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Multi-task Learning with Coarse Priors for
Robust Part-aware Person Re-identification
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Abstract—Part-level representations are important for robust person re-identification (RelD), but in practice feature quality suffers due
to the body part misalignment problem. In this paper, we present a robust, compact, and easy-to-use method called the Multi-task
Part-aware Network (MPN), which is designed to extract semantically aligned part-level features from pedestrian images. MPN solves
the body part misalignment problem via multi-task learning (MTL) in the training stage. More specifically, it builds one main task (MT)
and one auxiliary task (AT) for each body part on the top of the same backbone model. The ATs are equipped with a coarse prior of the
body part locations for training images. ATs then transfer the concept of the body parts to the MTs via optimizing the MT parameters to
identify part-relevant channels from the backbone model. Concept transfer is accomplished by means of two novel alignment
strategies: namely, parameter space alignment via hard parameter sharing and feature space alignment in a class-wise manner. With
the aid of the learned high-quality parameters, MTs can independently extract semantically aligned part-level features from relevant
channels in the testing stage. MPN has three key advantages: 1) it does not need to conduct body part detection in the inference
stage; 2) its model is very compact and efficient for both training and testing; 3) in the training stage, it requires only coarse priors of
body part locations, which are easy to obtain. Systematic experiments on four large-scale RelD databases demonstrate that MPN
consistently outperforms state-of-the-art approaches by significant margins.

Index Terms—Person re-identification, part-based models, misalignment, multi-task learning.

1 INTRODUCTION

PERSON re-identification (RelD) is a critical component
of modern surveillance systems. The process is aimed
at spotting a person of interest, e.g. a missing child or a
suspect, across disjoint camera views distributed at different
physical locations. Due to the widespread deployment of
visual surveillance networks, RelD has recently attracted
increasing attention from both academia and industry. De-
spite this, however, RelD remains a challenging problem;
this is largely caused by the dramatic variations in intra-
personal appearance and high inter-personal similarity [,
(2], B, [4], [5], [6]. Accordingly, to enhance the discrimi-
native power of RelD models, a large proportion of the
recent literature has explored the learning of part-level
representations [7], [8], [9], [10], [11]}, [12], [13], [14], [15],
, , which incorporate more fine-grained features and
reduce the overfitting risk of deep models [18], [19].
However, the extraction of high-quality part-level repre-
sentations is difficult. This is because human body parts are
often not semantically aligned across images, meaning that
the same spatial position across two images may not corre-
spond to the same body part. As illustrated in Fig. [} one
reason is that pedestrian detection is still challenging [20],
[21], [22]. The error in pedestrian detection causes both
the position and scale of body parts to vary dramatically
in images. Moreover, some body parts, such as arms and
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Fig. 1: The spatial misalignment of body parts across images
is common in pedestrian images. (a) Misalignment caused
by errors in pedestrian detection. Both the position and scale
of the body parts change, as indicated by the blue rectangles.
(b) Misalignment due to the movement of flexible body
parts, such as arms and legs. Both the position and shape of
these body parts vary, as indicated by the green rectangles.
(Best viewed in color.)

legs, are inherently flexible, meaning that their position
and shape will change even in cases where the pedestrian
detection algorithm works perfectly.

Since the positions of these body parts are variable,
one intuitive solution is to detect body parts in the spatial
dimension before part-level feature extraction occurs; most
existing works adopt this approach [16], [18], [19], [23].
However, body part detection is inherently challenging;:
interference such as severe image blur, background clutter,



and occlusions may cause failures in part detection, thereby
degrading the quality of the part-level representations.
There have been recent attempts to bypass part detection
at the inference stage using teacher-student style training
strategies [10], [24]. The teacher model employs prior infor-
mation regarding body part locations to guide a separate
student model in extracting semantically aligned part-level
features from the original image. However, there are two
disadvantages to this approach. Firstly, the architecture of
the model used for training is complex. Secondly, only the
feature space is constrained in a sample-wise manner, with
the result that the performance of the student model is
sensitive to the robustness of the teacher model.

It is therefore reasonable to seek a robust, compact, and
easy-to-use method capable of learning semantically aligned
part-level representations. To this end, we propose a Multi-
task Part-aware Network (MPN) that only slightly increases
the time and space complexities of a very basic part-based
model [19] for both training and testing. Unlike existing
works, MPN extracts part-specific information from a deep
backbone model by explicitly regularizing the model param-
eters to select part-relevant channels via the introduction
of inductive bias with multi-task learning (MTL). Global
max-pooling on selected channels results in translation- and
scale-invariant body part features being obtained. Moreover,
as the selected channels for each body part are fixed after
training, MPN is naturally robust to various forms of inter-
ference such as image blur and background clutter.

One primary contribution of MPN is the way it explicitly
learns part-relevant channels. The first challenge is that
there is no universally recognized definition of the area for
each body part. Moreover, a plain network cannot learn the
concept of ‘body parts” without any priors. In this paper,
we define the body part regions in training images using
a method that is coarse but robust and easy to use. In the
training stage, MPN includes one main task (MT) and one
auxiliary task (AT) for each body part, both of which are
built on the same backbone model. Both tasks select and
combine body part relevant channels to construct the re-
spective part-level representations for person classification.
Their main difference lies in the input feature maps: the
inputs of MT are the original feature maps produced by
the backbone model, while those for AT are the cropped
feature maps according to the coarse part location priors. By
sharing all parameters (except for their respective classifiers)
of MT and AT for each respective part, MT is regularized
to enable the choosing of part-relevant channels. Another
noticeable advantage of this strategy is that the obtained
model architecture for training is extremely compact.

Implementing the above simple strategy enables MPN
to achieve state-of-the-art performance. However, due to
the difference between the input feature maps, the sharing
parameter alone cannot ensure alignment of the MT and AT
feature spaces. Accordingly, to eliminate this discrepancy,
we further introduce a novel constraint between MT and AT
in the feature space, which is applied in a class-wise rather
than a sample-wise manner [10]], [24]. Briefly, we compute
the mean representation of each identity in one batch for MT
and AT respectively, and then penalize their cosine distance.
The motivation behind this is that the prior location of each
body part employed by AT is coarse, which degrades the
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quality of the feature vectors obtained by AT; therefore, a
feature space constraint at the class level will statistically be
more robust than one at the sample level [10], [24].

In the inference stage, all ATs are abandoned and
part-level features obtained by MTs are used for RelD.
To demonstrate the efficacy of MPN, we conduct exten-
sive experiments on four large-scale benchmark datasets:
Market-1501 [25], DukeMTMC-RelID [26], CUHKO03 [27],
and MSMT17 [28]. The results show that our simple MPN
model consistently and significantly outperforms existing
approaches with the further advantages of being compact
and easy to use.

The remainder of the paper is organized as follows.
Related works on RelD and MTL are briefly reviewed in
Section 2. The MPN model structure and training scheme
are described in Section 3. RelD during inference using
MPN is introduced in Section 4. Detailed experiments and
their analysis are presented in Section 5. We conclude in
Section 6.

2 RELATED WORKS

A number of effective approaches have been proposed for
RelID [29]. In particular, part-based models have been shown
to be effective and have become popular [10], [18], [19]. We
therefore review the literature on (i) part-based ReID models
and (ii) MTL methods for RelD.

2.1 Part-based RelD Models

While part-based models are powerful, they suffer from the
problem of the semantic misalignment of body parts [18],
[19]]. Existing approaches to this problem can be divided into
three categories: (i) methods that extract multi-scale features
(MSF) to address the body part misalignment problem;
(ii) methods that detect body parts in the spatial dimen-
sion before part-level feature extraction is performed; and
(iif) methods that guide the deep model to learn semanti-
cally aligned part-level features via teacher-student training
schemes.

