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Scale Normalized Image Pyramids with
AutoFocus for Object Detection
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Abstract—We present an efficient foveal framework to perform object detection. A scale normalized image pyramid (SNIP) is
generated that, like human vision, only attends to objects within a fixed size range at different scales. Such a restriction of objects’ size
during training affords better learning of object-sensitive filters, and therefore, results in better accuracy. However, the use of an image
pyramid increases the computational cost. Hence, we propose an efficient spatial sub-sampling scheme which only operates on
fixed-size sub-regions likely to contain objects (as object locations are known during training). The resulting approach, referred to as
Scale Normalized Image Pyramid with Efficient Resampling or SNIPER, yields up to 3x speed-up during training. Unfortunately, as
object locations are unknown during inference, the entire image pyramid still needs processing. To this end, we adopt a coarse-to-fine
approach, and predict the locations and extent of object-like regions which will be processed in successive scales of the image
pyramid. Intuitively, it's akin to our active human-vision that first skims over the field-of-view to spot interesting regions for further
processing and only recognizes objects at the right resolution. The resulting algorithm is referred to as AutoFocus and results in a
2.5-5x speed-up during inference when used with SNIP. Code: https:/github.com/mahyarnajibi/SNIPER

Index Terms—Object Detection, Image Pyramids , Foveal vision, Scale-Space Theory, Deep-Learning.
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1 INTRODUCTION

BJECT-detection is one of the most popular and widely
Oresearched problems in the computer vision community,
owing to its application to a myriad of industrial systems, such
as autonomous driving, robotics, surveillance, activity-detection,
scene-understanding and/or large-scale multimedia analysis. Just
like other computer-vision problems, object-detection too has
witnessed a quantum leap in its performance with the advent of
the deep-learning framework. However, current object-detection
systems are far from perfect, or even remotely comparable to
humans. This is due to the presence of huge variation in the
appearance of objects in terms of lighting, occlusion, viewpoint,
deformations, scale, and, to some extent, sensor differences. In this
work, we focus on the challenges arising due to scale variation
and propose solutions to achieve state-of-the-art object-detection
performance with near real-time latency.

In order to motivate the challenges arising due to scale-
variation, we invite the reader to take a look at the famous painting
by the renaissance painter Pieter Bruegel, in Fig. 2. First, try
to locate the objects shown in the image - there are far more
objects than the overlaid bounding-boxes! If you have successfully
detected more objects, you can appreciate the fact that differently
scaled objects require careful attention to their intrinsic scales.
Also, you would have noticed that you had to stop and focus on
different regions while skimming through the image to find all the
objects. Now, try focusing on any one object in the picture and
observe the rest of the objects disappearing in the background [1].
The phenomenon that you just witnessed is commonly referred to
as foveal vision [2], which affords adaptive shift and zoom for the
object of interest in a scene.

Objects appearing in natural images also exhibit large varia-
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Fig. 1: Fraction of Rols in the dataset vs scale of Rols relative to
the image.

tions in scale. To show this quantitatively, we plot the fraction of
the size of an object in an image vs. its own size, from the COCO
dataset [3], in Fig. 1. From the figure, we notice that an object
can appear at scales that differ by an order of magnitude - as was
the case in the painting. Intuitively, such a wide scale-variation
calls for object-detection frameworks that explicitly learn to tackle
this challenge. Unfortunately, modern object detection frameworks
are designed to perform inference at a single input resolution, or
scale, to detect objects of all sizes [4], [5], [6] and multi-scale
inference is often shrugged under the bells-and-whistles category.
This practice is in stark contrast to the scale-space theory [7], [8],
[9], an extremely effective and theoretically sound framework to
tackle naturally occurring scale-variation. The scale-space theory
advocates the existence of a narrow range of scales at which an
image structure can be optimally comprehended, much like a fovea
in the scale-space. Since the foveal range of scale for an unknown
image-structure is not available a priori, the image is convolved
with multiple Gaussians and their derivatives, and the maximum
activation is used to detect the intrinsic scale of the structure.


https://github.com/mahyarnajibi/SNIPER

Fig. 2: Dull Gret by Pieter Bruegel the Elder. In the center one can see Dull Gret, a brave lady who is taking an army of women with
her (to her right) and she is invading hell (the entire picture is about hell). We can see devils at different places, for example on the left,
top right or top center. Notice how difficult it is to focus on all objects in a complex scene at once. It is essential to stop and focus on
different regions while skimming through the image to find all the objects.

Convolution by a filter bank of multi-scale Gaussian kernels or
image-pyramids are popular mechanisms to implement the scale-
space theory in practice. This principle has been successfully
applied to numerous problems throughout the history of com-
puter vision [10], [11], [12], [13], [14] and such scale-invariant
representations have been successfully employed for recognizing
and localizing objects for problems like object detection, pose-
estimation, instance segmentation efc.

If the answer to scale variation in object-detection has been
around for decades, why hasn’t it been adopted to CNN-based
object detectors? The answer lies in yet another critically impor-
tant characteristic of real-world object-detection systems besides
accuracy: computational cost. Naturally, a multi-scale process-
ing pipeline would increase the computational cost of already
compute-hungry CNN systems that can potentially render them
practically useless. To this end, we seek motivation from scale-
space theory and the foveal nature of human-vision to propose
a novel object detection paradigm that strikes a balance between
accuracy and computational footprint.

e We carefully study the problem of object-detection under
large scale-variation and provide crucial insights into the
related challenges and their detrimental effects on current
object-detection systems. We also discuss the possible
shortcomings of the popular contemporary practices to
tackle scale-variation, such as feature pyramids and multi-
scale training/inference.

e After highlighting these shortcomings, we propose to re-
scale all the objects during training and inference - just like
human vision - to ensure their sizes range within a fixed
interval only. Such a restriction of objects’ size during
training affords better learning of object-sensitive filters,
and therefore, results in better accuracy. However, this re-
scaling operation significantly increases the computational
cost, both during training and inference stages, because it
requires processing a multi-scale image pyramid (referred
to as Scale Normalized Image Pyramid or SNIP from now

on for brevity).

e To address the increased computational cost during train-
ing, we propose an efficient spatial sub-sampling scheme
which only operates on fixed-size sub-regions likely to
contain objects (as object locations are known during
training). The resulting approach, referred to as Scale
Normalized Image Pyramid with Efficient Resampling or
SNIPER, yields up to 3x speed-up during the training
phase when used with SNIP. Unfortunately, during the
inference phase we still need to processes the entire image
pyramid as object locations are unknown.

e To address the computational cost during inference, we
propose to process the image pyramid using a coarse-
to-fine approach, and predict the locations and extent
of object-like regions which get processed in successive
scales. Intuitively, it’s akin to active human-vision that
first skims over the field-of-view to spot interesting regions
for further processing and only recognizes objects at the
right resolution. The resulting algorithm is referred to
as AutoFocus and results in a 2.5-5X speed-up during
inference when used with SNIP.

2 RELATED WORK

In this section, we provide the details of methods that have tried
to tackle similar challenges as our contribution and discuss the
differences between our contributions and previous art. Since
Multi-Scale representations are the major source of motivation for
our work, we layout the detailed history of this approach before
moving to the CNN-based multi-scale approaches.

2.1 A Brief History of Multi-Scale Representations

The vast amount of real-world visual information exhibits a
meaningful semantic interpretation when analyzed within a task-
dependent range of scales, or resolutions. This fact has been
known to the researchers in computer vision for the past 50 years



and has been employed for several vision problems since then.
One of the earliest use of this idea came in the form of multi-scale
operators for edge and curve detection [15], in 1971. Around the
same time, a slightly different instance of multi-scale information
processing was proposed in the form of recursive spatial sub-
region processing at discrete spatial resolutions, more commonly
known as quad-trees [16]. A quad-tree based pattern-recognition
approach, termed as recognition-cone was developed in [17];
similar ideas were explored in [18], [19]. Eventually these ideas
took the form of multi-scale image-pyramids [20], [21], in 1981.
Since then, multi-scale image-pyramids have served as a bedrock
for numerous applications in the field of computer vision; ranging
from simple edge/corner detection to complex object-detection
systems [6], [10], [111, [12], [13], [14].

While the early multi-scale image-pyramids enjoyed immense
success in practical applications, a comprehensive theory of such
representations came, in 1984, as the scale-space theory that
represents visual information in a continuous one-parameter scale-
space [9] formed by convolutions with Gaussian kernels at differ-
ent scales. Such representations successively suppress the finer
details without giving rise to new local minimas in the derived
representation. The scale-space theory was further employed in
the seminal work of Lindenberg [8] for feature detection with
automatic scale selection.

