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Abstract—In many machine learning applications, we are faced with incomplete datasets. In the literature, missing data imputation
techniques have been mostly concerned with filling missing values. However, the existence of missing values is synonymous with
uncertainties not only over the distribution of missing values but also over target class assignments that require careful consideration.
In this paper, we propose a simple and effective method for imputing missing features and estimating the distribution of target
assignments given incomplete data. In order to make imputations, we train a simple and effective generator network to generate
imputations that a discriminator network is tasked to distinguish. Following this, a predictor network is trained using the imputed
samples from the generator network to capture the classification uncertainties and make predictions accordingly. The proposed
method is evaluated on CIFAR-10 and MNIST image datasets as well as five real-world tabular classification datasets, under different
missingness rates and structures. Our experimental results show the effectiveness of the proposed method in generating imputations
as well as providing estimates for the class uncertainties in a classification task when faced with missing values.

Index Terms—Missing Data, Imputation, Incomplete Data, Generative Adversarial Networks, Classification Uncertainty.
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1 INTRODUCTION

WHILE a large body of the machine learning literature
is built upon the assumption of having access to

complete datasets, in many real-world problems only in-
complete datasets are available. The existence of missing
values can be due to many different causes such as human
subjects not adhering to certain questions or features not
being collected frequently due to financial or experimental
limitations, sensors failures, and so forth [1, 2, 3]. Data
imputation techniques have been suggested as a solution to
bridge this gap in the literature by replacing missing values
with observed values.

Missing data imputation approaches can be categorized
into single and multiple imputation methods. Single im-
putation methods try to replace each missing value with
a plausible value that is the best fit given the value of
other correlated features and knowledge extracted from the
dataset [4, 5]. While these methods are easy to implement
and use in practice, imputed values may induce bias by
eliminating less likely but important values. Also, these
methods do not suggest a way to measure to what extent the
imputed values are representative of the missing values [6].

Multiple imputation (MI) techniques, as suggested by
the name, try to use multiple imputed values to impute each
missing value. The result would be having a set of imputed
datasets that enables measuring how consistent and statisti-
cally significant are the results of the experiments [7]. While
MI offers interesting statistical insights about the reliability
of analysis on incomplete data, the insight is imprecise
as it is mainly concerned about the population of data
samples rather than individual instances. Specifically, MI
methods reason about the statistical properties on a limited
number of imputed datasets (less than 10 in most practical
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implementations) on the population of samples within the
dataset [8, 9].

The existence of missing values is synonymous with
having uncertainty over these values that requires careful
consideration. In many real-world applications, we are deal-
ing with supervised problems that demand modeling and
prediction based on incomplete data. Take for instance, pre-
diction of class assignments given an image in which a large
portion of the frame is missing. In such a scenario, based on
the observed frame parts, there might be multiple probable
class assignments each having a different likelihood. Here,
we are not only interested in imputing missing values or
measuring how robust our imputations are, but also it is
highly desirable to measure the impact of missing values on
the prediction outcome for each instance.

In this paper, we propose the idea of Generative Impu-
tation and Stochastic Prediction (GI) as a novel approach to
impute missing values and to measure class uncertainties
arising from the distribution of missing values. The sug-
gested approach is based on neural networks trained using
an adversarial objective function. Additionally, a predictor is
trained on the generated samples from the imputer network
which is able to reflect the impact of uncertainties over
missing values. This enables measuring different prediction
outcomes and certainties for each specific instance. We eval-
uate the effectiveness of the proposed method on different
incomplete image and tabular datasets under various miss-
ingness structures. 1

2 RELATED WORKS

One of the simplest traditional methods for handling miss-
ing values includes imputing the occurrences of missing
values with constant values such as zeros or using mean
values. To enhance the accuracy of such imputations, alter-
natives such as k-nearest neighbors (KNN) [4] and maxi-
mum likelihood estimation (MLE) [5] have been suggested

1. https://github.com/mkachuee/GenerativeImputationStochasticPrediction
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to estimate values to be used given an observed context.
While these methods are easy to implement and analyze,
they often fail to capture the complex feature dependencies
as well as structures present in many problems.

Rubin [7] suggested a categorization for missingness
mechanisms: missing completely at random (MCAR), miss-
ing at random (MAR), and missing not at random (MNAR).
Under the assumption of MAR, the authors suggested mul-
tiple imputation (MI) as a stochastic imputation method.
Here, instead of imputing missing values using a single
value, several values are sampled to represent the distribu-
tion over the missing value. MI generates a few imputed
complete datasets that are then used independently in
statistical modeling [6, 8]. Recent work by Aleryani et al.
[10] trains an ensemble of classifiers using bagging and
stacking techniques based on multiple imputation of dataset
samples, and studies the variance of the predictions made
by each classifier. Usually, the final goal of MI is to measure
the robustness of the final statistical analysis amongst the
imputed datasets. In other words, it measures the quality
of imputations and the statistical significance of analysis
on the imputed data. It should be noted that the number
of imputations used in MI is usually very limited. Also,
often strong simplifying assumptions are made in modeling
the data distribution (e.g., multi-variate Gaussian or Stu-
dent’s t distribution) which limit the applicability of this
method [8, 9].

More recently, autoencoder architectures have been sug-
gested as powerful density estimators capable of captur-
ing complex distributions. Perhaps, denoising autoencoders
(DAE) [11, 12] are one of the most intuitive approaches in
which a neural network is trained to reconstruct and de-
noise its input. Following a more probabilistic perspective,
variational autoencoders (VAE) [13] try to learn the data
generating distribution via a latent representation. Specifi-
cally, conditional variational autoencoders (CVAE) [14] can
be used to sample missing values conditioned on observed
values. For instance, Mattei and Frellsen [15] suggested
a method based on deep latent variable models and im-
portance sampling that offers a tighter likelihood bound
compared to the standard VAE bound. While these methods
are powerful generative models applicable to missing data
imputation, often samples generated using autoencoders are
biased toward the mode of the distribution (e.g., resulting in
blurry images, for vision tasks) [16, 17, 18].

Recently, due to the success of generative adversarial
networks (GAN), there has been great attention toward
applying them to impute missing values. For instance,
Yoon et al. [19] suggested an imputation method based
on adversarial and reconstruction loss terms. Li et al. [20]
introduced the idea of using separate generator and dis-
criminator networks to learn the missing data structure and
data distribution. These methods have been quite successful
and are able to present the state-of-the-art results. Though it
should be noted that often the presence of additional loss
terms may bias the generated samples toward the mode
of the distribution being modeled. Also, these methods
are often complicated to be applied in practical setups by
practitioners. For instance, Yoon et al. [19] requires setting
hyperparameters to adjust the influence of an MSE loss term
as well as the rate of discriminator hint vectors. Also as

another example, Li et al. [20] uses three generators and
three discriminators for the final imputer architecture.

From the perspective of supervised analysis, imputation
and handling missing values are usually considered as a
preprocessing step. A few exceptions exist such as Bayesian
models and decision trees that permit direct analysis on
incomplete data [21, 22]. Note that while certain Bayesian
methods such as probabilistic Bayesian networks allow
handling of missing values as unobserved variables. How-
ever, given an incomplete training dataset and without any
known causal structure as a priori, learning such models is
a very challenging problem with the complexity of at least
NP-complete to learn the network architecture in addition
to an iterative EM optimization to learn model parameters
[23, 24].

