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Forecasting Action through Contact
Representations from First Person Video

Eadom Dessalene*, Chinmaya Devaraj*, Michael Maynord*, Cornelia Fermüller, and Yiannis Aloimonos

Abstract—Human actions involving hand manipulations are structured according to the making and breaking of hand-object contact,
and human visual understanding of action is reliant on anticipation of contact as is demonstrated by pioneering work in cognitive
science. Taking inspiration from this, we introduce representations and models centered on contact, which we then use in action
prediction and anticipation. We annotate a subset of the EPIC Kitchens dataset to include time-to-contact between hands and objects,
as well as segmentations of hands and objects. Using these annotations we train the Anticipation Module, a module producing Contact
Anticipation Maps and Next Active Object Segmentations - novel low-level representations providing temporal and spatial
characteristics of anticipated near future action. On top of the Anticipation Module we apply Egocentric Object Manipulation Graphs
(Ego-OMG), a framework for action anticipation and prediction. Ego-OMG models longer term temporal semantic relations through the
use of a graph modeling transitions between contact delineated action states. Use of the Anticipation Module within Ego-OMG
produces state-of-the-art results, achieving 1st and 2nd place on the unseen and seen test sets, respectively, of the EPIC Kitchens
Action Anticipation Challenge, and achieving state-of-the-art results on the tasks of action anticipation and action prediction over EPIC
Kitchens. We perform ablation studies over characteristics of the Anticipation Module to evaluate their utility.

Index Terms—Action Anticipation, Action Prediction, Contact, Epic Kitchens, Future Object, Graph, Graph Convolutions, Hands
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1 INTRODUCTION

Understanding and anticipating others’ actions is a neces-
sary capability for fluid human interaction and collabora-
tion. Without this capability collaboration involves exces-
sive wait times as we wait for others’ actions to complete.
Responding earlier to others’ actions reduces physical load,
cognitive load, and the completion time of the task [1], [2].

Fig. 1: Illustration of representations involved in the
Anticipation Module Φ where the scenario depicts a person
reaching into the oven. RGB video feeds into the
Anticipation Module which produces Contact Anticipation
Maps and a localization of the Next Active Object
Segmentation. Visualization colors in the Contact
Anticipation Maps vary from blue (large time to contact) to
red (pixels belonging to hands or objects in contact).

• The authors are with the department of Computer Science, University of
Maryland, College Park, MD, 20742
• *Equal contribution

In our work on action understanding, we leverage first
person - or egocentric - perspective, rather than the third
person perspective more common in action datasets. There
are a few reasons for this: 1) the egocentric perspective pro-
vides a less occluded view of the hands and the action being
performed, 2) this view contains cues of intentionality – e.g.,
we tend to look towards the destination or focus of our
actions, 3) as head mounted displays, including augmented
reality headsets, become more common, egocentric data is
becoming more readily available and methods involving the
egocentric perspective more relevant (and, robots are able to
leverage egocentric data from human worn sensors). In this
paper we work with the egocentric datasets EPIC Kitchens
[3] and EGTEA [4].

Human interaction with the environment is largely per-
formed through hand manipulations of objects. Each ma-
nipulation involves the making and breaking of hand object
contact as a defining characteristic. Possible benefits of con-
tact include better: 1) determining the class of action being
performed, 2) delineating action boundaries, and 3) projec-
tion into the near future of action. As such, we structure our
representations around contact with objects.

We define two classes of object, aligning with two dif-
ferent times of interest: the present, and the near future.
Previous works [5] have defined an Active Object as an object
currently involved in a given interaction. In this work, we
define the Active Object of a hand as the object presently
in contact with the hand, and we define the Next Active
Object as the object which will next come into contact with
that hand. In seeking to model future action we produce
predictions for the Next Active Object.

Understanding which objects are Active Objects involves
understanding hand-object contact. Understanding Next
Active Objects involves predicting future hand-object con-
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tact. There is evidence from the cognitive science literature
that modeling of contact plays a central role in human visual
understanding of action [6], [7]. As such, we center our
models around contact.

We introduce components and representations useful
for understanding contact. The Anticipation Module contains
two networks: the Contact Anticipation Network, and the
Next Active Object Network. The Contact Anticipation Network
produces a representation termed the Contact Anticipation
Map, and the Next Active Object Network produces a Next
Active Object Segmentation. See Figure 1 for an illustration of
the representations produced by the Anticipation Module.

Pioneering works in cognitive science (e.g., [8]) indicate
that the velocity profiles of point-to-point hand movements
follow a bell shaped distribution. We verify the presence of
this bell shaped distribution with experiments: See Section
3 of the Supplementary Material for an illustration. During
the onset of hand motion, the hand gradually accelerates,
and as the hand approaches contact it rapidly decelerates.
This is a motion cue relevant to action on which humans rely
when understanding each other’s actions [9]. This shows
that in hand reaching there is structure in the relations
between the position of the hand, the position of the ob-
ject, and the velocity of the hand. This low-level cue is
of central relevance to action understanding, particularly
anticipation of near future action characteristics, and we
model it through the Contact Anticipation Maps.

Contact Anticipation Maps are a hand-centric represen-
tation, providing a pixel-wise estimation of potential time-
to-contact between the hand and pixels in the scene. Pixels
belonging to the hands of the actor and Active Object(s) are
represented with time-to-contact values of 0. See Figure 1
for illustration.

The Contact Anticipation Network produces Contact
Anticipation Maps in a low level fashion, without utilizing
components or representations critically dependent upon
accurate performance of object detectors, hand trackers, the
category of the object being acted upon, or classification
of the action being performed. This low-level approach to
anticipating the next active object is a less brittle approach
than approaches critically dependent on the performance of
object detectors and hand trackers.

We feed a history of Contact Anticipation Maps in paral-
lel with a stack of RGB frames to a network whose purpose
is to localize the Next Active Object - the Next Active
Object Network. The Next Active Object Network produces
a representation localizing the likely Next Active Object -
the Next Active Object Segmentation. In combination the
Contact Anticipation Network and the Next Active Object
Network provide a prediction for where in the scene the Next
Active Object will be, and when contact with that object will
be established.

The Next Active Object Segmentation is useful in under-
standing the type of interaction which will take place. Seg-
mentation provides cues such as size, shape, and distance
from the person, as well as providing a specific localization
over which object classification can be run, providing an
object category.

To produce data with which to train the Anticipation
Module we augment a portion of the EPIC Kitchens dataset
with annotations of hands and objects, and the times at

which hand / object contact occurs. This allows us to
construct, at each frame prior to contact, a pixel level la-
beling of the hand, the Next Active Object, and the time
remaining until that object and the hand come into contact.
EPIC Kitchens provides RGB data, and includes no depth
data - and while hand trajectories are best represented in 3
dimensions, 2 dimensional projections still provide ample
trajectory information.

