learned from the
data. The effect of this learning process, which adapts to
different datasets, is shown in Sec. 5.1. To populate the final
memory, we use the controllers to store a non-redundant set
of samples by iterating for an epoch on the training set.

The trajectory encoders and decoder are implemented as
Gated Recurrent Units with a 48-dimensional hidden state
for each encoder and 96-dimensional for the decoder. The
trajectories are first processed with a 1D convolution with 16
filters before being fed to the recurrent layer of the encoder.
In the decoder instead, after the GRU, a fully connected
layer generates spatial displacements to obtain the future
reconstruction.

The context encoder is a Convolutional Neural Network
composed as follows: a convolutional layer with 4 filters
3 × 3 with stride 2 and padding 1; a max pooling layer
which halves the feature map size; a second convolutional
layer with 8 filters 3× 3 with stride 2 and padding 1 which
generates a 15× 15× 8 feature map; a fully connected layer
which condenses the representation into a 48-dimensional
vector. Each convolutional layer has batch normalization
and ReLU activation. The latent feature of the autoencoder
is obtained by concatenating the three representations π, γ,
φ of past, context and future, and is therefore 48 × 3 = 144
dimensional. The first two components of the latent vector
correspond to what is going to be stored in memory as key
(past and context) and the last one (future) as value. To
encourage the autoencoder to exploit information from all
three inputs, we apply dropout with a 0.5 rate on the latent
vector during training.

The context decoder, used for training the autoencoder
is made by an initial fully connected layer which generates
a 225 vector then reshaped into a 15×15 map. We upsample
it with 3 transposed convolutional layers with stride 2,
padding 1 and ReLU activation, that yields a 120 × 120
output, which has the same size of the original context.

We optimize Lw defined in Eq. 1 to train the writing
controller, a Mean Squared Error loss for the decoder and
a cross-entropy loss for the context decoder and the read-
ing controller. All components are trained with the Adam
optimizer using a learning rate of 0.0001.

4 EXPERIMENTS

MANTRA produces multiple trajectory predictions of
nearby moving agents. While these are observed from an
egocentric perspective, contextual elements such as road

layout in the observer neighborhood are also considered
to predict more accurately. Given 2 seconds observations,
MANTRA is capable of predicting 4 seconds ahead in the fu-
ture, providing the capability of reacting appropriately. This
capability can be used both for pedestrians and people driv-
ing bicycles, motorcars or cars, as well as for autonomous
vehicles. For the large set of cases considered, and the
variety of traffic conditions covered, in the experiments we
used datasets designed for trajectory prediction of vehicles
in an autonomous driving context: KITTI [73], Argoverse
[11], Oxford RobotCar [74] and Cityscapes [75].

4.1 Datasets

KITTI [73] The dataset includes a large variety of annota-
tions such as Velodyne LiDAR 3D scans, object bounding
boxes and tracks, calibration, depth and IMU data. Not
all data is always present for every video so we used the
ones categorized as KITTI Raw Data, following the split of
DESIRE [51]. Although the split is known, how to divide
trajectories in data chunks is not. To obtain samples we
collect 6 seconds chunks (2 seconds for past and 4 for
future) in a sliding window fashion from all trajectories
in the dataset, including the ego-vehicle. We obtain 8613
top-view trajectories for training and 2907 for testing. Note
that these numbers are different from the original DESIRE
split since they claim to gather 2509 trajectories in total.
To favor reproducibility and future comparison we will
publicly release our version of the dataset upon publication.
Since top-view maps are not provided by KITTI, we project
semantic labels of static categories obtained with DeepLab-
v3+ [76] from all frames in a common top-view map using
the Velodyne 3D point cloud and IMU. The resulting maps
have a spatial resolution of 0.5 meters, and will be released
along with the trajectories.

Another smaller version of the KITTI dataset for trajec-
tory prediction has been recently proposed by [52] and is
publicly available. The authors propose 5 different train/test
splits and average results over all runs, so we follow this
evaluation protocol. We report experiments on both variants
of KITTI. In the following, we refer to KITTI as our split ob-
tained following DESIRE, unless expressly stated otherwise.

Argoverse [11] This dataset provides data for two dif-
ferent tasks, 3D tracking and motion forecasting. Vehicle
trajectories are collected in top-view in the cities of Pitts-
burgh and Miami, covering an area of more than 1000km2.
In total, there are approximately 325k annotated trajectories,
gathered from over 1000 hours of video. Maps are also
available with lane centerlines, traffic direction, ground
height and drivable areas. Trajectories are all divided into
5 seconds long chunks (2 seconds for past and 3 for future).
The dataset is split into train, validation and test. We report
results on the validation set v1.1, for which ground truth
data is publicly available. Argoverse has a much larger scale
compared to KITTI and exhibits more diversity in trajectory
patterns, proving to be a suitable and challenging bench-
mark on which to evaluate trajectory prediction methods.

Oxford RobotCar [74] and Cityscapes [75] The two
datasets RobotCar and Cityscapes have been adapted for
trajectory prediction in [52] to show zero-shot transfer ca-
pabilities on different domains. Of particular interest is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 1
Results on the KITTI dataset. Results obtained by DESIRE are given

as reference even if not comparable, due to the data collection process.