2.2 CNN Based Multi-Scale Pyramids

Over the past few years, deep CNNs are used as the de-facto
feature extraction algorithms for virtually all the computer-vision
problems. Intuitively, the layered representation of deep CNNS is
akin to the multi-scale representations used in the past except that
they are learned from the data. Moreover, the input is not the ex-
plicit multi-scale image-pyramid, rather the intermediate represen-
tations of the deep CNNs are themselves used as a proxy for multi-
scale presentations. It is primarily done to save computational cost
and these might fail to adapt to the immense variation in the scale-
space of semantic information embedded in an image. Typically,
these intermediate representations are at a resolution which is
32/64 times, depending on the backbone architecture, less than the
original image. Therefore, in order to obtain sufficient resolution
for small objects, common methods employ dilated/deformable
convolutions [22], [23], or up-sampling the image by up to 4 times
during inference [23], [24], [25]. A few representative approaches
try to improve object detection using intermediate feature repre-
sentations, either by combining the multi-scale feature maps prior
to detection [26], [27] or by making independent predictions at
different layers to ensure that the smaller objects are trained at
finer resolution layers (like conv3) while larger objects are trained
at relatively coarser resolution layers (like convS5) [28], [29], [30].
The success of these approaches hinges on the underlying, often
unspoken, assumption that smaller objects can be detected with
a relatively less complex network and a more complex network
is only needed for the large objects. Clearly, this is too strong
an assumption that can hurt the performance for small objects.
Ideally, we would want small objects to be processed at a high
resolution with complex networks; the main motivation of our
work, and the major contribution as well.

2.3 Modifying CNN architectures vs. Image Pyramids

Architectural changes to CNNs towards aggregation of multi-
scale information to tackle scale-variation for detection [6], [31],
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Fig. 3: The same layer convolutional features at different scales of
the image are different and map to different semantic regions in
the image at different scales.

[32] are a popular technique for scale-invariant object-detection.
Feature pyramid networks, FPN, [6] have shown impressive
performance boost for detecting objects at different scales with
a trivial increase in computation. Path Aggregation Network
[31], PA-Net, aggregates multi-scale information in a an adaptive
bottom-up manner to effectively fuse the information from the
lower layers to the topmost feature layers. RefineDet [32] also
combines features similar to feature pyramid networks to improve
performance on objects of different scales. Such empirical success
gives the impression that architectural changes are a comprehen-
sive answer to the scale-variation challenge. However, the same
layer convolutional features at different scales of the image are
different and map to different semantic regions in the image at
different scales, as shown in Figure 3. Our findings suggest that
performing object-detection at a normalized resolution is the key
to address the problem of scale-variation. For example, consider
images at a resolution of 40003000 pixels (a typical smartphone
camera resolution) that contain objects varying from 20 to 2000
pixels in size. If the detector is applied at a single scale only, it
would require the same CNN filter to detect 20, 200, and 2000
pixel objects simultaneously! Naturally, learning such a detector
is far more difficult than learning a detector that only needs to
detect objects within a pre-defined narrow range of scales.
Furthermore, architectural changes (like in FPN/PA-
Net/RefineDet) inherently assume that combining less complex but
spatially-dense network features (up to conv3) with more complex
but spatially-sparse features are sufficient for detecting smaller
objects. However, like [28], [29], [30], even here, lower layer
filters are composed of only 3-4 convolution layers for contem-
porary backbone architectures. Therefore, they lack the sufficient
complexity to cope up with large variations in pose, appearance,
lighting, and occlusion, which occur, indiscriminately, for both
the large as well as the small resolution objects. The deeper
features are too spatially-sparse to represent individual parts of
the objects, so they are not equivalent to extracting the features for
a higher resolution image. Therefore, despite the embedded multi-
scale processing, these methods still up-sample the input image.
For example, in RetinaNet, which uses an FPN architecture, the
mAP drops from 37.8% to 31.9% (a drop of 5.9%) [33] when
the input resolution is reduced from 800 pixels (shorter side) to
the native image resolution of 400 pixels. If combining shallow
and deep feature representations in different permutations and
combinations was indeed the answer to scale-variation, this up-
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Fig. 4: Different approaches for providing input for training the classifier of a proposal based detector.

sampling step wouldn’t be necessary. Note that when the image is
up-sampled, the network is processing more of the easy regions
in the image (like already large objects or background) and this
increases quadratically with the up-sampling factor. Lastly, but
importantly, up-sampling beyond a certain image resolution would
also degrade the performance on large objects (for example at
4000x%3000) as the network may not have sufficient receptive field
to represent the entire object.

An interesting anchor-free approach treats objects as points
and learns to detect the bounding-box centers as key-points fol-
lowed by regression on the height/width of the boxes [34]. They
leverage a cascaded bottom-up-bottom inference scheme to fuse
multi-scale features to tackle scale-variation. Another anchor-free
approach, FoveaBox, uses a FPN backbone to first predict class-
specific objectness maps followed by class-agnostic bounding-box
predictions for object-detection [35]. Both [34], [35], fuse multi-
scale features, similar to FPNs, therefore, suffer from similar sub-
optimalities as discussed before.

Multi-scale image-pyramids explicitly up/down-sample object
instances and, therefore, afford the employment of the same
complexity convolution network to detect all the objects within a
narrow scale-range regardless of their original resolution. Hence,
our framework employs multi-scale image pyramids to model
the stop and zoom approach of the human-vision system. We
explicitly take a multi-scale pyramid as the input but only process
a small fraction of it by automatically selecting object-like regions
at appropriate scales; much like the foveal vision in humans. It
results in a more accurate system with reduced computational
cost, especially when processing upsampled images in high res-
olutions. It is important to note that image pyramids applied on
top of improved CNN feature representations still benefit from
architectural improvements, therefore, our proposed approach is
complementary to the aforementioned architectural improvements.

2.4 Adoption of this work

Since the publication of the conference versions [36], [37], [38],
multiple works have extended and/or built on top of our findings
to further improve the performance of object detection systems for
different applications. Scale-aware TridentNet architecture learns
scale-specific feature extractors by varying the size of receptive
fields to marry the benefits of SNIPER and Feature Pyramid
Networks [6]. Some application specific adoption of the ideas
are presented for large-scale scale-invariant face detection [39],
large-scale object detection [40] and object-detection systems for
aerial images [41]. The success of image pyramid based methods

is also evident in empirical comparisons in contemporary literature
on object detection for high-resolution images and autonomous
driving [41], [42].

3 EFFICIENT MULTI-SCALE OBJECT DETECTION

This section presents our proposed multi-scale approach for object
detection. In Sub-Sec. 3.1, we analyze the behavior of deep-CNN
based detectors under scale variations to understand the inherent
trade-offs involved in creating a multi-scale training pipeline.
Based on these findings, we present scale-normalized image pyra-
mids to tackle the large scale-variation in objects observed in 2D
images in Sub-Sec. 3.2. Then, Sub-Sec. 3.3 presents the details
of an approach (SNIPER) that affords training object detectors
with scale-normalized image pyramids in an efficient fashion by
using sub-regions of images instead of the entire image. Finally,
we present an automatic region selection approach for efficient
inference on scale-normalized image pyramids (AutoFocus) in
Sec. 3.4.

3.1 Disentangling Object Detection, Scale Variations
and Deep-Learning Characteristics

This section analyses the effect of image resolution, the scale of
object instances, and variation in data on the performance of an
object detector. We train detectors at different image resolutions
and evaluate them on 1400x2000 images for detecting small
objects (less than 32x32 pixels in the COCO dataset) only to
tease apart the factors that affect the performance. The results
are reported in Table 1.

3.1.1 Training/Inference with large scale-variation

We start by training detectors (Deformable R-FCN [23] in this
particular example) that use all the object instances at two dif-
ferent pixel-resolutions, 800x1400 and 1400x2000, referred to as
8004 and 14004, respectively, Fig 4.1. As expected, 1400,
outperformed 800,;;, because the former is trained and tested on
the same resolution i.e. 1400x2000. However, the improvement is
only marginal. Why? To answer this question we consider what
happens to the medium-to-large object instances while training
at such a large resolution. They become too big to be correctly
classified! Therefore, training at higher resolutions scales up small
objects for better classification, but blows up the medium-to-large
objects which degrades performance.
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3.1.2 Scale specific detectors

Since the hypothesis was that large objects adversely affect the
performance of small objects, this time we train another detector
(1400 <g0pe) at a resolution of 1400x2000 while ignoring all the
medium-to-large objects (> 80 pixels, in the original image)
to eliminate the deleterious-effects of extremely large objects,
Fig 4.2. Unfortunately, it performs significantly worse than even
8004;;. Why do we observe such a counter-intuitive result? It
happens because we lose a significant source of variation in
appearance and pose by ignoring medium-to-large objects (about
30% of the total object instances) that hurts performance more
than it helps by eliminating extreme-scale objects.

3.1.3 Multi-Scale Training (MST)

So far, our experiments indicate that not only do we need to
reduce scale-variation during training/inference, but we also re-
quire training data capturing diverse variations. Therefore, this
time we evaluate the common practice of randomly sampling
images at multiple resolutions during training, referred to as MST
- as was the case in Fast-RCNN [43] ', Fig 4.3. It ensures that
training instances are observed at many different resolutions, but
its performance is degraded by extremely small and large objects.
Consequently, it performed similarly to 800,;;. Effectively, the
benefits of observing all object instances at all scales are offset
by extremely large/small objects that force the network to learn
object-sensitive filters across a wide range of scales. Therefore, we
conclude that it is important to train a detector with appropriately
scaled objects while capturing as much variation across the objects
as possible. In the next section, we describe our proposed solution
that achieves exactly this and show that it outperforms current
training pipelines.

