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Abstract—Due to memory constraints on current hardware,
most convolution neural networks (CNN) are trained on
sub-megapixel images. For example, most popular datasets in
computer vision contain images much less than a megapixel
in size (0.09MP for ImageNet and 0.001MP for CIFAR-10). In
some domains such as medical imaging, multi-megapixel images
are needed to identify the presence of disease accurately. We
propose a novel method to directly train convolutional neural
networks using any input image size end-to-end. This method
exploits the locality of most operations in modern convolutional
neural networks by performing the forward and backward pass
on smaller tiles of the image. In this work, we show a proof
of concept using images of up to 66-megapixels (8192×8192),
saving approximately 50GB of memory per image. Using two
public challenge datasets, we demonstrate that CNNs can learn
to extract relevant information from these large images and
benefit from increasing resolution. We improved the area under
the receiver-operating characteristic curve from 0.580 (4MP) to
0.706 (66MP) for metastasis detection in breast cancer (CAME-
LYON17). We also obtained a Spearman correlation metric ap-
proaching state-of-the-art performance on the TUPAC16 dataset,
from 0.485 (1MP) to 0.570 (16MP). Code to reproduce a subset of
the experiments is available at https://github.com/DIAGNijmegen/
StreamingCNN.

I. INTRODUCTION

Convolutional neural networks (CNN) are the current
state-of-the-art machine learning algorithms for many tasks in
computer vision, such as classification or segmentation. Ever
since Krizhevsky et al. won ImageNet[1] with a CNN[2] in
2012, these networks have become deeper[3] and wider[4]
to further improve accuracy. Training these larger networks
requires large amounts of computer memory, which increases
exponentially with increasing image size. To avoid shortcom-
ings in memory, most natural image datasets in computer vision
contain sub-megapixel images: 0.09 megapixel for ImageNet[1]
and 0.001 megapixel for CIFAR-10[5]. In several domains
such as remote sensing or medical imaging, there is a need for
training CNNs with multi-megapixel-sized images – containing
both global contextual and local textural information – to obtain
accurate models.

Computer memory becomes a limiting factor because the
conventional backpropagation algorithm for optimizing deep
neural networks requires the storage of intermediate activations.
Since the size of these intermediate activations in a convolu-
tional neural network increases proportionate to the input size,
memory quickly fills up with images of multiple megapixels.
As such, only small CNNs could be trained with these images

and state-of-the-art architectures would be out of reach, even
on large computing clusters.

In this paper, we propose a novel method to directly train
state-of-the-art convolutional neural networks using any input
image size end-to-end. This method exploits the locality of
most operations in modern convolutional neural networks
by tiling the forward and backward pass in combination
with gradient checkpointing. We first empirically established
equivalence between our tile-based approach and an unmod-
ified convolutional neural network on a subset of ImageNet,
ImageNette[6]. Then we applied this method to two public
datasets: the CAMELYON17 dataset[7] for metastases detection
in lymph nodes, and the TUPAC16 dataset[8] for predicting
a proliferation score based on gene expression. In both cases,
task-specific performance increased with larger input image
sizes.

II. RELATED WORK

Several authors have suggested approaches to train convolu-
tional neural networks (CNNs) with large input images while
preventing memory bottlenecks. Their methods can be roughly
grouped into three categories: (A) altering the dataset, (B)
altering usage of the dataset, and (C) altering the network or
underlying implementations.

A. Altering the dataset

If images are too large to fit in the memory of the processing
unit, we could downsample the image or divide the image
into smaller parts, i.e., patches. The latter approach has been
prevalent in both remote sensing and medical imaging[9], [10].
However, both approaches have significant drawbacks: the
former results in a loss of local details, whereas the latter
results in losing global contextual information.