ADE FDE
Method 1s 2s 3s 4s 1s 2s 3s 4s
Kalman 0.51 1.14 1.99 3.03 0.97 2.54 4.71 7.41
Linear 0.20 0.49 0.96 1.64 0.40 1.18 2.56 4.73
MLP 0.20 0.49 0.93 1.53 0.40 1.17 2.39 4.12

MANTRA (top 1) 0.25 0.59 1.04 1.79 0.49 1.40 2.81 4.70
MANTRA (top 5) 0.17 0.38 0.67 1.06 0.32 0.83 1.63 2.79
MANTRA (top 10) 0.16 0.30 0.48 0.74 0.27 0.60 1.09 1.91
MANTRA (top 20) 0.16 0.28 0.43 0.63 0.26 0.53 0.90 1.60
DESIRE (top 1) [51] - - - - 0.51 1.44 2.76 4.45
DESIRE (top 5) [51]) - - - - 0.28 0.67 1.22 2.06
DESIRE (top 20) [51]) - - - - - - - 2.04

TABLE 2
Results on the KITTI dataset (INFER split).

ADE FDE
Method 1s 2s 3s 4s 1s 2s 3s 4s
Kalman 0.33 0.54 0.93 1.4 0.46 1.18 2.18 3.32
Linear 0.31 0.56 0.89 1.28 0.47 1.13 1.94 2.87
MLP 0.30 0.54 0.88 1.28 0.46 1.12 1.94 2.88

RNN Enc-Dec [78] 0.68 1.94 3.20 4.46 - - - -
Markov [52] 0.70 1.41 2.12 2.99 - - - -

Conv-LSTM (top 5) [52] 0.76 1.23 1.60 1.96 - - - -
INFER (top 1) [52] 0.75 0.95 1.13 1.42 1.01 1.26 1.76 2.67
INFER (top 5) [52] 0.56 0.75 0.93 1.22 0.81 1.08 1.55 2.46
MANTRA (top 1) 0.37 0.67 1.07 1.55 0.60 1.33 2.32 3.50
MANTRA (top 5) 0.33 0.48 0.66 0.90 0.45 0.78 1.22 2.03
MANTRA (top 10) 0.31 0.43 0.57 0.78 0.43 0.67 1.04 1.78
MANTRA (top 20) 0.29 0.41 0.55 0.74 0.41 0.64 1.00 1.68

the ability to transfer to RobotCar since the sequences are
acquired in the UK where cars drive on the left-side of the
road. RobotCar has 6 seconds trajectories divided into 2
seconds for past and 4 for future. Cityscapes instead has
shorter videos and predictions are made only up to one
second in the future, as done in [52].

4.2 Evaluation Metrics and Baselines
We report results in two common metrics for vehicle trajec-
tory prediction: Average Displacement Error (ADE) and Final
Displacement Error (FDE), where ADE is the average L2 error
between all future timesteps and FDE (sometimes referred
to as Horizon error) is the error at a given timestep. As
in [51], [52] we take the best out of K predictions to account
for the intrinsic multimodality of the task. We compare
our approach with several baselines: a linear coordinate
regressor (Linear); a Multi-Layer Perceptron with two layers
trained as a coordinate regressor (MLP); a Kalman filter [77],
with a constant speed model used to propagate the estimate
without incorporating measures (Kalman). We implemented
and tested the baselines on KITTI and Argoverse to show
comparable results. When available we also report existing
baselines from the literature.

4.3 Results
Table 1 shows the results on the KITTI dataset. Simply
propagating the trajectory with a Kalman filter proves to be
insufficient to accurately predict future positions, especially
over long time spans, with an FDE@4s higher than 7m.
Learning based baselines all perform better than the Kalman
filter, with the MLP performing slightly better than the
linear regressor.

TABLE 3
Results on the Argoverse dataset.

ADE FDE
Method 1s 3s 1s 3s

Kalman (top 1) 0.72 2.70 1.29 6.56
Linear (top 1) 0.58 1.95 0.98 4.58
MLP (top 1) 0.53 1.68 0.87 3.90

NN [11] (top 1) 0.75 2.46 1.28 5.60
NN + map [11] (top 6) 0.72 2.28 1.33 4.80
LSTM ED [11] (top 1) 0.68 2.27 1.78 5.19

LSTM ED + map [11] (top 6) 0.80 2.25 1.35 4.67
MFP [57] (top 6) - 1.39 - -

MANTRA (top 1) 0.72 2.36 1.25 5.31
MANTRA (top 6) 0.56 1.22 0.84 2.30
MANTRA (top 10) 0.53 1.00 0.77 1.69
MANTRA (top 20) 0.52 0.84 0.73 1.16

Models that generate a single prediction fail to address
the multimodality of the task, since they are trained to
lower the error with a single output, even when there
might be multiple equally likely desired outcomes. What
may happen is that in front of a bifurcation, the model
predicts an average of the two possible trajectories, trying to
satisfy both scenarios. Examples of this behavior are shown
in Fig. 5. Each prediction of MANTRA instead follows a
specific path, ignoring the others. This leads to high errors
on some examples when generating only one future, since
the model may decide to follow a different likely path.
On the other hand as soon as we generate K multiple
predictions, the top-K error drastically decreases since we
are able to cover diverse future paths. We also report results
from DESIRE [51] varying K . Even though these results are
not directly comparable as explained in Section 4.1, it is in-
teresting to observe how DESIRE does not report significant
improvements when increasing K from 5 to 20, while our
method reduces the error significantly. This suggests that
MANTRA samples a higher diversity of futures both at a
coarse level (i.e., taking one road or another) and at a fine
level (i.e., taking different behaviors on the same road).

Additionally, we evaluate MANTRA on the KITTI split
proposed in [52], as shown in Table 2. Here we also report
some available baselines from the state of the art, both for
single and multimodal predictions. With K = 1 our method
performs better or on par with INFER [52] at low timesteps,
yet losing some precision at 4s. Increasing K instead we are
able to largely outperform INFER over all timesteps.