MSF-based methods extract part-level features from
multi-scale image patches [7]], [17], [30]. As the patch size
increases, the extracted features are less affected by body
part misalignment but at the cost of reduced discriminative
power. Multi-scale patch features are concatenated as the
image representation. However, the dimension of the final
representation is high, and the body part misalignment
problem is only partly solved.

Body part detection-based methods first detect body
parts in the spatial dimension before part-level feature
extraction is performed. Most existing works fall into this
category. According to the way in which body parts are de-
tected, approaches in this category can be further classified
into (i) outside tools-based methods, (ii) spatial attention-
based methods, and (iii) unsupervised methods. Outside
tools-based methods rely on outside tools (e.g., pose esti-
mation models [8]], [11], [31], [32] and human parsing mod-
els [33]]), to provide body part locations during both training
and testing. Notable downsides to this approach include
the extra computational cost and the low reliability of the
outside tools. Spatial attention-based methods can overcome



the above problem by inferring the location of body parts
directly from feature maps produced by RelD networks [16],
(23], [34], [35]. The output of the attention modules can take
the form of either rigid bounding boxes or soft spatial
masks [16], [19], that represent the location of body
parts. Attention module parameters are optimized together
with the entire RelD network using supervision signals for
RelD only, meaning that the parameters of the attention
modules lack a direct constraint. Unsupervised methods
adopt hand-crafted approaches to locating body parts based
on the feature maps of each image [18], [36]. For example,
Yao et al. proposed using K-means clustering to cluster
channels based on the locations of maximum response, with
individual average pooling of the selected channels for each
cluster indicating the location of a body part.

Despite these efforts, however, body part detection-
based methods still face major challenges, because body part
detection can fail when the image contains interference such
as severe image blur, background clutter, and significant
occlusion.

The third category of methods bypass body part detec-
tion during inference [10], [24]. In the training stage, these
methods adopt complex model architectures with teacher-
student-style training strategies. As the teacher model is
equipped with prior information regarding body part loca-
tions, it can extract semantically aligned part-level features.
Moreover, through alignment with the teacher model in the
feature space, a separate student model without any body
part priors is guided to produce similar features Existing
works guide in a sample-wise manner - therefore,
the quality of guidance is vital. To prov1de precise guidance,
Zhang et al. used a 3D alignment tool to achieve pixel-
level semantic alignment of body parts. However, the per-
formance of the outside tool used was restricted by training
image quality (e.g., severe image blur), with the result that
the obtained body part location priors may not be robust.
Therefore, sample-wise guidance between the teacher and
student models may be suboptimal for RelD.

Compared with existing works, our proposed approach
not only bypasses body part detection during inference, but
also has the advantages of compactness, robustness, and
ease-of-use both during training and testing. In particular,
we here solve the body part misalignment problem from a
novel perspective: in short, we explicitly select part-relevant
channels from the backbone model by introducing inductive
bias with auxiliary tasks.

2.2 MTL Methods for RelD

MTL is a commonly used strategy that simultaneously
optimizes multiple relevant tasks. These relevant tasks intro-
duce inductive bias, which improves the generalization abil-
ity of the main task. Therefore, MTL has been successfully
applied in many computer vision tasks. Here we focus on
MTL-based approaches for RelD. For a more comprehensive
summary of MTL, we direct readers to .

Existing MTL approaches for RelD can be divided into
four categories. First, many works combine loss functions
for image classification and metric learning to improve
the quality of learned pedestrian representations [35], [38].
Second, other models conduct person RelD and attribute

Fig. 2: Examples of per-channel responses (heatmaps) on
the human body. The first column presents the original
images. Each of the other five columns represents responses
on one representative channel, respectively. The channels
are selected from the last convolutional layer of the ResNet-
50 model. Red denotes stronger activation. The figure il-
lustrates that there are correspondences between each body
part and different channels.

recognition jointly, since these tasks are closely related [39],
[40], [41]. Third, some recent part-based approaches have
generated feature maps for each body part from the output
of the same backbone model, regarding RelD based on each
body part as an independent task [7], [18], [19]. Fourth, body
part detection and part-based RelD were integrated into a
single model as two parallel tasks during training in [42]. In
the testing phase, these two tasks run sequentially for RelD.

In this paper, we employ MTL for a new purpose.
Briefly, MTL regularizes the model parameters to select
channels relevant to each respective body part, such that the
subsequently extracted part-level features are semantically
aligned. Moreover, compared with [7], [10], [42], our MTL-
based approach is very compact due to its use of hard
parameter sharing.

3 MuULTI-TASK PART-AWARE NETWORK

We first introduce the motivation and problem formula-
tion of MPN before presenting the MPN framework and
describing each of its key components: namely, the coarse
priors of part locations for training images, the part-relevant
channel selection via MTL, and the class-wise feature space
alignment (FSA) between the two tasks.



3.1 Problem Formulation

Recent works have shown that different channels of a RelD
network activate local responses at their corresponding
body parts [18], [43]. In other words, there are correspon-
dences between the channels and body parts, as shown in
Fig. [2| This property has been utilized to detect body parts
in the spatial dimension [18], [42].

In this paper, we explore this property from a more
straightforward perspective. During training, we train a
light-weight module, i.e., one 1 x 1 convolutional (Conv)
layer, to select and combine relevant channels for each
individual body part from the output feature maps of a deep
backbone model. Global max-pooling (GMP) on each of the
produced channels results in translation- and scale-invariant
body part features. The parameters of the 1 x 1 Conv layers
are fixed during the inference stage; as a result, part-level
features can be robustly extracted without the need for body
part detection for each image.

The problem is then reformulated for the identification
of the relevant channels for each body part. Unfortunately,
a plain deep model cannot automatically learn the concept
of body parts without proper guidance. Accordingly, in this
section, we propose MPN to solve this problem via MTL.

As illustrated in Fig. [3f MPN in the training stage in-
cludes two tasks for each of K body parts: one main task
(MT) and one auxiliary task (AT). Both tasks are optimized
for RelD purposes, i.e. person classification. The K ATs are
equipped with the coarse prior of the body part locations in
the training images; as a result, they can provide inductive
bias assisting the MTs to select the relevant channels for each
body part. In the inference stage, ATs are removed, and only
the MTs are used to extract part-level representations. We
next introduce each of the key components of MPN.

3.2 Coarse Prior of Body Part Locations

The prior of body part locations for training images pro-
vides the network with the concept of body parts. Body
parts can be represented as size-fixed strips [7]], [30], size-
varied bounding boxes [18], or even a group of pixels of
irregular shape [10]. We here adopt the strip-based repre-
sentation, which is coarse but robust. The prior is generated
based on two existing tools: one for human parsing [44] and
another for human segmentation [45].

As explained in Fig. Eka—b), the former tool in [44] seg-
ments and distinguishes a set of pre-defined body parts,
but ignores discriminative accessories (e.g., backpacks) and
undefined body parts (e.g., necks). The latter tool in [45] seg-
ments the human body with accessories as a whole, thereby
losing part-specific information. As shown in Fig. [(c-d),
each of them may fail; however, the chance that they both
fail for the same image (e.g., Fig. [f{e)) is small. Therefore,
the two tools are complementary.