Tran et al. [25] suggested a genetic programming method
using multiple imputation to train a set of classifiers cov-
ering different combinations of observed features. While
this method does not require any imputation at the pre-
diction phase, it has significant limitations in the scale of
the problems (i.e. the number of features/samples) that can
be addressed due to the often combinatorial number of
classifiers required.

We argue that the simplistic approach of imputing miss-
ing values as a preprocessing step discards uncertainties
that exist in original incomplete data samples. Instead, there
is a need for methods that reflect these uncertainties on the
final predicted target distribution. This work suggests the
idea of training a predictor on different imputed samples
to capture the uncertainties over class assignments. Com-
pared to MI, the suggested method interleaves imputation
and training a downstream prediction model, enabling to
estimate classification uncertainties for each instance.

3 PROPOSED METHOD

3.1 Problem Definition
We make the general assumption of having access to an
incomplete dataset D consisting of a set of feature vector,
mask vector, and target class pairs (xi,ki, yi). For each
feature vector, xi ∈ Rd, only a subset of the features is
available. The mask vector ki ∈ {0, 1}d is used to indicate
available features and missing features by ones and ze-
ros, respectively. Here, to represent features as fixed-width
vectors, arbitrary (or NaN ) values are used to fill missing
values. Also, for convenience, we often use xobsi and xmissi

to refer to the set of observed and missing features for the
feature vector xi. Note that the (xobsi ,xmissi ) notation does
not use vectors for representation and instead is using sets
for a more abstract representation rather than the fixed-
length vector notation of (xi,ki).

We define our objective in two steps: (i) Imputing miss-
ing values via sampling from the conditional distribution of
missing features given observed features i.e., P (xmissi |xobsi ).
(ii) Estimating the distribution of target classes given the
observed features and the distribution of missing features
i.e., P (y|xobsi ,xmissi ). For the first part, we are interested
in sampling from the conditional distribution rather than
finding the mode of the distribution as the most probable
imputation. Similarly, for the second part, we are inter-
ested in obtaining a distribution over the possible target
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Fig. 1: Block diagram of the proposed adversarial imputa-
tion method. h represents the blending function of (1), and
L is the adversarial loss function of (2).

assignments and the confidence of each class rather than
maximum likelihood class assignments.

3.2 Generative Imputation
To generate samples from the distribution of missing fea-
tures conditioned on the observed features, we follow the
idea first suggested by Yoon et al. [19]. In this paradigm,
a generator network is responsible for generating imputa-
tions while a discriminator is trying to distinguish imputed
features from observed features (see Figure 1).

Specifically, the generator function G(xi,ki, z) ∈ Rd
generates an imputed feature vector, based on observed
features, the corresponding mask, and a Gaussian noise
vector (z). Here, xi is not revealing any information about
missing values as they are represented by invalid values
in xi and are indicated by the mask vector ki. In order to
achieve the final imputed vector, x̂i, we blend (or, merge)
the output of the generator with the input features to replace
generated values with the exact values of observed features:

x̂i,j =

{
xi,j if ki,j = 1

G(xi,ki, z)j if ki,j = 0
, (1)

where xi,j refers to j’th feature of sample i. Also, note that
by sampling z multiple times, we can obtain different impu-
tation samples from the conditional distribution indicated
by x̂li where l is the sample number.

A discriminator network,D(x̂i), is trained to distinguish
real and imputed features by generating a predicted softmax
mask output, k̂i. Here a binary cross-entropy loss per mask
element is used as the adversarial objective function:

max
G

min
D

L(G,D) =

Ek∼D,k̂∼D(G(x,k,z)) [kT log(k̂) + (1− k)T log(1− k̂)].

(2)

The intuition behind this adversarial loss function is
that given a generator function which captures the data
distribution successfully, the discriminator would not be
able to distinguish the parts of the feature vector that were
originally missing.

Compared to Yoon et al. [19], the objective function of
(2) does not have an MSE loss term. Instead, we use recent
advances in GAN stabilization and training to improve the
training process (see Section 3.4). While it is quite prevalent
in the adversarial learning literature to use additional loss
terms such as mean squared error (MSE) to enhance the
quality of generated samples, we decided to keep our solu-
tion as simple as possible. Additionally, in our experiments,
we provide supporting evidence that this simple loss func-
tion enables us to sample from the conditional distribution
and prevents biased inclinations toward distribution modes.

Fig. 2: Block diagram of the proposed stochastic prediction
method. G represents a trained generative imputer (Sec-
tion 3.2), L is the prediction loss function, and Ψ is the
estimated classification certainty defined in (7).

3.3 Stochastic Prediction

To capture the distribution of target classes given incom-
plete data, we suggest the idea of stochastic prediction.
As indicated in the previous section, the generator can be
used to sample from the conditional distribution. Here, a
predictor is trained based on the imputed samples to predict
class assignments and to calculate the confidence of these
assignments (see Figure 2). For instance, for a specific test
sample at hand, if a certain missing feature is a strong
indicator of the target class, we would like to observe the
impact of different imputations for that feature on the final
hypothesis.

Formally, we are interested in finding the certainty of
class assignments given observed features:

Ψ = P (y|xobsi ). (3)

Here, Ψ is a vector where each element is representing a
certain class. Rewriting (3) as a marginal we have:

Ψ =

∫
P (xmissi )P (y|xobsi ,xmissi ) dxmissi . (4)

Approximating the integration using a summation, given
enough samples, Ψ can be estimated by:

Ψ ≈ 1

N

∑
P (y|xobsi , x̂missi ), (5)

where x̂missi are samples taken from the conditional distri-
bution of missing features given observed ones. We use the
suggested generative imputation method to generate sam-
ples required for this approximation. Rewriting (1) using
Hadamard product and as function of the noise vector:

x̂i = ki � xi + (1− ki)�G(xi,ki, z) (6)

Assuming that a predictor, Fθ , is available which predicts
class assignments for a complete feature vector, Ψ can be
estimated as:

Ψ = Ez[Fθ(x̂i)] ≈
1

N

∑N
l=1Fθ(x̂

l
i) . (7)

Algorithm 1 presents the suggested algorithm for train-
ing the predictor. It consists of taking samples from the
incomplete dataset, then imputing them using our generator
network, and using the imputed samples to update the
predictor. Note that, on each epoch and for each sample,
the generator generates a new sample from the conditional
distribution. Intuitively, it means that the predictor observes
and learns to operate under different imputations for a
given sample. This is different from approaches such as
multiple imputation where several predictors are trained on
different imputed versions of a dataset.
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Algorithm 1: Training the predictor.
Input: G (trained imputer), D (dataset)
Output: Fθ (trained predictor)
foreach Training Epoch do

foreach (xi, ki, yi) in D do
z ∼ N(0, I)
x̂i ← ki � xi + (1− ki)�G(xi,ki, z)
ypredi ← Fθ(x̂i)
loss← L(yi, y

pred
i )

Backpropagate loss
Update Fθ

Algorithm 2: Estimating target distributions.
Input: G (trained imputer), Fθ (trained predictor),

(x, k) (test sample), N (ensemble samples)
Output: Ψ (distribution over target classes)
Ψ← zeros ∈ R#classes

foreach Ensemble Sample 1 to N do
z ∼ N(0, I)
x̂← k � x + (1− k)�G(x,k, z)
ypred ← Fθ(x̂)
j ← argmax(ypred)
Ψj ← Ψj + 1

N

Algorithm 2 presents the suggested algorithm for mak-
ing predictions and estimating target distributions given
a trained predictor model. Here, a sample is imputed N
times and inference on this set results in an ensemble of
predictions over different imputations. The output of this
algorithm can be interpreted as a distribution over the
confidence of class assignments given a partially observed
test sample. The following claims justify the validity of
Algorithm 1 and Algorithm 2.