3.2 Scale Normalization for Image Pyramids

In the scale-space theory, the width of the Gaussian kernels is
varied to achieve the maximum response for an image structure
in the scale space. For CNN-based object-detection systems, the

1. MST also uses a resolution of 480x800

TABLE 1: mAP on Small Objects (smaller than 32x32 pixels) un-
der different training protocols. MST denotes multi-scale training
as shown in Fig. 4.3. R-FCN detector with ResNet-50 (see Section
4).

l 1400 < 80pz [
| 16.4 |

800, | 14004, |
196 | 199 |

MST |
195 |

SNIP_|
214 |

deep filter is fixed in the form of a learnable convolutional
neural network which comprises of millions of parameters. There
does not exist a parameter (as was the case with the Gaussian
kernel) which can be tuned to obtain normalized responses for
different sized structures in the image. However, the processing, or
filtering, of an image with this deep filter results in a convolutional
feature map whose resolution can be computed from the image
resolution via a known mapping (depending on the stride of the
network). Therefore, the extent of an object in this feature map
depends on its pixel resolution in the input image, through the
aforementioned mapping. Hence, we can control the extent/size of
any object in the feature map by appropriately re-scaling the input
image that contains the object. This ensures that even extremely
different-sized objects are mapped to a similar-sized projection
in the feature map via appropriate scaling of the input image. In
such a formulation, the rich complexity of the deep-network can
be employed for both small and large objects while effectively
maintaining similar projection sizes in the feature map for both.
This affords the learning of detectors with a narrow range of scale
variations in the feature map.

Now that we can control the size of object projections in the
feature map, we turn our attention to deciding the optimal size of
such projections. On one hand, an object’s projection must span a
minimum spatial resolution in the feature map to have sufficient
information to recognize it. On the other hand, such projections
should have sufficient context to capture relationships across parts
of an object to aid its classification and shouldn’t be packed too
densely to avoid confusion. Hence, we propose to ensure that each
object projection spans between 5 to 15 spatial points in the feature



map. Based on our experiments, we found this range to work
the best. Using this guideline, for any CNN we can decide the
size of objects to train for each resolution in a multi-scale image
pyramid. Thereby, achieving the goal of attending to each object
at the appropriate resolution. To this end, we propose a modified
version of MST where only the object instances falling within
a pre-defined scale range (or min/max resolution) are used for
training the detector.

Training the detector with this simple modification takes care
of the biggest drawback of MST where each object instance was
observed at every resolution. In MST, at a high resolution (like
1400x2000) large objects were hard to classify and at a low
resolution (like 480x800), small objects. Fortunately, each object
instance appears at several different resolutions and some of those
appearances fall in the pre-defined scale range where we get the
maximum response from our deep filter. Hence, training is only
performed on objects that fall in the pre-defined scale range and
the remainder is simply ignored during back-propagation. We refer
to this representation as Scale Normalization for Image Pyramids
or SNIP. SNIP ends up employing all the object instances during
training, which helps capture all the variations in appearance and
pose, while reducing the large scale-space variation. This also
helps to make the task of CNNs easier because now they only
need to learn object-sensitive filters for a small range of scale
variations. The result of evaluating the detector trained using SNIP
is reported in Table 1. We see that it outperforms all the other
approaches for multi-scale training. This experiment demonstrates
the effectiveness of SNIP for object-detection. Below we discuss
the implementation of SNIP in detail.

3.2.1 Training with SNIP

For training the classifier-head of the object detector, all ground-
truth boxes are used to assign labels to proposals. But, we do not
select the proposals and ground truth boxes that are outside the
pre-defined scale-range during training. We use the pixel area as
a measure to decide whether a proposal or ground-truth box falls
within the desired scale. At a particular image resolution i, if the
area of an Rol ar(r) falls within a range [s;, e;], it is marked as
valid, else it is invalid. The label I(r) for any Rol is defined as
follows,

lar, IoU(GT,r) >=0.5,s; < ar(r) < e;
() = 0, IoU(GT,1) < 0.5,5; < ar(r) < e;

-1, ar(r)<=s;

-1, ar(r)>=e¢;

where, ToU(GT, ) is the Intersection-Over-Union score be-
tween the ground-truth and an Rol and lg7 is the label of the
ground-truth box. To ensure all the data is used, training samples
still falling outside the range are included when processing the
smallest/largest resolution. Once all the ground-truth boxes are
marked either valid or invalid, a similar idea is used for training
the region-proposal network as well. First, all the ground-truth
boxes are used to assign labels to anchors. Then, the anchors that
have an overlap greater than 0.3 with an invalid ground-truth box
are excluded during training (i.e. their gradients are set to zero).

3.2.2 Inference with SNIP

During inference, we generate proposals using RPN for each
image-resolution and classify them independently at each resolu-
tion as well, as shown in Fig 5. Similar to the training phase, we do
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not select detections (not proposals) which fall outside a specified
range at each resolution. After classification and bounding-box
regression, we use soft-NMS [44] to combine detections from
multiple resolutions to obtain the final detection boxes, refer to
Fig. 5. While SNIP does an excellent job at capturing the training-
data variability within a restricted scale-range, it comes with an
additional computation cost both during training and inference.
Moreover, processing multi-scale image pyramids also increases
the memory requirements per batch that can be prohibitive for
training on smaller-memory GPU cards. Therefore, in the next
section, we propose an efficient spatial sub-sampling algorithm to
reduce the computational cost during training.

3.3 Scale-Normalized Image Pyramids with Efficient
Resampling or SNIPER

The proposed SNIP framework requires the processing of a multi-
scale image pyramid that can result in images of sizes up to
14002000 pixels. Training on such high-resolution images with
deep networks, like ResNet-101 requires prohibitively large GPU
memory and significantly increases the computational budget. We
propose to restrict the input size to a reasonable pixel-resolution
while still covering all the object instances. This sub-section
presents the details of the proposed strategy to select sub-regions
(or chips) from the multi-scale image pyramids for efficient and
accurate training of object detectors.

3.3.1 Efficient Chip-Generation with Image Content Layout

Fortunately, we can exploit the characteristics of the SNIP training
along with the semantic layout of object instances to only use
sub-regions (or chips) for training object detectors. To build the
intuition, let’s start by considering how small objects are treated
in SNIP. By design, SNIP is likely to ignore the gradients coming
for extreme-scale object instances, hence, at a 3 resolution, it
will mostly ignore the medium/large-sized objects and only attend
to the objects that were small in the original image resolution.
Therefore, we do not need to process the entire image at 3x
resolution and it’s sufficient to just sample multiple small-sized
chips around the originally small objects at 3x resolution. Now,
let’s focus our attention on what happens with the originally large-
sized objects. Well, they become even larger at higher-resolution
and would definitely get ignored during training. Hence, there
isn’t any benefit of up-sampling if the original image is already
high-resolution and only contains large-size objects. The above
discussion suggests that perhaps we can simply ignore large
portions of images that do not contain objects within the desired
scale-range and only choose multiple small-size chips at different
resolutions that tightly cover the objects of interest. Such a spatial
sub-sampling would indeed save a lot of computation, but, it will
come at a heavy cost of losing contextual information, which has
been proved to be critical for accurate recognition [45], [46],
[47]. Moreover, it will also remove a significant portion of the
background at higher resolutions, which will lead to a biased
training data-distribution in favor of foreground regions, which
can negatively affect the training [48], [49]. Therefore, we face
a trade-off between computation, context, and negative mining
while trying to accelerate multi-scale training.

To this end, we propose a sampling strategy, referred to
as Scale Normalization for Image Pyramids with Efficient Re-
sampling (SNIPER), which adaptively samples chips from multi-
ple scales of an image pyramid, conditioned on the image content.



Fig. 6: SNIPER selectively trains the detector only on parts of the
input pyramid (chips) while respecting the SNIP ranges. The light
blue rectangle show the selected chips in each pyramid scale. The
valid objects in each chip is also shown with colored boxes.

The positive chips are conditioned on the ground-truth instances
and negative chips are based on proposals generated by a region
proposal network. It affords to reduce the image resolution from
1400 x 2000 pixels to 512 x 512 pixel chips, which, in turn, leads
to an overall reduction of 3 in training time. Moreover, 512x512
pixel chips can be trained with a large batch-size with batch-
normalization on a single GPU node. In particular, we can use
a batch size of 20 per GPU (leading to a total batch size of 160),
even with a ResNet-101 based Faster-RCNN detector. Formally,
SNIPER generates chips C* at multiple scales {s1, S2, .., S;, --Sn }
in the image. For each scale, the image is first re-sized to width
(W;) and height (H;). On this canvas, K x K pixel chips are
placed at equal intervals of d pixels (we set d to 32 in this paper).
This leads to a two-dimensional array of chips at each scale, £°.
In the following sections, we describe the details of positive and
negative chip-generation and the label assignment process.