Given one training image, we propose the following
pipeline to combine the outputs of both tools, as illustrated
in Fig. [F[a). First, we examine whether both the head and
at least one leg are present in the parsing map by count-
ing their respective numbers of pixels. Second, if both are
present, we obtain a more reliable mask of the human body
via the union of both segmentation maps. Third, the mask
is resized to the size of the feature maps produced by
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the backbone model (i.e., 24 x 8 in our implementation).
We then binarize and dilate the resized mask via a 1 x 2
kernel, thus further reducing the impact of errors on human
segmentation.

Similar to [45], the influence of background clutter is
reduced through the use of the final mask M. In contrast
to [45], we also obtain the upper and lower boundaries
of the human body in the mask. These two boundaries
define the region of interest (ROI) of the human body. The
uniform division between the two boundaries in the vertical
direction indicates the coarse location of K body parts.
Furthermore, as shown in Fig. Ekd—f), either the head or
both legs may be absent in a small number of low-quality
images; under these circumstances, we cannot obtain the
precise upper or lower boundary. In these cases, we divide
the entire image evenly in the vertical direction to estimate
the coarse locations of the K body parts.

3.3 Channel Selection via Parameter Space Alignment

In this subsection, we explain how MPN solves the part-
relevant channel selection problem for MTs via parameter
space alignment (PSA) between each MT-AT pair during
training. As illustrated in Fig. |3} the MT and AT for each
body part are built on the same backbone model, i.e.,
ResNet-50 [46], and both extract part-relevant channels
to construct part-level representations for RelD. Follow-
ing [19], we remove the last spatial down-sampling oper-
ation of ResNet-50 to increase the size of the output feature
maps. These feature maps are denoted as F for simplicity
below.

All MT and AT model structures are similar. Taking one
MT as an example, it incorporates one 1 x 1 Conv layer,
one GMP layer, one optional channel attention (CA) mod-
ule [47], another 1 x 1 Conv layer, and one fully connected
(FC) layer for classification. Each Conv layer is followed
by one batch normalization (BN) [48] layer and one ReLU
layer [49] by default. The dimension of both Conv layers is
set as 512. Moreover, the configuration of the CA module is
illustrated in more detail in Fig.[f] The loss functions for the
MTs and ATs will be introduced in Sec.

The first Conv layer selects and combines part-relevant
channels from F. The degree of relevance is determined by
the entire training set; therefore, it may not be optimal for
each individual image. GMP transforms the feature maps
into one feature vector, the elements of which are robust to
the translation of body parts. The feature vector is fed into
the CA module, which overcomes the problem of the first
Conv layer by recalibrating each channel according to its
importance in each specific image. The downside of using
CA is that it increases the degree of model complexity;
therefore, we consider this module optional in our model.
The second Conv layer projects the feature vector to a more
discriminative space.

The main difference between the MT and AT of one
body part has to do with their inputs. The input of MT
is the original F, which means that the MT itself contains
no cues for use in identifying part-relevant channels. In
comparison, we process F to obtain the part-specific feature
maps Py (1 < k < K), which are the input of the k-th AT.
This procedure includes three steps, which are illustrated in



5

SXA Input Images

I 1

1 I 1x 1 Conv
~————— -

1 1
1

= m e ——————————— e ——— ,f—————— o —— "
1 Par ter Space Al t : Feature Space Alignment |
fmmmmm e e e e e e e e e e e e e — - -
- . : | the koth MT Network [ :
: ! 1! : 1 1
I ! 1! —l ! 1
. : Ll — — — — — - Lo (WE'R) |
1

1 1
1 ! 1! 1x 1 Cony GMP cA : ) ! |
1 ! 1! F 4 4 fi } ! concat s
| ! ! : ; : B !
. |_’ - | cocooess e L L L L poceeee _-—— ] 1 h Loy (h) 1
1 I 1 Hard Parameter Sharing Hard Parameter Sharing 1 1 1
X I lpmmmmm e /S ——— . I
! - : ; : TRE——2 PN
! 1 ! i v : : ' cr(hE) \

1 1 1
1 ! ResNet-50 Feature 1 1 ; -l ; 1 I concat 1
1 1 Backbone Maps (F) 1 ! 1
X 1 L — — — — — T Loo(Wi'z) |
1 1

1 1
1 | 1
1 1
1 1

Fig. 3: Model architecture of MPN in the training stage. Based on the ResNet-50 backbone model, MPN builds two tasks
for each of the K body parts: one main task (MT) and one auxiliary task (AT). For simplicity, only one MT-AT pair is
shown in this figure. The K ATs are equipped with the coarse prior of body part locations for the training images, which
provides inductive bias assisting the MTs to select and combine the relevant channels for each body part. Inductive bias
is transferred via two key operations: parameter and feature space alignments between each MT-AT pair. The selected
part-relevant channels are processed to obtain part-level representations. In the inference stage, all ATs are removed to

leave only the MTs to extract image representations.
G G
@

Fig. 4: The three images in each group show the pedestrian
image, human parsing result by [44], and human segmen-
tation result by [45], respectively. (a) The tool in [44] may
ignore discriminative accessories, e.g., a backpack. (b) It may
also neglect undefined body parts, e.g., the neck. (c-d) Each
tool may fail if the image quality is low. (e) A situation
in which both tools have failed to work. (f) Segmentation
results when there is a severe part missing problem.

Fig. B|b). First, each channel of F is multiplied by M in an
element-wise manner, reducing the impact of background
clutter. Second, the portion of feature maps within the
upper and lower boundaries are resized to the original size
of F via bilinear interpolation; this step corrects errors in
pedestrian detection. Finally, the uniform division of the
resized feature maps in the vertical direction produces K
part-specific feature maps.

As illustrated in Fig. 2} channels in F activate local re-
sponses at their corresponding body parts. This means that
only relevant channels have high responses in P}, following
the division operation; therefore, it is much easier to opti-
mize the first Conv layer of AT than it is to optimize MT. The
parameters of this layer can create inductive bias, assisting
MT in selecting part-relevant channels. We propose to utilize
this inductive bias by simply sharing the parameters of the
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Fig. 5: (a) The pipeline to obtain the coarse prior of body
part locations. The uniform division between the upper and
lower boundaries of the obtained mask indicates the coarse
location of each body part. (b) The pipeline to obtain part-
specific feature maps Py (1 < k < K) as the input of ATs.
This process is applied to each channel of F, respectively.
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first 1 x 1 Conv layer between each MT-AT pair.

However, sharing parameters for channel selection alone
cannot ensure that only the part-relevant channels will be
selected for MT, because MT itself contains no cues for part-
relevant channel selection. When MT and AT optimize the
shared Conv layer together, irrelevant channels may also
be selected. This means that there is a gap between the
features extracted by MT and those extracted by AT. To
resolve this problem, we apply stronger regularization by
further sharing the parameters of the CA module and the
second 1 x 1 Conv layer between MT and AT, respectively.
By sharing parameters of each respective layer, we implicitly
require that its input feature vectors from MT and AT will be
similar for each image. This constraint, in turn, regularizes
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Fig. 6: Structure of the adopted channel attention (CA)
module [47]]. The items in each bracket denote the number of
filters, kernel size, and stride, respectively. Each Conv layer
is followed by a BN layer by default.

the first 1 x 1 Conv layer to select part-relevant channels.

In conclusion, MPN shares the parameters of the two
Conv layers and the CA module between each MT-AT
pair, respectively. We refer to this hard parameter sharing
strategy as PSA, which forces the first 1 x 1 Conv layer
to select part-relevant channels for RelD purposes. In other
words, MT is regularized to extract semantically aligned
part-level representations. Compared to existing works [10],
[24], one important advantage of hard parameter sharing
is that it makes the MPN architecture very compact in the
training stage. During testing, all ATs are removed, meaning
that MPN is free from body part detection after training is
complete.