Claim 1. (Generalization of the predictor). If we assume
imputed x̂is are samples from the underlying feature distribution,
then the assigned training set labels can be modeled as labels
generated from a noisy labeling process.

Claim 1 permits the analysis of the generalization and
convergence for the predictor trained using Algorithm 1
based on current literature in training models with noisy
labels [26, 27, 28]. From the analysis provided by Chen et al.
[28], test accuracy in asymmetric label noise conditions is a
quadratic function of the label noise:

P (yi = ŷi) = (1− ε)2 + ε2, (8)

where ŷi is underlying true label for the imputed feature
vector (x̂i), and yi is the label provided by the incomplete
dataset. In (8), label noise ratio, ε, represents the probability
of the label transition from a certain target class to another:

ε = 1− P (ŷi = j|yi = j). (9)

In practice, ε is determined by the problem-specific under-
lying data distribution as well as the distribution of missing
values.

Justification for claim 1 is straightforward, assume
that {ŷi1 . . . ŷiN} are underlying true labels for each of
{x̂i1 . . . x̂iN}. During training, for any imputed sample in

{x̂i1 . . . x̂iN}, we use the dataset provided label, yi, to
calculate the loss and to update model parameters:

Lossi =
N∑
l=1

L(yi, Fθ(x̂i
l)). (10)

In the case that any of {ŷi1 . . . ŷiN} is different from yi, the
loss term corresponding to that term would be calculated
using a wrong label. Here, if we consider the average impact
on gradients for batches of samples rather than individual
cases, the overall impact on training would be very similar
to the case of training using noisy labels:

Loss =

|D|∑
i=1

N∑
l=1

L(yi, Fθ(x̂i
l)), (11)

where |D| is the number of dataset samples. Further, in this
case, we can find the average label noise as:

ε =

∑|D|
i=1

∑N
l=1 1(yi 6= ŷi

l)

|D|.N
(12)

Claim 2. (Approximation of the target distribution). If we
assume:
(i) imputed x̂is are valid samples from the underlying feature
distribution: x̂i ∼ P (x|xobsi ),
(ii) a good predictor can be trained using the incomplete data
(claim 1),
(iii) enough samples are used and the Monte Carlo estimator is
unbiased: 1

N

∑N
l=1Fθ(x̂

l
i)→ Ez[Fθ(x̂i)] for N →∞,

then the target distribution, Ψ, can be estimated accurately.
This claim supports Algorithm 2 that is suggested to

estimate the target distribution given a partially observed
feature vector.

The first assumption is consistent with the theoretical
analysis of generative adversarial networks that they can
converge to the true underlying distribution [29, 30]. The
second assumption is supported by Claim 1. Regarding the
last assumption, each sample requires one forward compu-
tation of the generator and predictor networks which, based
on the scalability of current network architectures, usually
permits thousands of samples to be taken at a reasonable
computational cost.

3.4 Implementation Details
As we conduct experiments on image and tabular datasets,
we use different architectures for each. For image datasets,
we used a generator and discriminator architectures similar
to the ones suggested by Wang et al. [31]. However, we
improved these architectures using self-attention layers [32].
It should be noted that, while Zhang et al. [32] suggests
using a single self-attention layer in the middle of the
network, we observed consistent improvements by inserting
multiple self-attention layers before each residual block
within the network. Furthermore, as input to the generator,
we concatenate input image, mask, and a random z frame
along the channels dimension and use it as input. For
tabular datasets, we use a simple 4 layer network consisting
of fully-connected and batch-norm layers. Also, the input
to the generator is the concatenation of a feature vector,
mask vector, and a z vector of size 1

8 of the input. For all
experiments, we use an ensemble size (N ) equal to 128.
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We used Adam [33] for model optimization. Two time-
scale update rule (TTUR) [34] was used to balance training
the generator and discriminator networks. We explored best
TTUR learning-rate settings from the set of {0.001, 0.0005,
0.0001, 0.00005}. Here, Adam parameters β1 and β2 are set
to 0.5 and 0.999, respectively. Also, spectral normalization
was used to stabilize both the generator and discriminator
network in our experiments with image data [35]. For the
predictor network, we used the default Adam settings as
suggested by Kingma and Ba [33]. In all training procedures,
we decay learning rate by a factor of 5 after reaching a
plateau. For all experiments, we use a batch size of 64.
Based on our experiments, we found that pretraining the
discriminator while fixing the generator network for the first
5% of the training epochs helps the stability of training.

Further detail on exact architectures, experiments, etc. as
well as additional results and ablation studies is provided
in the appendices.

4 EXPERIMENTS

4.1 Datasets
To evaluate the proposed method we use CIFAR-10 [36] and
MNIST benchmark [37] as image classification datasets as
well as five non-image datasets: UCI Landsat [38]2, MIT-BIH
arrhythmia [39], Diabetes, Cholesterol, and Hypertension
classification [40] 3 . CIFAR-10 dataset consists of 60,000
32x32 images from 10 different classes. For this task, we use
train and test sets as provided by the dataset. As a prepro-
cessing step, we normalize pixel values to the range of [0,1]
and subtract the mean image. The only data augmentation
we use for this task is to randomly flip training images for
each batch.

UCI Landsat consists of 6435 samples of 36 features from
6 different categories. We follow the same train and test
split as provided by the dataset. MIT-BIH dataset consists
of annotated heartbeat signals from which we used the
preprocessed version available online4 consisting of 92,062
samples of 5 different arrhythmia classes. Diabetes dataset is
a real-world health dataset of 92,062 samples and 45 features
from different categories such as questionnaire, demograph-
ics, medical examination, and lab results. The objective is
to classify between three different diabetes conditions i.e.,
normal, pre-diabetes, and diabetes. Similarly, Cholesterol
and Hypertension datasets have about 120 features and
50,000 samples each [40]. As MIT-BIH, Diabetes, Cholesterol,
and Hypertension datasets do not provide explicit train and
test sets, we randomly select 80% of samples as a training
set and the rest as a test set. To preprocess our tabular
datasets, statistical and unity based normalization are used
to balance the variance of different features and center them
around zero. Also, while different encoding and represen-
tation methods are suggested in the literature to handle
categorical features [41, 42], in this paper, we take the simple
approach of encoding categorical variables using one-hot
representation and smoothing them by adding Gaussian
noise with zero mean and variance equal to 5% of feature

2. https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+
Satellite)

3. https://github.com/mkachuee/Opportunistic
4. https://www.kaggle.com/shayanfazeli/heartbeat

variances. In our experiments, we observed a reasonable
performance using the suggested simple smoothing; how-
ever, more advanced encoding methods are also applicable
in this setup and can be applied to enhance the perfor-
mances even further.

