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Abstract. Graphs are a natural choice to encode data in many real–
world applications. In fact, a graph can describe a given pattern as a com-
plex structure made up of parts (the nodes) and relationships between
them (the edges). Despite their rich representational power, most of
machine learning approaches cannot deal directly with inputs encoded
by graphs. Indeed, Graph Neural Networks (GNNs) have been devised as
an extension of recursive models, able to process general graphs, possibly
undirected and cyclic. In particular, GNNs can be trained to approxi-
mate all the “practically useful” functions on the graph space, based on
the classical inductive learning approach, realized within the supervised
framework. However, the information encoded in the edges can actually
be used in a more refined way, to switch from inductive to transductive
learning. In this paper, we present an inductive–transductive learning
scheme based on GNNs. The proposed approach is evaluated both on
artificial and real–world datasets showing promising results. The recently
released GNN software, based on the Tensorflow library, is made avail-
able for interested users.

Keywords: Graph Neural Networks · Transductive learning
Graph representations

1 Introduction

Graphs are a rich structured model that can be exploited to encode data from
many different domains, which range from bioinformatics [1,2] to neuroscience
[3], and social networks [4]. Despite the simplicity of the concepts at the basis
of the definition of a graph, the possibility to encode complex data as a set of
parts, i.e. the graph nodes, and a set of relationships between these parts, i.e.
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the graph edges, allows a good compromise between the need of a compact data
representation and the preservation of most of the original input information.
This model is quite natural in many of the aforementioned applications and the
encoding is often straightforward. As an example, the Web can be naturally seen
and represented as a graph, with nodes corresponding to web pages (and storing
their content), and edges standing for the hyper-links between them [5].

Many classical machine learning approaches assume to deal with flat data,
encoded, for instance, as real valued vectors. Hence, complex data, such as
graphs, need to be transformed into these simpler encodings—typically with
some sort of graph traversal—often loosing useful information [6]. In this way,
the input to the machine learning tool is no more the original graph but instead a
linearized representation, in which the topological and structural information is
usually encoded in an unnatural way, that may hinder the learning process itself.
Moreover, the natural variability within graphs requires artificial solutions. For
instance, the mapping of a graph to a real valued vector can be implemented by
concatenating the features stored in each node, following an order derived from
the connection topology. However, this approach has many drawbacks. First, in
order to have a fixed dimensionality for the vector, all the input graphs should
have the same number of nodes or, at least, a maximum cardinality must be
chosen for this set, filling the vector elements with padding values when the
graph has a lower number of nodes. Second, the encoding of the topology by
the position of the node inside the vector is not well defined for any category of
graphs. Indeed, if for Directed Ordered Acyclic Graphs (DOAGs) such a topo-
logical order is uniquely defined, this does not hold for generic cyclic graphs,
where the mapping between nodes and related elements occupying particular
positions is arbitrary.

The Graph Neural Network Model (GNN), which was introduced in [6], is
able to process graphs directly, without the need of a preprocessing step and
without any limitation on the graph type. GNNs are supervised architectures,
designed as an extension to Recursive Neural Networks [17–19] and Markov Ran-
dom Chain Models. The original GNN model is based on the classical inductive
learning scheme, where a training set is used to adapt a parametric model.
Actually, inductive learning assumes the existence of some rules, that can be
implemented by the model, allowing us to classify a pattern given its properties.
In this framework, GNNs have been successfully used in different applications,
from the classification of Web pages (in Spam or Non–Spam) to the prediction
of chemical properties of drug molecules [7].

On the other hand, transductive learning adopts a more direct approach,
by which a pattern is classified according to its relationships with the examples
available in the training set. In this case, the training patterns are used directly
in the classification procedure, without adapting a parametric model, and even
without relying on the existence of classification rules and pattern features. In the
standard inductive approach, GNNs exclusively employ the parameters learnt
during the training procedure. Vice versa, in the transductive approach, the
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available targets are added to the node labels, and they are directly diffused
through the graph in the classification phase.

In this paper, we present a mixed transductive–inductive GNN model that
exhibits characteristics common to both the learning frameworks. This model is
evaluated on synthetic (clique detection and subgraph matching) and real (traffic
flow prediction and web–spam prediction) problems, involving structured inputs
encoded with graphs. In particular, we exploit a new implementation of GNNs
based on the TensorFlow platform [8].