A similar analysis is obtained when we move to a more
recent and larger scale dataset: Argoverse. Differently from
KITTI, the standard evaluation observes 2 seconds in the
past and predicts up to 3 seconds in the future, using
K=6 predictions to demonstrate multimodality. Results are
shown in Table 3. Along with the Kalman, Linear and MLP
baselines, we report results from the state of the art [11], [57],
obtaining better results especially for 3 seconds predictions.
Some qualitative results on KITTI and Argoverse are shown
in Fig. 5, comparing them with the baselines.

Interestingly, our model does not include social interac-
tion modeling as [11], [51], [52]. Although the presence of
other agents in the surrounding context is an influencing
variable, in our setting, the observation time span is suf-
ficiently large for a vehicle to adapt its motion to what is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

� ��� ��� ��� ���

�

��

���

���

���

���

���

���

� ��� ��� ��� ���

�

��

���

���

���

���

���

���

� ��� ��� ��� ���

�

��

���

���

���

���

���

���

� ��� ��� ��� ���

�

��

���

���

���

���

���

���

� ��� ��� ��� ���

�

��

���

���

���

���

���

���

� ��� ��� ��� ���

�

��

���

���

���

���

���

���

(a) Linear (b) Kalman (c) MANTRA

Fig. 5. MANTRA compared to Linear regression (a) and Kalman filter (b). Methods (a),(b) lack multi-modal capability. Past trajectories are depicted
in blue, ground truth in green and future predictions are cyan (a), purple (b) and red (c). In (c) highly ranked are darker. The first two rows show
samples from the KITTI dataset, while the other two from Argoverse.

TABLE 4
Zero-shot transfer evaluation on the Oxford RobotCar dataset.

MANTRA was trained on KITTI and evaluated on Oxford RobotCar.

ADE FDE
Method 1s 2s 3s 4s 1s 2s 3s 4s

INFER (top 1) [52] 1.06 1.35 1.48 1.68 1.31 1.71 1.70 2.56
INFER (top 5) [52] 0.85 1.14 1.29 1.50 1.18 1.58 1.58 2.41
MANTRA (top 1) 0.55 0.77 1.01 1.30 0.60 1.15 1.82 2.63
MANTRA (top 5) 0.55 0.68 0.82 1.03 0.58 0.88 1.37 2.07
MANTRA (top 10) 0.44 0.56 0.72 0.94 0.48 0.73 1.33 1.98
MANTRA (top 20) 0.31 0.43 0.59 0.83 0.35 0.61 1.24 1.96

perceived and prepare a reaction. This is true for social inter-
actions (avoiding dynamic obstacles) as well as compliance
with the environment (avoiding static obstacles). We believe
that an observed past trajectory, incorporates to some extent
these reactions reflecting also into the future prediction.

Following [52], we also showcase the ability of our
model to zero-shot transfer from KITTI to other datasets,
namely Oxford RobotCar and Cityscapes. We first train our
model on KITTI and then we keep our memory frozen, with-
out any additional training or finetuning. Results are shown
in Table 4 and Table 5. On Oxford RobotCar, MANTRA is
still able to provide satisfactory results, consistently outper-
forming INFER across timesteps for multimodal predictions.
Analogously, on Cityscapes the model obtains a lower error
than the other methods. Here we report only errors at 1s in
the future, which is the maximum length of the trajectories
in the dataset. Note that top-view semantic maps are not
available for these two datasets, therefore we use a memory
controller that relies solely on past embeddings via cosine
distance.

4.4 Incremental Setting
Differently from prior work on trajectory prediction,
MANTRA is able to improve its capabilities online, i.e., ob-

TABLE 5
Zero-shot transfer evaluation on the Cityscapes dataset at 1s in the
future. MANTRA was trained on KITTI and evaluated on Cityscapes.

Method ADE FDE
Conv-LSTM (top 1) [52] 1.50 -
Conv-LSTM (top 3) [52] 1.36 -
Conv-LSTM (top 5) [52] 1.28 -

INFER (top 1) [52] 1.11 1.59
INFER (top 3) [52] 0.99 1.45
INFER (top 5) [52] 0.91 1.38
MANTRA (top 1) 0.81 1.42
MANTRA (top 3) 0.66 1.15
MANTRA (top 5) 0.60 1.00

MANTRA (top 10) 0.54 0.86
MANTRA (top 20) 0.49 0.79

serving other agents’ behaviors while driving. We simulate
an online scenario on KITTI, iteratively removing N samples
from the test set and feeding them to the memory writ-
ing controller without retraining the encoder. In this way,
the controller can write in memory novel useful samples
according to P (w). After every new batch of samples, we
evaluate the model on the remaining trajectories in the test
set, until the test set has been completely observed. We start
from a pre-trained memory of approximately 250 samples,
belonging to the training set of KITTI.

In Fig. 6, memory growth and test error are shown for
K=5 multiple futures. Similar behaviors can be observed
varying K. We plot memory size and prediction error af-
ter having observed every new batch of N samples. We
use N=50 and we indicate in the plots the percentage of
observed samples in the test set, which is composed of
2907 trajectories. Memory size is measured as the number
of samples in memory. Interestingly, memory size grows
slowly while the error keeps decreasing. The memory con-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
% observed samples

1.4

1.6

1.8

2.0

2.2

2.4

FD
E@

4s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
% observed samples

200

250

300

350

400

450

500
M

em
or

y
siz

e

Fig. 6. Incremental setting. The model observes batches of test samples online, that are used as training data, and is evaluated on the remaining
portion of the test set. Mean and variance of memory size (left) and prediction error (right), averaged over 100 runs, are shown. On the x-axis we
report the percentage of test samples incrementally observed.

troller stores only 16% of the newly seen examples. Since the
error variance increases when the test set size decreases, we
average results over 100 runs, randomizing the test set.