In our work on action understanding we approach two
related tasks: action prediction, and action anticipation. Ac-
tion prediction is the task of recognizing an action given
only a partial observation of an ongoing action. Action
anticipation is the task of anticipating the category of a near
future action before its start. The representations produced
by the Anticipation Module are of utility to the tasks of
action prediction and anticipation, and we evaluate the
anticipation module w.r.t. performance on these tasks.

Not only are the short range action characteristics pro-
vided by the Anticipation Module relevant to these tasks,
but longer-range activity structure is relevant as well. For
the modeling of longer range context and relations, methods
beyond the Anticipation Module are needed. We extend the
temporal window of activity modeling with Egocentric Ob-
ject Manipulation Graphs (Ego-OMG) [10], aggregating the
representations from the Anticipation Module in producing
representations for sequences of high-level states spanning
large timespans of activity. Because of this we are able to
abstract from contact derived representations to semantic
modeling of the flow of activities. This also allows us to
evaluate the utility of the Anticipation Module within the
context of a full action understanding system.

The architecture of Ego-OMG consists of two streams.
The first stream captures visual appearance and short term
dynamics. This stream consists of a CSN [11] a variant of
the I3D Network [12] making use of channel-wise group
3D convolutions. The second stream leverages the output of
the Anticipation Module in modeling the temporal semantic
structure of the activity being performed. The core of this
second stream is a graph representation embedded into a
vector space through use of a Graph Convolutional Network
(GCN) [13].

Ego-OMG’s graph representation is constructed as fol-
lows: transcripts of the activities from the training set are
processed to produce a graph structure capturing the con-
nections from state to state through actions. The nodes of
this graph consists of state representations derivable from
the Anticipation Module - categorical representations for
the Active Object from the Contact Anticipation Network
and the Next Active Object from the Next Active Object
Network, modelling the left and right hands separately.

The CSN and GCN streams are then combined to pro-
duce an action prediction.

We perform ablation studies over the Anticipation Mod-
ule’s representations, and through doing so determine
which characteristics of those representations are responsi-
ble for their utility to action anticipation and prediction.

Using the representations produced by the full Anticipa-
tion Module we demonstrate state-of-the-art performance
over the recent EPIC Kitchens Action Anticipation Chal-
lenge, achieving 1st place on the EPIC Kitchens Action
Anticipation Challenge unseen test set, and 2nd place on
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the seen test set, and outperform all previously published
approaches without any use of ensembling, unlike many
competing approaches.

The primary contributions of this work are:

• A novel training signal for action understanding cap-
turing information of time-to-contact between hands
and objects, and segmentations of hands and objects.
Over this signal we train the Anticipation Module,
consisting of two networks which produce the fol-
lowing low level action representations:

1) Contact Anticipation Maps: pixel wise antici-
pated time-to-contact involving one of the left
or right hands.

2) Next Active Object Segmentations: segmen-
tations localizing candidate Next Active Ob-
jects.

• A surpassing of the state-of-the art with a full ac-
tion understanding framework - Ego-OMG - built
upon the proposed Anticipation Module, achieving
1st and 2nd place on the unseen and seen test sets re-
spectively of the EPIC Kitchens Action Anticipation
Challenge.

The remainder of this paper is structured as follows:
In Section 2 we provide an overview of related work; in
Section 3 we detail our method; in Section 4 we describe our
experiments and results; finally in Section 5 we conclude.

2 RELATED WORK

2.1 Action Anticipation and Prediction
Action anticipation is the task of classifying future actions
from observations that end before the actions begin. Action
prediction is referred to in many works as ”early action
recognition”: we adopt the nomenclature of [14], referring
to the classifying of partially observed actions as action pre-
diction. While the study of action recognition has received
significant attention, the study of action anticipation and
action prediction has only recently begun to attract more
attention [15], [16], [17], [18], particularly in the egocentric
setting [19], [20], [21], [22].

2.2 Egocentric Cues
Previous works have demonstrated that exploiting hand
motion and formation in various forms can improve action
recognition performance [23], [24]. Most previous action
recognition frameworks incorporate hands by feeding hand
detection patches [23], [25], 3D joint pose estimations [26],
or both [27], [28], [29]. Li et al. [30] utilized the manipulation
point, a 2D point in the image representing a point in
reference to each of the hands, as an egocentric feature for
action recognition. Fewer works attempt to utilize the hand
trajectory as a cue. Liu et al. [20] propose motor attention,
the anticipated future hand trajectory enacted throughout
the performance of an action.

Rather than explicitly modelling future trajectories -
which are inherently ambiguous - we focus on predicting
the endpoint of the trajectories, terminating in contact with
objects. For this, we leverage our Contact Anticipation Maps
stacked through time. This history of Contact Anticipation
Maps implicitly contains trajectory information.

2.3 Active Objects
Anticipating future object interaction has been explored in
many recent works. Furnari et al. [31] propose a method
which relies on an object detector that exhaustively identi-
fies a list of objects to track in a small sliding window - they
feed each tracking trajectory to a random forest classifier
to distinguish between ’active’ and ’passive’ trajectories.
Nagarajan et al. [32] utilize pairs of inactive object images
and videos of the corresponding objects in action, learning
a mapping between the two to learn ’interaction hotspots’,
or regions of likely activity. Xiao et al. [33] tackle the same
task, proposing a novel architecture that utilizes objects to
determine where actions are most likely to occur, and vice-
versa.

In this work, we make a distinction with respect to these
works as to the definition of an Active Object. Rather than
refer to the object involved in the current action, we define
an Active Object as the object presently in contact with a
hand. This low-level definition of an Active Object better
captures the objects involved in a given interaction.

2.4 Video Representation
Typical works within action understanding involve two-
stream architectures where the input to the network is RGB
video fed to the network in parallel with pre-computed
frames of optical flow [12], [34]. These approaches have
achieved success in tasks where appearance and short-
term motion is sufficient for the task at hand (i.e. action
recognition) [12]. However, it has been reported [12], [20],
[4] that such methods do not transfer well to tasks such
as action prediction or action anticipation. We find this
understandable, as action anticipation requires reasoning
about complex semantic cues that go beyond appearance.

Rather than simply represent the video as a stack of
frames, it is desirable to capture the long-term semantics
underlying the video observation of the activity. Recent
works have proposed the enrichment of raw video features
with graphs [35], [36], [21], [37]. Typically graph nodes
represent detected objects, actors, or locations. Unlike other
works that utilize an exhaustive list of entities, by restricting
ourselves to the modelling of objects either currently or
expected to be in contact with the hands, we are able
to rule out ’background’ objects that play no role in the
actions involved, effectively using the hands as an atten-
tion mechanism. Furthermore, by aggregating contact based
representations over larger timespans, we are able to model
longer term structure of activity, whereas other approaches
[15], [16], [38] are centered on visual appearance and short
term dynamics on the order of 1− 2 seconds.