The common approach of training on patches typically
involves creating labels for every patch, which can be time-
and cost-intensive. It is sometimes not even possible to produce
patch-level labels: if a hypothetical task is to predict whether an
aerial image shows a city or a village, it is impossible to create
informative labels for individual patches only containing several
houses. In the Kaggle Data Science Bowl 2017[11], participants
were asked to classify chest CT images as containing lung
cancer or not. In this case, a non-expert could not label
individual 3D patches of the CT scan without knowing the
location of cancer.
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B. Altering usage of the dataset

When we can assume that individual patches contain enough
information to predict the image-level label, the classification
can be formalized under the classic multiple-instance-learning
(MIL) paradigm. In MIL, each image is considered a bag
consisting of patches where a positive bag has at least one
positive patch and a negative bag none. In the deep learning
case, a model is trained in a weakly supervised manner on
patches, where the patch with the highest predicted probability
is used for backpropagation. Other approaches involve taking
the average of the patch predictions or a learned weighted
average from low-dimensional patch embeddings[12], [13].

In this approach, the receptive field of a network is always
at most the size of the patch. The model disregards spatial
relationships between patches, limiting the incorporation of
contextual information.

By first learning to decide which regions should be analyzed
at a higher resolution, the problem that a full image cannot
be used can also be circumvented[14], [15], [16], [17]. These
methods rely on the existence of clues in downsampled images
to guide the analysis to informative higher resolution patches,
which might not be present. Additionally, for analysis of the
selected region, these methods si till use patch-based analysis
with the same caveats as mentioned before.

Another way to utilize datasets with large images is proposed
by Tellez et al.[18]. To compress the image to a lower-di-
mensional space, they proposed unsupervised learning. The
model is trained patch-by-patch to reconstruct the original
patch. An intermediate feature map of the model (i.e., the
embedding) can subsequently be used as a lower-dimensional
representation per patch. After training, the whole image is
compressed patch-by-patch. A model is subsequently trained
on these embeddings, having the receptive field of the whole
image while requiring less memory.

Since the compression network is trained by reconstruction,
the same compression network can be used for different tasks.
However, this means that the low-dimensional embedding is
not meant for a specific task and may have compressed away
useful information. Our approach involves one network which
learns to compress task-relevant information.

C. Altering the network or underlying implementations

The memory bottleneck can also be circumvented with mem-
ory-efficient architectures or memory-efficient implementations
of existing architectures. Recently, Gomez et al.[19] published
a method to train deep residual neural networks using less
memory, termed the Reversible Residual Network. With these
networks, some layer activations are recomputed from others
on demand, reducing the total memory required. Network ar-
chitectures can also be altered to utilize cheaper computational
operation, such as depthwise separable convolutions[20] or
fewer parameters[21]. Our method does not require reducing
the number of parameters and works with most types of
layers. Another method to reduce memory usage is to recover
intermediate activations by doing partial forward passes during
backpropagation, termed gradient checkpointing[22]. This
method is similar to our approach, but the whole activation

feature map of some layers still need to be stored in memory,
limiting the use of multi-megapixel images.

Another memory-saving approach is to share memory
between tensors with duplicate or recomputable values[23],
[24], to develop neural networks with reduced precision using
half-precision or mixed precision[25], or to swap data between
random access memory (RAM) and graphics processing unit
(GPU) memory[26]. These methods are usually insufficient
for training with large multi-megapixel images; our proposed
method can work orthogonally to them.

III. METHODS

To achieve our goal of training CNNs with multi-megapixel
images, we significantly reduce the memory requirements.
Memory demand is typically highest in the first few layers of
state-of-the-art CNNs before several pooling layers are applied
because the intermediate activation maps are large. These
activation maps require much less memory in subsequent layers.
We propose to construct these later activations by streaming
the input image through the CNN in a tiled fashion, changing
the memory requirement of the CNN to be based on the size
of the tile and not the input image. This method allows the
processing of input images of any size.

Several problems arise when trying to reconstruct the later
activation map tile-by-tile. Firstly, convolutional layers handle
image borders in different ways, either by padding zeros
to perform a “same” convolution or by reducing the image
size to perform a “valid” convolution. Secondly, in tile-based
processing, border effects occur at both the image borders
and the tile borders; naive tiling of the input image would
thus result in incomplete activation maps and gradients for
backpropagation. Lastly, intermediate feature maps of the
tiles still need to be stored in memory for backpropagation,
which would counteract the streaming of tiles. We solve these
problems by developing a principled method to calculate the
required tile overlap throughout the network in both the forward
and backward pass and by using gradient checkpointing.