5 MODEL ANALYSIS

In the following, we analyze the model under several as-
pects. First, we perform ablation studies to highlight the
importance of distinct components. Then, we investigate
what samples the model writes in memory and how it
decodes them. Finally, we report the execution time for
different memory sizes.

5.1 Ablation Studies

We investigate several modifications of MANTRA, report-
ing results in Table 6 on Argoverse. We test the following
variations: (i) with a reading controller based on cosine
similarity with the past; (ii) with a reading controller based
on cosine similarity with the context; (iii) without decoder,
i.e., reading from memory using encodings but just copying
the correspondent future coordinates; (iv) without rotation
invariance, i.e., using trajectories with random rotations.

First, we discuss the importance of the memory reading
controller introduced in Sec. 3.4. which weighs past and con-
text importance to decode relevant samples from memory.
In principle the reading controller can be any function that
manipulates either of the two inputs. Note that the reading
controller reflects also on memory size, since samples are
stored based on reconstruction error.

At a first look, it appears that the past-based controller
(Controller Past) performs on par with the learned controller
(Full), with the context-based approach achieving far worse
results, both in terms of reconstruction error and memory
size. While basing decisions only on context will obviously
not lead to meaningful reconstructions (Controller Context),
we observed that the best-of-K metrics ADE and FDE do not
point out the substantial differences between the other two
controllers. It appears that often past information alone is
sufficient to generate a good prediction, since the dynamics
of the agent pose a strong constraint over future outcomes.
However, it might happen that several trajectories are pre-
dicted off-road, thus not being compatible with the road
layout. Using best-of-K metrics does not allow to detect
such cases. To overcome this limitation, for each observation
we take into account all the K predictions and measure the

TABLE 6
Ablation study of MANTRA on Argoverse. Errors are at K=6. Memory

size is shown as number of samples and % of the training set.

ADE FDE
Method 1s 3s 1s 4s Off-Road (%) Memory Size
MANTRA (Full) 0.56 1.22 0.84 2.30 3.15 6397 (3.1 %)
MANTRA (Controller Past) 0.52 1.22 0.79 2.38 8.14 6242 (2.9 %)
MANTRA (Controller Context) 0.73 1.87 1.19 3.70 3.08 21992 (10.5 %)
MANTRA w/o dec. 0.80 1.47 1.12 2.44 6.01 6397 (3.1 %)
MANTRA w/o rot. inv. 1.11 2.54 1.80 4.63 40.26 75674 (36.3 %)

off-road percentage. We consider a prediction as off-road
when at least one predicted coordinate lays outside the road.
Similar metrics have been adopted in prior work [59], [79]
to assess the violation of environmental constraints posed
by obstacles or lanes.

It appears that taking context into account along with the
past, lowers this percentage considerably (Full), resulting in
a set of trajectories that satisfy both the dynamics of the past
and the surrounding environment (Fig. 7). Interestingly, we
found that even when predicting a large number of futures,
the off-road percentage stays low with the learned reading
controller (e.g., 3.8% with K=20). The capacity to learn
even a simple nonlinear function to blend past and context
information allows the controller to adapt to the data it
is trained on. In fact, we observe two different behaviors
on KITTI and Argoverse, as shown in Fig. 8. On KITTI,
the controller focuses more on the past, discarding context
information when past similarity is low. On Argoverse, the
higher complexity of contexts reflects on the weights learned
by the controller, and context is taken more into account
even when the past is very dissimilar.

Removing the decoder from the model, instead, leads to
worse results and also doubles the percentage of off-road
predictions. What appears to be of great importance is data
normalization, since when we remove rotation invariance
the model does not manage to achieve a good reconstruction
error, which leads to a 10× bigger memory and a 40% rate
of off-road predictions.

5.2 Memory Inspection

To better understand what the model is learning, we inspect
what is stored in memory by the controller. We take each
sample and plot its decoded future to depict a snapshot of
the memory. In Fig. 9 all samples from a memory filled on
the KITTI dataset for K=5 predictions are shown.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

(a) Controller Context (b) Controller Past (c) Full

Fig. 7. Difference between reading controllers. Past is important to correctly model trajectory dynamics; context is relevant for making predictions
that are feasible with the road layout. Past trajectories are blue, ground truth green and future predictions red (highly ranked are darker).

Fig. 8. Reading controller scores varying past and context similarities.
Different blending functions are learned for different datasets, privileging
the past on KITTI and increasing the relevance of context on Argoverse.

0 20 40 60 80

20

10

0

10

20

Fig. 9. Decoded trajectories from memory.

In Fig. 10 we plot t-SNE projections [80] of past and
future encodings stored in memory, as points. On the left
we plot past embeddings, while on the right we report
future embeddings. For each projected sample we also show
the future trajectories generated by the decoder, displayed
starting from the t-SNE points. All the trajectories in the
image have an upward trend due to the rotation invariance.
It can be seen that similar trajectories are clustered together,
indicating that the encoders are learning a manifold where
samples with similar patterns are close. Interestingly, ob-

Fig. 10. t-SNE representations of past (left) and future (right) encodings
stored in memory. Each point in the embedding space is shown along
with the decoded trajectory. Trajectories are color coded by orientation
(green tones) and speed (red tones).

serving the t-SNE of past encodings, the multimodal nature
of the problem emerges. In fact, the space appears to be
organized mostly by trajectory speed and for each point
several possible future directions are present. When trajec-
tories have lower speed, futures are free to span over many
possible directions, while when trajectories have higher
speed, the futures vary more in length rather than curvature.

5.3 Decoder Analysis

Here we inspect the behavior of the decoder and the in-
fluence that different pasts and contexts have on future
reconstructions. Encoder and decoder are jointly trained,
but differently from standard autoencoders, only part of
the input is reconstructed, i.e., the future. Past and context,
though, have the important role of conditioning the recon-
struction so that we can generalize to unseen examples.
First, we examine the influence of the past.