3.4 Respective Loss Functions for MTs and ATs

We employ two popular loss functions to train MTs and
ATs. First, we attach one cross-entropy loss function to the
classification layer of each MT and AT, respectively:

Lin=—+ 33 (Lee (Witsh) + Loe (Wi'L)) . (O

1=1k=1

where N denotes batch size. f} and z!, represent the feature
vectors extracted from the k-th part of the I-th image by MTs
and ATs, respectively. W and W{! represent parameters
of the classification layers for the k-th MT and AT, respec-
tively. As illustrated in Fig.[3| f! and z} are the outputs of
the second Conv layer of MTs and ATs, respectively. L.,
stands for the cross-entropy loss function.

The K part-level features extracted by MTs are concate-
nated as the holistic representation h of one image:

h = [flaf27"'afK}' (2)

We then apply the triplet loss [50] to ensure that the
distance between the representations of intra-class image
pairs is smaller than that of the inter-class image pairs. To
ensure that sufficient triplets are sampled, we randomly
choose A images in each of S random subjects to create a
mini-batch. We follow the BatchHard strategy used in [50]
to sample the triplets. The triplet loss can be formulated as
Lrrr =

1 S A a : a n
o >_ 2| max D(hihY) — min D (hi,h7) +ali,

i=1a=1 j=1..8

®)
where {h¢, h} h} compose a triplet. The anchor and pos-
itive images are sampled from the i-th subject, while the
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negative image is sampled from the j-th subject. o denotes
the margin of the triplet constraint and Nt represents the
number of triplets in a batch that violate the triplet con-
straint [50]. [] . = max(0, %) is the hinge loss. D (h{, hY)
and D (h?,h?) denote the cosine distance between two
feature vectors. For example,

h¢"h?

D (B W) = 1
b 7]

)

Note that the importance of ATs and MTs are asymmet-
ric. ATs are removed during testing; therefore, we do not
apply the triplet loss to the features extracted by ATs.

3.5 Feature Space Alignment between MTs and ATs

The above MTL strategy enables MPN to achieve strong
performance. However, due to the difference between the
input feature maps of each MT-AT pair, a gap still exists be-
tween the features extracted by MTs and ATs. Accordingly,
to bridge this discrepancy, we propose the following method
to align their features in a class-wise manner.

First, the K part-level features extracted by ATs are
concatenated to form another holistic representation g of
one image:

aZK]- (5)

Second, we calculate the mean representations for each
subject in one batch:

g = [Z17Z2a

R
hi =3 2 b, (6)
and,
1 A
LA OIS @)

Finally, we penalize the cosine distance between h; and
g

s
1 _
Lcr = g ZD (h;,g;) - 8)
i=1

Our class-wise feature alignment strategy can be con-
trasted with the sample-wise feature alignment approaches
in recent works [10], [24]. For example, consider the ap-
proach adopted in [24]:

1 S A
Lsp =D D(higl). ©)

i=1a=1

Compared with Lo, L5 imposes a stronger constraint,
as it requires that the distance between each pair of h{ and
g should be minimized. This requirement is reasonable
when the quality of g¢ is very high; in practice, however,
the quality of g¢ is limited due to errors in the body part
location priors. First, the outside tools adopted in this paper
and in [10] may fail for low-quality pedestrian images.
Second, the prior that we employ in Sec. is coarse. The
uniform division operation on the human body presented in
Fig.[p[b) may not account for dramatic movement of flexible
body parts in one image.



Therefore, Lop is a more robust constraint. By penal-
izing the distance between the class-wise mean representa-
tions of MTs and ATs, L r becomes less vulnerable to errors
in body part location priors. In the experimental section,
we will demonstrate that Lo outperforms both constraints
proposed in [10], [24].

4 PEeRsSON REID via MPN

In the training stage, the overall objective function of MPN
can be formulated as follows:

L=Lip+ Lrrr +Mcr, (10)

where ) is a weight term.

In the testing stage, all ATs are removed. We employ h
in Eq. 2] as the representation of one image. We consistently
adopt the cosine metric to measure the similarity p between
two representations h; and hs:

hTh,

P = e 1)
([ [/ |

5 EXPERIMENTS

In this section, we conduct comprehensive experiments
on four publicly available large-scale benchmark datasets:
Market-1501 [25], DukeMTMC-RelD [26], CUHKO3 [27], and
MSMT17 [28]. We follow the official evaluation protocols
for each of these databases and further adopt both Rank-1
accuracy and mean Average Precision (mAP) as evaluation
metrics for all benchmarks.

The Market-1501 database [25] consists of 32,668 pedes-
trian images captured by six cameras of 1,501 identities.
The Deformable Part Model (DPM) [51] is employed to
detect bounding boxes for these pedestrians. Market-1501
is divided into a training set and a testing set: the former
includes 12,936 images of 751 identities, while the latter
comprises images of the remaining 750 identities. Moreover,
the testing set is further split into a gallery set and a query
set, which contain 19,732 and 3,368 images, respectively.

The DukeMTMC-RelD database [26] contains 36,441
pedestrian images of 1,404 identities. The images were cap-
tured by eight high-resolution cameras. A total of 16,522
images of 702 identities make up the training set, while
images of the other 702 identities make up the testing set.
The testing set is further split into a gallery set, containing
17,661 images, and a query set, containing the remaining
2,268 images.

The CUHKO3 database [27] consists of 14,097 pedestrian
images of 1,467 identities. The images were captured by
two disjoint cameras. The bounding boxes of pedestrians
in CUHKO3 are obtained by means of two methods, namely
human annotation and DPM detection. We report results
using each of these two types of bounding boxes. We adopt
the training/testing splitting protocol proposed in [52]. In
this protocol, images of 767 identities are used for training,
while images of the remaining 700 identities are utilized for
testing.

The MSMT17 database [28] contains 126,441 pedestrian
images of 4,101 identities in total. This dataset was collected
by a camera network comprising 12 outdoor cameras and
three indoor ones. Faster R-CNN [21] is used for pedestrian
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Fig. 7: Evaluation on the value of hyper-parameter K for the
performance of MPN.

detection. MSMT17 is split into a training set, containing
32,621 images of 1,041 identities, and a testing set, consisting
of 93,820 images of 3,060 identities. Furthermore, the testing
set is randomly divided into a gallery set and a query
set, which consist of 82,161 and 11,659 images respectively.
Compared with the above datasets, MSMT17 is more chal-
lenging, because its scale is larger and it includes more
complex background and illumination changes.

5.1 Implementation Details

Firstly, all images in the above four databases are resized to
384 x 128 pixels. Example images can be found in Fig.[T|and
Fig.|2l Data augmentation is utilized to reduce overfitting in
the training stage. First, offline translation [53]] is adopted to
enlarge each training set by a factor of five. Second, random
erasing [54] and horizontal flipping with a ratio of 0.5 are
utilized for online augmentation. We set S as 6 and A as 8
to construct a mini-batch; thus, the batch size is 48.

There are only a few hyper-parameters for MPN. We
empirically set K as 6, according to the evaluation results in
Fig[7l o and X are consistently set to 0.2 and 1 respectively
for the sake of simplicity. The PyTorch framework is used for
implementation. The standard stochastic gradient descent
(SGD) optimizer, with a weight decay of 5 x 1074, is utilized
for model optimization. The momentum [55] value is set
as 0.9. The parameters of MPN are initialized from those
of the IDE model [56] trained on each respective database;
subsequently, MPN is trained in an end-to-end fashion for
70 epochs. The learning rate is initially set to 0.01, then
multiplied by 0.1 for every 20 epochs.