We first explain the reconstruction of the intermediate
activation map in the forward pass in section III-A, then
describe the backward pass in section III-B, elaborate on how
to calculate the tile overlap in section III-C, and finish with
the limitations of this method in section III-D. See Figure 1
for a graphical representation of the method.

A. Streaming during the forward pass

Without loss of generality, we explain the method in the
discrete one-dimensional case. Let us define x ∈ RN as
the one-dimensional real-valued vector with N elements. In
discrete one-dimensional space, a “valid” convolution1 (*) with
a kernel with n weights w ∈ Rn, and stride 1, is defined as:

(x ∗ w)k =

n∑
i=0

wixk+i (1)

1By convention we used the term convolution although the mathematical
operation implemented in most machine learning frameworks (e.g., TensorFlow,
PyTorch) is a cross-correlation.
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where k ∈ {0, . . . , f} and f = N − n, for any kernel with
length n ≤ N (for clarity, we will start all indices from 0).
Our goal is to decrease the memory load of an individual
convolution by tiling the input. Following (1), we can achieve
the same result as x ∗ w, by doing two convolutions on the
input:

a = {(x ∗ w)0, . . . , (x ∗ w)f//2} (2)
b = {(x ∗ w)f//2+1, . . . , (x ∗ w)f} (3)

where // denotes a divide and floor operation.
By definition of concatenation (_):

{(x ∗ w)0, . . . , (x ∗ w)f} = a _ b (4)

To ensure that the concatenation of both tiles results in
the same output as for the full vector, we need to increase
the size of the tiles, resulting o = n − 1 overlapping values.
The values {x0, . . . , xf//2+o} are required to calculate a, and
{xf//2+1−o, . . . , xN} for b.

Since the tiles are smaller than the original vector, these
separate convolutions require less memory when executed in
series. By increasing the number of tiles, memory requirements
for individual convolution operations can be reduced even
further.

Without loss of generality, the above can also be extended
to multiple layers in succession including layers with stride
> 1 (e.g., strided convolutions and pooling layers) which are
also commonly used in state-of-the-art networks.

When one applies this tiling strategy naively, no memory
benefit is obtained as each tile’s intermediate activation would
still be stored in memory to allow for backpropagation. We
use gradient checkpointing to resolve this: We only store the
activations after the concatenation of the tiles – where the
memory burden is small. This does require recalculation of all
intermediate activations for all tiles during backpropagation, but
again, only has a memory requirement of processing of a single
tile. The trade-off between memory use and re-computation
can be controlled through the selection of the concatenation
point in the network.

From this point onward, the term streaming refers to the
tiling of a vector, applying kernel operations, and concatenating
the results.

B. Streaming during backpropagation
The backward pass of multiple convolutions can also be

calculated by utilizing the tiles. To start, let us define p as
the output after streaming. The derivative of a weight in a
convolutional kernel is defined as:

∆wj =

|p|−1∑
i=0

{
∆pixi+j , if i− j ≥ 0 and i− j < |p|
0, otherwise

(5)

where |·| denotes the length of a vector.
While streaming, this sum has to be reconstructed through

the summation of the gradients of all tiles, which will result
in the same gradient again:

∆wj =

|a|−1∑
i=0

∆aixi+j +

|b|−1∑
i=0

∆bixi+j+f//2 (6)

Algorithm 1: Forward and backward pass with streaming
through the bottom layers of the network with tiles.

in :n convolutional layers, x image to stream with m tiles t
at coordinates, and i the last layer to stream.
crop_unique uses indices from Algorithm 2.

out : grads containing gradients per layer.

1 o← [] . array to collect tile outputs
2 with no gradient computation
3 for c in coordinates do
4 t← crop(x, c)
5 o[c]← forward(layers[0..i], t)
6 end
7 end
8 stream_o← concat(o[0..m])
9 pred← forward(layers[i..n], stream_o)

10 loss← criterion(pred)
11 g ← backward(layers[n..i], loss)
12 filled← [] . array to remember backpropped indices
13 for c in coordinates do
14 o[c]← forward(layers[0..i], t) . checkpointing
15 gt ← crop_relevant_gradient(g, c)
16 for l in layers[i..0] do
17 gt ← backward(l, gt)
18 ou, gu, filled[l]←

crop_unique(l, o[c], c, filled[l])
19 gkernel ← backward(ou, gu)
20 grads[l]← sum_gradients(gkernel, grads[l])
21 end
22 end

The gradient of the input can be calculated with a similar
sum, but then shifted by the kernel size:

∆xi =

n−1∑
j=0

{
wj∆pi−j , if i− j ≥ 0 and i− j < |p|
0, otherwise

(7)

This formula is equal to a convolution with a flipped
kernel w on ∆p padded with n − 1 zeros (e.g., flip(w) ∗
[0, 0,∆p1...∆pn, 0, 0], when n = 3), often called a “full” con-
volution. Thus, analog to the forward pass, the backpropagation
can also be streamed.