3.3.2 Positive Chip Selection

For each scale, there is a desired range of Rol area R =
[18 ins T aw)s @ € [1, 7] that determines the valid ground-truth
boxes/proposals for training at each scale 7. The valid list of
ground-truth bounding boxes that lie in R* is referred to as G°.
The training chips are greedily selected, in a sequential manner,
to cover the maximum number of valid ground-truth boxes (GH
while minimizing the required number of chips. A ground-truth
box is said to be covered if it is completely enclosed inside a chip.
The set of all the positive chips from the i*" scale are combined
per image and are referred to as C;;OS. Since consecutive R’
contain overlapping intervals, a ground-truth box may be assigned
to multiple chips at different scales. It is also possible that the
same ground-truth box may be covered in multiple chips at the
same scale. Ground-truth instances that have a partial overlap (IoU
> 0) with a chip are cropped. All the cropped ground-truth boxes
(valid or invalid) are retained in the chip and are used in label
assignment. This process is described in Algorithm 1.

Thus, every ground-truth box is covered at the appropriate
scale. Since the crop-size is much smaller than the resolution
of the image (i.e. more than 10x smaller for high-resolution

Algorithm 1: SNIPER: Positive Training Chips Genera-
tion

: Image: I, Ground-Truth: 3, Image-Resolutions:
S={W HY...(W", H™)}, chip-size: K,
stride: d, valid ROI-area ranges:

R = {[Tvlnin7 T'rlnaw] ce [T:vlwinv szw]}

Output: Positive Chips: Cpos

Input

1 Cpos < 0

2forie {1...n}do

3 | I' « imresize(I, (W?, H?)) //resize original image
4 | B < resize(B, (W', H)) /lresize g.t. boxes

5 | G Bielrl,,rh .. /select valid size g.t. boxes
6 L? <+ K x K chips from I*; stride = d //all chips
7 CZ,OS — _@

8 while G # () do

9 L . < chip covering max number of g.t. boxes
10 G' < G' - covered g.t. boxes

11 Cpos — Cpos + L s L= L= L0
12 end

13 Cpos < Cpos + Cpos

14 end

15 return Chips Cpos

images), SNIPER does not process most of the background at
high-resolutions. This leads to significant savings in compute and
memory footprint while processing high-resolution images. In
order to illustrate the above process, we use an example shown
in Figure 6. We show an image pyramid with valid ground-truth
boxes in green, red and yellow and the generated positive chips by
SNIPER in light blue. We can see that all the ground-truth boxes
are covered in one of the generated chips. This is how SNIPER
efficiently processes all ground-truth objects at an appropriate
scale by forming low-resolution chips, corresponding to properly
scaled objects from different scales.

3.3.3 Negative Chip Selection

Since the positive chips are optimized to cover the objects, they
don’t capture sufficient background to create a balanced sampling
of positive and negative regions. Therefore, the resulting classifier
can wrongly classify a lot of background as object-regions, leading
to a high false positive rate. In order to tackle this challenge,
contemporary object detection algorithms that use multi-scale
training, use the entire image at all scales. Although training on all
scales reduces the false positive rate, it also increases computation.
We, on the other hand, posit that a significant amount of the
background is relatively easy to classify, and therefore, can be
removed from training to save computation. In order to realize
this intuition, we employ object proposals to identify the regions
where objects are likely to be present. After all, our classifier
operates on region proposals and the parts of image without any
region proposals are easy-to-identify background and can be safely
ignored during training.

Hence, for negative-chip mining, we first train the RPN for a
couple of epochs without using negative-chips for training. Since
the task of this network is to roughly indicate the regions that may
contain false positives, it’s not necessary for it to be very accurate.
We use this RPN to generate proposals over the entire training set
and record the portions in images that don’t contain any proposals
as easy backgrounds. Now, for negative chip selection, at each



Fig. 7: SNIPER negative chip selection. First row: the image and the ground-truth boxes. Bottom row: negative proposals not covered
in positive chips (represented by red circles located at the center of each proposal for the clarity) and the generated negative chips based
on the proposals (represented by orange rectangles).

scale ¢, we first remove all the proposals covered in C;;os. Then,
at each scale 7, we greedily select all the chips that cover at least
M proposals in R?. This generates a set of negative-chips for
each scale per image, C?, - During training, we randomly sample
a fixed number of negative chips per epoch (per image) from
this pool of negative-chips at all scales, i.e. [J;; Cfleg. Figure
7 shows examples of the generated negative chips by SNIPER.
The first row shows the image and the ground-truth boxes, the
bottom shows the proposals that are not covered by C;,os and
the corresponding negative-chips (the orange boxes). For clarity,
we represent each proposal by a red circle in its center. We can
see that SNIPER only processes regions which can likely contain
false positives, while safely ignoring large portions of the image,
which leads to faster processing time. Intuitively, this process is
akin to hard-negative mining for those chips that contain difficult

background regions.

3.3.4 Label Assignment

Once the negative and positive chips are selected, our network
is trained end-to-end on these chips like Faster-RCNN, i.e. it
learns to generate proposals as well as classify them with a single
network. While training, proposals generated by RPN are assigned
labels and bounding box targets (for regression) based on all the
ground-truth boxes that are present inside the chip. We do not
filter ground-truth boxes based on R'. Instead, the proposals that
don’t fall in R? are ignored during training, or their gradients are
not back-propagated. Therefore, a large ground-truth box that is
cropped, can generate a valid proposal that is small. Like Fast-
RCNN, we assign a positive label and bounding-box targets to all
the proposals that have an overlap greater than 0.5 with a ground-
truth box. Our network is trained end-to-end and we generate 300
proposals per chip. We do not constraint any fraction of these
proposals for re-sampling as positives [50], as it’s done in Fast-
RCNN. We did not use OHEM [51] for classification, instead,
we use a simple softmax cross-entropy loss for classification. For
assigning the RPN labels, we use valid ground-truth boxes to
assign labels and invalid ground-truth boxes to invalidate anchors,
as it’s done in SNIP.

3.3.5 Benefits

For training, we randomly sample chips from the whole dataset
for generating a batch. On average, we generate ~ 5 chips of
size 512x512 per image on the COCO dataset (including negative
chips) when training on three scales (512/ms 2, 1.667, 3). This
is only 30% more than the number of pixels processed per image
when single scale training is performed with an image resolution
of 800x1333. Since all our images are of the same size, data is
much better packed leading to better GPU utilization which easily
overcomes the extra 30% overhead. But more importantly, we reap
the benefits of multi-scale training on 3 scales, large batch size
and training with batch-normalization without any slowdown in
performance on a single 8 GPU node!.

It is commonly believed that high-resolution images (e.g.
800x1333) are necessary for instance-level recognition tasks.
Therefore, for instance-level recognition tasks, it was not possible
to train with batch-normalization statistics computed on a single
GPU. Methods like synchronized batch-normalization [31], [52]
or training on 128 GPUs [53] have been proposed to alleviate this
problem. Synchronized batch-normalization slows down training
significantly and training on 128 GPUs is also impractical for most
people. Therefore, group normalization [54] has been recently
proposed so that instance-level recognition tasks can benefit from
another form of normalization in a low batch setting during train-
ing. With SNIPER, we show that the image resolution bottleneck
can be alleviated for instance-level recognition tasks. As long as
we can cover negatives and use appropriate scale normalization
methods, we can train with a large batch size of resampled low-
resolution chips, even on challenging datasets like COCO. Our
results suggest that context beyond a certain field of view may not
be beneficial during training. It is also possible that the effective
receptive field of deep neural networks is not large enough to
leverage far away pixels in the image, as suggested in [55].

2. max(width;m, height;m)
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Fig. 8: Area of objects of different sizes and the background in the
COCO validation set. Objects are divided based on their area (in
pixels) into small, medium, and large.

3.4 AutoFocus

While multi-scale processing brings significant improvements in
accuracy, it comes at a computational cost, especially during
inference. This is because the CNN is applied on all scales
without factoring the spatial layout of the scene. To provide
some perspective, we show the percentage of pixels occupied per
image for different size objects in the COCO dataset in Fig 8.
Even though 40% of the object instances are small, they only
occupy 0.3% of the area. If the image pyramid includes a scale
of 3, then just to detect such a small fraction of the dataset, we
end up performing 9 times more computation at finer-scales. If
we add some padding around small objects to provide spatial
context and only upsample these regions, their area would still
be small compared to the resolution of the original image. So,
when performing multi-scale inference, can we predict regions
containing small objects from coarser scales?

So far, we have exploited the semantic layout of training
images and ground-truth bounding-boxes to efficiently sample
medium-sized chips, 512 x 512 pixels, from a multi-scale image
pyramid to constrain the scale-range of training object instances
and reduce computation. Unfortunately, this technique is not
applicable to the inference stage due to the lack of ground-truth
information, which leads to large inference-time computation.
Fortunately, we are not the first one to come across this problem
and previous work has dealt with similar problems. Specifically,
hand-crafted gradient-based features like SIFT [12] or SURF [56],
combine two major components - the detector and the descriptor.
The detector typically involves lightweight operators like Differ-
ence of Gaussians (DoG) [57], Harris Affine [58], Laplacian of
Gaussians (LoG) [59] etc. and is applied to the complete image for
finding interesting regions. The computationally heavy descriptor
is only applied to interesting regions. Such cascaded processing of
the image makes the entire pipeline computationally efficient.