5.2 Ablation Study

In the following, we systematically investigate the effec-
tiveness of each key component of MPN: namely, MTL
structure, along with the parameter and feature space align-
ment between each MT-AT pair, respectively. Experiments
are conducted on three popular databases: Market-1501,
DukeMTMC-RelID, and CUHKO3. Results are summarized
in Table

5.2.1 Effectiveness of Naive Multi-task Learning

We first evaluate the performance of one naive MTL ap-
proach. In this approach, both PSA and FSA are removed
from MPN. To facilitate a clean comparison, the models in



TABLE 1: Ablation Study on Each Component of MPN

Dataset Components Market-1501 DukeMTMC-RelD | CUHKO03-detected | CUHKO3-labeled
Metric MIL C1-S (C2-§ CF CA Rank-1  mAP | Rank-1 mAP Rank-1 mAP Rank-1  mAP
Baseline - - - - - 94.2 84.4 88.2 774 70.9 66.7 75.6 713
Baseline (UB) - - - - 94.9 85.8 88.9 78.9 75.6 71.3 - -
MT Only - - - - - 944 85.6 88.6 78.0 74.1 69.3 78.7 73.9
Naive MTL v - - - - 94.6 87.2 88.7 78.8 75.5 70.7 789 75.1
v v - - 95.5 88.5 90.4 80.7 81.1 76.9 83.0 79.1
PSA Alone v - v - - 95.1 88.2 90.1 80.1 80.6 76.2 82.5 78.5
v v v - - 95.8 88.7 90.8 80.9 81.6 77.1 83.4 79.5
FSA Alone v - - v - 95.5 88.3 90.5 80.7 81.0 76.9 82.6 79.1
MPN° v v v v - 96.1 89.2 91.2 81.6 82.6 78.4 84.1 80.3
MPN v v v v v 96.3 89.4 91.5 82.0 83.4 79.1 85.0 81.1

this experiment are not equipped with the CA module for
either MTs or ATs. The other details of the model architec-
ture and training strategy remain the same as those in MPN.
We compare its performance with two basic methods.

The first method is similar to the popular Part-based
Convolutional Baseline (PCB) approach [19]. In this method,
only ATs are reserved in MPN for both the training and
the testing stages. Following [19], F is uniformly divided
into K horizontal stripes, which are used as the input of
ATs. Accordingly, this method is incapable of handling the
body part misalignment problem. Moreover, to facilitate
fair comparison with the naive MTL approach, we also
concatenate the K part-level features produced by ATs
and add triplet loss in the training stage. In the testing
stage, the concatenated part-level features are used as the
representation of one image. This method is employed as
the baseline in this paper. In the second method, only MTs
are reserved in both training and testing stages; thus, there
is no guidance for MTs to learn part-specific representations.
The other details remain the same as MPN. This method is
denoted as MT Only in Table

We also show the upper bound of the baseline’s perfor-
mance, which is referred to as Baseline (UB) in Table [1} In
Baseline (UB), we first correct pedestrian detection errors
for both training and testing images, and then test the
performance of the baseline. For the first two databases,
the detection errors are corrected according to the scheme
in Fig 5| For CUHKO03, we can directly report the baseline’s
performance on the CUHKO3-labeled dataset, where pedes-
trian detection was manually performed.

From the comparison results in Table [1} it can be seen
that MT Only outperforms the baseline approach. This may
be because MT Only is not affected by the body part mis-
alignment problem in the spatial dimension. In comparison,
the uniform division operation in baseline is sensitive to
the subtle change of body part locations. Moreover, the
naive MTL approach consistently outperforms both basic
methods; this is because ATs can regularize the backbone
model in order to learn more diverse local features in F [18],
which both relieves the overfitting problem and enables MTs
to extract stronger representations. The above results verify
the effectiveness of the naive MTL structure.

5.2.2 Effectiveness of PSA

In this experiment, FSA is removed from MPN, and the ef-
fectiveness of hard parameter sharing for PSA is evaluated.

The CA modules are removed to facilitate clean comparison
(in a similar way to the above experiment). In Table |1} C1-S
and C2-S denote whether the parameters of the first and the
second 1 x 1 Conv layer are shared between each MT-AT
pair, respectively.

Experimental results in Table |1| demonstrate that both
C1-S and C2-S can further improve the performance of
naive MTL by a considerable margin. For example, C1-S
outperforms the naive MTL in terms of Rank-1 accuracy
by 0.9%, 1.7%, 5.6%, and 4.1% on each database in Table
respectively. Moreover, performance promotion via C1-S is
more significant than that achieved by C2-S. The above
results verify the importance of sharing the first 1 x 1 Conv
layer between each MT-AT pair for part-relevant channel
selection.

Finally, by sharing both 1 x 1 Conv layers, stronger
performance is consistently achieved on all databases; this
indicates that C1-S and C2-S are complementary. Compared
with the baseline approach, MTL with PSA achieves sig-
nificantly better performance. In particular, the mAP is
promoted by 4.3%, 3.5%, 10.4%, and 8.2% respectively on
each database in Table (I} The above experimental results
justify the effectiveness of PSA for part-aware RelD.

5.2.3 Effectiveness of FSA

In this experiment, PSA is removed from MPN so that we
can investigate the effectiveness of the proposed class-wise
feature alignment strategy (abbreviated as CF in Table [I).
All CA modules are removed from MPN to facilitate clean
comparison. As shown in Table [I, MTL with FSA consis-
tently outperforms the baseline approach by a large margin:
in brief, Rank-1 accuracy is improved by 1.3%, 2.3%, 10.1%,
and 7.0%, while mAP is also promoted by 3.9%, 3.3%,
10.2%, and 7.8% on each benchmark, respectively. These
experimental results verify the effectiveness of the proposed
FSA method.

5.2.4 Combination of PSA and FSA

The next step is to combine the parameter and feature space
alignments together. Again, to ensure fair comparison with
the above results, we test the performance of MPN without
the CA modules (denoted as MPN? in Table [I). As shown
in Table I} MPN® consistently outperforms all models in
the above experiments; this indicates that parameter and
feature space alignments work in a complementary fashion
to help MTs learn semantically aligned part-level features.



The performance achieved by MPN® is significantly higher
than that obtained using the baseline approach. For ex-
ample, MPN? outperforms the baseline approach by 4.8%,
4.2%, 11.7%, and 9.0%, respectively, in terms of mAP on
each dataset in Table [1} In particular, pedestrian detection
was manually performed on the CUHKO03-labeled database,
which means that there are rarely pedestrian detection
errors. Comparisons on this database indicate that MPN
effectively handles the body part misalignment problem
caused by other factors, e.g. pose variation. Besides, it is
worth noting that MPN° is both powerful and compact.
Compared with the baseline model, moreover, MPN? has
more parameters only on the extra classification layers of
ATs in the training stage. In the testing stage, the number of
parameters for MPN° and the baseline is exactly the same.

Finally, we equip MPN? with CA modules; this is de-
noted as MPN in Table [I} In our implementation, we share
the parameters of the CA module for each MT-AT pair,
respectively. Experimental results indicate that implementa-
tion of the CA modules results in the consistently improved
performance of MPN on all four databases. This is because
the role of the CA modules is complementary to that of the
first 1 x 1 Conv layers in MTs, as explained in Sec.