3 METHOD

In this section we introduce our method for action un-
derstanding. Through contact and activity modeling our
approach seeks to anticipate partially observed and/or near-
future action. The structure of our approach is shown in
Figure 2. Input video is fed first into the Anticipation Mod-
ule - which we denote Φ - from whose output we produce
symbolic state representations to be fed through Ego-OMG,
which in turn anticipates partially observed and/or near-
future action.
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Fig. 2: Overview of our proposed approach. The input video of 900 frames is fed in sliding window fashion with
windows of size 8 to the Anticipation Module. Anticipation module Φ consists of two networks: a) The Contact
Anticipation Network, which outputs Contact Anticipation Maps (Map K), a representation which feeds into b) the Next Active
Object Network, producing a Next Active Object (N.A.O.) Segmentation. The

⊕
denotes addition;

⊗
denotes multiplication.

Refer to Sections 3.1.2 and 3.1.3 for the architectural details. The Anticipation Module Φ’s output is in turn is fed into
Ego-OMG, which in turn produces labels for action anticipation and prediction.

Fig. 3: Illustration of annotations added to a portion of the
EPIC Kitchens dataset in construction of our augmented
dataset. The left and right columns contain added
annotations for the left and right hands, respectively. The
middle column illustrates associated clip frames. The
annotations consist of segmentations of hands and Active
and Next Active Objects. Pixels belonging to (Next) Active
Objects are assigned non-negative values relative to the
time-of-contact (T.O.C). Colors vary from white to blue
based on remaining time to contact, with values of 0
associated with both Next Active Objects and hands.
Background pixels are colored black, represented with
values of -1.

For the task of action anticipation, the observation of the
video segment spans a range preceding the action start time
τs by observation duration to, and ends ta seconds before
τs, where ta is the anticipation offset. In other words, input
clips span from time τs−(to+ta) seconds to end time τs−ta
seconds. For the task of action prediction, input clips span
from time τs + p(τf − τs)− to to τs + p(τf − τs), where τf is
the end time of the action and p is the observable proportion
of the clip containing the action to be predicted.

For our focus on hand-object contact in action model-
ing we devote the Anticipation Module. The Anticipation

Module produces pixel-wise mappings of anticipated hand-
object contact over the input. These mappings are divided
into two types: Contact Anticipation Maps and Next Active
Object Segmentations. The Contact Anticipation Network
produces Contact Anticipation Maps, and is described in
Section 3.1.2. The Next Active Object Network relies upon
Contact Anticipation Maps for segmentation, producing
Next Active Object Segmentations, and is described in Sec-
tion 3.1.3. One advantage the Anticipation Module provides
is that its mappings range over the near future action, and
are not constrained to fixed anticipation time offsets as in
several alternative action anticipation approaches [15], [39].

Training the Anticipation Module requires annotations
for contact and localization of (next) active objects. To this
end we augment the standard video data - in this work EPIC
Kitchens - with temporal and segmentation information
pertaining to contact. This process is described in Section
3.1.1.

We apply a Faster-RCNN [40] classifier over the maps
produced by the Anticipation Module to produce symbolic
states. These symbolic states capture characteristics of and
relations between hands and objects in a compact represen-
tation. Symbolic state representations allow for easy use,
and representation of state relations.

For our focus on temporal relational structure we devote
Ego-OMG. Ego-OMG represents relations between action
states across multiple time ranges, and uses these relations
in contextualizing the present moment, and in projecting to
near future action.

A natural formalism for representing temporal relations
is a graph. We employ a graph in Ego-OMG to repre-
sent action state relations, and embed graph nodes into
Euclidean space through use of word embeddings and a
Graph Convolutional Network. Details of this process are
described in Section 3.2.

The remainder of Ego-OMG is as follows, and covered in
detail in 3.2. The sequence of states derived from the input
is represented through the dynamics of an LSTM applied
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Fig. 4: Overview of Ego-OMG’s architecture. Ego-OMG consists of two streams: 1) The top stream consists of the
extraction of a discretized sequence of states from an unconstrained egocentric video clip x of 900 frames using the
Contact Anticipation Network Φ. The nodes predicted by Φ are embedded through GCN layers and then fed to an LSTM.
This is then followed by a 1-layer MLP Wg to generate softmax scores for the anticipated future action. 2) The second
stream generates softmax scores for the anticipated future action through feeding a short history (the last 32 frames of x)
of video to a CSN model. A 1-layer MLP Wf processes the concatenated L2-normalized softmax scores to perform action
anticipation and prediction.

over embedded state representations. This LSTM allows
projection into the near future. Finally, the anticipated action
produced by this LSTM is joined by visual and short term
dynamic information produced by a conventional 3D CNN.
This component of Ego-OMG is swappable with alterna-
tive action understanding methods, making Ego-OMG com-
plementary to many existing action understanding frame-
works.

3.1 Anticipation Module

In Section 3.1.1 we describe the methods behind the col-
lection of our dataset used for training the Anticipation
Module, where the dataset consists of clips carefully se-
lected from the EPIC Kitchens dataset. In Section 3.1.2 we
introduce the Contact Anticipation Network and in Section
3.1.3 the Next Active Object Network, the two components
that together form the Anticipation Module.

3.1.1 Dataset

We collect our dataset by organizing clips that correspond to
point-to-point hand movements, where the hand involved
and the Next Active Object are visible. The temporal bound-
aries of each clip are set such that clips begin when both the
Next Active Object and the hand(s) targeting the object are
visible, and end when the hand makes contact with the Next
Active Object. As such, the lengths of the collected clips vary
in the temporal dimension.

Rather than uniformly sample clips across all actions,
we instead narrow our dataset to hand movement driven
actions (i.e. take, move, cut, open) in the EPIC Kitchens
dataset, as these actions each contain meaningful transitions
in object status and encode the hand intentionality we wish

to capture, making for a total of 2.1K randomly sampled
clips with 252 unique object categories.