4.2 Missingness Mechanisms

In our experiments, we consider MCAR uniform and MCAR
rectangular missingness structures. In MCAR uniform, each
feature of each sample is missing based on a Bernoulli distri-
bution with a certain missingness probability (i.e., missing
rate) independent of other features. In addition to the case
of uniform missingness, for image tasks, we use rectan-
gular missingness/observation structure where rectangular
regions of dataset images are missing/observed. To control
the rate of missingness and decide on the regions that are
missing for each case, we use a latent beta distribution that
samples rectangular region’s width and height such that
the average missing rate is maintained. For missing rates
less than 50% we make the assumption of having a random
rectangular region to be missing, whereas for missing rates
more than 50% we assume that only a random rectangular
region is observed and the rest of the image is missing.

We would like to note that while the suggested solution
in this paper is readily compatible with MAR structures, in
our experiments, to simplify the presentation of results and
to have a fair comparison with other work that does not
support the MAR assumption, we limited the scope of our
experiments to MCAR. Furthermore, to simulate incomplete
datasets and to make sure the same features are missing
without explicitly storing masks, we use hashed feature
vectors to seed random number generators used to sample
missing features. More detail is provided in Appendix B.

4.3 Evaluation Measures

Frchet inception distance (FID) [34] score is used to measure
the quality of missing data imputation in experiments with
images5. We also considered using root means squared error
(RMSE); however, we decided to only include this result
in the appendices as we observed an inconsistent behavior
using RMSE in our comparisons as RMSE favors methods
that show less variance rather than realistic and sharp sam-
ples from the distribution. Also, for each dataset and each
missingness scenario, we report top-1 classification accuracy
based on the majority vote estimated using Algorithm 2.
Another measure that we use in this paper is the compar-
ison between the estimated target certainties and average
accuracies achieved for each confidence assignment. We run
each experiment multiple times: 4 times for CIFAR-10 and 8
times for tabular datasets. We report the mean and standard
deviation of results for each case.

We compare our results with MisGAN [20] and
GAIN [19] as the state of the art imputation algo-
rithms based on GANs as well as basic denoising au-
toencoder (DAE) [11] and multiple imputation by chained

5. https://github.com/mseitzer/pytorch-fid is adapted to measure
the FID scores.

https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)
https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)
https://github.com/mkachuee/Opportunistic
https://www.kaggle.com/shayanfazeli/heartbeat
https://github.com/mseitzer/pytorch-fid
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equations (MICE) [43] as baselines. For experiments us-
ing MisGAN, we used the same architectures and hyper-
parameters as suggested by the MisGAN authors6. The
only modification was to adapt the last generator layer
to generate images with resolutions as we use. Regard-
ing GAIN, we used the same network architecture as our
implementation of GI and hyper-parameters as used by
the GAIN authors7. In the DAE implementation, due to
the incomplete data assumption, only observed features
appear in the loss function, ignoring reconstruction terms
corresponding to missing features. Due to scalability issues,
we were only able to use MICE for the smaller non-image
datasets. For these methods, to train and evaluate classifiers,
we use predictors trained on imputed datasets rather than
the stochastic predictor suggested in Algorithm 1.

4.4 Results

Figure 3 presents the comparison of FID scores on the
CIFAR-10 dataset at different missing rates for uniform and
rectangular missingness. As it can be inferred from these
plots, GI outperforms other alternatives in all cases. Also, it
can be seen that GAIN is able to provide more reasonable
results for uniform missing data structure compared to Mis-
GAN which is mainly effective in the rectangular missing
data structure. One possible explanation for this behavior
might be the fact that GAIN has an MSE loss term acting
similar to an autoencoder loss smoothing noisy missing
pixels. On the other hand, MisGAN tries to explicitly model
missingness structure and is more successful in capturing a
more structured missingness such as the case of a rectan-
gular structure. Table 1 provides a comparison between the
top-1 classification accuracy achieved using each method at
different missing rates and structures. From this table, GI
outperforms other work by achieving the best results in 5
out of 6 cases8.

Table 2 presents a comparison of classification accuracies
for Landsat, MIT-BIH, Diabetes, Cholesterol, Hypertension,
and MNIST datasets at different missing rates. In the Land-
sat, Cholesterol, Hypertension, and MNIST benchmarks, GI
outperforms other work in all cases. Regarding the MIT-BIH
experiemts, GI outperforms other work for missing rates
more than 30% while achieving similar accuracies to GAIN
for lower missing rates. In the diabetes classification task,
GI appears to be most effective imputing missing rates more
than 20%.

Figure 4 shows a comparison of accuracy versus cer-
tainty plots for GI, MisGAN, and GAIN on Landsat dataset
at different missing rates. To generate these figures we
trained each imputation method and then used Algorithm 1
to train predictors on imputed samples. Finally, Algorithm 2
used to measure the average accuracy at different prediction
confidence levels based on a sample of 128 imputations
for each test example. As it can be seen from the plots,
GI provides results closest to the ideal case of having

6. https://github.com/steveli/misgan
7. https://github.com/jsyoon0823/GAIN
8. An earlier version of this paper reported results that are different

from the current manuscript. The current version is using the stochastic
predictor exclusively on the suggested imputation method and trained
using more precise hyper-parameter settings.

average confidence values equal to average accuracies. As
suggested in (7) and supported by the experimental results,
the proposed method is better calibrated compared to the
traditional approach of imputing each sample as a prepro-
cessing step prior to the prediction, ignoring the imputation
uncertainties.

4.5 Visualization using Synthesized Data

In order to provide further insight into the operation of
GI and how imputations can potentially influence the out-
comes of predictions, we conduct experiments on a synthe-
sized dataset. The original underlying data distribution is
generated by sampling 5000 samples from 4 Gaussians of
standard deviation 0.1 centered on the vertices of a unit
square. We assign two different classes to each cluster such
that diagonal vertices are of the same class (see Figure 5a,
classes are represented with colors). From this underlying
distribution, we make an incomplete dataset with 50% of
values missing.

The incomplete synthesized dataset is used to train GI
and other imputation methods. We take a random test sam-
ple in which the second feature has a value of about 0.1 and
the other feature is missing. Ideally, in the imputation phase,
we would like to sample from the condition distribution
i.e. P (x1|x2 = 0.1) (see Figure 5b). Here, in the prediction
phase, an ideal method would decide on not making a
confident classification and report the uncertainty. Note that
solely observing the value of 0.1 for the second feature
does not provide any useful evidence for the prediction.
Figure 5c-f provide samples and classification results for
GI, MisGAN, GAIN, and DAE. As it can be inferred from
these figures, GI generates samples relatively similar to
samples from the conditional distribution, and it also reflects
this uncertainty over the prediction. On the other hand
MisGAN, probably due to its complexity of using three
different generators and discriminator pairs, is suffering
from mode collapse to a higher degree and is unable to
generate samples from the other class, resulting in over-
confident assignments. Note that mode collapse is a well-
known shortcoming of GANs, and although we observed a
better behavior in our models, the results do not perfectly
match the ground-truth distribution. GAIN, perhaps due to
the MSE loss terms, is inclined towards the mean of the
conditional distribution at the origin. DAE, as expected, due
to its MSE loss term, only captures the expected value of
the distribution mean hence reducing the MSE error and
generates over-smoothed imputations.