The paper is organized as follows. In the next section, the GNN model and the
related learning algorithms are briefly sketched. Then, in Sect. 3 the transductive
approach for GNNs is described. Section 4 presents the experimental settings
and reports the obtained results. Finally Sect. 5 draws some conclusions and
delineates future perspectives.

2 The Graph Neural Network Model

A graph G is defined as a pair G = (V,E), where V represents the finite set
of nodes and E ⊆ V × V denotes the set of edges. An edge is identified by the
unordered pair of nodes it connects, i.e. e = (a, b), e ∈ E and a, b ∈ V . In the case
in which an asymmetric relationship must be encoded, the pair of nodes that
define an edge must be considered as ordered, so as (a, b) and (b, a) represent
different connections. In this case, it is preferable to use the term arc, while
the corresponding graph will be referred as directed. The GNN model has been
devised to deal with either directed or undirected graphs. Both edges and nodes
can be enriched by attributes that are collected into a label. In the following
we will assume that labels are vectors of predefined dimensionality (eventually
different for nodes and edges) that encode features describing each individual
node (f.i. average color, area, shape factors for nodes representing homogeneous
regions in an image) and each edge (f.i. the distance between the barycenters of
two adjacent regions and the length of the common boundary), respectively.

Graph Neural Networks are supervised neural network architectures, able
to face classification and regression tasks, where inputs are encoded as graphs
[6]. The computation is driven by the input graph topology, which guides the
network unfolding. The computational scheme is based on a diffusion mechanism,
by which the GNN updates the state vector at each node as a function of the
node label, and of the informative contribution of its neighborhood (edge labels
and states of the neighboring nodes), as defined by the input graph topology. The
state is supposed to summarize the information relevant to the task to be learnt
for each node and, given the diffusion process, it will finally take into account
the whole information attached to the input graph. Afterwards, the state is used
to compute the node output, f.i. the node class or a target property.

More formally, let xn ∈ IRs and on ∈ IRm be the state and the output at node
n, respectively, being fw the state transition function that drives the diffusion
process, while gw represents the output function. Then, the computation locally
performed at each node during the diffusion process can be described by the
following equation:
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xn =
∑

(n,v)∈E

fw(ln, l(n,v), xv, lv) (1)

on = gw(xn, ln) (2)

where ln ∈ IRq and l(n,v) ∈ IRp are the labels attached to n and (n, v), respec-
tively. As previously stated, the computation considers the neighborhood of n,
defined by its edges (n, v) ∈ E. In particular for each neighbor node v, the state
xv and the label lv are used in the computation (Fig. 1). The summation in Eq. 1
allows us to deal with any number of neighbors without the need of specifying
a particular position for each of them.

Fig. 1. The neighborhood of node 3. The state x3 depends on the node neighborhood
as x3 = fw(l3, l(3,1), x1, l1)+fw(l3, l(3,2), x2, l2)+fw(l3, l(3,4), x4, l4)+fw(l3, l(3,5), x5, l5).

Equation 1, replicated on all the nodes in the graph, defines a system of non–
linear equations in the unknowns xn, n ∈ V . The solution can be computed by
the Jacobi iterative procedure as

xn(t + 1) =
∑

(n,v)∈E

fw(ln, l(n,v), xv(t), lv) (3)

that implements the diffusion process for the state computation. If the state
transition function fw is a contraction mapping, the Banach Theorem guarantees
that the iterative procedure (Eq. 3) converges to a unique solution [6]. In practice,
the required iterations can be limited to a maximum number.

Both fw and gw can be implemented by simple multilayer perceptrons
(MLPs), with a unique hidden layer. The computation of Eq. 3 represents the
unfolding of the so called encoding network (Fig. 2), where fw and gw are com-
puted for each node. Basically, at each node in the graph, there is a replica of
the MLP realizing fw. Each unit stores the state at time t, i.e. xn(t). The set
of states stored in all the nodes at time t are then used to compute the states
at time t + 1. The module gw is also applied at each node for calculating the
output, but only after the state computation has converged.
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Fig. 2. Construction of the encoding network corresponding to a given input graph
(from left to right). The processing units fw and gw are replicated for each node and
connected following the graph topology.

During training, the network weights are adapted to reduce the error between
the network outputs and the expected targets on the set of supervised nodes. The
gradient computation is performed following the error Backpropagation scheme
on the unfolding network (see [21] for more details).