We croudsource our annotations on Amazon Mechanical
Turk, asking workers to, for every 4 frames of a given clip, a)
select the hand(s) involved in the given action and trace the
Next Active Object, producing Next Active Object Segmen-
tation masks {Ψl,Ψr}, and b) trace the left and right hands
of the person and the objects held by each hand, creating
contact segmentation masks {Γl,Γr}. We generate dense
supervision of video using the forward and inverse warping
of optical flow obtained from TVL1 [41], projecting the anno-
tations between annotated frames. That is, for flow displace-
ments uxy1

, vxy1
∈ F t

t−1 and uxy2
, vxy2

∈ F t
t+1, values from

each location (x, y) in the segmentation masks are copied to
pixel locations (x+ 1

2 (uxy1
+ uxy2

), y+ 1
2 (vxy1

+ uxy2
)), for

warped subsequent frames, for flow frames F .
To generate the Contact Anticipation Map supervision

training signal C , for an annotated frame taken at time τ , tc
seconds away from the time-of-contact, we retrospectively
assign each pixel belonging to the annotated Next Active
Object the value of tc. Pixels corresponding to the body of
the person or objects held in the hand at time τ are assigned
self-contact values of 0. All background pixels are populated
with values of −1 and are not directly used during training.
Figure 3 provides an illustration of this process.

To generate the Next Active Object binary segmentation
masks A, we simply assign pixels belonging to the near-
future contacted object values of 1, and assign values of 0 to
all other pixels.

The Contact Anticipation Maps and the Next Active
Object Segmentations each consist of two separate pixel-
level channels C = {Cr, Cl} and Ψ = {Ψr,Ψl} respec-
tively, for the right and left hands. In clips involving bi-
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manual manipulation, the Contact Anticipation Maps for
the channels of each hand differ due to the different timings
underlying the movement of each hand. However, the Next
Active Object masks are shared between the channels of
each hand, or Ψl = Ψr .

3.1.2 Contact Anticipation Network
The Contact Anticipation Map predictions require the mod-
elling of short-term dynamics for capturing the underlying
hand trajectory and the localization of boundaries pertain-
ing to hands and objects in contact. To capture both, we
devise a custom two-stream architecture: One stream con-
sisting of 3D Convolutions applied over the input video for
modelling short-term dynamics, and another consisting of
a U-Net stream applied over a single frame belonging to
the end of the observation for capturing more precise hand
segmentations. See Φ in Figure 2 for an illustration.

The Contact Anticipation Network (see Φ part a in Fig-
ure 2) takes a stack of 8 sequential RGB frames and outputs
four channels: Two pixel-level regression outputs {Dl, Dr}
corresponding to the estimated remaining time-to-contact
for each pixel in the image, and two soft segmentation
maps. We threshold the soft segmentation maps to arrive at
binary segmentation masks {Γ̂l, Γ̂r}, containing pixel-level
segmentation masks of hands and objects in contact with
the hand. The two output channels in both cases are for
the predictions separately designated for the left and right
hand, respectively, each of size (128, 228).

The 3D Convolutional stream is a standard 3D ResNet50
architecture, where the backbone network from [12] is uti-
lized. It consists of 5 successive 3D Convolutional layers,
where the first and third layers are followed by 3D Max
Pooling operations. The UNet stream is composed of the
exact architecture proposed in [42], where a contractive path
(two 2D Convolutions followed by a 2D Max Pooling opera-
tion) is followed by the expansive path (2D Transposed Con-
volution layers followed by 2D Convolutions). The network
is trained using ADAM with a learning rate of 0.0001 and
a decay of 5e−6. We apply ResNet-style normalization, and
augment the input RGB video with standard crops, flips,
and color jitters.

There are two loss components used in training the
Contact Anticipation Network. The first component, LMAE ,
is the pixel-wise mean average error between predictions
{Dl, Dr} and ground truth {Cl, Cr}, only over pixel lo-
cations (x, y) where Clxy > 0 and Crxy > 0. In other
words, this loss component is only computed over pixels
belonging to the Next Active Object; other pixels do not
have time-to-contact annotations, and so they are ignored.
The second component, LBCE , is the binary cross entropy
loss between the predicted soft segmentation maps and
contact segmentation masks {Γl,Γr}. The loss used to train
the system is as follows: L = LBCE + γLMAE , where
γ = 0.2.

We predict pixels of contact {Γ̂l, Γ̂r}, where Γ̂sxy = 1
for hand side s ∈ (l, r) if pixel location (x, y) corresponds
to a hand or object in contact and Γ̂sxy

= 0 otherwise. To
arrive at the Contact Anticipation Maps, we superimpose
the predicted pixels of contact {Γ̂l, Γ̂r} over the regressed
time maps {Dl, Dr}, for each hand side, to arrive at Contact
Anticipation Maps Ĉ , as follows:

Ĉlxy
=

0 if Γ̂lxy = 1

Dlxy
if Γ̂lxy

= 0

Ĉrxy
=

0 if Γ̂rxy
= 1

Drxy if Γ̂rxy = 0

The final Contact Anticipation Maps {Ĉl, Ĉr} are fine-
grained distributions of non-negative continuous values for
each pixel that represents the estimated time of contact. Each
of the channels associated with the left and right hand are
of size (128, 228).

3.1.3 Next Active Object Network
As illustrated in Φ part b of Figure 2, the 8 frame RGB video
and 8 frame Contact Anticipation Map history are fed in
parallel through 3D Convolutions, after which a summation
over the stream is performed. Additionally, the final frame
of the 8-frame input is fed into a U-Net architecture in order
to capture more precise object segmentations. Next, a pixel-
wise multiplication between the resultant feature map from
the 3D Convolutional streams and the output of the U-Net
model is performed. The result of this multiplication is fed
through sigmoid activation units, producing soft segmenta-
tion maps for the right and left hands, which are binarized
using a threshold of 0.15 to arrive at {Ψ̂r, Ψ̂l}.

Each of the two 3D Convolutional streams have archi-
tectures identical to those used in the 3D Convolutional
stream in 3.1.2. Likewise, the U-Net stream is identical to
that of 3.1.2. The final output of the combined streams is
of size (128, 228). The network is trained using ADAM
with a learning rate of 0.0001 and a decay of 5e−6. We
utilize a weighted binary cross entropy loss function be-
tween ground truth {Ψl,Ψr}, and predictions {Ψ̂l, Ψ̂r}
with a weight value of 2.0 chosen to overcome the fore-
ground/background class imbalance in the ground truth
Next Active Object masks of the collected dataset.

To avoid overfitting on the Contact Anticipation Map
stream, multiplicative Gaussian Noise sampled indepen-
dently over each pixel is applied over the output of the
Contact Anticipation Map stream, adding Ĉi � Zi where
Zi = N (µ, σ2), where � is the element-wise Hadamard
product. This augmentation captures the inherent ambiguity
of anticipating contact; there is little ambiguity in predicting
the time values of pixels belonging to hands or contacted
objects due to their proximity (by definition having time-
to-contact of 0), while there is increasing ambiguity in
predicting time-to-contact for objects the further from the
hands they are. We apply ResNet-style normalization, and
augment the input RGB video with standard crops, flips,
and color jitters.