However, overlapping values of the output p are required
when streaming the backpropagation, similar to the overlapping
values of the input x required in the forward pass. To generate
overlapping values for the output p, the overlap o for the input
x needs to be increased to calculate the full ∆x.2

C. Efficiently calculating required tile overlap for complex
architectures

Some recent state-of-the-art networks (e.g., ResNet and
DenseNet) contain different paths through the network that
sum or concatenate activations from different layers together.
These paths make it difficult to manually calculate the required
tile overlap for streaming.

To calculate the overlap for such networks, we temporarily
replace all convolutional kernel parameters with 1

n , where n
was the length of the kernel. This causes each entry in the

2Zero-padding the tiles before the convolution does not help because these
zeros do not exist in the original vector, hereby invalidating the gradients at
the border as well.
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Fig. 1: Schematic overview of streaming in a one-dimensional case, using a 1x3 kernel. We can calculate the same gradients with smaller
input and output shapes, saving memory. Colored in red are incomplete gradients of the input tile, illustrating that if we chain two of these
one-dimensional convolutions together, more overlap is needed (four values instead of the two pictured). During streaming, the gradients of the
convolutional kernel are not reset between tiles and are summed with the previous gradients. After the three tiles have been backpropagated,
the kernel gradients are equal to the normal case. Gradient checkpointing is also used to save additional memory, but is omitted here for
clarity.

convolutional layer’s output to be the average of the input
image spanned by the convolutional kernel. We then pass an
all-ones tile through the network. The required overlap will
be the number of non-maximum values in the activation maps
and gradients at the border of the tiles, see Algorithm 2.

Algorithm 2: Finding which areas of streamed feature maps and
gradients contain values equal to feature maps and gradients
in an backpropagated full-resolution image.

in : t tile at the desired tile size, containing a constant value,
layers containing n number of convolutional neural
network layers, and i the last layer to stream.

out : statistics for forward and backward pass invalid_forw_i,
invalid_back_i, and output_stride.

1 output_stride← 1
2 for l in layers[0..i] do
3 kernel_backupl ← kernell
4 kernell ← 1/len(kernell)
5 t← forward(l, t)
6 invalid_forw_i← non_max_indices(o)
7 output_stride← output_stride ∗ l.stride
8 end
9 o← forward(layers[i..n], o)

10 loss← criterion(o)
11 g ← backward(layers[n..i], loss)
12 for l in layers[i..0] do
13 g ← backward(l, g)
14 invalid_back_i← non_max_indices(g)
15 kernell ← kernel_backupl
16 end

D. Limitations

With small tiles, the overlap can be a significant part of
the tile, counteracting the memory gains. Since we leverage
the method for high-resolution images using large tiles, the
memory gains outweigh this overhead.

Furthermore, due to the use of gradient checkpointing, the
method will perform multiple forward and backward operations

to calculate intermediate activations. This results in longer
processing time than it would take if the image could fit on
the GPU (see Table I). The processing time increases almost
linearly with the number of tiles.

Finally, since the method relies on the local properties
of convolutions and pooling operations, trying to use other
operations that break this locality will result in invalid results
(e.g., operations that rely on all the feature map values such as
BatchNormalization[27]). Note that these operations can still
be used in the non-streaming later layers of the network.

Table I: Forward and backward pass time and peak memory usage
for different input image sizes.