3 Transductive Learning with GNNs

In the inductive learning approach, a model Iw is learnt by adjusting its weights
w based on a set of labeled data, namely the training set [9]. Each example is
processed independently of the others, but the overall statistics allow the learning
algorithm to induce a general model to solve the task. Model prediction is based
only on the features describing each different input object. Once the model is
learnt, new unseen inputs can be processed one at a time to compute the model
output (f.i. the predicted class of the pattern).

Instead, in the transductive framework, the algorithm is designed to exploit
both labeled and unlabeled examples, taking advantage from relationships
between different samples, such as, for instance, some kind of spatial regulariza-
tion in the feature space (e.g. manifold regularization). The relationships among
data can be exploited either in the learning or in the prediction phase, or in both
of them. Basically, the prediction on the unlabeled data is obtained by propa-
gating the information available for the “near” examples, through the given
relationships between them. For instance, if n is an example at test time, then
the targets available in its neighborhood may be exploited, together with the
local features of n, as inputs to compute the transduced output [9]. This app-
roach is especially useful and natural when only a small set of labeled data, that
comes from an unknown stochastic process, is available. Indeed, a small sample
cannot be statistically relevant for inducing a general predictive rule [10] based
only on local features.

Most of the transductive approaches, available in literature, are based on
graphs (see e.g. [11,12]). In recent years, these methods have been widely
applied and implemented in many domains, thanks to their capability of being
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adaptable to different real–world applications, such as natural language process-
ing, surveillance, graph reconstruction and ECG classification [9].

Being capable of implementing functions on graphs, GNNs can be employed
either with a pure inductive approach or with a mixture of the transductive and
the inductive schemes. Given an input graph G = (V,E), the set of nodes V
can be split into the set S ⊂ V of supervised nodes and the set of unsupervised
nodes U ⊂ V (S ∩ U = ∅). When a pure inductive approach is used, the GNN
network is given as input one (or more) instance of the graph to be learnt (e.g.
the Web graph) and the targets for the supervised nodes in S, that are used
only to learn the GNN parameters. The trained GNN can then be exploited to
process both the original graph(s) in the learning set, to compute the output
predictions for the unlabeled nodes in U , and to process unseen graphs without
supervised nodes. For example, when considering a Web Spam problem in which
the input is a Web graph, the class of a given page is computed by the GNN
considering only the node features (e.g. the page contents) and its context in
the whole graph. The labels available at the nodes in S are not considered in
the computation. Basically it is assumed that the learning process was able to
embed the classification rules in the trained model.

However, it should be noted that also in this case the GNN exploits the
topology of the relationships among the nodes through the diffusion process
used to compute the states, as defined by Eq. 3. Both the nodes in S and U are
involved in this computation, but no information on the targets of the nodes
in S is exploited. In this sense, we cannot consider this scheme as a proper
transduction, since at test time only the node features and its context in the
data manifold affect the result of the computation.

In inductive–transductive GNNs, we assume to enrich the node features with
the target label such that it is explicitly exploited in the diffusion process, yield-
ing a direct transductive contribution. The way in which targets are diffused
and contribute to the final outputs is learnt from examples. We assume that the
learning set contains partially supervised graphs. For each graph, we split the set
of supervised nodes S into two disjoint subsets: the set of nodes used to compute
the loss L and the set of transductive nodes T . For the nodes in T the available
target is concatenated to the input feature vectors, whereas for the nodes in
L and in U a special null target is used (f.i. a vector of zeros). This setting
corresponds to a transduction case in which only the targets on the nodes in T
are available. Given a graph in the learning set, different training examples can
be generated by different splits of S into L and T . The splits can be randomly
generated. The nodes in L are used to define the training loss. This way the
GNN learns how to exploit the features of the nodes in V , the topology of the
relationships in E and the transductive targets in T to approximate the output
targets for the nodes in L. During the test phase, the set of supervised nodes S
is not split and all the targets are added as features for the corresponding nodes.
As before, the features for the nodes in U are obtained by concatenating the
original features with the null label, so that the trained model computes the
outputs on the nodes in U exploiting also the learnt transductive process.
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Notice that, during training, it is important that L and T have no intersec-
tion, otherwise the GNN would easily learn to produce the correct output at
a node by propagating directly the added target feature. The criterion used to
generate the sets L and U should try to approximate the actual distribution of
these two sets of nodes in the test phase.