3.2 Ego-OMG
As illustrated in Figure 4, we feed input video x into
the Anticipation Module Φ, whose purpose is to predict
and anticipate hand object contacts. Current predicted and
future anticipated contact is represented through a 4 chan-
nel output, consisting of two contact segmentation masks
{Γ̂tr , Γ̂tl} produced by the Contact Anticipation network
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and two object segmentation masks {Ψ̂tr , Ψ̂tl} produced by
the Next Active Object network, where Ψ̂tr and Ψ̂tl denote
the predictions of the Next Active Object, and Γ̂tr and Γ̂tl

denote the objects detected to be presently in contact with
the hand, both for the right and left hands respectively.
We classify each segmentation frame with a pre-trained
Faster-RCNN [40] model, arriving at predicted object classes
ot = {ψtr , ψtl , γtr , γtl}. We note that for the purposes of this
work we predict up to 1 object each for ψtr , ψtl , γtr , and
γtl . This limitation prevents us from modelling scenarios
where multiple objects are held by the same hand for tasks
requiring dexterous manipulation.

In practice, while the Contact Anticipation Network
succeeds at localizing contacted objects, the classifier tends
to mis-classify currently held objects due to the severe
occlusion imposed by the hand, especially for small ob-
jects like scissors and utensils. Therefore, in building the
graph we impose the constraint that every object currently
contacted by each hand must have been anticipated at some
previous instance in time, before the presence of occlusion.
In classifying the objects currently in contact with the hand,
we take the intersection of top-5 object class predictions for
that object with the object classes previously predicted in
anticipation over the past 100 frames (7 seconds).

In this section we define Ego-OMG, a two-stream archi-
tecture dependent on a novel graph representation G that
consists of a structured sequence of high-level states ex-
tracted from videos belonging to the EPIC Kitchens dataset.
The graphG contains two types of nodes: 1) nodes spanning
current contact and forecasted contact of hands and objects,
which are produced by the anticipation module in (ref), and
2) nodes corresponding to action labels in the EPIC Kitchens
dataset. The graph G consists of edges connecting state-to-
state transitions and state-to-action co-occurence.

Section 3.2.1 details the two-streams of Ego-OMG: the
first modeling temporal relations and context, and the sec-
ond modelling visual appearance and short-term dynam-
ics through use of a 3D CNN. Section 3.2.2 explains the
construction of the graph of Ego-OMG used in producing
structured video representations.

3.2.1 Joint Architecture
The architecture of Ego-OMG is shown in Figure 4. Input
consists of a single clip spanning 30 seconds - or 900 frames.
The output consists of a logit layer predicting the class of
the action τa seconds after the end of the observation. The
architecture is comprised of two streams: One modeling the
appearance and short term dynamics of the last few seconds
of the clip; the other modeling hand dynamics and long-
term semantic temporal relations.

In the first stream, we model appearance and short-
term dynamics with a Channel-Separated Convolutional
Network (CSN), a 3D CNN factorizing 3D convolutions in
channel and space-time in similar fashion to Xception-Net
[43] which factorizes 2D convolutions in channel and space.
The weights are pre-trained on the largescale IG-65M video
dataset [44]. The network takes as input 32 frames of size
256 × 256. We apply horizontal flipping, color jittering and
random crops during training, with centered crops during
testing. The model is trained using SGD with a batch size of
16, a learning rate of 2.5× 10−3 and a momentum of 0.9.

In the second stream we model dynamics of interactions
between hands and objects, as well as longer term temporal
semantic relations between the actions of the activity. We
capture this structure in the form of a graph, described
in detail in Section 3.2.2. After computing the graph, we
feed it through two graph convolution layers of hidden
layer size 256 and 128 respectively. Note our application
of the GCN is transductive; it is applied on a single, fixed
graph consisting of all nodes seen during train and test
time beforehand. We feed the sequence of node embeddings
obtained by the GCN into an LSTM [45]. At test time, we
convert an input video of 900 frames to a sequence of states
and from each state’s respective node embedding gn for
n ∈ N , we aggregate the state history with a 1-layer LSTM.
From the LSTM’s final hidden state hN , we apply a 1-layer
MLP Wg to classify the next most likely action. The LSTM
carries hidden states of size 128. A batch size of 16 and a
learning rate of 7 × 10−5 is used with ADAM optimizer
and a cross entropy loss function. Training achieves fast
convergence, reaching peak top-1 action anticipation and
action prediction accuracy after 5 epochs or roughly 0.25
hours of training on a NVIDIA GeForce GTX 1080 GPU.

We concatenate the L2-normalized softmax scores from
each respective stream, freezing the two sub-networks while
training a 1-layer MLP Wf with a batch size of 16 and
learning rate of 0.01 on top of the joint softmax scores to
classify the next most likely action. We find a late fusion
approach provides slight benefits in practice as opposed to
an early fusion of the two streams, likely due to the different
learning dynamics of the individual streams. Inference times
are dominated by the CSN model.

3.2.2 Graph Construction
We have a set of K training videos. To detect the objects
involved in interaction, which are needed to build the
graph, we utilize both sub-components of the Anticipation
Model Φ, described in subsections 3.1.2 and 3.1.3. The
Anticipation Module Φ iterates over each video using a
sliding window with an 16-frame width, sampling every
2 consecutive frames with a stride of 2. Feeding each of 4
output channels of Φ to the object classifier then produces
detections Oi = {o1, o2, ..., oTi/2} for video i, where Ti is
the frame count of video i. From the per-frame predictions
of the object classes oi, we suppress consecutive duplicate
predictions arriving at non-consecutively repeating states
Sk = {s1, s2, ..., sn}, a sequence where temporal order is
preserved.

With the input to graph construction defined, we now
consider the graph G = (V,E), where E consists of the set
of all edges, and V consists of the set of all nodes. V =
{Vs, Va} consists of nodes of two types: state nodes, and
action nodes. State nodes consist of the union of all Sk, that
is: Vs =

⋃K
k=1 Sk, and action nodes Va consist of the set of

all action classes ai ∈ A, where A is the set of all actions. In
doing so, we represent both states and actions in graph G.

We construct the adjacency matrix as follows. Each node
has an edge connecting it to itself: eii ∈ E for 1 ≤ i ≤ |V |
with weight 1. We add weighted directed edges eij ∈ E
for consecutive states si and sj for 0 ≤ i < n and
j = i + 1, where the weight σij is transition probability
p(si+1|si) where transition probabilities are observed from
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transitions in state sequences Sk for all k ∈ K . We also
add weighted directed edges between states and actions
by adding weighted edge eij ∈ E if action i takes place
within the timespan of state sj , where weight σij is equal to
p(ai|sj).