Input Tile size (n) Forward Backward Memory

10242 10242 (1) 0.5 ms 45 ms 1957 MB
10242 5272 (4) 16 ms 89 ms 513 MB
10242 3582 (9) 22 ms 111 ms 331 MB
10242 2732 (16) 27 ms 147 ms 202 MB

10242 10242 (1) 0.5 ms 45 ms 1957 MB
20482 10392 (4) 47 ms 308 ms 1994 MB
40962 10392 (16) 187 ms 1373 ms 2283 MB
81922 10392 (64) 753 ms 5127 ms 3435 MB

Notes: Performance of three 2D-convolutional layers with respectively
3, 64, and 3 output channels and kernel-size 3 on an RTX 2080Ti
GPU. The memory increase that can be appreciated with increasing
input sizes is due to the size of the output gradient.

IV. EVALUATION

We evaluated the streaming method with three different
datasets and network architectures. First, in Section V, we
evaluated whether a CNN using streaming trains equivalently
to the conventional training. We trained the same CNN on a
small subset of the ImageNet dataset, ImageNette, using both
methods[6]. Second, in Section VI, we evaluated the usage
of streaming on a regression task in the public TUPAC16[8]
dataset with high-resolution images (multiple gigapixels) and
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only image-level labels which are based on the mean RNA
expression of 11 proliferation-associated genes. We trained
multiple networks using increasing image resolutions and
network depth. Finally, in Section VII, we evaluated streaming
in a classification task using the image-level labels of the
CAMELYON17 dataset[28].

An open-source implementation of the streaming algorithm
and the ImageNette experiments can be found at https://github.
com/DIAGNijmegen/StreamingCNN.

V. EXPERIMENTS ON IMAGENETTE

To evaluate whether a neural network using streaming trains
equivalently to the conventional training method, we trained a
CNN on small images using both methods starting from the
same initialization. We used a subset of the ImageNet dataset,
ImageNette, using 100 examples of 10 ImageNet classes (tench,
English springer, cassette player, chain saw, church, French
horn, garbage truck, gas pump, golf ball, parachute), analog to
[6].

Table II: Network architecture for Imagenette experiment

Layers Kernel size Channels

2D convolution 7x7 16
2D max-pool 2x2 16
2D convolution 3x3 32
2D max-pool 2x2 32
2D convolution 3x3 64
2D max-pool 2x2 64
2D convolution 3x3 128
2D max-pool 2x2 128
2D convolution 3x3 256
2D max-pool 10x10 256
Fully connected 10

A. Data preparation

We selected two sets of 100 images at random per class
from the ImageNet dataset; one was used as the training set
and the other as a tuning set during development.

We used data augmentation for the training set following
Szegedy et al.[29]. Patches of varying sizes were sampled from
the image, distributed evenly between 8% and 100% of the
image area with aspect ratio constrained to the interval [ 34 ,

4
3 ].

For the tuning set, we sampled 320×320 patches from the
center of the image.

B. Network architecture and training scheme

The CNN consisted of five blocks of a convolutional layer
followed by a max-pool layer (see Table II). The network was
optimized for 300 epochs with stochastic gradient descent,
using a learning rate of 1× 10−3 and a mini-batch size of 4
images. For the streaming method, the first two blocks were
streamed with tiles of 160×160 pixels.

C. Results on Imagenette

The loss curves of both methods (Figure 2) were nearly
identical, which empirically shows that training with streaming
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Fig. 2: Network trained from the same initialization using conventional
training and streaming (dividing the input in four tiles).

performed equivalently to conventional training. Small differ-
ences are likely due to losses of significance in floating point
arithmetic; these differences accumulate during training and
lead to small differences in loss values in later epochs.

VI. EXPERIMENTS ON TUPAC16 DATASET

To evaluate our method on a real-world task, we used the
publicly available dataset of the TUPAC16 challenge[8]. This
dataset consists of 500 hematoxylin and eosin (H&E) stained
whole-slide images (WSI) from breast adenocarcinoma patients.
The WSIs of these patients are available from The Cancer
Genome Atlas [30] together with RNA expression profiles. The
expression of 11 proliferation-associated genes was combined
to create one objective measure for tumor growth, termed the
PAM50 score[31]. This score has no known visual substrate in
the images. Thus, manual labeling is considered impossible. We
set aside 98 WSIs at random for tuning the algorithm and used
the remaining slides for training. Additionally, an independent
evaluation was performed by the challenge organizers on the
test set of 321 WSIs, of which the public ground truth is
not available. The submitted predictions were evaluated using
Spearman’s rank-order correlation between the prediction and
the ground truth.