4 Experimental Evaluation

In this section, we describe the overall methodology applied to evaluate the
proposed GNN transductive–inductive scheme. In particular, we describe the
datasets, synthetic and real, the setup for the experiments, and finally we present
the results.

4.1 Datasets

The evaluation of the inductive–transductive approach for GNNs has been per-
formed on two synthetic datasets. The first one for subgraph matching, the
other one for clique detection. Moreover, we tested the model on real–world
benchmarks, i.e. the WEBSPAM–UK2006 dataset1 and the traffic–flow graph of
England2.

Subgraph Localization. Given a graph G, the subgraph matching problem
consists in finding a subgraph S, of a given dimension, in G. In a more formal
way, the task is that of learning a function τ , such that τS(G,n) = 1, n ∈ V ,
when the node n belongs to the given subgraph S, and τS(G,n) = −1, otherwise
[15]. The problem of finding a given subgraph is common in many practical
problems and corresponds, for instance, to finding a particular small molecule
inside a greater compound [16]. An example of a subgraph structure is shown
in Fig. 3. Our dataset is composed of 700 different graphs, each one having 30
nodes. Instead, the considered subgraphs contain 15 nodes.

Clique Localization. A clique is a complete graph [4], i.e. a graph in which
each node is connected with all the others. In a network, overlapping cliques (i.e.
cliques that share some nodes) are admitted. In a social network for example,
cliques could represent friendship ties. In bioinformatics and computational biol-
ogy, cliques could be used for identifying similarities between different molecules
or for understanding protein–protein interactions [13]. Clique localization is a
particular instance of the subgraph matching problem [14]. A clique example is
shown in Fig. 4. In the experiments, we consider a dataset composed by 700 dif-
ferent graphs having 15 nodes each, where the dimension of the maximal clique
is 7 nodes.

WEBSPAM–UK2006—The dataset has been collected by a web crawl based
on the .uk domain [5]. The nodes of the network represent 11402 hosts, and
more than 730775 edges (links) are present. Many sets of features are available,

1 http://webspam.lip6.fr/wiki/pmwiki.php?n=Main.PhaseII.
2 https://github.com/weijianzhang/EvolvingGraphDatasets/tree/master/traffic.

http://webspam.lip6.fr/wiki/pmwiki.php?n=Main.PhaseII
https://github.com/weijianzhang/EvolvingGraphDatasets/tree/master/traffic
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Fig. 3. An example of a subgraph matching problem, where the graph with the blue
nodes is matched against the bigger graph. This task corresponds to finding the iso-
morphic function that maps the blue graph into the bigger one. (Color figure online)

Fig. 4. An example of a graph containing a clique. The blue nodes represent a fully
connected subgraph of dimension 4, whereas the red nodes do not belong to the clique.
(Color figure online)

grouped into three categories: basic, link–based, and content–based. We consider
only the first two categories, exploiting simple properties of the hosts, such as
the number of pages and the length of their name, while in the link–based set
we find also information on their in–degree, out–degree, PageRank, edge reci-
procity, assortativity coefficient, TrustRank, Truncated PageRank, estimation of
supporters, etc.

Traffic–Flow Prediction—This task consists in the prediction of the traffic–
flow over all motorways and ‘A’ roads, managed by the Highways Agency in
England. The problem is formulated as an edge–regression problem, since the
roads are encoded as the arcs of the graph and the nodes represent the crossroads.
In this case, nodes are not labeled, whereas a set of features (a label) is attached
to each edge. In particular, such features represent the journey times and speeds,
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estimated using a combination of sources, including Automatic Number Plate
Recognition (ANPR) cameras, in–vehicle Global Positioning Systems (GPS) and
inductive loops installed on the road surface. Journey times are derived from
real vehicle observations and computed using adjacent time periods or the same
time period on different days. The data are collected every 15 min, based on a
snapshot of the traffic at that time. The problem is that of predicting the traffic
flow across a certain road. We focus on a single time–stamp, obtaining 1002
nodes and 2499 edges, representing the roads.

4.2 Experimental Setup

The main goal of this paper consists in providing a comparison between the
transductive–inductive and the purely inductive learning frameworks. Hence,
the reported results are not to be intended as the state of the art.