5 ABLATION STUDY

Figure 6 presents a comparison between using (GI W/
Atten.) and not using (GI W/O Atten.) self-attention layers
before each residual block in the proposed architecture. We
report FID scores on CIFAR-10 with rectangular missing-
ness. As it can be inferred from this comparison, using
self-attention achieves a consistent improvement over the
baseline. We also examined the case of uniform missingness;
however, we did not observe any significant improvement
for this case. One possible explanation could be the fact that

https://github.com/steveli/misgan
https://github.com/jsyoon0823/GAIN
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Fig. 3: Comparison of FID scores on CIFAR-10 dataset for (a) uniform and (b) rectangular missingness. Lower FID score is
better. In many cases, variance values are very small and only observable by magnifying the figures.

TABLE 1: Top-1 CIFAR-10 classification accuracy for different missing rates and structures.

Accuracy at Missing Rate (%)

MCAR Uniform MCAR Rect.

Method 20% 40% 60% 20% 40% 60%

GI 89.5 (±0.45) 87.1 (±0.54) 80.3 (±0.26) 84.0 (±0.03) 76.9 (±0.03) 66.1 (±0.16)

MisGAN 86.5 (±0.31) 83.7 (±0.40) 78.7 (±0.26) 82.9 (±0.44) 75.6 (±0.20) 65.0 (±0.31)

GAIN 88.7 (±0.45) 86.0 (±0.86) 81.8 (±0.03) 81.7 (±0.03) 73.6 (±0.35) 58.4 (±1.66)

DAE 88.0 (±0.22) 84.0 (±0.50) 79.8 (±0.71) 83.3 (±0.64) 75.5 (±0.44) 63.8 (±0.24)

Mean 85.7 (±0.02) 83.4 (±0.38) 79.2 (±0.16) 82.7 (±0.15) 75.3 (±0.16) 64.0 (±0.32)

imputing missing data with a uniform structure can be done
by processing local regions and does not require attending
to different distant regions across the image.

Figure 7 shows a comparison of classification accuracies
for the Landsat dataset achieved using different ensemble
sizes (N ). As it can be seen from this figure, higher values
of N result in improved accuracies, especially for higher
missing rates. Also, it can be observed that for N values
more than 64 the difference is negligible.

To study the benefits of the suggested stochastic predic-
tor, we conducted experiments comparing GI with its non-
stochastic variation (N=1). Here, the CIFAR-10 dataset with
the rectangular missing structure and missing rates from
20% to as high as 90% is used. From Table 3 it can be
inferred that as the rate of missingness increases, the benefits
of the suggested predictor algorithm increase significantly.
We hypothesize that at higher rates of missingness, the
conditional distribution of missing features becomes mul-
timodal. In such a scenario, the suggested method captures
the uncertainties over the target distribution resulting in the
predictor to make more reliable class assignments.

6 DISCUSSION

In the literature, despite the prevalence of missing values
in many real-world scenarios, there has been less attention
towards learning from incomplete datasets. Often handling
missing values is being addressed as a preprocessing step

followed by typical predictor models. However, this sim-
plistic approach to handle missing values may induce biases
during the training due to the fact the subsequent model
cannot distinguish imputed values and truly observed val-
ues fed as input [44]. Moreover, regardless of how good we
impute missing features, the fact that a certain feature is
missing bears an uncertainty about the values that feature
may take. This uncertainty in the feature domain entails
an uncertainty in the target assignments. In many real-
world applications, it is of paramount importance to prevent
biased predictions and estimate the prediction confidence.
For instance, in health datasets which often contain many
missing features per sample, it is critical to not only make
predictions that are accurate on average but also reflect the
confidence of certain diagnosis for a specific patient. It might
be the case that a missing feature taking a critical value is
less frequent but drastically impactful on the final outcome.

To address these issues, this paper suggests (i) a method
consisting of a GAN-based imputer trained on incomplete
data that is able to generate high-quality imputations from
the conditional distribution of missing features given the
observed ones. (ii) A predictor which is trained on samples
generated by the imputer, which is capable of estimating the
certainty of class assignments.

7 CONCLUSION

In this paper, we proposed a novel method to generate
imputations and measure uncertainties over target class
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TABLE 2: Comparison of classification accuracies at different missing rates.

Accuracy at Missing Rate (%)a

Dataset Method 10% 20% 30% 40%

Landsat [38]

GI 89.9 (±0.36) 89.6 (±0.36) 89.0 (±0.03) 88.0 (±0.22)

MisGAN 87.2 (±0.01) 85.7 (±0.19) 84.0 (±0.61) 82.9 (±0.75)

GAIN 89.7 (±0.42) 89.4 (±0.56) 88.4 (±0.71) 87.7 (±0.10)

DAE 89.4 (±0.10) 88.6 (±0.54) 87.5 (±0.14) 86.6 (±0.21)

MICE 89.5 (±0.16) 89.3 (±0.10) 88.1 (±0.49) 87.5 (±0.03)

MIT-BIH [39]

GI 98.5 (±0.02) 98.4 (±0.03) 98.2 (±0.07) 97.7 (±0.03)

MisGAN 97.8 (±0.13) 97.4 (±0.07) 96.7 (±0.07) 96.2 (±0.09)

GAIN 98.5 (±0.02) 98.4 (±0.06) 98.0 (±0.09) 97.5 (±0.18)

DAE 98.4 (±0.02) 98.2 (±0.11) 97.9 (±0.09) 97.4 (±0.02)

MICE 98.4 (±0.01) 98.3 (±0.01) 98.1 (±0.01) 97.5 (±0.12)

Diabetes [40]

GI 89.6 (±0.13) 89.0 (±0.03) 88.2 (±0.62) 86.8 (±0.38)

MisGAN 89.7 (±0.01) 88.9 (±0.30) 87.6 (±0.02) 86.4 (±0.68)

GAIN 89.2 (±0.09) 88.3 (±0.02) 86.9 (±0.09) 83.8 (±1.44)

DAE 89.3 (±0.05) 88.2 (±0.19) 86.9 (±0.09) 84.8 (±0.03)

MICE 89.8 (±0.08) 88.8 (±0.01) 88.0 (±0.08) 86.1 (±0.02)

Cholesterol [40]

GI 73.2 (±0.12) 72.2 (±0.14) 71.6 (±0.30) 70.4 (±0.20)

MisGAN 72.8 (±0.31) 71.6 (±0.13) 70.7 (±0.15) 69.9 (±0.13)

GAIN 72.8 (±0.22) 71.7 (±0.27) 71.2 (±0.05) 70.1 (±0.08)