To evaluate whether CNN models can leverage and use the
higher resolution information that streaming makes possible,
we performed two sets of experiments. For one, we trained the
same model with various image sizes (1024×1024, 2048×2048,
and 4096×4096 pixels), thus increasing input image resolution.
Different networks were trained in the second set, where the
depth was increased with image size (22, 25, and 28 layers for
respectively 2048×2048, 4096×2096, and 8192×8192). By
also increasing the depth, the physical receptive field size before
the last max-pool layer is kept constant (see Table III). All
networks were trained until convergence; the checkpoint with
the highest Spearman’s correlation coefficient on the tuning
set was submitted for independent evaluation on the test set.

https://github.com/DIAGNijmegen/StreamingCNN
https://github.com/DIAGNijmegen/StreamingCNN
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Table III: Network architecture for TUPAC16 experiments.

Layers Kernel Channels Details
2x 2D convolution 3x3 32
2D max-pool 2x2 32
2x 2D convolution 3x3 64
2D max-pool 2x2 64
2x 2D convolution 3x3 128
2D max-pool 2x2 128
2x 2D convolution 3x3 256
2D max-pool 2x2 256

2x 2D convolution 3x3 512 repeated for
2D max-pool 2x2 512 field of view experiment

2x 2D convolution 3x3 512 with BatchNormalization
2D max-pool 2x2 512
2x 2D convolution 3x3 512 with BatchNormalization
2D max-pool input size 512
Dropout (p=0.5) 512
Fully connected classes

A. Data preparation

The images were extracted from the WSIs at image spac-
ing 16.0µm for the 1024×1024 experiments, 8.0µm for
2048×2048, etc. (see Figure 3). Background regions were
cropped, and the resulting image was either randomly cropped
or zero-padded to the predefined input size.

Since the challenge consists of a limited number of slides,
we applied extensive data augmentations to increase the sample
size (random rotations; random horizontal or vertical flipping;
random brightness, contrast, saturation, and hue shifts; elastic
transformations; and cutout[32]). For all experiments, the same
hyperparameters and data preprocessing were used.

B. Network architecture and training scheme

The networks (see Table III) were trained using the Adam
optimizer[33] with a learning rate of 1×10−4, with the default
β parameters of β1 = 0.9, β2 = 0.999. We applied exponential
decay to the learning rate of 0.99 per epoch. As an objective,
we used the Huber loss with ∆ = 1, also called the smooth
L1 loss[34]. The mini-batch size was 16 images. A dropout
layer with p = 0.5 was inserted before the final classification
layer. The networks were initialized following He et al.[35].
The images were normalized using the mean and standard
deviation values of the whole training set.

Streaming was applied until the final seven layers. Since
BatchNormalization breaks the local properties of chained
convolutional and pooling layers, it was only used in the last
part of the network. Analysis of Santurkar et al.[36] suggests
that adding only a few BatchNormalization layers towards the
end of the network smooths the loss function significantly and
helps optimization.

C. Results on TUPAC16

The task was evaluated using Spearman’s correlation coef-
ficient between the prediction and the ground truth PAM50
proliferation scores. In both experiments, an improvement of
the metric was seen with increasing input sizes.

The result of the network with the input image resolution
of 4096×4096 approached state-of-the-art for image-level

Table IV: TUPAC16: Spearman’s rho on our tuning
set and the independent test set

Experiment Input size Tuning set ρ Test set ρ

Equal number of parameters
1024x1024 0.484 0.485
2048x2048 0.624 0.491
4096x4096 0.648 0.536

Equal field of view before
global max-pool
(increasing depth)

2048x2048 0.624 0.491
4096x4096 0.644 0.570
8192x8192 0.692 0.560

regression with a score of 0.570. Note that the first entry
of the leaderboard used an additional set of manual annotations
of mitotic figures and is therefore not directly comparable to
our experiments.

Table V: TUPAC16: leaderboard

Experiment Corr. coefficient

Lunit Inc., South Korea [37], [8] 0.617*
Ours (4096x4096) 0.570
Ours (8192x8192) 0.560
Tellez et al., 2019 [18] 0.557
Radboud UMC Nijmegen, The Netherlands [8] 0.516
Contextvision, Sweden [8] 0.503
Belarus National Academy of Sciences [8] 0.494
The Harker School, United States [8] 0.474
*network trained on other challenge task containing detailed annotations.