In the experiments, the available datasets were split into a training, a val-
idation, and a test set, and different conditions were defined by varying the
percentage of labeled nodes: these nodes are assigned to the set T and are not
exploited in the performance evaluation. In fact, it is assumed that their output
is given and they are only exploited for the transduction, thanks to the diffusion
mechanism that characterizes the GNN model.

We evaluated all the models with five different percentages of labeled nodes:
0, 10, 20, 30, 50. In every task, we exploited a state function implemented by a
feedforward neural network with two hyperbolic tangent layers, composed by 15
and 5 neurons, respectively. Consequently, the dimension of the state is 5. For the
tasks of clique searching, subgraph and WebSpam detection, the output function
consists of a single softmax layer. For the flow–traffic detection we employed a
linear layer.

The learning procedure was based on a simple Gradient Descent Optimizer
with learning rate of 10−3, except for the WebSpam task, for which we used the
Adam optimizer with the same learning rate, in order to speed–up the learning
procedure. We set the threshold for the convergence of the state to 10−3. This
cut–off is used to stop the state update loop when the difference of the state
vectors in two subsequent iterations is below this value.

Moreover, in the WebSpam problem, we used the softmax output of a simple
MLP as node label, inspired by the work in [20]. This feedforward network is
composed by two hyperbolic tangent layers and a softmax output layer. Their
dimensions are 100, 20, and 2, respectively. We adopted the cross–entropy as the
loss function for the classification problems, whereas we used the mean squared
error function for the traffic–flow task, which is a regression problem.

In the comparisons, we considered also the learning time, since for some tasks
(f.i. subgraph and clique detection) the differences in classification performances
are not so evident when giving no time constraints. Hence, we set an appropri-
ate maximum number of epochs for each problem. For the subgraph detection
problem the limit was set to 20000 epochs, whereas we used 3000 as the number
of epochs to train the GNN for the WebSpam and clique detection problems,
and 5000 epochs for the traffic–flow prediction benchmark.
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A full–batch learning has been used in all the tasks, meaning that we adapt
the weights once for each epoch (i.e. after processing all the examples in the
learning set). In the case of WebSpam, the learning set consists of the whole
Web graph that must clearly be processed as a unique batch. In the case of
synthetic datasets, we simply considered all the graphs as belonging to a bigger
disconnected graph.

4.3 Results

Figure 5 shows the trend of the accuracy on the validation set for all the tasks
during the learning process.

Table 1 reports the results for the addressed tasks, when varying the per-
centage of labeled nodes exploited in the transductive phase. The first column,
corresponding to the value 0%, represents the purely inductive case.

(a) (b)

(c) (d)

Fig. 5. Validation accuracy (or MSE) obtained varying the exploited percentage of
labeled nodes, in the four different tasks.
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Table 1. Mean accuracy over five runs (mean squared error for the traffic–flow bench-
mark), together with the standard deviation.

% of labels 0% 10% 20% 30% 50%

Score Mean Std Mean Std Mean Std Mean Std Mean Std

SubGraph 77.26 0.44 77.58 1.10 77.94 1.14 78.87 0.53 83.12 1.50

Clique 82.16 2.31 83.55 3.62 84.9 2.95 84.1 2.95 83.56 1.86

WebSpam 91.46 0.49 91.54 0.48 91.94 0.60 92.23 0.46 92.49 0.65

Traffic (MSE) 1123 232 1159 152 968 114 865 178 811 105

Transductive learning demonstrated its effectiveness on all the benchmarks.
For some simple problems, like subgraph and clique detection, it is anyway diffi-
cult to obtain evident differences in absolute performance, for all the percentages
of labeled nodes exploited in the transduction.

5 Conclusions

In this paper, we presented a transductive learning framework based on GNNs
applied to graphs. We showed how this paradigm may improve the performances
with an experimental evaluation both on synthetic and real–world problems,
belonging to different domains.

Given the increasing amount of available structured data, it would be inter-
esting to test these techniques in other application domains, ranging from mobile
communications to the biomedical field, or to the large graphs provided by the
online social networks, like Facebook and Twitter. It would be also of interest to
investigate the properties of the diffusion process and the influence of a subset
of labeled nodes over the neighbors, in order to have a deeper understanding of
the GNN model.
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