DAE 73.0 (±0.19) 71.6 (±0.24) 70.8 (±0.33) 70.2 (±0.04)

MICE 71.2 (±0.10) 69.9 (±0.13) 68.7 (±0.02) 67.3 (±0.21)

Hypertension [40]

GI 77.8 (±0.15) 77.3 (±0.32) 77.2 (±0.30) 76.2 (±0.07)

MisGAN 77.0 (±0.21) 76.9 (±0.16) 76.1 (±0.04) 75.4 (±0.49)

GAIN 77.5 (±0.10) 76.8 (±0.25) 76.6 (±0.37) 75.8 (±0.14)

DAE 77.5 (±0.30) 76.8 (±0.11) 76.4 (±0.58) 76.1 (±0.05)

MICE 76.7 (±0.19) 75.9 (±0.08) 74.7 (±0.20) 73.0 (±0.16)

MNIST [37]

GI 99.0 (±0.01) 98.9 (±0.07) 98.7 (±0.01) 98.6 (±0.01)

MisGAN 98.6 (±0.02) 98.3 (±0.06) 98.1 (±0.02) 97.5 (±0.06)

GAIN 98.8 (±0.02) 98.7 (±0.03) 98.6 (±0.02) 98.5 (±0.03)

DAE 98.8 (±0.08) 98.7 (±0.03) 98.5 (±0.08) 98.0 (±0.06)

MICE 98.7 (±0.02) 98.6 (±0.06) 98.4 (±0.07) 98.3 (±0.06)

a. Baseline accuracies for complete datasets (zero missing rate) are Landsat:90.9%, MIT-BIH:98.6%, Diabetes:90.7%, Cholesterol:73.6%, Hyper-
tension:77.9%, MNIST:99.2%.

TABLE 3: Comparison of CIFAR-10 accuracies for the
stochastic (N=128) and the deterministic (N=1) predictor
under rectangular missingness.

Accuracy at Missing Rate (%)

Method 20% 40% 60% 70% 80% 90%

GI (N=128) 84.0 76.9 66.1 59.1 46.0 32.1

GI (N=1) 83.6 75.7 65.1 56.7 42.8 29.4

% difference (normalized) 0.5 1.6 1.5 4.1 6.9 8.4

assignments based on incomplete feature vectors. We eval-
uated the effectiveness of the suggested approach on image
and tabular data via using different measures such as FID
distance, classification accuracy, and confidence versus ac-
curacy plots. According to the experiments, the proposed
method not only can generate accurate imputations but
also is able to model prediction uncertainties arising from
missing values. The proposed method is applicable to many
real-world applications where only an incomplete dataset
is available, and modeling classification uncertainties is a
necessity.

APPENDIX A
NETWORK ARCHITECTURES

Table 4 shows the exact architectures used in this paper. To
show each layer or block we used the following notation.
CxSyPz-t represents a 2-d convolution layer of kernel size
x, stride y, padding z, and number of output channels t fol-
lowed by ReLU activation. Attn represents a self-attention
layer similar to Zhang et al. [32]. R-x represents a residual
block consisting of two 2-d convolutions with kernel size 3
(padding size 1), batch normalization, and ReLU activation.
CTxSyPz-t is the convolution transpose corresponding to
CxSyPz-t. FC-x is representing a linear fully-connected
layer of x output neurons with biases. We use spectral
normalization as suggested by [35] for all convolutional
layers in both generator and discriminator networks.

APPENDIX B
MISSING DATA MECHANISMS

In this paper, we conduct experiments on two mechanisms
for missing values: MCAR uniform and MCAR rectangular.
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Fig. 4: Accuracy versus certainty plots for (a) GI, (b) MisGAN, and (c) GAIN on Landsat dataset at the missing rate of 30%,
40%, and 50%.
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underlying distribution, (c-f) samples from the conditional distribution generate by GI, MisGAN, GAIN, and DAE.
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TABLE 4: Network architectures used in our experiments.

Dataset Generator/Discriminator Architecture Predictor Architecture

C7S1P3-64, C3S2P1-128, Attn, R-128,

CIFAR-10 Attn, R-128, Attn, R-128, Attn, ResNet-18 [45]a

R-128, CT3S2P1-128, CT7S1P3-3, Tanh/Sigmoid

Landsat
FC-64, Sigmoid, BNorm, FC-64, Sigmoid, BNorm, FC-64, ReLU, BNorm, FC-64,

FC-64, Sigmoid, BNorm, FC-36, Tanh/Sigmoid ReLU, BNorm, FC-6, Softmax

MIT-BIH
FC-1860, ReLU, BNorm, FC-1860, ReLU, BNorm, FC-1860, ReLU, BNorm, FC-1860,

FC-1860, ReLU, BNorm, FC-186, Tanh/Sigmoid ReLU, BNorm, FC-5, Softmax

Diabetes
FC-45, ReLU, BNorm, FC-45, ReLU, BNorm, FC-22, ReLU, BNorm, FC-22,

FC-45, ReLU, BNorm, FC-45, Tanh/Sigmoid ReLU, BNorm, FC-3, Softmax

Cholesterol
FC-242, ReLU, BNorm, FC-242, ReLU, BNorm, FC-242, ReLU, BNorm, FC-242,

FC-242, ReLU, BNorm, FC-121, Tanh/Sigmoid ReLU, BNorm, FC-2, Softmax

Hypertension
FC-240, ReLU, BNorm, FC-240, ReLU, BNorm, FC-240, ReLU, BNorm, FC-240,

FC-240, ReLU, BNorm, FC-120, Tanh/Sigmoid ReLU, BNorm, FC-2, Softmax

MNIST
FC-1568, ReLU, BNorm, FC-1568, ReLU, BNorm, FC-1568, ReLU, BNorm, FC-1568,

FC-1568, ReLU, BNorm, FC-784, Tanh/Sigmoid ReLU, BNorm, FC-10, Softmax

a. https://github.com/kuangliu/pytorch-cifar
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Fig. 6: Comparison of FID scores achieved with (GI W/
Atten.) and without (GI W/O Atten.) self-attention layers
on CIFAR-10 dataset and rectangular missingness. Lower
FID score is better.

As in our experiments and comparisons, we consider the
case where only an incomplete dataset is available for
training. It is crucial to guarantee that each method has
only access to a unique incomplete version of each sample.
However, it is relatively expensive to load and store feature
masks for each sample in the dataset. Instead, we generate
missing values during the data load for each batch. A
hashing mechanism is used to ensure that the same parts
are missing for each sample throughout the training. Note
that we set system, python, and external library hash seeds
to fixed values to ensure the consistency between different
runs.

Algorithm 3 presents the procedure used for generating
missing values with uniform structure. This algorithm is
sampling independent Bernoulli distributions with proba-
bilities equal to the missing rate. Algorithm 4 shows the
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Fig. 7: Comparison of classification accuracies achieved with
different ensemble size (N ).

outline for the rectangular missing structure used in image
experiments. It consists of selecting a random point as the
center of the rectangle and then deciding on parameters to
be used for the beta distribution based on the missing rate.
Finally, the width and height of the rectangular region are
sampled from the latent beta distribution. In other words,
we generate rectangular regions centered at random loca-
tions within the image which have width and height values
determined by samples from a latent beta distribution. Here,
distribution parameters, α and β, are used to control the
average missing rate. The outcome would be rectangular
regions of different shape at different locations within the
frame with the expected portion of missing area equal to
the missing rate.