VII. EXPERIMENTS ON CAMELYON17 DATASET

CAMELYON17 was used to evaluate the streaming method
on a classification task[28]. CAMELYON17 is a large public
dataset and challenge to detect metastases of adenocarcinoma in
breast tissue. The dataset consists of 500 labelled WSIs and 500
unlabeled WSIs, which were respectively used as the training
and test sets. In the training set, for 450 slides image-level
labels were provided, while for the remaining 50 slides
dense annotations (precise delineation of the metastases) were
supplied. The slides were collected from five different hospitals.
The challenge differentiates three clinical relevant metastases
types: macro-metastases (> 2 mm), micro-metastases (≤ 2.0
mm or > 200 cells in a single cross-section), and isolated tumor
cells (≤ 0.2 mm or < 200 cells in a single cross-section). We
evaluate the slide level classification performance with multiple
ROC analyses (one class vs. the rest).

Data preparation for this experiment was equal to the
TUPAC16 challenge. We picked 90 WSIs of the challenge
training set at random to be used as our tuning set.

A. Network architecture and training scheme

We used the same training schedule and underlying ar-
chitecture as the TUPAC16 experiments. We altered the
architecture by disabling dropout, and to reduce problems
with exploding gradients in the beginning of the network, we
replaced BatchNormalization with weight decay of 1× 10−6

and layer-sequential unit-variance (LSUV) initialization [38].
We applied the LSUV scaling per kernel channel[39]. The mean
and standard deviation per layer activation were calculated over
ten mini-batches by keeping track of the sum and squares of
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All tissue: 72000 × 83200

1024 × 1024 (16.0 /px) 2048 × 2048 (8.0 /px) 4096 × 4096 (4.0 /px) 8192 × 8192 (2.0 /px) Full resolution (0.25 /px)

All tissue: 115868 × 86447

1024 × 1024 (16.0 /px) 2048 × 2048 (8.0 /px) 4096 × 4096 (4.0 /px) 8192 × 8192 (2.0 /px) Full resolution (0.25 /px)

Fig. 3: Resolution examples of resized whole slide images. Example slide of CAMELYON17 (top row), showing a micro-metastasis, and
TUPAC16 (bottom row) showing stroma, illustrating the increasing detail with increasing input size.

the channels per tile during streaming; the reformulation of
variance as E[X2]−µ2 was used to calculate the full standard
deviation of ten mini-batches before applying LSUV.

Table VI: CAMELYON17 results on the independent test set (AUC)

Input size Negative ITC Micro Macro
n=260 n=35 n=83 n=122

2048×2048 0.580 0.450 0.689 0.515
4096×4096 0.650 0.548 0.708 0.629
8192×8192 0.706 0.463 0.709 0.827

B. Results on CAMELYON17

In all cases except isolated tumor cell detection, the AUC
increased with increasing resolution (See Table VI).

C. Saliency maps

Saliency maps were created for the networks trained with the
largest resolution (8192×8192 pixels) according to Simonyan et
al.[40]. For better visualization on lower resolution, a Guassian
blur was applied with σ = 50. Since a few gradient values
can be significantly higher than others, we capped the upper
gradient values at the 99th percentile[41]. The upper 50th

percentile was overlayed on top of the original image (See
Figure 4).

VIII. DISCUSSION AND CONCLUSION

We presented a novel streaming method to train CNNs with
tiled inputs, allowing inputs of arbitrary size. We showed that
the reconstructed gradients of the neural network weights using
tiles were equivalent to those obtained with non-tiled inputs.

In the first experiment on ImageNette, we empirically showed
that the training behavior of our proposed streaming method
was similar to the behavior in the non-streaming case. Small
differences occur later in training due to loss of significance in

Fig. 4: Saliency maps for images of the tuning set of the CAME-
LYON17 experiment (top row) and TUPAC16 experiment (bottom
row), for the networks trained on 8192×8192 pixel images. The
image-level trained CAMELYON17 network shows highlights corre-
sponding to the ground truth pixel-level annotation of a breast cancer
metastasis. The TUPAC16 network shows highlights in cell-dense and
cancerous regions.

floating-point arithmetic. These differences accumulated during
training and lead to the small difference in loss values in later
epochs. However, they do not seem to harm performance. Most
modern frameworks have similar problems due to their use of
non-deterministic operations.