We seek motivation from the aforementioned cascaded sys-
tems, and propose a novel framework that first processes the
coarsest scale and predicts the interesting regions in the image
at the next scale. It continues processing the finer-level scales, or
higher resolutions, in a sequential manner and keeps predicting
interesting regions at the next scale until the entire pyramid is
not processed. It re-scales and crops only the detected interest-
ing regions for applying compute-heavy detectors. AutoFocus is
comprised of three main components: the first learns to predict Fo-
cusPixels, the second generates FocusChips for efficient inference
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and the third merges detections from multiple scales, which we
refer to as focus stacking for object detection. The details of each
of the components are described in the subsequent sections.

3.4.1 FocusPixels

FocusPixels are defined at the granularity of the convolutional
feature map (like conv5). A pixel in a feature map is labeled
as a FocusPixel if it has any overlap with a small object. An
object is considered small if it falls within a pre-defined area range
(between 5 x 5 and 64 x 64 pixels in our implementation) in a
re-sized chip (Sec. 3.4.2). During training, FocusPixels are marked
as positives. Pixels that overlap with objects even smaller than the
small objects, < 5 x 5 pixels are marked invalid. It’s because such
objects become even smaller after down-sampling and the network
doesn’t have sufficient information to predict their location at the
next scale. We also mark the pixels that overlap with objects whose
sizes range between 64 X 64 and 90 x 90 as invalid. It’s due to
the fact that the transition from small to large objects doesn’t have
a sharp boundary in terms of size. The rest of the feature-map
pixels are marked as negative. AutoFocus is trained to generate
high-value activations in the regions that contain FocusPixels.

Formally, for an image of size X XY, and a fully convolutional
neural network with stride s, the resulting labels L will be of size
X' x Y, where X’ = [£] and Y’ = [X]. Since the stride is
s, each label [ € L corresponds to s X s pixels in the image. The
label [ is defined as follows,

1, IoU(GT,l)>0,a < VGTArea <b

= —1, IoU(GT,l) > 0,vVGT Area < a
) -1, IoU(GT,l) > 0,b < /GTArea < c
0, otherwise

where IoU is the Intersection-Over-Union score of the s X s
label block with the ground-truth bounding box, GT Area is the
area of the re-scaled ground-truth bounding box, a is typically
5, b is 64, and c is 90. If multiple ground-truth bounding boxes
overlap with a pixel, FocusPixels (! = 1) are given precedence.
Since our network is trained on 512 x 512 pixel chips, the ratio
between the positive and negative pixels is around 10, so we do not
perform any re-weighting for the loss. Note that during multi-scale
training, the same ground-truth could generate a label of 1, 0 or -1
depending on how much it has been scaled. The labeling scheme
is visually depicted in Fig 9. For training the network, we add two
convolutional layers (3x3 and 1x1) with ReLU non-linearity on
top of the conv5 feature-map. Finally, we have a binary softmax
classifier to predict FocusPixels, shown in Fig 11.

3.4.2 FocusChip Generation

Armed with the capability of estimating the foreground probability
at every pixel, we now turn our attention to obtain rectangular
sub-regions, or FocusChips, for further processing with a CNN.
During inference, we use a parameter, ¢, to mark the pixels, P,
whose foreground probability is greater than ¢ as FocusPixels.
Consequently, a higher value of ¢ will lead to a smaller number of
FocusPixel for further processing. Therefore, ¢ controls the speed-
up and can be set with respect to the desired speed-accuracy trade-
off. The thresholding with ¢ generates a set of connected compo-
nents S, which are dilated with a d X d sized-filter to increase
the amount of required contextual information for recognition.
As a result of dilation, previously disconnected components can
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Fig. 9: The figure illustrates how FocusPixels are assigned at multiple scales of an image. At scale 1 (b), the smallest two elephants
generate FocusPixels, the largest one is marked as background and the one on the left is ignored during training to avoid penalizing the
network for borderline cases (see Sec. 3.4.1 for assignment details). The labelling changes at scales 2 and 3 as the objects occupy more
pixels. For example, only the smallest elephant would generate FocusPixels at scale 2 and the largest two elephants would generate

negative labels.

Fig. 10: Pruning detections while FocusStacking. (a) Original Image (b) The predicted FocusPixels and the generated FocusChip (c)
Detection output by the network (d) Final detections for the FocusChip after pruning.

form a new connection. Such components are merged to obtain the
final set of connected components. Finally, we generate chips C
that enclose the set of the aforementioned connected components.
Note that the chips containing two connected components could
overlap. As a result, these chips are merged with each other
and replaced with their enclosing bounding-boxes in C. Some
connected components could be extremely small, and potentially
lack the required contextual information for accurate recognition.
Many small chips also increase fragmentation which results in a
wide range of chip sizes. This makes batch-inference inefficient.
To avoid these problems, we ensure that the height and width of a
chip is greater than a minimum size k. This process is described
in Algorithm 2. With the help of the identified FocusChips, we
perform multi-scale inference on an image pyramid while focusing
on regions that are more likely to contain objects.

3.4.3 Focus Stacking for Object Detection

One issue with such cascaded multi-scale inference is that some
detections at the boundary of the chips can be generated for
cropped objects which were originally large. At the next scale, due
to cropping, they could become small and generate false positives,
such as the detections for the horse and the horse rider on the right,
shown in Fig 10 (c). To alleviate this effect, Step 2 in Algorithm
2 is very important. Note that when we dilate the map P and
generate chips, this ensures that no interesting object at the next
scale would be observed at the boundaries of the chip (unless

Algorithm 2: FocusChip Generator

Input : Predictions for feature map P, threshold ¢,
dilation constant d, minimum size of chip k
Output: Chips C

Transform P into a binary map using the threshold ¢

Dilate P with a d x d filter

Obtain a set of connected components S from P

Generate enclosing chips C of size > k for each
component in S

Merge chips C if they overlap

6 return Chips C

AW N =

wm

the chip shares a border with the image boundary). Otherwise, it
would be enclosed by the chip, as these are generated around the
dilated maps. Therefore, if a detection in the zoomed-in chip is
observed at the boundary, we discard it, even if it is within valid
SNIP ranges, such as the horse rider eliminated in Fig 10 (d).

There are some corner cases when the detection is at the
boundary (or boundaries x, y) of the image. If the chip shares
one boundary with the image, we still check if the other side of
the detection is completely enclosed inside or not. If it is not, we
discard it, else we keep it. In another case, if the chip shares both
the sides with the image boundary and so does the detection, then
we keep the detection.
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Fig. 11: The figure illustrates how AutoFocus detects a person and a racket in an image. The green borders and arrows are for inference
at the original resolution. The blue borders and arrows are shown when inference is performed inside FocusChips. In the first iteration,
the network detects the person and also generates a heat-map to mark regions containing small objects. This is depicted in the white/grey
map - it is used to generate FocusChips. In the next iteration, the detector is then applied inside FocusChips only. Inside FocusChips,
there could be detections for the cropped object present at the larger resolution. Such detections are pruned and finally, valid detections

are stacked across multiple scales.

Once valid detections from each scale are obtained using the
above rules, we merge detections from all the scales by projecting
them to the image co-ordinates after applying appropriate scaling
and translation. Finally, Non-Maximum Suppression is applied to
aggregate the detections. The network architecture and an example
of multi-scale inference and focus stacking is shown in Fig 11.

3.5 Putting it all together

Here we summarize the proposed concepts and considerations
leading up to the final scale-normalized object-detection paradigm
to facilitate clear dissemination. First, we introduced the concept
of scale-normalization for image-pyramids (SNIP) to effectively
tackle the adverse effects of extreme-scale objects during train-
ing and put forward concrete guidelines for setting it’s design
parameters. This was followed by an efficient scale-normalized
spatial sub-sampling mechanism (SNIPER) to reduce the ad-
ditional computational cost involved in processing the multi-
scale image-pyramid during training. We discussed the use of
image content for SNIPER’s spatial sub-sampling, described the
positive/negative chip-sampling and their labeling scheme, and
the additional benefits of SNIPER over SNIP with the help of
increased batch-size and batch-normalization [60] for the training
phase. Lastly, we modeled the active foveal-vision in humans in
the form of AutoFocus that processes a multi-scale image-pyramid
in a coarse-to-fine manner to reduce run-time computational cost
during inference. We discussed the concept of FocusPixels that are
used as a proxy for finding interesting regions which are the only
spatial sub-regions where the detector needs to be applied during
inference. This leads to the final system, which tackles scale-
variation and can be efficiently trained and tested on multi-scale
image-pyramids. The proposed scale-normalization approach for
object-detection makes several changes to the existing pipeline
both during training and inference stages. Therefore, in this sec-
tion, we employ the COCO dataset to carry out extensive ablation
studies to clearly reveal the effects of different modules, namely
SNIP, SNIPER, and AutoFocus which have been proposed. The
comparisons with the other approaches follow standard protocol

and use 123,000 images from the training and 20,288 images in
test-dev set of COCO for training and evaluation. Since recall for
proposals is not provided by the evaluation server on COCO, we
train on 118,000 images and report recall on the remaining 5,000
images (commonly referred to as minival set, or the 2017 test-dev
set). Unless specifically mentioned, the area of small objects is
less than 32x32, medium objects range from 32x32 to 96x96 and
large objects are greater than 96x96 pixels.