5.2.5 Visualization of Attention Maps for MTs

We further support the above experimental results by vi-
sualizing the attention maps for each of the K classifiers’
prediction using Grad-CAM [57]. Three representative mod-
els in Table [1| are compared: the baseline, naive MTL, and
MPN. The attention maps on one pedestrian image with a
misalignment problem are illustrated in Fig.[8]

The following observations can be made. First, attention
maps for the baseline model are not reasonable for the
image in Fig. 8| For example, attention for the first classifier
focuses on the background area. This is because the uniform
division operation on the feature maps brings about the se-
mantic misalignment problem for the K classifiers. Second,
in the absence of any guidance, the K attention maps for
the naive MTL approach are very similar, which means it
lacks diversity for the features extracted by the K MTs in the
naive MTL model. Third, with the guidance of the proposed
dual alignment strategies, MPN can learn reasonable spa-
tial localization of body parts; therefore, part-level features
extracted by MPN are well aligned in semantics.

Furthermore, in Fig. 9, we visualize the attention maps
for each MT’s classifier of MPN on more images in the
Market-1501 database. It can thereby be seen that the at-
tention maps are both reasonable and semantically con-
sistent when faced with various types of challenges, e.g.
errors in pedestrian detection (Fig.[9p and Fig.[9p), dramatic
pose variations (Fig. 9c and Fig. ), background clutter
and occlusion (Fig. 9d). In particular, MPN can extract
features robustly from the upper arms and legs, regardless
of pose variations. However, the lower arms are ignored
in Fig. 9] This is because pedestrians in Market-1501 wear
short sleeves. There are no clothes on the lower arms and
therefore the lower arms lack discriminative power. In the
supplementary file, we show MPN can accurately attend to
the lower arms if pedestrians in one database also wear long
sleeves.

Fig. 8: Visualization of attention maps for each of the K
classifiers” prediction using Grad-CAM. Three representa-
tive models in Table are compared: (a) baseline model; (b)
naive MTL; (c) MPN. (Best viewed in color.)

The ability of MPN that attends to flexible body parts
can be explained as follows. Let us take the upper arms
as an example, they are in a similar pose in most images.
According to our definition of body parts in Fig. [p(b), most
upper arms lie in the second body part region, which means
we obtain good priors of upper-arm locations for most
images. Therefore, the first Conv layer in the second MT-AT
pair will select channels corresponding to upper arms for
part-level feature extraction. The same explanation applies
to the lower arms and legs. The above analysis proves that
MPN can extract semantically aligned part-level features in
a robust manner.

5.3 Comparisons with Variants of MPN

We now compare the performance of MPN with some of
its possible variants. In the interests of efficient evalua-
tion, experiments are conducted on the Market-1501 and
DukeMTMC-RelD databases only. Moreover, models in this
subsection are not equipped with the CA modules to facili-
tate clean comparison.

5.3.1 Comparisons with Variants of the Prior Information

We compare the performance of the proposed priors of body
part locations in Sec. with two possible variants, namely
Uniform Division and ROI Resize. The other implementa-
tion details of MPN are kept the same for the different
priors. Uniform Division means that F of each training
image is uniformly divided into K horizontal stripes, which
form the input of ATs. For ROI Resize, the element-wise
multiplication step in Fig. B|b) is skipped, while the other
operations remain the same as those in Fig. |5} We also
compare with the MT Only approach in Table [I, which
adopts no prior information of body part locations.

Results of the comparison are presented in Table[2} From
the table, it can be seen that with any prior in Table [}
MPN significantly outperforms the models that adopt no
prior information. Interestingly, the coarse prior of Uniform



Fig. 9: Visualization of attention maps for each MT’s clas-
sifier of MPN using Grad-CAM. The attention maps of
MPN are semantically consistent across images in the face
of various challenges, e.g. errors in pedestrian detection (a,
b), dramatic pose variations (c, e), background clutter and
occlusion (d). (Best viewed in color.)

Division also brings about a noticeable improvement. This
occurs for two main reasons. First, the pedestrian detection
error for most training images is slight or moderate; as
a result, Uniform Division produces good priors for the
well-aligned training images. Second, the two alignment
strategies in MPN are robust to errors in the priors. The
above analysis indicates that MPN can work well with
coarse priors, which are easy to obtain in practice.

We can also observe that the more accurate the prior, the
better the performance. For example, ROI Resize rescales the
human body to a canonical size and position. As it thereby
corrects the majority of misalignment errors, it achieves
better performance than Uniform Division. Moreover, the
element-wise multiplication operation in Fig. [f| suppresses
the background clutter around body parts, meaning that it
is also helpful in promoting the performance of MPN.

5.3.2 Comparisons with Variant for PSA

We constrain the parameter space of MTs via hard parameter
sharing with ATs. This strategy results in a compact and
efficient model in the training stage. One natural alterna-
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TABLE 2: Performance Comparison of Different Types of
Prior for Body Part Locations in the Training Stage

Dataset Market-1501 DukeMTMC-RelD
Metric Rank-1 mAP | Rank-1 mAP
Baseline 94.2 84.4 88.2 77.4
MT Only 94.4 85.6 88.6 78.0
Uniform Division 95.6 88.8 90.8 81.2
ROI Resize 95.8 89.0 91.0 81.3
ours 96.1 89.2 91.2 81.6

TABLE 3: Performance Comparison with Variants for FSA
(without PSA)

Dataset Market-1501 DukeMTMC-RelD
Metric Rank-1 mAP | Rank-1 mAP
Baseline 94.2 844 88.2 77 4
Naive MTL 94.6 87.2 88.7 78.8
Batch-wise 94.7 87.8 89.7 80.2
Sample-wise \I 95.1 87.8 90.1 80.6
Sample-wise (Eq.[9) 95.0 87.9 90.1 80.5
Class-wise 95.5 88.3 90.5 80.7

tive is soft parameter sharing [37], which constrains the
parameters between each MT-AT pair to be similar rather
than identical. To facilitate clean comparison, we compare
their performance on one of the two 1 x 1 Conv layers
each time and do not apply any constraints to the other
layer. Constraints in the feature space are also removed. For
soft parameter sharing, we utilize the L2 loss to penalize
the distance between the parameters of each MT-AT pair,
respectively. Four representative values (i.e., 0.01,0.1, 1, and
10) are used as the weights for the L2 loss, respectively. By
contrast, hard parameter sharing does not include hyper-
parameters.

Results of the comparison are illustrated in Fig. It
is shown that hard parameter sharing consistently outper-
forms soft parameter sharing on each of the two 1 x 1 Conv
layers. Taking the experiments on the first 1 x 1 Conv layer
as an example, hard parameter sharing outperforms the best
performance of soft parameter sharing by 0.4%/0.3% on
Market-1501 and 0.3%/0.4% on DukeMTMC-RelD in terms
of Rank-1 accuracy and mAP, respectively. The above ex-
periments demonstrate the effectiveness of hard parameter
sharing for PSA in MPN.

5.3.3 Comparisons with Variants for FSA

The next step is to compare the proposed class-wise FSA
method with some possible variants. Three variants are
considered: batch-wise constraint, sample-wise constraint
in Eq. [9} and sample-wise constraint in [10]. Each type of
constraint is applied to the concatenated features of K body
parts, respectively. The batch-wise constraint penalizes the
cosine distance of the mean representations of the complete

TABLE 4: Performance Comparison with Variants for FSA
(with PSA)

Dataset Market-1501 DukeMTMC-RelD
Metric Rank-1 mAP | Rank-1 mAP
Batch-wise 95.4 88.1 90.1 80.3
Sample-wise [10! 95.7 88.6 90.6 81.2
Sample-wise (Eq.[9) 95.6 88.7 90.5 81.2
Class-wise 96.1 89.2 91.2 81.6
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Fig. 10: Performance comparison between the hard and soft
parameter sharing strategies. The horizontal axis stands for
the weight of the L2 loss. The red and blue dashed lines
represent the Rank-1 accuracy and mAP via hard parameter
sharing, respectively. The solid lines denote the performance
of soft parameter sharing. (a) Experiments on the first 1 x 1
Conv layers of MTs and ATs. (b) Experiments on the second
1 x 1 Conv layers of MTs and ATs. (Best viewed in color.)

batch between MTs and ATs, ignoring the label information;
this is similar to the popular Maximum Mean Discrepancies
(MMD) approach [58] to domain adaptation. The second
type of sample-wise constraint is realized according to the
descriptions in [10]: in brief, we sum the features h and g
in an element-wise manner for each image, then apply the
triplet loss to the summed features rather than to h only.