The second and third experiments showed that our streaming
method can train CNNs with multi-megapixel images that, due
to memory requirements in the non-streaming case, would not
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be able to fit on current hardware. The experiment with the
highest-resolution images (8192× 8192 pixels) would require
~825 gigabytes of memory per mini-batch if trained end-to-end
in a conventional way and ~50 gigabytes per image.

Results on the TUPAC16 dataset (Table IV) showed an
increasing correlation between the prediction and the prolif-
eration score with increasing input sizes. Our 4096×4096
pixel network performed best. A jump in performance from
0.491 to 0.570 was seen from 2048×2048 to 4096×4096
pixels, respectively. We hypothesize that this is because tumor
tissue can be discriminated from other types of tissue at these
higher resolutions. However, a 8192×8192 pixel input size
did not further improve the performance on the test set. The
nuclear details of cells at this resolution remain vague, which
suggests that most of the information is still obtained from
the morphology like in 4096×4096 images. Higher resolutions
may be necessary to further improve performance. Another
explanation for the lack of improvement is the increasing
difficulty for the network to find the sparse information in
just 400 slides using a single label or a misrepresented tuning
set due to the small provided training set. Our best result
on TUPAC16 approached that of the challenge winner, who
used task-specific information (a network trained on mitosis
detection) instead of a pure regression of one label per WSI.
Our method outperformed all other methods in the challenge.

Results on the CAMELYON17 dataset show improvement
with increasing resolution. An exception occurs for the isolated
tumor cells class; even at the highest resolution applied, the
CNN was unable to differentiate isolated tumor cells. To
accurately identify lesions of that size, the resolution would
probably need to be increased by at least a factor of four.
Furthermore, this class is also underrepresented (n=31) in the
provided training set.

Using saliency maps, we visualized what the models would
change on the input to make it more closely resemble the
assigned class. These maps show us which parts of the image
the model takes into consideration[40]. Saliency maps of our
CNNs trained on higher resolutions suggest that the networks
learn the relevant features of the high-resolution images (see
Figure 4). The image-level trained CAMELYON17 network
shows highlights corresponding to the ground truth pixel-level
annotation of a breast cancer metastasis. The TUPAC16 network
shows highlights in cell-dense regions.

The streaming method has advantages over prior work on
this topic. For streaming, we do not need to alter the dataset
by resizing or creating additional pixel-level labels (which
is sometimes not possible). Also, we do not need to change
the usage of the dataset like in the MIL paradigm or use
compression techniques. Finally, we are not limited to specific
architectural choices for our network, such as in RevNet;
streaming can be applied to any state-of-the-art network, such
as Inception or DenseNet.

While increasing input sizes and resolutions are beneficial
in various tasks, there are some drawbacks. A limitation is
the increase in computation time with increasing input sizes
(Table I). This can be partially counteracted by dividing the
batch over multiple GPUs. Due to this limitation, we did not
increase resolution further in our experiments. Future research

could attempt to speed up computation on the tiles, e.g., by
training with mixed precision [25] or depthwise separable
convolutions[20]. One could also try to start with a pre-trained
network (e.g., on ImageNet) and fine-tune for a shorter period.

Another limitation is the inability to use feature map-wide
operations in the streaming part of the network, e.g., Batch-
Normalization. Future work could focus on normalization
techniques that retain the local properties of the relation
between the output and input of the streaming part of the
network, e.g., weight normalization[42].

Improving the performance of the high-resolution-trained
networks could be a research topic of interest. In the TUPAC16
and CAMELYON17 experiments, we increased depth as we
increased the input size. However, a recent work[21] – though
on a maximum 480×480 image size – suggests a “compound”
scaling rule in which the input resolution is scaled together
with depth and width of the network.

This paper focused on streaming two-dimensional images,
but since convolutions over higher-dimensional data have the
same local properties, one could leverage the same technique
for, for example, 3D volumetric radiological images[11].
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