Graph G has a total number of nodes equal to the
number of unique states z = |S| + |A|, where S is the set
of unique states and A is the set of annotated actions. Let
X ∈ Rz×m be a matrix containing all z nodes with their
corresponding features of dimension m. Rather than set X
to identity matrix I , we initialize each node with feature
embeddings extracted from a pre-trained GloVe-600 model
[46]. When representing states s ∈ S, we average the feature
embeddings from each object noun in s. When representing
actions a ∈ A, we average the embeddings for the verb and
noun embeddings. We find that utilizing pretrained word
embeddings for G results in substantial performance gains
over using X = I .

We feed the weighted adjacency matrix and X as input
into the GCN as described in Section 3.2.1.

4 EXPERIMENTS

Throughout these experiments we evaluate the performance
of the proposed models for action anticipation, action pre-
diction, and Next Active Object prediction. We also perform
ablations over the components of the Anticipation Module
to understand their respective contributions to the success
of the entire framework.

4.1 EPIC Kitchens Action Anticipation Challenge

The protocol behind the EPIC Kitchens Action Anticipation
Challenge is to set the anticipation time τa to 1 second.
While there are 44 participants in the challenge, we re-
port our results alongside the top 3 published submissions
(RULSTM [19], Camp et al. [49], Liu et al. [20]) and include
the benchmarked action anticipation results from the EPIC
Kitchens dataset release (2SCNN [47], TSN (RGB) [48],
and TSN + MCE [39]). See the Supplementary Material for
details of each baseline.

Method Top-1 Top-5
2SCNN (RGB) [47] 4.32 15.21

TSN (RGB) [48] 6.00 18.21
TSN + MCE [39] 10.76 25.27

S1 RULSTM[19] 15.35 35.13
Camp. et al. [49] 15.67 36.31

Liu et al. [20] 15.42 34.29
Ours 16.02 34.53

2SCNN (RGB) [47] 2.39 9.35
TSN (RGB) [48] 2.39 9.63
TSN + MCE [39] 5.57 15.57

S2 RULSTM [19] 9.12 21.88
Camp. et al. [49] 9.32 23.28

Liu et al. [20] 9.94 23.69
Ours 11.80 23.76

TABLE 1: Action anticipation results on the EPIC Kitchens
test set for seen kitchens (S1) and unseen kitchens (S2)
during the EPIC Kitchens Action Anticipation Challenge.
Only published submissions are shown.

Table 1 shows our results over the test set (S1) where
scenes appear in the training set and over the test set (S2)
where scenes are not included in the training set. We are 2nd

place in S1, beating previous state-of-the-art methods by a
margin of .35% and 1st place in S2, beating previous state-
of-the-art methods by a margin of 1.86%. We posit that the
reason for Ego-OMG’s notable outperformance w.r.t previ-
ous methods in S2 is because previous methods rely heavily
on visual appearance and are more likely to fail when
testing on unseen kitchens which likely include objects of
previously unencountered appearance; Ego-OMG’s GCN
stream on the other hand only models objects of interaction,
ignoring the diverse, cluttered, backgrounds that typically
make up everyday kitchen environments.

The final column of Table 1 contains the evaluation of
all methods with Top-1 evaluation and Top-5 evaluation - a
prediction is correct w.r.t. Top-5 evaluation if the ground
truth is included in the Top-5 predicted actions. In our
approach we utilize the same model for Top-1 and Top-5
evaluation measures; other approaches may train separate
models for the two evaluation measures. Furthermore, we
note that the other methods incorporate distinct training
mechanisms for top-5 action anticipation [39], [49].

We stress that the CSN stream can be swapped with
any of the architectures listed above; as the CSN stream
is outperformed by RULSTM, Camp. et al., and Liu et
al., better performance could be expected from Ego-OMG
with the incorporation of any one of these architectures. In
addition, we do not perform any form of ensembling in our
submission.

4.2 Action Anticipation and Prediction

We evaluate our approach over the EPIC Kitchens dataset
on the tasks of action anticipation and action prediction
over varying anticipation times τa (action anticipation) and
varying observation ratios p (action prediction). The tasks
are detailed in Section 3. See Table 2 for results. The purpose
of these experiments is to analyze the performance of our
approach and its components over degrading anticipation
times and varying action observation ratios.

We vary the anticipation time τa from 0 seconds (predict-
ing the action class immediately before its start) to 5 seconds
(predicting the action class 5 seconds before its start). We
perform action prediction at the following observation ratios
p: 12.5%, 25%, 50%, 75% and 90%.

We compare our approach to the state-of-the-art RUL-
STM [19] work due to its state-of-the-art performance over
published methods in both action anticipation and action
prediction, making RULSTM the optimal baseline.

For action anticipation, we note the performance of our
approach degrades gracefully as anticipation time τa in-
creases. As the anticipation time increases, the performance
of the CSN stream drops off considerably, to the point
where at τa = 5 seconds, the GCN stream outperforms
the CSN stream by a large margin of 2.56%. Full Ego-OMG
outperforms each of its streams individually over all τa.

For action prediction, we observe diminishing gains of
the GCN stream’s contribution to the performance of Ego-
OMG as the observation ratio p increases, to the point where
RULSTM outperforms our approach after p = 50%. We also
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TABLE 2: Action anticipation and action prediction accuracy results over validation set for CSN stream, GCN stream and
CSN + GCN stream over varying anticipation times τa seconds and varying observation rates p.

Action Anticipation (τa) Action Prediction (p)
5 2.5 1.5 1 0.5 0 12.5 25 50 75 90

CSN 6.49 11.39 14.09 15.50 18.61 19.37 24.23 26.49 30.72 31.08 31.30
GCN 9.05 10.47 11.31 12.81 13.76 14.56 14.83 15.44 15.70 15.88 16.01
CSN + GCN 9.44 15.01 17.02 19.20 20.29 21.89 26.01 28.33 31.14 31.19 31.42
RULSTM [19] 6.98 10.92 12.31 12.69 16.98 18.21 24.48 27.63 30.93 33.09 34.07

observe the performance of our approach at observation
ratios p = 50% and p = 90% are very close. These findings
lead us to the conclusion that the strength of our approach
lies in its anticipatory capabilities, and that our approach
is not particularly better suited for the action recognition
setting over other methods focusing on visual appearance
and short-term dynamics. However, we hypothesize that the
incorporation of flow into our approach would be of great
benefit for the action recognition setting.

4.3 Next Active Object
In this section we evaluate the performance of the Antici-
pation Module on the prediction of the Next Active Object.
We conduct two evaluations: The first being the evaluation
of the localizations produced by the Anticipation Module,
and the second being the evaluation of the classification
over those produced localizations. Both evaluations are
performed frame-wise over the test set of the augmented
dataset. To illustrate the generalization of the Anticipation
Module to other egocentric activity datasets, we provide the
outputs of the Anticipation Module over the EGTEA Gaze+
dataset on Google Drive1, where the Anticipation Module
was trained over EPIC Kitchens. In addition, outputs of the
Anticipation Module over both EPIC Kitchens and EGTEA
Gaze+ are shown in Figure 5.