Results of the comparison are tabulated in Table [3| and
Table 4] We can make the following observations. First, all
four types of constraints can promote the performance of the
naive MTL model that adopts no constraint between MTs
and ATs; this indicates that alignment in the feature space
can robustly promote the quality of the representations of
MTs. Second, the batch-wise constraint is inferior to both
the sample-wise constraints and the proposed class-wise
constraint. This is because the batch-wise constraint is not
discriminative, as it neglects the labels of the samples.
Third, the proposed class-wise constraint achieves the best
performance. In particular, it outperforms both sample-wise
constraints. We can thus speculate that the quality of the
representations of ATs is limited due to the errors in the
prior of the body part locations. Therefore, sample-wise
constraints are rigid. By contrast, the class-wise constraint
is more robust to these errors via the averaging operation
on samples for each class, with the result that it achieves the
best performance in both Table [3|and Table
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5.4 Comparisons with State-of-the-Art Methods

We compare the performance of MPN with state-of-
the-art methods on four large-scale benchmark datasets:
Market-1501 [25], DukeMTMC-RelID [26], CUHKO3 [27], and
MSMT17 [28]. According to the properties of the features,
methods in this subsection are divided into three groups:
holistic feature-based methods, single-scale part feature-
based methods, and multi-scale feature-based methods. In
the following, these are abbreviated as HF-, SPF-, and MSF-
based methods, respectively. The proposed MPN model
belongs to the category of SPF-based methods.

5.4.1 Performance Comparisons on Market-1501

Comparison results are tabulated in Table |5| The following
observations can be made. First, MPN outperforms all state-
of-the-art approaches in terms of both Rank-1 accuracy and
mAP. In particular, with the same backbone model (i.e.
ResNet-50), MPN outperforms the DSA-Local(Single) [10]
approach by 2.3% (96.3%-94.0%) in terms of Rank-1 accuracy
and 6.2% (89.4%-83.2%) in terms of mAP under the single-
query mode. Moreover, there are another two important
advantages of MPN: 1) its model in the training stage is
much more compact than that of DSA; 2) MPN requires only
coarse priors, which are easy to obtain, while DSA depends
on fine-grained 3D priors. This comparison justifies the
effectiveness of the parameter and feature space alignment
strategies utilized in MPN.

Second, with single-scale part features, MPN outper-
forms all existing MSF-based approaches [7], [10], [17],
[30]. Multi-scale features are usually adopted to mitigate
the problem of body part misalignment [7]], [17], [30]. This
comparison indicates that features extracted via MPN have
been semantically well-aligned and are therefore powerful.

Third, some recent HF-based methods also achieve
competitive performance by enhancing the representation
power of the backbone models [59], [60], [61], [62]. For
example, IANet [61] and RGA-SC [59] insert attention mod-
ules into the backbone model that highlight body-relevant
information. The contributions of IANet [61] and RGA-
SC [59] are complementary to that in this paper. Therefore,
we also equip the backbone of MPN with the spatial at-
tention module in [59]. Hyper-parameters of the attention
module are kept the same as in the original paper. The
combined model is denoted as MPN* in Table [l It can be
seen that the performance of MPN is further promoted.

5.4.2 Performance Comparisons on DukeMTMC-RelD

Comparison results on the DukeMTMC-RelD database are
summarized in Table [f} From the table, it can be seen
that MPN outperforms all other SPF-based methods by
significant margins. For example, MPN beats the PCB+RPP
method [72] that adopt the same backbone model (i.e.
ResNet-50) by 7.0% (91.5%-84.5%) in terms of Rank-1 ac-
curacy and 10.5% (82.0%-71.5%) in terms of mAP. It also
outperforms one of the most recent HF-based methods,
i.e. BDB+Cut [62], by 2.5% and 6.0% respectively in terms
of Rank-1 accuracy and mAP. Moreover, even when com-
pared with one complex MSF-based method [30], MPN still
achieves a large performance improvement margin as high
as 2.5% and 3.0% in terms of Rank-1 accuracy and mAP,
respectively.



TABLE 5: Performance Comparisons on Market-1501

Single Quer Multiple Quer
Methods Rankg—l 2 mKP Rankﬁ QmAI};
HGD [63] 87.0 70.9 - -
PSE [64] 87.7 69.0 - -
SNL [65] 88.3 734 92.1 80.3
DaRe [66] 89.0 76.0 - -
- MLEN [67] 90.0 74.3 92.3 824
% Mancus [35] 93.1 82.3 95.4 87.5
s SET [68] 93.4 82.7 - -
E DNN+CREF [69] 93.5 81.6 - -
PGR [70] 93.9 77.2 - -
IANet [61]] 94.4 83.1 - -
OSNet [60] 94.8 84.9 - -
DCDS [71] 94.8 85.8 - -
BDB+Cut [62] 95.3 86.7 - -
PAR [16] 81.0 63.4 - -
AACN [11] 85.9 66.9 89.8 75.1
Part-Aligned [9] 91.7 79.6 94.0 85.2
o PCB [19] 92.3 774 - -
2 PCB+RPP [72] 93.8 81.6 - -
2 | DSA-Local(Single) [10] 94.0 83.2 - -
B FANN (73] 94.4 82.5 - -
w Auto-RelD [74] 94.5 85.1 - -
MHN-6 (PCB) |75] 95.1 85.0 - -
MPN 96.3 89.4 97.0 92.7
MPN* 96.4 90.1 97.3 93.1
PL-NET [18] 88.2 69.3
5 HA-CNN [23] 91.2 75.7 93.8 82.8
2 HPM [17] 94.2 82.7 - -
8 MuDeep [76] 95.3 84.7 - -
% FPR [77] 95.4 86.6 - -
s MGN [7] 95.7 86.9 96.9 90.7
DSA-relD [10] 95.7 87.6 - -
Pyramid [30] 95.7 88.2 - -

The above comparison results are consistent with those
obtained on the Market-1501 database. These experimental
results justify the proposed methods’ effectiveness at solv-
ing the body part misalignment problem for RelD.

5.4.3 Performance Comparisons on CUHKO03

We next compare the performance of MPN with that of
the state-of-the-art approaches on the CUHKO03 database.
Results of this comparison are presented in Table [/} Both
manually labelled and auto-detected bounding boxes are
employed for evaluation.