4 EXPERIMENTAL ANALYSIS
4.1 Training Details

We use 3 resolutions of (480, 800), (800, 1200), and (1400, 2000)
pixels for training our detectors. The first value is for the shorter
side of the image and the second one is the limit on the maximum
side size. The valid ranges are set to (0,80%), (322, 150?), and
(1202, 0o) which ensure that at least 5 to 15 convolutional features
are observed in the coarsest convolutional layer of the network.
The training of the detectors is performed for 7 epochs. Except
when RPN is trained separately, we use a shorter training period
of 6 epochs.

We start the training with a warmup learning rate of 0.0005
for 1000 iterations. Since we use the efficient resampling scheme,
we can use a batch size of 128 chips for 512x512 pixels and
a base learning rate of 0.015. When ablation experiments are
performed for scale normalization, we use a batch size of 8 (1
per GPU) and a learning rate of 0.005. We use mixed-precision
training as described in [61]. To this end, we re-scale weight-
decay by 100, drop the learning rate by 100, and re-scale gradients
by 100. This ensures that we can train with activations of half-
precision (and hence ~2x larger batch size) without any drop of
accuracy. FP32 weights are used for the first convolution layer, last
convolution layer in RPN (classification and regression), and the
fully connected layers in Faster-RCNN. We drop the learning rate
after 5.33 epochs (except when RPN is trained separately where
we drop the learning rate after 4.33 epochs). Image flipping is used
as a data-augmentation technique.



TABLE 2: MS denotes multi-scale. Single scale is (800,1200).
R-FCN detector with ResNet-50 (as described in Section 4).

[ Method [ AP | APY [ AP™ [ AP |
Single scale 34.5 16.3 37.2 47.6
MS Test 359 19.5 37.3 48.5
MS Train/Test | 35.6 19.5 375 473
SNIP 378 | 214 404 50.1

As mentioned in Section 3.3.3, an RPN is deployed for
negative chip sampling in SNIPER. We train this RPN only for 2
epochs with a fixed learning rate of 0.015 without any step-down.
Therefore, it requires less than 20% of the total training time.
RPN proposals are extracted from all scales. Note that inference
takes 1/3 the time for a full forward-backward pass and we do not
perform any flipping for extracting proposals. Hence, this process
is also efficient.

4.2 Effectiveness of SNIP against Scale Variation

In this section, we carry different experiments to understand the
behavior of SNIP under the variations of scale-range, object-
detection architecture and to show the benefits of employing
SNIP with other popular architectures. In order to disentangle
and clearly understand the tolerance against scale-variation offered
by SNIP in the two-stage object-detection pipelines, we evaluate
the region-proposal and classification modules of the detection
network separately.

4.2.1 SNIP for RCN improvements

In this ablation study, we use a single-scale proposal generation
that is common across all the three scales of the multi-scale
pyramid to generate the proposals. The generated proposals are
used to evaluate the performance of SNIP on the RCN only, under
the same settings as described in Section 3.2. This study aims
at demonstrating the benefits of SNIP over the vanilla Multi-Scale
Training/Testing pipeline. Therefore, we compare the performance
of single-scale train/test, multi-scale test and multi-scale train/test
protocols against SNIP in Table 2. For a fair comparison, we
use the best possible validity ranges at each scale for all the
protocols where multi-scale testing is performed. As expected,
multi-scale testing yields an improvement of 1.4% over single-
scale train/test protocol. Naturally, we would expect that the multi-
scale train/test protocol would improve it even further because
multi-scale samples are used during training as well. However, it
ended up reducing the improvement to only 1.1% which clearly
demonstrates that the inclusion of large objects (especially in
the 14002000 resolution) during multi-scale training adversely
affects the training of the RCN. It happens due to the inability of
the effective network receptive field to correctly classify extremely
blown-up objects in up-scaled images. Finally, SNIP improved the
performance by 3.3% and 1.9% over single-scale train/test and
multi-scale test protocols, respectively. This experiment clearly
demonstrates the benefits of using SNIP during training to effec-
tively avoid presenting large scale-variation to the RCN.

4.2.2 SNIP for RPN improvements

Now we turn our attention to the region-proposal network of the
object detection pipeline. Before proceeding with the ablations
studies with SNIP, note that the recall at 50% overlap is the most
important performance metric for object proposals; it’s because
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TABLE 3: For individual ranges (like 0-25 etc.) recall at 50%
overlap is reported because minor localization errors can be fixed
in the second stage. ResNet-50 is used as the backbone. Recall is
for 900 proposals, as top 300 are taken from each scale.

[ Method | AR [ AR5Y [ AR"® [ 0-25 [ 25-50 | 50-100 |

61.3 89.2 69.8 68.1 91.0 96.7
64.0 92.1 74.7 74.4 95.1 98.0

Baseline
+ SNIP

TABLE 4: The effect of SNIP on RCN and RPN

[ Method | Backbone | RPN SNIP | RCN SNIP | AP

412
442

44.7
42.6
43.1
44.4
bounding box regression can correct minor localization errors,
but an uncovered object by all the proposals will certainly result
in false negative. Since recall at 50% overlap for the objects
>100 pixel in size is already close to 100%, further improvement
wouldn’t lead to any significant overall improvements. Improving
the recall on small objects, however, would lead to more overall
gains. In order to demonstrate the benefits of SNIP training on
differently sized objects, we show the improvements for a ResNet-
50 RPN network in Table 3. First, note that SNIP improved the
overall recall at 50% overlap by 2.9% and 6.3% for objects smaller
than 25 pixels. If we train our RPN without SNIP, mAP drops by
1.1% on small objects and 0.5% overall. Note that AP of large
objects is not affected as we still use the classification model
trained with SNIP. We also perform an ablation study with stronger
backbones like DPN-98 and detectors like Faster-RCNN which are
shown in Table 4.

D-R-FCN DPN-98

Faster-RCNN | ResNet-101

NSNIAX [ N\*x X%
N X% X[ NN\ X%

4.3 Efficient Training with SNIPER

While SNIP improves training on multi-scale image pyramid,
it comes at a computational cost. In this section, we carry out
ablation studies pertaining to the efficient re-sampling scheme for
training with SNIP (or SNIPER). As SNIPER does not use all the
training data and uses RPN to generate chips for training, we have
to ensure that RPN recall is good. Moreover, we lose a significant
amount of background samples during training, therefore, it’s
important to assess the effect of negative chip mining. The final
goal of design parameters is to ensure that SNIPER’s performance
matches the SNIP baseline, which trains on the entire image
pyramid, while obtaining a significant speedup. In the following
sub-sections, we focus on different analyses pertaining to the
design parameters of SNIPER to achieve the aforementioned goal.

4.3.1 SNIPER Recall Analysis

Since the positive chip-sampling covers all the ground truth
samples, we posit that it’s sufficient to train on just the positive
samples for generating proposals and still maintain a high recall.
Indeed, we observe that the recall (averaged over multiple overlap
thresholds 0.5:0.05:0.95) for RPN is unaffected w.r.t. negative
sampling (Table 5) because recall doesn’t account for false posi-
tives. The aforementioned intuitive reasoning and empirical results
bolster SNIPER’s strategy of employing an RPN, which is trained



TABLE 5: We plot the recall for SNIPER with and without
negatives. Surprisingly, recall is not effected by negative chip
sampling

[ NEG. [ AR [ AR | AR"® [ 0-25 [ 25-50 [ 50-100 [ 100-300 ]

v 65.4 93.2 76.9 413 65.8 74.5 71.8
X 65.4 93.2 77.6 40.8 65.7 74.7 78.3

TABLE 6: The effect training on 2 scales (1.667 and max size of
512). We also show the impact in performance when no negative
mining is performed. A ResNet-101 backbone is used.

[ Method [ AP [ AP0 [ AP™> [ AP [ APM [ APL |

SNIPER | 46.1 67.0 51.6 29.6 48.9 58.1
No Neg. | 43.4 | 628 48.8 27.4 452 56.2
2 Scales | 43.3 63.7 48.6 27.1 44.7 56.1

on positive samples only, for negative chip-sampling. However,
mAP score for detection depends on false-positives, as shown
in Sec. 3.3.3, hence negative sampling, discussed next, plays an
important role as well.