In order to decide on the beta distribution parameters i.e.
α and β we use numerical simulations. Specifically, we fix
one of the parameters to 1 and change the other parameter
in the range of [1,10], while measuring the average miss-
ing rate caused by each case. Figure 8 shows the missing
rates caused by different beta distribution parameters. The

https://github.com/kuangliu/pytorch-cifar
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Algorithm 3: MCAR uniform generation.
Input: x (complete feature), r (missing rate)
Output: xm (incomplete feature)
seedx ← hash(x)
k← 1−Bernoulli(seedx, shape(x), prob = r)
xm ← k � x + (1− k)�NaN

Algorithm 4: MCAR rect. generation.
Input: x (complete feature), r (missing rate)
Output: xm (incomplete feature)
seedx ← hash(x)
nx, ny ← shape(x)
(px, py) ∼ (uniform(0, nx), uniform(0, ny))
α, β ← beta params(r) // beta_params gives

α, β for each missing rate based on
numerical simulations

(w, h) ∼ (Beta(α, β)× nx), Beta(α, β)× ny))
k← rect mask(px, py, w, h)
xm ← k � x + (1− k)�NaN

first half of Figure 8 (missing rates less than about 0.18)
corresponds to setting β to 1 and changing α values; and
the other half fixing α to 1 and changing β values. To
generate missing rates more than 50% we invert our masks
and limit the observation to the rectangular region while
the rest of the image is missing. Note that missing rates
indicate the ratio of features that are missing on the average
case. As we are using a latent model for sampling width
and height for the rectangles, the actual missing ratios for
each specific sample differs between samples. See Table 5
for visual examples of different missing rates and missing
structures.

APPENDIX C
ANALYSIS OF THE RMSE MEASURE

Table 6 presents the comparison of different imputation
methods using the RMSE measure on CIFAR-10 for different
missing structures and rates. Generally, RMSE values for
the uniform missing structure are lower than their rectan-
gular counterparts. It is consistent with our intuition that
imputing uniform missingness is most similar to denoising
problems where the RMSE measure is frequently used.
Additionally, comparing the performance of different impu-
tation methods using the FID measure (Section 4.4) does not
demonstrate a clear correlation to results shown in Table 6.
Nonetheless, it is well-known that the FID measure is more
suited to measuring the performance of generated images
from the underlying distribution [34].

Similarly, in Table 7, we provide RMSE values corre-
sponding to experiments on the tabular datasets. Here,
GAIN and DAE provide very similar results that are gener-
ally better than GI or MisGAN. This signifies our hypothesis
that the MSE loss term may skew generated samples toward
the mean of the distribution, resulting in better RMSE values
but not necessarily higher final classification accuracies (see
Table 2). Table 8 presents R-squared (R2) values for the
Landsat, MIT-BIH, and Diabetes datasets. While R2 is a
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Fig. 8: Simulation results for measuring average missing rate
given different beta distribution parameters.

good performance measure for regression problems (often
better than RMSE), it may not be the best metric for im-
putation problems. The main reason is that, for imputation
problems, there may be multiple valid solutions based on
the observed features.

APPENDIX D
IMPACT OF TRAINING NOISE

Addition of noise to input vectors often serves as an input
augmentation and results in improved generalization accu-
racies. In order to verify that the improved GI performance
is not merely due to the introduction of noise in the sug-
gested architecture, we conducted an experiment by adding
different amounts of Gaussian noise during the training
process for GAIN and GI. Specifically, we compared how
the CIFAR-10 test accuracies change at different degrees
of training noise for uniform and rectangular missingess
structures at the average missing rate of 40%.

According to Table 9, adding small amounts of Gaussian
noise (e.g., std=0.0125) improves the generalization under
uniform missingness for both GI and GAIN. Even in this
case, GI is still outperforming GAIN in terms of final classifi-
cation performance. It is also interesting to point out that for
the case of rectangular missingness adding Gaussian noise
results in a consistent reduction in the classification accuracy
for both methods.

APPENDIX E
IMPACT OF THE MSE LOSS TERM

In our earlier discussions, we stated that the MSE loss
term used in GAIN would bias the distribution of gener-
ated samples toward the mean of the distribution. Here,
a synthesized dataset is used to illustrate the impact of
MSE loss term on the distribution of generated samples.
A hyperparameter, λ, controls the weight of the MSE term
in the final objective function. As it can be observed from
Figure 9, the higher the λ parameter, the lower the variance
of the generated samples (i.e., more bias toward the mean
of the distribution).
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TABLE 5: Examples of uniform and rectangular missing structures at different missing rates.

Original 20% 40% 60% 80%

Uniform

Rect.

TABLE 6: Comparison of imputation RMSE values for CIFAR-10 at different missing structures and rates.

RMSE at Missing Rate (%)

MCAR Uniform MCAR Rect.

Method 20% 40% 60% 20% 40% 60%

GI 0.026 (±0.003) 0.057 (±0.008) 0.090 (±0.006) 0.097 (±0.02) 0.148 (±0.001) 0.660 (±0.010)

MisGAN 0.079 (±0.001) 0.161 (±0.001) 0.257 (±0.002) 0.106 (±0.005) 0.158 (±0.004) 0.250 (±0.001)

GAIN 0.027 (±0.003) 0.045 (±0.001) 0.072 (±0.005) 0.340 (±0.047) 0.511 (±0.001) 0.660 (±0.010)

DAE 0.036 (±0.001) 0.075 (±0.002) 0.121 (±0.005) 0.116 (±0.007) 0.160 (±0.001) 0.233 (±0.029)

TABLE 7: Comparison of imputation RMSE values for Landsat, MIT-BIH, and Diabetes datasets at different missing rates.

RMSE at Missing Rate (%)
Dataset Method 10% 20% 30% 40%

Landsat [38]

GI 0.040 (±0.005) 0.067 (±0.007) 0.076 (±0.020) 0.136 (±0.002)

MisGAN 0.068 (±0.001) 0.096 (±0.001) 0.118 (±0.001) 0.136 (±0.001)

GAIN 0.018 (±0.001) 0.024 (±0.001) 0.030 (±0.001) 0.037 (±0.001)

DAE 0.020 (±0.001) 0.031 (±0.001) 0.041 (±0.001) 0.052 (±0.001)

MIT-BIH [39]

GI 0.038 (±0.001) 0.060 (±0.004) 0.071 (±0.002) 0.095 (±0.002)

MisGAN 0.073 (±0.007) 0.092 (±0.002) 0.115 (±0.003) 0.111 (±0.001)

GAIN 0.032 (±0.008) 0.046 (±0.001) 0.055 (±0.004) 0.067 (±0.007)

DAE 0.029 (±0.001) 0.048 (±0.008) 0.061 (±0.009) 0.068 (±0.003)

Diabetes [40]

GI 0.080 (±0.002) 0.118 (±0.008) 0.149 (±0.020) 0.189 (±0.009)