Results show that MPN still outperforms all other meth-
ods in Table[7]by large margins. In particular, it outperforms
the PCB+RPP approach [72], which is based on the same
backbone model, by 19.7% in terms of Rank-1 accuracy and
21.6% in terms of mAP. Note that another advantage of
MPN relative to PCB+RPP is that MPN can be trained with
the standard end-to-end strategy in a single stage; by con-
trast, PCB+RPP depends on a four-stage training scheme,
as its PCB and RPP modules have to be optimized sequen-
tially [72]. MPN also outperforms another two most recent
SPF-based approaches [74], [75] that adopt more powerful
backbone models. Furthermore, when compared with one
of the most recent MSF-based methods (i.e. Pyramid [30]),
MPN still exhibits a clear advantage. In brief, its Rank-1
accuracy is higher than that of Pyramid by 4.5% and 6.1% on
CUHKO03-Detected and CUHKO03-Labeled data, respectively.
The above comparisons justify the effectiveness of MPN.
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TABLE 6: Performance Comparisons on DukeMTMC-ReID

Methods [ Rank-T  mAP
BraidNet [78] 76.4 59.5
SVDNet [79] 76.7 56.8

PSE [64] 79.8 62.0

GSRW [80] 80.7 66.4

2 DuATM [81] 81.8 64.6
§ PGR [70]] 83.6 66.0
o DNN+CRF [69] 84.9 69.5
an Mancus [35] 84.9 71.8
SET [68] 86.9 73.2

IANet [61] 87.1 73.4

OSNet [60] 88.6 73.5
BDB+Cut [62] 89.0 76.0
AACN [11] 768 593

- PCB [19] 818  66.1
2 Part-aligned [9] 84.4 69.3
Q PCB+RPP [72] 84.5 71.5
B FANN [73] 852 702
@ | MHN-6 (PCB) [75] | 89.1 772
MPN 91.5 82.0

HA-CNN [23] 805 638

S DSA-reID [10] 86.2 74.3
2 HPM [17] 86.6 743
'éf MuDeep [76] 88.2 75.6
5 FPR [77] 886 784
= MGN T7] 887 784
Pyramid [30] 89.0 79.0

TABLE 7: Performance Comparisons on CUHKO03

Detected Labeled

Methods Rank-1 mAP | Rank1 mAP
PAN [82] 36.3 34.0 36.9 35.0

SVDNet [79] 415 37.3 - -
3 MGCAM [45] 46.7 46.9 50.1 50.2
§ Rolling-back [83] 55.6 50.5 59.8 55.7
i SFT [68] 68.2 62.4
T Mancus [35] 65.5 60.5 69.0 63.9

OSNet [60] 72.3 67.8 - -
BDB-+Cut [62] 76.4 735 79.4 76.7

PCB [19] 61.3 542 . .

?m, PCB+RPP [72] 63.7 57.5 - -
s HPDN [84] - - 64.3 58.2
2. | MHN-6 (PCB) [75] 71.7 65.4 77.2 72.4
R Auto-RelD [74] 73.3 69.3 77.9 73.0
MPN 83.4 79.1 85.0 81.1
= HA-CNN [23] 417 38.6 444 41.0

o HPM [17] 63.9 57.5 - -
= MGN [7] 66.8 66.0 68.0 67.4
B MuDeep [76] 71.9 67.2 75.6 70.5
= DSA-relID [10] 78.2 73.1 78.9 75.2
Pyramid [30] 78.9 74.8 78.9 76.9

5.4.4 Performance Comparisons on MSMT17

Finally, we evaluate the performance of MPN on the
MSMT17 database, which features complex background
and illumination changes. As MSMT17 was released only
relatively recently, only a few works have conducted exper-
iments on this database. We compare the performance of
MPN with these methods in Table 8} In this table, we merge
the SPF- and MSF-based methods into one category, which
is named ‘Part-based methods’.

Experimental results demonstrate that MPN outper-
forms all other methods by significant margins, which is
consistent with the experimental results on the first three
databases. For example, MPN outperforms one of the most
recent methods, i.e. OSNet [60], by 4.8% and 9.8% in terms of
Rank-1 accuracy and mAP, respectively. The above compar-



TABLE 8: Performance Comparisons on MSMT17

Methods [ Rank-T mAP
Verif-Identif [85], [86] 60.5 31.6

g PGR [70] 660 379
:“g SFT [68] 73.6 47.6
) TANet [61] 75.5 46.8
= DG-Net [86] 772 523
OSNet [60] 78.7 52.9

T PDC [28], [31] 58.0 29.7
g GLAD [28], [87] 614 340
= PCB+RPP [72] 69.8 43.6
= Our Baseline 724 47.5
o Auto-RelD [74] 78.2 52.5
MPN 83.5 62.7

isons justify the effectiveness of MPN for pedestrian images
in more complex scenes.

5.4.5 Comparisons of Model Complexity

In this experiment, we demonstrate that MPN not only
achieves superior performance in terms of RelD accuracy,
but also offers advantages in terms of both its time and
space complexities. Four powerful part-based approaches
are compared: PCB [19], MGN [7], Pyramid [30], and DSA-
reID [10]. All four of these models adopt the ResNet-50
backbone model, meaning that they are directly comparable.
To further facilitate fair comparison, input images for all
the five models are resized to 384 x 128 pixels. Batch sizes
of all methods are also unified. Moreover, the number of
parameters for classification layers in the training stage
depends on the identity number of each database; therefore,
their parameters are not taken into account for all models.

Since the CA modules are optional for MPN, we here
test the model complexity of MPNP®. It is worth noting that
MPN? also consistently outperforms all other models in
terms of RelD accuracy, as shown in Table [I} Comparisons
are conducted on a Titan V GPU, and results are summa-
rized in Table[9} The time cost in Table[J|refers to the average
time required to process one image.

We can thus make the following observations. First, the
time cost of MPNP? is only slightly higher than that of a
very basic part-based model, i.e. PCB [19]. Moreover, the
time cost of MPNP? is lower than that of [7], [10], [30] in
both the training and testing stages. Second, except for the
classification layers, the number of parameters for MPN? is
the same at both the training and testing stages; by contrast,
the model size of DSA-reID [10] in the training stage is
significantly larger than that in the testing stage. Third,
compared with [19], [30] (the models of which are also
compact in the training stage), MPN? solves the body part
misalignment problem more effectively. In fact, MPN® has
more parameters than [19], [30] as it adopts more 1 x 1 Conv
layers, which are computationally very efficient in practice.

Accordingly, the above comparisons demonstrate that
the proposed MPN model is both compact and efficient.

6 CONCLUSION

In this paper, we propose a robust, compact, and easy-to-
use model, named Multi-task Part-aware Network (MPN),
to extract semantically aligned part-level representations. In
the training stage, MPN includes one main task (MT) and
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TABLE 9: Comparisons of Model Complexity

Methods Trainin.g Testing
# params time cost | # params time cost
PCB [19] 26.8M 8.3ms 26.8M 4.9ms
MGN [7] 68.8M 16.2ms 68.8M 11.9ms
Pyramid [30] 29.1M 14.5ms 29.1M 6.4ms
DSA-relD [10] 187.8M 34.7ms 38.5M 5.4ms
MPN° 31.5M 10.9ms 31.5M 5.1ms

one auxiliary task (AT) for each body part. We equip ATs
with a coarse prior of body part locations for training im-
ages, and further propose a dual alignment mechanism, i.e.
parameter and feature space alignments, to guide the MTs
in learning high-quality parameters for part-level feature
extraction. In the testing stage, the ATs are removed, and
only MTs are saved for feature extraction; therefore, MPN is
freed from body part detection during inference. Due to the
innovations of our design, the time and space complexities
of MPN are only slightly increased relative to a very basic
part-based model [19] at both the training and testing stages.
At the training stage, MPN is also robust to coarse priors,
which are very easy to obtain. Moreover, comparisons on
four large-scale RelD databases demonstrate that MPN sig-
nificantly outperforms existing approaches at a relatively
small computational cost. Therefore, MPN can be surmised
to be both powerful and easily applicable to practical ReID
applications.
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