4.3.1 Localization
The first set of Next Active Object evaluations is performed
with respect to the ground truth segmentation masks in-
cluded in the augmented dataset described in 3.1.1. We
report Jaccard similarity as our evaluation measure. We
provide an evaluation comparing baselines and an ablated
and non-ablated implementation of our approach:

• Center Bias relies on the assumption that the Next
Active Object most commonly appears near the cen-
ter of the frame, and instantiates a fixed Gaussian at
the center of each image of size (55, 55) to represent
the Next Active Object.

Evaluation Jaccard

Obj-Tracker 0.028
DeepGaze II 0.051
I3D-GradCam 0.079
Center Bias 0.088
Ours w/o CAM 0.169
Ours 0.194

TABLE 3: Evaluation of localizations produced by the Next
Active Object predictions. Contact Anticipation Maps are
referred to as CAM in the table.

1 Google Drive link at : https://drive.google.com/drive/folders/1AIZ93d37g0mJaHclANhXYVyp2jFQtfCS?usp=sharing

Evaluation Top-1 Top-5

Obj-Tracker 1.00 5.70
I3D Classifier 11.90 31.94
RULSTM 15.07 39.88
Ours 18.26 39.67

TABLE 4: Evaluation of classification accuracy with respect
to the Next Active Object predictions.

• I3D-GradCam trains an I3D model to perform action
anticipation (τa sampled uniformly between 0 to
2 seconds) over the entire EPIC-Kitchens dataset,
applying standard Grad-Cam [50] over the trained
network to generate heatmaps containing the Next
Active Object. We mask out the hands of the actor
from the heatmaps using ground truth hand segmen-
tations from 3.1.1 to better localize the Next Active
Object.

• DeepGaze II [51] is a pre-trained state-of-the-art
model performing saliency prediction over each im-
age in the collected dataset.

• Obj-Tracker is a re-implementation of [31]. The
SORT [52] tracking algorithm is applied over the
detections obtained by Faster-RCNN pretrained over
EPIC-kitchen dataset. Objects tracked for less than
20 frames are dropped, and remaining trajectories
are classified as either ’active’ or ’inactive’. As pre-
dictions are bounding boxes, we convert the ground
truth segmentation masks to bounding box format.

• Ours w. and w/o CAM are our proposed approaches
with and without the incorporation of Contact An-
ticipation Maps in the Next Active Object Network
to demonstrate the utility of Contact Anticipation
Maps. Other approaches do not model left and right
hands separately, and so for fair comparison we
collapse our model’s binarized two channel output
for the left and right hands, into one channel.

Our approach including the Contact Anticipation Maps
outperforms all baselines and the ablation by large margins.
We attribute this to its rich encoding of hand trajectory. The
performance of Obj-Tracker on the EPIC Kitchens dataset
is poor compared to its performance in [31] over the AVL
dataset. We observe that the tracker fails consistently in
tracking objects over timespans exceeding .5 seconds. For
the frames where the objects are tracked, next active object
localization is reported.

4.3.2 Classification

The second set of Next Active Object evaluations is per-
formed with respect to the annotated object classes available
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from the EPIC Kitchens dataset. We provide an evaluation
comparing three baselines and our approach:

• I3D Classifier trains an I3D model over the action
segments of the EPIC Kitchens dataset, using the
object noun labels as ground truth to perform end-
to-end classification of the future object of interaction
with action anticipation offset τa sampled uniformly
between 0 to 2 seconds.

• Obj-Tracker is a re-implementation of [31]. See the
baseline description at Section 4.3.1 for more.

• RULSTM [19] is a state-of-the-art architecture with
two separate LSTMs and an attention formulation
applied over features obtained from RGB, flow, and

Fig. 5: The Anticipation Module outputs Contact
Anticipation Maps (second column) and Next Active
Object segmentations (third column). The Contact
Anticipation Maps contain continuous values of estimated
time-to-contact between hands and the rest of the scene
(visualizations varying between red for short anticipated
time-to-contact, and blue for long anticipated
time-to-contact). The predicted Next Active Object
segmentations contain the object of anticipated near-future
contact, shown in blue in the third column. Predictions are
shown over the EPIC Kitchens and the EGTEA Gaze+
datasets.

object detections. This, like I3D Classifier, is trained
over the action segments from the EPIC Kitchens
dataset.

• Ours computes the Intersection-over-Union values
between the bounding boxes produced by a Faster-
RCNN model trained over EPIC Kitchens and the
predicted Next Active Object segmentation. The ob-
ject category associated with the highest IoU is used
as the prediction.

Our approach outperforms the I3D Classifier and RUL-
STM baselines at Top-1 Next Active Object prediction by
large margins, and is only marginally outperformed by
RULSTM at Top-5 Next Active Object prediction. We note
that RULSTM and I3D Classifier are trained on input clips
with action segments of temporal boundaries defined by
the EPIC Kitchens annotations, whereas Obj-Tracker and
Ours were trained on input clips with temporal boundaries
defined by the augmented dataset. Also, RULSTM and
I3D Classifier are trained over 10X the number of clips
that our Anticipation Module is trained over (28K vs 2.1K
respectively). We expect our approach could benefit from a
larger augmented dataset.

4.4 Anticipation Module Ablations
We perform several ablation studies over the components of
the Anticipation Module to understand their contributions
towards their performance of the GCN stream in Ego-OMG
for the tasks of action anticipation (τa = 1 second) and
prediction (p = 0.25).

4.4.1 Hand Representation
We compare the effects of having the Anticipation Module
produce localizations for each hand individually vs. jointly.
Our approach consisting of Active and Next Active Object
predictions for each of the two hands is compared with
Joint, where we treat both hands as one entity by super-
imposing the binarized segmentation channels produced
for each hand. This ablation evaluates the extent to which
distinctly modelling left and right hands benefits action
anticipation and prediction. Other methods (e.g., [20]) typi-
cally do not differentiate between left and right hands. See
the first two rows of Table 5 for results.

4.4.2 Next Active Object and Contacted Objects
We isolate the Active and Next Active Object predictions of
ot = {ψtr , ψtl , γtr , γtl}, defined in Section 3.2. We train the
GCN stream of Ego-OMG over ablations excluding elements
of ot. These ablations evaluate the extent to which inclusion
of Next Active Object predictions and the inclusion of Active
Object Predictions benefit Ego-OMG performance. See rows
3 and 4 of Table 5 for results.