4.3.2 Effect of Negative Chip Mining on SNIPER

Just like any other object-detection system, SNIPER also employs
negative chip mining to reduce the false-positive rate. Addition-
ally, SNIPER also aims at speeding-up the training by skipping
the easy regions inside the image, which are obtained from an
RPN trained with a short learning schedule, Sec. 3.3.3. Inclusion
of negative samples that are similar in appearance to positive
instances is a well-known technique to reduce the false-positive
rate and helps to improve the overall mAP, which depends on
both the recall and precision. To evaluate the effectiveness of our
negative mining approach, we compare SNIPER’s mAP score with
a variant that only uses positive chips during training, Table 6,
while keeping other parameters the same. The proposed negative
chip mining approach noticeably improves AP scores for all
localization thresholds and object sizes and improves the mAP
score from 43.4 to 46.1.

4.3.3 Effect of Multi-Scale Training on SNIPER

In order to illustrate the benefits of multi-scale training using
SNIPER, we reduce the number of scales from 3 to 2 by dropping
the highest resolution scale and trained with SNIPER. This variant
is compared with standard SNIPER training that employs all 3
scales for training and the results are compared in Table 6. We
can see that the reduction in the number of scales significantly de-
creased the performance consistently across all evaluation metrics.

4.3.4 Comparison with training on Full Image Pyramids

Since SNIPER reduces both the memory and computational foot-
print while processing a multi-scale image pyramid, it affords
increased batch-size and effective batch-normalization [60] during
training, which was otherwise not possible with SNIP on commod-
ity GPU cards. Therefore, in order to compare SNIPER with SNIP,
we turn-off batch-normalization during SNIPER training and show
that it achieves matching results with SNIP, in Table 7. With
batch-normalization, SNIPER significantly outperforms SNIP in
all metrics and obtains an mAP of 46.1%. This result improves to
46.8% if we pre-train the detector on the OpenlmagesV4 dataset.
Adding an instance segmentation head and training the detection
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TABLE 7: We observe that SNIPER matches the performance
even after reducing the pixels processed by 3.5 times.

[ Method [ AP [ AP0 [ AP™® [ AP [ APM [ AP |
‘ SNIP ‘43.6‘ 65.2 ‘ 48.8 ‘ 26.4 ‘ 46.5 ‘ 55.8 ‘

SNIPER | 435 | 65.0 48.6 26.1 46.3 56.0

TABLE 8: We highlight the importance of image pyramids even
with lightweight backbones, where we see a 12% gain in per-
formance. Pre-training with additional data and multi-tasking with
instance segmentation brings a 1.5% improvement in performance.

[ Method | Backbone [ AP |
SSD MobileNet-v2 | 22.1
SNIPER MobileNet-v2 | 34.5
SNIPER ResNet-101 46.1
SNIPER + Openlmages ResNet-101 46.8
SNIPER + Openlmages + Mask Training ResNet-101 47.6

network along with it further improves the performance to 47.6%.
We also show results for Faster-RCNN trained with MobileNetV2.
It obtains an mAP of 34.1% compared to the SSDLite [62] version
which obtained 22.1%. This again highlights the importance of
image pyramids (and SNIPER training) as we can improve the
performance of the detector by 12%, Table 8. Not only is SNIPER
more accurate, it is also 3x faster compared to SNIP during
training. It only takes 14 hours for end-to-end training on a 8x
V100 GPU node with a Faster-RCNN detector with ResNet-101
backbone. It is worth noting that we train on 3 scales of an image
pyramid (max size of 512, 1.667 and 3). Training RPN is much
more efficient and it only takes 2 hours.

4.4 Efficient Inference with AutoFocus

While SNIPER improves the efficiency of training by skipping
“easy” regions, it is not directly applicable during inference as it
requires ground-truth information for chip sampling. As discussed
in 3.4, AutoFocus extends the active sub-sampling concept to the
inference phase by predicting “FocusPixels” and generating “Fo-
cusChips” from them. In this section, we empirically — evaluate
the underlying hypotheses behind AutoFocus and the quality of
the estimated FocusPixels/Chips w.r.t. the ground-truth, compare
AutoFocus with SNIPER, and study the Speed-Accuracy trade-off
w.r.t. design parameters.
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Fig. 12: Upper-bound on the speed-up using FocusChips generated
from optimal FocusPixels.
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Fig. 13: Quality of the FocusPixels and FocusChips. The x-axis represents the ratio of the area of FocusPixels or FocusChips to that of
the image. The y-axis changes as follows, (a) FocusPixel recall is computed based on the GT boxes (b) FocusPixel recall is computed
using the confident detections (c) FocusChip recall is computed based on the GT boxes (d) FocusChip recall is computed based on the

confident detections.

4.4.1 AutoFocus Hypothesis Testing

The core hypothesis behind AutoFocus is the low percentage of
the FocusPixels in natural images, especially in high-resolution
images. To investigate this hypothesis, here, we report the per-
centage of the FocusPixels at different scales for the validation
set of the COCO dataset based on ground-truth annotations. In
high-resolution images (scale 3), the percentage of FocusPixels is
very low (i.e. ~ 4%). Therefore, ideally, a very small part of the
image needs to be processed at high resolution. Since the image
is up-sampled, the FocusPixels projected on the image occupy an
area of 632 pixels on average (the highest resolution images have
an area of 16022 pixels on average). At lower scales (like scale
2), although the percentage of FocusPixels increases to ~ 11%,
their projections only occupy an area of 1022 pixels on average
(each image at this scale has an average area of 9402 pixels). After
dilating FocusPixels with a kernel of size 3 X 3, their percentages
at scale 3 and scale 2 change to 7% and 18% respectively.

Using the chip generation algorithm, for a given minimum chip
size (like & = 512), a theoretical upper bound on the speedup
can be obtained under the assumption that FocusPixels can be
predicted without any error (i.e. based on GTs). This speedup
bound changes with the minimum chip size and this variation is
shown in Fig 12, following the FocusChip generation algorithm
2. The same value is used at each scale. For example, reducing
the minimum chip size from 512 to 64 can lead to a theoretical
speedup of ~ 10 times over the baseline which performs inference
on 3 scales. However, a significant reduction in minimum chip
size can also affect detection performance - a reasonable amount
of context is necessary for retaining high detection accuracy.

4.4.2 Quality of FocusPixel prediction

Here, we evaluate how well our network predicts FocusPixels at
different scales using two criteria. First, we measure the recall for
predicting FocusPixels at two different resolutions and show the
results in Fig 13 a. This provides us with an upper bound on the
accuracy of localizing small objects using low-resolution images.
However, not all the ground-truth objects that are annotated might
be correctly detected. Since our eventual goal is to accelerate the
detector, cropping regions that cover ground-truth instances which
the detector cannot detect would not be useful. Therefore, the
final effectiveness of FocusChips is intrinsically coupled with the
detector, hence we also report the accuracy of FocusPixel predic-
tion on regions which are confidently detected in Fig 13 b. This is

achieved by only considering the FocusPixels corresponding to the
GT boxes that significantly overlap (IoU > 0.5) with a detection-
box with a score < 0.5. At a threshold of 0.5, the detector still
obtains an mAP of 47% which is within 1% of the final mAP and
does not have a high false-positive rate.

As expected, we obtain better recall at higher resolutions with
both metrics. We can cover all confident detections at the higher
resolution (scale 2) when the predicted FocusPixels cover just 5%
of the total image area. At a lower resolution (scale 1), when
the FocusPixels cover 25% of the total image area, we cover all
confident detections, see Fig 13 b.

4.4.3 Quality of FocusChips

Eventually, it’s the FocusChips and not FocusPixels that are
input to the network, therefore, we evaluate the accuracy of
the generated FocusChips, from the FocusPixels, using similar
metrics as in Sec. 4.4.2 - the recall of all GT boxes enclosed by
FocusChips and the recall for GT boxes enclosed by FocusChips
that overlap with a confident detection. To achieve perfect recall
for confident detections at scale 2, FocusChips cover 5% more
area than FocusPixels. At scale 1, they cover 10% more area. This
is because objects are often not rectangular in shape. These results
are shown in Fig 13 d.

4.4.4 Comparison with SNIPER

In this section, we compare the efficient multi-scale inference in
AutoFocus, with testing on Full Image Pyramids in SNIPER. For
fair comparison, in AutoFocus, we just add the FocusPixel predic-
tion branch to our detector while keeping everything else the same.
Table 9 shows the results. While matching SNIPER’s performance
of 47.9% (68.3% at 0.5 IoU), AutoFocus processes 6.4 images per
second on the test-dev set with a TitanX Pascal GPU. SNIPER
processes 2.5 images per second. Moreover, AutoFocus is able
to reduce the average number of pixels processed to half while
dropping the AP by just 0.7%. This shows the effectiveness of the
chip sampling process in AutoFocus.

4.4.5 Speed Accuracy Trade-off for AutoFocus

In Section 4.4.4, we showed that AutoFocus inference accuracy
matches that of the SNIPER’s. Moreover, as discussed in Section
3.4, the speed accuracy trade-off in AutoFocus can be further con-
trolled. Therefore, we study the effect of AutoFocus parameters
on its inference speed and accuracy. We perform a grid-search
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Fig. 14: Results are on the val-2017 set. (a,c) show the mAP averaged for IoU from 0.5 to 0.95 with an interval of 0.05 (COCO metric).