MisGAN 0.082 (±0.004) 0.111 (±0.002) 0.133 (±0.001) 0.151 (±0.001)

GAIN 0.064 (±0.001) 0.092 (±0.001) 0.119 (±0.001) 0.140 (±0.001)

DAE 0.065 (±0.001) 0.093 (±0.001) 0.118 (±0.001) 0.143 (±0.001)

APPENDIX F
IMPACT OF THE DISCRIMINATOR HINT VECTOR

Yoon et al. [19] suggested the idea of guiding the discrimina-
tor network using a hint mechanism. A hint vector reveals
a subset of features that are missing to the discriminator.
In Figure 10 and 11 we provide a comparison of learning
curves for GI implemented using different hint rates. From
Figure 10, using the hint mechanism does not result in
any noticeable improvement in the final imputation qual-
ity justifying the added complexity. For the case of the
rectangular missing structure in Figure 11; however, using
the hint vector causes instabilities in the training process.
One possible explanation is: providing even a small portion
of the mask as a hint, due to the deterministic nature of
the rectangular shape it is equivalent to providing region
boundaries to the discriminator making it obvious for the
discriminator. In GAN training we generally want to have

equal competition between the generator and discriminator.

APPENDIX G
IMPACT OF OTHER MISSINGNESS MECHANISMS

Throughout this paper, we conducted experiments based
on the MCAR assumptions. In this section, we provide
additional experiments on the MNIST dataset using two
sample-dependent missingness mechanisms: (i) foreground
pixels missing at different rates, (ii) background pixels
missing at different rates. Note that in these experiments,
to prevent the trivial case of imputers learning to always
impute constant values, we let all image pixels have at
least 10% chance of being missing. For instance, to examine
the foreground missingness, we let all background pixels
have 10% chance of missingness while we set the missing
rate for foreground pixels at different rates in the range of
10% to 40%. Otherwise, as MNIST pixel values are mostly
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TABLE 8: Comparison of imputation R2 values for Landsat, MIT-BIH, and Diabetes datasets at different missing rates.

R2 at Missing Rate (%)
Dataset Method 10% 20% 30% 40%

Landsat [38]

GI 0.951 (±0.001) 0.898 (±0.001) 0.840 (±0.001) 0.783 (±0.001)

MisGAN 0.946 (±0.001) 0.887 (±0.001) 0.851 (±0.001) 0.825 (±0.040)

GAIN 0.996 (±0.001) 0.994 (±0.001) 0.992 (±0.001) 0.987 (±0.001)

DAE 0.990 (±0.001) 0.980 (±0.002) 0.961 (±0.005) 0.942 (±0.006)

MIT-BIH [39]

GI 0.986 (±0.001) 0.965 (±0.002) 0.947 (±0.001) 0.913 (±0.006)

MisGAN 0.949 (±0.009) 0.923 (±0.008) 0.889 (±0.010) 0.876 (±0.006)

GAIN 0.988 (±0.007) 0.980 (±0.003) 0.964 (±0.010) 0.957 (±0.002)

DAE 0.992 (±0.001) 0.98 (±0.010) 0.969 (±0.003) 0.937 (±0.010)

Diabetes [40]

GI 0.953 (±0.007) 0.900 (±0.008) 0.851 (±0.008) 0.823 (±0.001)

MisGAN 0.964 (±0.002) 0.934 (±0.004) 0.909 (±0.001) 0.876 (±0.001)

GAIN 0.979 (±0.001) 0.955 (±0.001) 0.929 (±0.001) 0.896 (±0.001)

DAE 0.979 (±0.001) 0.955 (±0.001) 0.928 (±0.002) 0.895 (±0.002)

TABLE 9: Top-1 CIFAR-10 classification accuracy at 40%
missing rate using added training noise.

Accuracy (%)

MCAR Uniform (40%) MCAR Rect. (40%)

Noise STD GI GAIN GI GAIN

0.0 87.1 86.0 76.9 73.6

0.0125 87.3 86.3 76.8 73.3

0.025 86.5 86.6 76.7 73.2

0.05 85.6 84.7 73.7 72.4

0.1 82.0 80.6 68.7 67.0

distributed around 0 or 1, it is quite easy for our imputers
to learn constant and near-perfect imputations, making the
task too easy.

Table 10 shows a comparison of the uniform, foreground,
and background missingness mechanisms for the MNIST
dataset. According to the results, GI is able to outperform
other work in all of the cases. This is consistent with the
general formulation presented in this work which does
not impose any domain-specific prior over the structure
of missing values and hence is robust to the missingness
mechanism.

TABLE 10: Comparison of classification accuracies for
MNIST at different missing rates and missing types.

Accuracy at Missing Rate (%)
Method 10% 20% 30% 40%

U
ni

fo
rm

GI 99.0 (±0.01) 98.9 (±0.07) 98.7 (±0.01) 98.6 (±0.01)

MisGAN 98.6 (±0.02) 98.3 (±0.06) 98.1 (±0.02) 97.5 (±0.06)

GAIN 98.8 (±0.02) 98.7 (±0.03) 98.6 (±0.02) 98.5 (±0.03)

DAE 98.8 (±0.08) 98.7 (±0.03) 98.5 (±0.08) 98.0 (±0.06)

Fo
re

gr
ou

nd GI 99.0 (±0.01) 98.9 (±0.01) 98.9 (±0.02) 98.8 (±0.03)

MisGAN 98.6 (±0.01) 98.5 (±0.06) 98.3 (±0.06) 98.3 (±0.07)

GAIN 98.9 (±0.08) 98.8 (±0.06) 98.8 (±0.02) 98.7 (±0.09)

DAE 98.8 (±0.01) 98.7 (±0.06) 98.7 (±0.02) 98.5 (±0.07)

B
ac

kg
ro

un
d GI 99.0 (±0.02) 99.0 (±0.01) 99.0 (±0.02) 98.8 (±0.01)

MisGAN 98.5 (±0.09) 98.3 (±0.06) 98.2 (±0.02) 97.8 (±0.04)

GAIN 98.8 (±0.04) 98.8 (±0.06) 98.8 (±0.04) 98.7 (±0.04)

DAE 98.8 (±0.04) 98.7 (±0.04) 98.6 (±0.02) 98.6 (±0.04)
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Fig. 9: Comparison of generating samples from a Gaussian
distribution (a) samples from the original distribution, (b)
samples generated using GAIN imputers with different
significance of the MSE term (controlled by λ).

APPENDIX H
VISUAL RESULTS

Figure 12 provides examples of masked CIFAR-10 images
that are imputed using the proposed method. The variance
among imputed samples is representing different possibili-
ties for completing the missing parts. For each input sample,
we also show the class assignment certainties estimated
from an ensemble of 128 imputations, of which three ran-
domly selected samples are shown here. In certain exam-
ples, the missing part is not causing a noticeable uncertainty
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Fig. 10: Learning curves for CIFAR-10 with uni-
form missing structure at different discriminator
hint rates.
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Fig. 11: Learning curves for CIFAR-10 with rectan-
gular missing structure at different discriminator
hint rates.

over target assignments, while in others it leads to some
confusion over target assignments based on the different
viable imputations.
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