In Fig. 11 we show several reconstructions of the same
future, changing only the past encoding and keeping fixed
the future one. The reconstructions of the original past
yields a precise reconstruction. By changing the past by
shortening it or stretching it, i.e., changing the velocity, the
reconstruction gets accelerated or decelerated, affecting its
curvature. As a control experiment we also use a vector of
zeros or a random embedding. In both cases the generated

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

0 5 10 15 20

20

10

0

10

20

30

0 5 10 15 20

20

10

0

10

20

30

0 5 10 15 20

20

10

0

10

20

30

0 5 10 15 20

20

10

0

10

20

30

0 5 10 15 20

20

10

0

10

20

30

(a) (b) (c) (d) (e)

Fig. 11. Influence of past in the decoder. (a) observed past; (b) slower
past; (c) faster past; (d) past embedding zeroed; (e) multiple random-
ized past embeddings. Blue: past trajectory. Red: future reconstruction.
Green: original future.

trajectories are very imprecise but still follow approximately
the original trend.

Similarly, we test the influence of different contexts on
future reconstruction. In Fig. 12 we show multiple recon-
structions varying only the context representation. It can be
seen that using a map with a different layout, such as a
straight road instead of a curve, the prediction is affected
and shifted to follow the road. When the model is blinded,
i.e., when the context embedding is replaced with a vector
of zeros, the reconstruction is still accurate, even if slightly
less precise. Feeding to the decoder a random vector in-
stead, leads to noisy outcomes. These tests justify using the
decoder feeding a combination of encodings belonging to
different samples, as we do at test time. In fact the generated
trajectories are new compared to the samples in memory
and they adapt to the current observation.

The degree of past and context influence on future recon-
struction depends on the size of the autoencoder latent state.
In fact, models with a large sized encoding learn to pass the
input directly to the output. Conversely, a reduced sized
encoding forces the decoder to rely on information encoded
in the past and context to reconstruct the output signal. To
verify this, we perform a control experiment by training dif-
ferent autoencoders with different future embedding sizes
|φ|. Similarly to the previous experiments, we swap past
and context with a different sample to observe how these
influence the reconstruction. In Fig. 13 we show an example
of the reconstructed future using |φ| = 24, 48, 72. When the
embedding size is small, the new context and past have
a considerable influence on the reconstruction, shifting the
future towards the lane. With a large embedding, however,
the decoder reconstructs the original future, disregarding
past and context entirely. We have observed this behavior
consistently over different samples.

5.4 Execution Time Analysis
Since automotive applications are time-critical, in this para-
graph we discuss the execution time of MANTRA. Model
inference can be broken down into different steps: encoding,
memory access and decoding. Encoding has a fixed cost,
while decoding depends on K. However, the effect of K
is negligible thanks to GPU parallel execution. Memory
access, instead, has a linear dependency on the number
of samples in memory. We measure the inference time of
MANTRA on Argoverse, using a memory with 6397 entries

(a) (b) (c) (d)

Fig. 12. Influence of context in the decoder. (a) original context; (b)
different context; (c) context embedding zeroed; (e) multiple randomized
context embeddings. Blue: past trajectory used for decoding. Red: future
reconstruction. Green: original future.

Fig. 13. Decoding is affected by the embedding size |φ| when changing
past and context. With a small embedding, the reconstruction adapts
more to past and context, while they are ignored with large embeddings.
Blue: past trajectory. Red: future reconstruction. Green: original future.

as in the experiments in Table 3 and K=6 as in the evaluation
protocol. To simulate a scenario with multiple agents, we
predict futures for a batch of 5 different vehicles simulta-
neously. On an Nvidia Titan RTX GPU, the total inference
time, averaged over 100 runs, is of 15.37ms. Figure 14 (left)
shows the timing breakdown, highlighting that the most
expensive stage is decoding. This is due to the fact that
we decode autoregressively for 30 timesteps (3 seconds),
which is less efficient than directly generating the whole
trajectory. However, the model is still capable of running
in real-time at approximately 65Hz. In Fig. 14 (right), we
show inference times as a function of memory size. It can
be noticed that memory access time increases linearly, up
to 15ms with one million stored samples. Morever, in case
of very large memories, fast access techniques could be
employed [81]. We conclude that in a real-time system, the
main computational bottleneck would likely be given by
the detection and segmentation pipelines used to extract
trajectories and semantic labels.

Decoding
 12.66 ms

Memory
 0.93 ms

Encoding
 1.47 ms

102 103 104 105 106

Memory size

0

5

10

15

20

25

30

In
fe

re
n
ce

 T
im

e
 (

m
s)

Memory access

Total

Fig. 14. Inference time. Left: breakdown of timings on Argoverse (mem-
ory size 6397) with K=6 futures. Right: inference time dependency from
number of samples in memory is linear (log x axis).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

6 CONCLUSIONS AND FUTURE WORK

In this paper we have presented MANTRA, a novel frame-
work exploiting a Memory Augmented Network for mul-
tiple trajectory prediction of moving agents, observed from
an ego-centric point of view. The memory module is used to
store encodings of past, context and future observations and
is central to the model prediction capabilities. Two memory
controllers are trained respectively to write a compact set
of samples relevant for the task and to read the most
appropriate ones, considering both the past trajectory and
the surrounding road layout. The experiments presented on
four public datasets, show that MANTRA achieves state of
the art performance. The presented method also performs
well in zero-shot transfer to unseen datasets and is able to
improve incrementally online.