(b,d) show mAP at 50% overlap (PASCAL metric). We can reduce

the number of pixels processed by a factor of 2.8 times without any

loss of performance. A 5 times reduction in pixels is obtained with a drop of 1% in mAP.

TABLE 9: Comparison between the efficient multi-scale testing
in AutoFocus and testing on full image pyramids in SNIPER on
COCO test-dev. The average pixels processed over the dataset are
also reported.

[ Method [ Pixels [ AP JAPY [ S T M [ L ]
| SNIPER | 19102 | 47.9 | 68.3 | 315 | 50.5 | 60.3 |
AutoFocus | 11757 | 479 | 683 | 315 | 505 | 60.3
HOTOCUS 1 9302 | 472 | 67.5 | 309 | 49.0 | 60.0

on the concerned parameters - dilation, min-chip size and the
threshold - to generate FocusChips on a subset of 100 images in
the validation set. For a given average number of pixels, we check
which configuration of parameters obtains the best mAP on this
subset. Since there are two scales at which we predict FocusPixels,
we first find the parameters of AutoFocus when it is only applied
to the highest resolution scale. Then we fix these parameters for
the highest scale, and find parameters for applying AutoFocus at
scale 2.

In Fig 14 we show that the multi-scale inference baseline
which uses 3 scales obtains an mAP of 47.5% (and 68% at 50%
overlap) on the val-2017 set. Using only the lower two scales
obtains an mAP of 45.4%. The middle scale alone obtains an mAP
of 37%. This is partly because the detector is trained with our scale
normalization scheme. As a result, the performance on a single
scale alone is not very good, although multi-scale performance
is high. The maximum savings in pixels which we can obtain
while retaining performance is 2.8 times. We lose approximately
1% mAP to obtain a 5 times reduction over our baseline in the
val-2017 set.

We also perform an ablation experiment for the FocusPixels
predicted using scale 2. Note that the performance of just using
scales 1 and 2 is 45%. We can retain the original performance of
47.5% on the val-2017 set by processing just one-fifth of scale
3. With a 0.5% drop, we can reduce the pixels processed by 11
times in the highest resolution image. This can be improved to 20
times with a 1% drop in mAP, which is still 1.5% better than the
performance of the lower two scales.

4.5 Comparison with other methods

In this section, we compare our methods with other object de-
tectors on COCO and Pascal VOC datasets. Table 10 shows the
results on COCO test-dev. One has to keep in mind that it is

TABLE 10: Comparison on the COCO test-dev. Results for others
are taken from the papers/GitHub of the authors. Note that average
pixels processed over the dataset are reported (instead of the
shorter side). All methods use a ResNet-101 backbone. ‘+’ denotes
the multi-scale version provided by the authors.

[ Method [Pixels [ AP [APY [ S T M [ L |
Retina [33] 9502 | 37.8 | 57.5 | 202 | 41.1 | 49.2
D-RFCN [44] 9502 | 384 | 60.1 | 185 | 41.6 | 525
Mask-RCNN [63] 9502 | 39.8 | 623 | 22.1 | 432 | 512
FSAF [64] 9502 | 409 | 61.5 | 24.0 | 442 | 51.3
LightH [65] 9502 | 41.5 - | 252|453 | 531
FCOS [66] 9502 | 41.5 | 60.7 | 244 | 448 | 51.6
Refine+ [67] 31002 | 41.8 | 62.9 | 25.6 | 45.1 | 54.1
Corner+ [68] 12402 | 42.1 | 57.8 | 208 | 44.8 | 56.7
FoveaBox-align [35] | 9502 | 42.1 | 62.7 | 252 | 46.6 | 545
Cascade R-CNN [69] | 9502 | 42.8 | 62.1 | 23.7 | 45.5 | 55.2
FSAF+ (+hflip) [64] | 4100% | 42.8 | 63.1 | 27.8 | 455 | 53.2
RepPoints [70] 9502 | 45.0 | 66.1 | 26.6 | 48.6 | 57.5
RepPoints+ [70] 28502 | 46.5 | 674 | 303 | 49.7 | 57.1
| SNIP | 19102 | 444 | 662 | 273 | 474 | 56.9 |
| SNIPER | 19102 | 47.9 | 68.3 | 31.5 | 50.5 | 60.3 |
11752 | 479 | 683 | 31.5 | 50.5 | 60.3

AutoFocus 9302 | 472 | 67.5 | 309 | 49.0 | 60.0

8602 | 469 | 67.0 | 30.1 | 489 | 60.0

TABLE 11: Comparison on the PASCAL VOC 2007 test-set.
All methods use ResNet-101 and trained on VOC2012 train-
val+VOC2007 trainval. The average pixels processed over the
dataset are also reported. To show the robustness of AutoFocus
to hyper-parameter choices, in ‘*’ we use the same parameters as
COCO and run the algorithm on PASCAL.

[ Method [ Pixels [ AP [ APT |
Faster RCNN [50] 7052 | 76.4 -
R-FCN [24] 7052 | 80.5 -
C-FRCNN [71] 7052 | 822 -
Deformable ConvNet [23] 7052 | 823 | 67.8
CoupleNet [72] 7052 | 82.7 -
FSN [73] 7052 | 82.9 -
Deformable ConvNet v2 [74] | 7052 849 | 73.5

| SNIPER | 19152 | 86.6 | 80.5 |

| AutoFocus* | 8602 | 858 | 79.5 |
7002 | 853 | 78.1

AutoFocus ‘ 12502 | 86.5 ‘ 80.2 ‘
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Fig. 15: Each row shows the inference pipeline in AutoFocus. The confidence for FocusPixels and FocusChips are shown in red, and
yellow respectively in the second and fourth columns. Detections are shown in green. As can be seen, complex images containing many
small objects like the first row can generate multiple FocusChips in high resolutions like 1400 x 2000. Images which do not contain
small objects are not processed at all in high resolution, like the one in the second row.

difficult to fairly compare different detectors as they differ in
backbone architectures (like ResNet [25], ResNext [75], Xception
[76]), pre-training data (e.g. ImageNet-5k, JFT [77], Openlmages
[78]), different structures in the underlying network (e.g multi-
scale features [0], [29], deformable convolutions [23], heavier
heads [53], anchor sizes, path aggregation [31]), test time aug-
mentations like flipping, mask tightening, iterative bounding box
regression etc. In our comparison, we use a ResNet-101 backbone
for all methods. Besides AP at different thresholds and different
object sizes, we also show the average number of pixels processed
by each method during inference.

First, among our methods, SNIPER outperforms its baseline
SNIP, while improving the training speed noticeably. AutoFocus,
on the other hand, exactly matches its baseline SNIPER, in terms
of AP, however, reduces the number of pixels processed by more
than 2X. In terms of absolute clock time, SNIPER processes 2.5
images per second. AutoFocus increases the speed to 6.4 images
per second. To compare, RetinaNet with a ResNet-101 backbone
and a FPN architecture processes 6.3 images per second on a P100
GPU (which is like Titan X), but obtains 37.8% mAP 3. As can be
seen, AutoFocus can effectively reduce the number of processed
pixels further to 8602 while still achieving higher APs compared
to multi-scale methods such as RepPoins+ [70] which on average
processes around 11x more pixels.

We also report results on the PASCAL VOC dataset in
Table 11. To show the robustness of AutoFocus to its hyper-
parameters, we use exactly the same hyper-parameters tuned for
COCO (shown as AutoFocus*). While processing the same area
as DeformableV2 [74], AutoFocus achieves 4.6% better AP at
0.7 IoU. It also matches the performance of SNIPER while being
considerably more efficient.

5 CONCLUSION

We provided critical insights into the popular single-scale object-
detection paradigm and highlighted some of its detrimental limi-
tations. Carefully designed experiments showed that large scale-
variation in object sizes adversely affects both the training and

3. https://github.com/facebookresearch/Detectron/blob/master/MODEL _
700.md

inference performance for object detection. Based on the charac-
teristics of the human foveal-vision system and scale-space theory,
scale-normalized image pyramids are proposed as an effective
tool to tackle the aforementioned scale-variation and its effec-
tiveness is showed on multiple popular object-detection systems.
Generalizable guidelines are also provided to implement scale-
normalization based on the input image, network architecture and
objects of interest that can be further used for other applications
as well. Our proposed technique to perform efficient spatial and
scale-space sub-sampling of salient regions resulted in 3 X faster
training and 10X reduction in memory complexity which coun-
tered the increased computational complexity introduced by the
scale-normalized image pyramid. The reduced memory complex-
ity also enabled the use of batch-normalization which improved
the results further, leading to state-of-the-art performance on
the COCO benchmark. Finally, we presented an active foveal
vision-system that processes the image pyramid in a coarse-to-
fine manner to predict the location of object-like regions in the
finer resolution scales, which speeds up inference by 3 X resulting
in near real-time detection on commodity GPUs.
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