4.5 GCN Ablations
In evaluating the utility provided by graph embeddings
effected through GCN layers, we compare two versions
of Ego-OMG: One where graph nodes V are embedded
through a GCN, and the other where nodes V are left
unaltered before the node sequence observed from the video
clip is fed into the LSTM.
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Ablations Anticipation Prediction

Ours 12.81 15.44
Joint 12.12 14.63
AO only 10.91 13.96
NAO only 7.86 8.50

TABLE 5: Ablation experiments showing anticipation and
prediction top-1 accuracy, performed over Anticipation
Module components. Ours refers to non-ablated
implementation; Joint collapses left vs. right hand
distinctions; “AO Only” refers to “Active Object Only”;
“NAO Only” refers to ’Next Active Object Only’.

GCN No GCN
GloVe Vectors 12.81 11.79
Identity Mat. 6.67 3.62

TABLE 6: Action anticipation accuracies over validation set
with anticipation time τa = 1 second, over GCN and GloVe
embedding ablations.

In evaluating the utility provided by word embedding
when representing states si, we compare two versions of
Ego-OMG: One where the initialization of input matrix X is
set to features extracted from a pre-trained GloVe-600 model
through methods discussed in Section 3.2.2, and the other
where X is set to the identity matrix.

Table 6 illustrates results over joint ablations for the
two sets of comparisons. The use of graph convolutions in
conjunction with GloVe embeddings outperforms ablations.

5 CONCLUSION

We have introduced methods to produce hand/object cen-
tric representations for egocentric video which are of utility
to action understanding. Contact Anticipation Maps pro-
vide time-to-contact predictions between hands and the en-
vironment, and Next Active Object Segmentations provide
predictions localizing the Next Active Object. In training
the Anticipation Module to produce these representations
we gather contact annotations and object segmentations
over a portion of the EPIC Kitchens dataset. We achieve
state-of-the-art results over the EPIC Kitchens Action An-
ticipation Challenge - achieving 1st and 2nd place on the
unseen and seen test sets, respectively - through feeding
our representations through Ego-OMG, our state of the art
action anticipation and action prediction architecture. We
release our predictions over the EGTEA dataset and provide
ablation studies evaluating the utility of individual system
characteristics.
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[41] J. S. Pérez, E. Meinhardt-Llopis, and G. Facciolo, “Tv-l1 optical
flow estimation,” Image Processing On Line, vol. 2013, pp. 137–150,
2013.

[42] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical image computing and computer-assisted inter-
vention. Springer, 2015, pp. 234–241.

[43] F. Chollet, “Xception: Deep learning with depthwise separable
convolutions,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 1251–1258.

[44] D. Ghadiyaram, D. Tran, and D. Mahajan, “Large-scale weakly-
supervised pre-training for video action recognition,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2019, pp. 12 046–12 055.

[45] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[46] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, Oct.
2014, pp. 1532–1543. [Online]. Available: https://www.aclweb.
org/anthology/D14-1162

[47] Z. Shou, D. Wang, and S.-F. Chang, “Temporal action localization
in untrimmed videos via multi-stage cnns,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 1049–1058.

[48] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and
L. Van Gool, “Temporal segment networks: Towards good prac-
tices for deep action recognition,” in European Conference on Com-
puter Vision. Springer, 2016, pp. 20–36.

[49] G. Camporese, P. Coscia, A. Furnari, G. M. Farinella, and L. Ballan,
“Knowledge distillation for action anticipation via label smooth-
ing,” arXiv preprint arXiv:2004.07711, 2020.

[50] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

[51] M. Kummerer, T. S. A. Wallis, L. A. Gatys, and M. Bethge, “Under-
standing low- and high-level contributions to fixation prediction,”
in The IEEE International Conference on Computer Vision (ICCV), Oct
2017.

[52] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in 2016 IEEE International Conference on
Image Processing (ICIP). IEEE, 2016, pp. 3464–3468.

Eadom Dessalene is currently doing his PhD in
the department of Computer Science at the Uni-
versity of Maryland College Park. He is advised
by Yiannis Aloimonos and Cornelia Fermuller.
His research interests include computer vision
and reinforcement learning. His recent work has
focused on developing structured representa-
tions of video for downstream applications in AI
and robotics.

Chinmaya Devaraj is currently doing his Ph.D.
in Electrical and Computer Engineering at the
University of Maryland College Park. He is ad-
vised by Prof Yiannis Aloimonos and Dr. Cor-
nelia Fermuller. His Ph.D. thesis is on action
understanding. Prior to this, he graduated with a
B.Tech In Electrical and Electronic Engineering
from the National Institute of Technology Kar-
nataka, Surathkal, India.

Michael Maynord is a PhD candidate in the de-
partment of Computer Science at the University
of Maryland College Park, advised by Yiannis
Aloimonos and Cornelia Fermuller. His back-
ground encompasses symbolic Artificial Intelli-
gence, including cognitive architectures, Com-
puter Vision, including action understanding, and
methods integrating AI and CV.

Cornelia Fermüller is a Research Scientist at
the University of Maryland Institute for Advanced
Computer Studies. She holds a Ph.D. from the
Vienna University of Technology, Austria (1993)
and an M.S. from the Graz University of Tech-
nology (1989), both in Applied Mathematics.
Her research interest has been to understand
principles of active vision systems and develop
biological-inspired methods, especially in the
area of motion. Her recent work has focused
on human action interpretation and the develop-

ment of event-based motion algorithms.
Yiannis Aloimonos is Professor of Computa-
tional Vision and Intelligence at the Department
of Computer Science, University of Maryland,
College Park, and the Director of the Computer
Vision Laboratory at the Institute for Advanced
Computer Studies (UMIACS). He is interested in
Active Perception and the modeling of vision as
an active, dynamic process for real time robotic
systems. For the past five years he has been
working on bridging signals and symbols, specif-
ically on the relationship of vision to reasoning,

action and language.

https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162

	1 Introduction
	2 Related Work
	2.1 Action Anticipation and Prediction
	2.2 Egocentric Cues
	2.3 Active Objects
	2.4 Video Representation

	3 Method
	3.1 Anticipation Module
	3.1.1 Dataset
	3.1.2 Contact Anticipation Network
	3.1.3 Next Active Object Network

	3.2 Ego-OMG
	3.2.1 Joint Architecture
	3.2.2 Graph Construction


	4 Experiments
	4.1 EPIC Kitchens Action Anticipation Challenge
	4.2 Action Anticipation and Prediction
	4.3 Next Active Object
	4.3.1 Localization
	4.3.2 Classification

	4.4 Anticipation Module Ablations
	4.4.1 Hand Representation
	4.4.2 Next Active Object and Contacted Objects

	4.5 GCN Ablations

	5 Conclusion
	6 Acknowledgements
	References
	Biographies
	Eadom Dessalene
	Chinmaya Devaraj
	Michael Maynord
	Cornelia Fermüller
	Yiannis Aloimonos