Currently, this work has focused on predicting trajec-
tories of multiple moving agents. Future work will ad-
dress agent interactions, extending MANTRA by adding an
episodic memory along with the persistent one, to reason on
social behaviors of the surrounding agents. Another aspect
which we plan on improving is the online learning capa-
bility. Now, we are incrementally expanding MANTRA’s
memory after having trained the model. We believe that an
end-to-end solution capable of updating the weights of the
model at runtime would be an interesting development.

REFERENCES

[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[2] F. Codevilla, M. Miiller, A. López, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 1–9.

[3] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of
driving models from large-scale video datasets,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017,
pp. 2174–2182.

[4] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi,
“Sequence-to-sequence prediction of vehicle trajectory via lstm
encoder-decoder architecture,” in 2018 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2018, pp. 1672–1678.

[5] B. Kim, C. M. Kang, J. Kim, S. H. Lee, C. C. Chung, and J. W. Choi,
“Probabilistic vehicle trajectory prediction over occupancy grid
map via recurrent neural network,” in 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC). IEEE, 2017,
pp. 399–404.

[6] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 961–971.

[7] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social
gan: Socially acceptable trajectories with generative adversarial
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 2255–2264.

[8] A. Vemula, K. Muelling, and J. Oh, “Modeling cooperative naviga-
tion in dense human crowds,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2017, pp. 1685–1692.

[9] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,”
arXiv preprint arXiv:1410.5401, 2014.

[10] F. Marchetti, F. Becattini, L. Seidenari, and A. Del Bimbo, “Mantra:
Memory augmented networks for multiple trajectory prediction,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2020.

[11] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan et al., “Argoverse: 3d
tracking and forecasting with rich maps,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 8748–8757.

[12] M. Leo, G. Medioni, M. Trivedi, T. Kanade, and G. M. Farinella,
“Computer vision for assistive technologies,” Computer Vision and
Image Understanding, vol. 154, pp. 1–15, 2017.

[13] M. Leo, A. Furnari, G. G. Medioni, M. Trivedi, and G. M. Farinella,
“Deep learning for assistive computer vision,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 0–0.

[14] M. Bolanos, R. Mestre, E. Talavera, X. Giró-i Nieto, and P. Radeva,
“Visual summary of egocentric photostreams by representative
keyframes,” in 2015 IEEE International Conference on Multimedia &
Expo Workshops (ICMEW). IEEE, 2015, pp. 1–6.

[15] M. Bolanos, M. Dimiccoli, and P. Radeva, “Toward storytelling
from visual lifelogging: An overview,” IEEE Transactions on
Human-Machine Systems, vol. 47, no. 1, pp. 77–90, 2016.

[16] A. Furnari, S. Battiato, and G. M. Farinella, “Personal-location-
based temporal segmentation of egocentric videos for lifelogging
applications,” Journal of Visual Communication and Image Represen-
tation, vol. 52, pp. 1–12, 2018.

[17] H.-C. Wang, R. K. Katzschmann, S. Teng, B. Araki, L. Giarré, and
D. Rus, “Enabling independent navigation for visually impaired
people through a wearable vision-based feedback system,” in
2017 IEEE international conference on robotics and automation (ICRA).
IEEE, 2017, pp. 6533–6540.

[18] A. Fiannaca, I. Apostolopoulous, and E. Folmer, “Headlock: a
wearable navigation aid that helps blind cane users traverse
large open spaces,” in Proceedings of the 16th international ACM
SIGACCESS conference on Computers & accessibility, 2014, pp. 19–
26.

[19] D. Dakopoulos and N. G. Bourbakis, “Wearable obstacle avoid-
ance electronic travel aids for blind: a survey,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 40, no. 1, pp. 25–35, 2009.

[20] T. Miyaki and J. Rekimoto, “Lidarman: reprogramming reality
with egocentric laser depth scanning,” in ACM SIGGRAPH 2016
Emerging Technologies, 2016, pp. 1–2.

[21] D. Lindlbauer and A. D. Wilson, “Remixed reality: manipulating
space and time in augmented reality,” in Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, 2018, pp.
1–13.

[22] K. K. Singh, K. Fatahalian, and A. A. Efros, “Krishnacam: Using
a longitudinal, single-person, egocentric dataset for scene under-
standing tasks,” in 2016 IEEE Winter Conference on Applications of
Computer Vision (WACV). IEEE, 2016, pp. 1–9.

[23] H. Soo Park, J.-J. Hwang, Y. Niu, and J. Shi, “Egocentric future
localization,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 4697–4705.

[24] J. Bai, S. Lian, Z. Liu, K. Wang, and D. Liu, “Smart guiding
glasses for visually impaired people in indoor environment,” IEEE
Transactions on Consumer Electronics, vol. 63, no. 3, pp. 258–266,
2017.

[25] C. Feng, S. Valaee, A. W. S. Au, S. Reyes, S. Sorour, S. N.
Markowitz, D. Gold, K. Gordon, and M. Eizenman, “Anonymous
indoor navigation system on handheld mobile devices for visually
impaired,” International Journal of Wireless Information Networks,
vol. 19, no. 4, pp. 352–367, 2012.

[26] Y. J. Lee and K. Grauman, “Predicting important objects for
egocentric video summarization,” International Journal of Computer
Vision, vol. 114, no. 1, pp. 38–55, 2015.

[27] A. Furnari, S. Battiato, K. Grauman, and G. M. Farinella, “Next-
active-object prediction from egocentric videos,” Journal of Visual
Communication and Image Representation, vol. 49, pp. 401–411, 2017.

[28] Y. H. Lee, T.-S. Leung, and G. Medioni, “Real-time staircase
detection from a wearable stereo system,” in Proceedings of the 21st
International Conference on Pattern Recognition (ICPR2012). IEEE,
2012, pp. 3770–3773.

[29] D. Damen, T. Leelasawassuk, O. Haines, A. Calway, and W. W.
Mayol-Cuevas, “You-do, i-learn: Discovering task relevant objects
and their modes of interaction from multi-user egocentric video.”
in BMVC, vol. 2, 2014, p. 3.

[30] M. Liu, S. Tang, Y. Li, and J. Rehg, “Forecasting human object
interaction: Joint prediction of motor attention and egocentric
activity,” arXiv preprint arXiv:1911.10967, 2019.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[31] F. Baradel, N. Neverova, C. Wolf, J. Mille, and G. Mori, “Object
level visual reasoning in videos,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 105–121.

[32] D. Damen, H. Doughty, G. Maria Farinella, S. Fidler, A. Furnari,
E. Kazakos, D. Moltisanti, J. Munro, T. Perrett, W. Price et al., “Scal-
ing egocentric vision: The epic-kitchens dataset,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2018, pp. 720–
736.

[33] R. Yonetani, K. M. Kitani, and Y. Sato, “Recognizing micro-actions
and reactions from paired egocentric videos,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2629–2638.

[34] G. Abebe, A. Catala, and A. Cavallaro, “A first-person vision
dataset of office activities,” in IAPR Workshop on Multimodal Pat-
tern Recognition of Social Signals in Human-Computer Interaction.
Springer, 2018, pp. 27–37.

[35] S. Su, J. Pyo Hong, J. Shi, and H. Soo Park, “Predicting behaviors of
basketball players from first person videos,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 1501–1510.

[36] A. S. Razavian, O. Aghazadeh, J. Sullivan, and S. Carlsson, “Esti-
mating attention in exhibitions using wearable cameras,” in 2014
22nd International Conference on Pattern Recognition. IEEE, 2014,
pp. 2691–2696.

[37] F. Ragusa, A. Furnari, S. Battiato, G. Signorello, and G. M.
Farinella, “Ego-ch: Dataset and fundamental tasks for visitors
behavioral understanding using egocentric vision,” Pattern Recog-
nition Letters, vol. 131, pp. 150–157, 2020.

[38] L. Seidenari, C. Baecchi, T. Uricchio, A. Ferracani, M. Bertini, and
A. D. Bimbo, “Deep artwork detection and retrieval for automatic
context-aware audio guides,” ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), vol. 13,
no. 3s, pp. 1–21, 2017.

[39] Y.-S. Hsieh, Y.-C. Su, and L.-G. Chen, “Robust moving object
tracking and trajectory prediction for visual navigation in dynamic
environments,” in 2012 IEEE International Conference on Consumer
Electronics (ICCE). IEEE, 2012, pp. 696–697.

[40] Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, and D. Manocha, “Traf-
ficpredict: Trajectory prediction for heterogeneous traffic-agents,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 6120–6127.

[41] L. Berlincioni, F. Becattini, L. Galteri, L. Seidenari, and
A. Del Bimbo, “Road layout understanding by generative adver-
sarial inpainting,” in Inpainting and Denoising Challenges. Springer,
2019, pp. 111–128.

[42] B. Bescos, J. Neira, R. Siegwart, and C. Cadena, “Empty cities:
Image inpainting for a dynamic-object-invariant space,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 5460–5466.

[43] Y. Yao, M. Xu, Y. Wang, D. J. Crandall, and E. M. Atkins, “Un-
supervised traffic accident detection in first-person videos,” arXiv
preprint arXiv:1903.00618, 2019.

[44] S. Malla and C. Choi, “Nemo: Future object localization using
noisy ego priors,” arXiv preprint arXiv:1909.08150, 2019.

[45] Y. Yao, M. Xu, C. Choi, D. J. Crandall, E. M. Atkins, and B. Dariush,
“Egocentric vision-based future vehicle localization for intelligent
driving assistance systems,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 9711–9717.

[46] D. Helbing and P. Molnar, “Social force model for pedestrian
dynamics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

[47] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never
walk alone: Modeling social behavior for multi-target tracking,” in
2009 IEEE 12th International Conference on Computer Vision. IEEE,
2009, pp. 261–268.

[48] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose,
H. Rezatofighi, and S. Savarese, “Sophie: An attentive gan
for predicting paths compliant to social and physical constraints,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 1349–1358.

[49] M. Lisotto, P. Coscia, and L. Ballan, “Social and scene-aware
trajectory prediction in crowded spaces,” in Proceedings of the IEEE
International Conference on Computer Vision Workshops, 2019, pp. 0–
0.

[50] B. Ivanovic and M. Pavone, “The trajectron: Probabilistic multi-
agent trajectory modeling with dynamic spatiotemporal graphs,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2019, pp. 2375–2384.

[51] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chan-
draker, “Desire: Distant future prediction in dynamic scenes with
interacting agents,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017, pp. 336–345.

[52] S. Srikanth, J. A. Ansari, S. Sharma et al., “Infer: Intermediate
representations for future prediction,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2019), 2019.

[53] A. Zyner, S. Worrall, and E. Nebot, “Naturalistic driver intention
and path prediction using recurrent neural networks,” IEEE Trans-
actions on Intelligent Transportation Systems, 2019.

[54] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine, “Precog:
Prediction conditioned on goals in visual multi-agent settings,” in
Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 2821–2830.

[55] C. Choi, A. Patil, and S. Malla, “Drogon: A causal reason-
ing framework for future trajectory forecast,” arXiv preprint
arXiv:1908.00024, 2019.

[56] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, “Multipath: Multiple
probabilistic anchor trajectory hypotheses for behavior predic-
tion,” arXiv preprint arXiv:1910.05449, 2019.

[57] C. Tang and R. R. Salakhutdinov, “Multiple futures prediction,” in
Advances in Neural Information Processing Systems, 2019, pp. 15 398–
15 408.

[58] S. Malla, B. Dariush, and C. Choi, “Titan: Future forecast using
action priors,” arXiv preprint arXiv:2003.13886, 2020.

[59] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajec-
tron++: Multi-agent generative trajectory forecasting with hetero-
geneous data for control,” arXiv preprint arXiv:2001.03093, 2020.

[60] A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer, “Imitating
driver behavior with generative adversarial networks,” in 2017
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 204–211.

[61] N. Deo and M. M. Trivedi, “Multi-modal trajectory prediction of
surrounding vehicles with maneuver based lstms,” in 2018 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 1179–1184.

[62] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[63] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using rnn encoder-decoder for statistical machine
translation,” arXiv preprint arXiv:1406.1078, 2014.

[64] Ł. Kaiser, O. Nachum, A. Roy, and S. Bengio, “Learning to remem-
ber rare events,” arXiv preprint arXiv:1703.03129, 2017.

[65] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in
International conference on machine learning, 2016, pp. 1842–1850.

[66] S. Sukhbaatar, J. Weston, R. Fergus et al., “End-to-end memory
networks,” in Advances in neural information processing systems,
2015, pp. 2440–2448.

[67] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” arXiv
preprint arXiv:1410.3916, 2014.

[68] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl:
Incremental classifier and representation learning,” in Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition,
2017, pp. 2001–2010.

[69] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani,
V. Zhong, R. Paulus, and R. Socher, “Ask me anything: Dynamic
memory networks for natural language processing,” in Interna-
tional conference on machine learning, 2016, pp. 1378–1387.

[70] C. Ma, C. Shen, A. Dick, Q. Wu, P. Wang, A. van den Hengel,
and I. Reid, “Visual question answering with memory-augmented
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 6975–6984.

[71] T. Yang and A. B. Chan, “Learning dynamic memory networks
for object tracking,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 152–167.

[72] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and
J. Weston, “Key-value memory networks for directly reading
documents,” arXiv preprint arXiv:1606.03126, 2016.

[73] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2012, pp. 3354–
3361.

[74] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year,
1000 km: The oxford robotcar dataset,” The International Journal
of Robotics Research, vol. 36, no. 1, pp. 3–15, 2017.

[75] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

for semantic urban scene understanding,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
3213–3223.

[76] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethink-
ing atrous convolution for semantic image segmentation,” arXiv
preprint arXiv:1706.05587, 2017.

[77] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” 1960.

[78] J. Virdi, “Using deep learning to predict obstacle trajectories for
collision avoidance in autonomous vehicles,” Ph.D. dissertation,
UC San Diego, 2017.

[79] W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and
R. Urtasun, “End-to-end interpretable neural motion planner,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 8660–8669.

[80] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of machine learning research, vol. 9, no. Nov, pp. 2579–2605,
2008.

[81] G. Lample, A. Sablayrolles, M. Ranzato, L. Denoyer, and H. Jégou,
“Large memory layers with product keys,” in Advances in Neural
Information Processing Systems, 2019, pp. 8546–8557.

Francesco Marchetti He received a master de-
gree cum laude in 2019 in computer engineering
from the University of Florence with the thesis
“Trajectories Prediction for Autonomous Driving
with Memory Networks” in collaboration with the
research institute IMRA Europe.

Currently he is a research fellow at Media
Integration and Communication Center (MICC)
and the research work focuses on trajectories
forecasting in the automotive field.

Federico Becattini obtained his PhD in 2018
from the University of Florence under the su-
pervision of Prof. Alberto Del Bimbo and Prof.
Lorenzo Seidenari. Currently he is a PostDoc at
MICC, where he is involved in numerous collabo-
rations, mostly focusing on Autonomous Driving
and Scene Understanding. He attended several
international conferences both as speaker and
volunteer, as well as summer schools. He served
to the scientific community as a reviewer for
scientific journals and conferences.

Lorenzo Seidenari is currently an Assistant
Professor at the Media Integration and Com-
munication Center of the University of Florence.
He received his Ph.D. degree in computer engi-
neering in 2012 from the University of Florence.
His research focuses on deep learning for object
and action recognition in video and images. On
this topics he addressed RGB-D activity recogni-
tion, embedding learning for multimodal-fusion,
anomaly detection in video and people behavior
profiling. He was a visiting scholar at the Univer-

sity of Michigan in 2013. He organized and gave a tutorial at ICPR 2012
on image categorization. He is author of 14 journal papers and more
than 40 peer-reviewed conference papers. He has an h-index of 19 with
more than 1300 citations.

Alberto Del Bimbo is a Full Professor of Com-
puter Engineering, and the Director of the Me-
dia Integration and Communication Center with
the University of Florence. His scientific inter-
ests are multimedia information retrieval, pattern
recognition, image and video analysis, and hu-
man–computer interaction. From 1996 to 2000,
he was the President of the IAPR Italian Chap-
ter and the Member-at-Large of the IEEE Pub-
lication Board from 1998 to 2000. He was the
General Co-Chair of ACM MM 2010 and ECCV

in 2012. He was nominated as ACM Distinguished Scientist in 2016.
He received the SIGMM Technical Achievement Award for Outstand-
ing Technical Contributions to Multimedia Computing, Communications
and Applications. He is an IAPR Fellow, and an Associate Editor of
Multimedia Tools and Applications, Pattern Analysis and Applications,
the Journal of Visual Languages and Computing, and the International
Journal of Image and Video Processing, and was an Associate Editor
of Pattern Recognition, the IEEE Transactions on Multimedia, and the
IEEE Transactions on Pattern Analysis and Machine Intelligence. He
serves as the Editor-in-Chief of the ACM Transactions on Multimedia
Computing, Communications, and Applications.

