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Abstract—We propose a new STAckable Recurrent cell (STAR) for recurrent neural networks (RNNs), which has fewer parameters

than widely used LSTM [16] and GRU [

] while being more robust against vanishing or exploding gradients. Stacking recurrent units

into deep architectures suffers from two major limitations: (i) many recurrent cells (e.g., LSTMs) are costly in terms of parameters and
computation resources; and (i) deep RNNs are prone to vanishing or exploding gradients during training. We investigate the training of
multi-layer RNNs and examine the magnitude of the gradients as they propagate through the network in the “vertical” direction. We
show that, depending on the structure of the basic recurrent unit, the gradients are systematically attenuated or amplified. Based on
our analysis we design a new type of gated cell that better preserves gradient magnitude. We validate our design on a large number of
sequence modelling tasks and demonstrate that the proposed STAR cell allows to build and train deeper recurrent architectures,
ultimately leading to improved performance while being computationally more efficient.

Index Terms—Recurrent neural network, Deep RNN, Multi-layer RNN.

1 INTRODUCTION

Recurrent Neural Networks (RNN) have established them-
selves as a powerful tool for modelling sequential data. They
have led to significant progress for a variety of applications,
notably language processing and speech recognition [13],
(58], [42].

The basic building block of an RNN is a computational
unit (or cell) that combines two inputs: the data of the current
time step in the sequence and the unit’s own output from
the previous time step. While RNNs can in principle handle
sequences of arbitrary and varying length, they are (in their
basic form) challenged by long-term dependencies, since
learning those would require the propagation of gradients
over many time steps. To alleviate this limitation, gated
architectures have been proposed, most prominently Long
Short-Term Memory (LSTM) cells [16] and Gated Recurrent
Units (GRU) [10]. They use gating mechanisms to store
and propagate information over longer time intervals, thus
mitigating the vanishing gradient problem.

In general, abstract features are often represented better
by deeper architectures [5]. In the same way that multiple
hidden layers can be stacked in traditional feed-forward
networks, multiple recurrent cells can also be stacked on
top of each other, ie., the output (or the hidden state)
of the lower cell is connected to the input of the next-
higher cell, allowing for different dynamics. For instance
one might expect low-level cues to vary more with lighting,
whereas high-level representations might exhibit object-
specific variations over time. Several works [11], [34], [49]
have shown the ability of deeper recurrent architectures to
extract more complex features from the input and make
better predictions. However, such architectures are usually
composed of just two or three layers because training deeper

recurrent architectures still presents an open problem. More
specifically, deep RNNs suffer from two main shortcomings:
(i) they are difficult to train because of gradient instability,
i.e., the gradient either explodes or vanishes during training;
and (ii) the large number of parameters contained in each
single cell makes deep architectures extremely resource-
intensive. Both issues restrict the practical use of deep RNNs
and particularly their usage for image-like input data, which
generally requires multiple convolutional layers to extract
discriminative, abstract representations. Our work aims to
address these weaknesses by designing a recurrent cell that,
on the one hand, requires fewer parameters and, on the
other hand, allows for stable gradient back-propagation
during training; thus allowing for deeper architectures.

Contributions We present a detailed, theoretical analysis
of how the gradient magnitude changes as it propagates
through a cell in a deep RNN lattice. Our analysis offers
a different perspective compared to existing literature about
RNN gradients, as it focuses on the gradient flow across lay-
ers in depth direction, rather than the recurrent flow across
time. We show that the two dimensions behave differently,
i.e., the ability to preserve gradients in time direction does
not necessarily mean that they are preserved across layers,
too. We believe that the analysis in this paper contributes a
further, complementary step towards a full understanding
of gradient propagation in deep RNNS.

We leverage our analysis to design a new, lightweight
gated cell, termed the STAckale Recurrent (STAR) unit. The
STAR cell better preserves the gradient magnitude in the
deep RNN lattice, while at the same time using fewer
parameters than existing gated cells like LSTM [16] and
GRU [10].

We compare deep recurrent architectures built from dif-
ferent cells in an extensive set of experiments with several



popular datasets. The results confirm our analysis: training
very deep recurrent nets fails with most conventional units,
whereas the proposed STAR unit allows for significantly
deeper architectures. Moreover, our experiments show that
the proposed cell outperforms alternative designs on several
different tasks and datasets.

2 RELATED WORK

Vanishing or exploding gradients during training are a
long-standing problem of recurrent (and other) neural net-
works [6], [15]. Perhaps the most effective measure to ad-
dress them so far has been to introduce gating mechanisms
in the RNN structure, as first proposed by [16] in the form
of the LSTM (long short-term memory), and later by other
architectures such as gated recurrent units [10].

Importantly, RNN training needs proper initialisation.
In [14], [22] it has been shown that initialising the weight
matrices with identity and orthogonal matrices can be useful
to stabilise the training. This idea is further develop in [3],
[45], where authors impose the orthogonality throughout
the entire training to keep the amplification factor of the
weight matrices close to unity, leading to a more stable
gradient flow. Unfortunately, it has been shown [43] that
such hard orthogonality constraints hurt the representation
power of the model and in some cases even destabilise the
optimisation.

Another line of work has studied ways to mitigate the
vanishing gradient problem by introducing additional (skip)
connections across time and/or layers. Authors in [7] have
shown that skipping state updates in RNNs shrinks the
effective computation graph and thereby helps to learn
longer-range dependencies. Other works such as [19], [30]
introduce a residual connection between LSTM layers; how-
ever, the performance improvements are limited. In [11]
the authors propose a gated feedback RNN that extends
the stacked RNN architecture with extra connections. An
obvious disadvantage of such an architecture are the extra
computations and memory costs of the additional connec-
tions. Moreover, the authors only report results for rather
shallow networks up to 3 layers.

Many of the aforementioned works propose new RNN
architectures by leveraging a gradient propagation analysis.
However all of these studies, as well as other studies which
specifically aim at modelling accurately gradient propaga-
tion in RNNs [3], [9], [28], overlook the propagation of the
gradient along the “vertical” depth dimension. In this work
we will employ similar gradient analysis techniques, but
focus on the depth dimension of the network.

Despite the described efforts, it remains challenging to
train deep RNNSs. In [49] authors propose to combine LSTMs
and highway networks [36] to form Recurrent Highway
Networks (RHN) and train deeper architectures. RHN are
popular and perform well on language modelling tasks, but
they are still prone to exploding gradients, as illustrated
in our experiments. Another solution to alleviate gradient
instability in deep RNNs was recently proposed in [25]. The
work suggests the use of a restricted RNN called IndRNN
where all interactions are removed between neurons in the
hidden state of a layer. This idea combined with the usage of
batch normalization appears to greatly stabilize the gradient
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propagation through layers at the cost of a much lower rep-
resentation power per layer. Such feature hinders IndRNN
ability to achieve high performance for complex problems
such as satellite image sequence classification or other com-
puter vision tasks. In these tasks it is very important to
merge information from neighboring pixels to increase the
receptive field of the network so that the model has the
ability to represent long-range spatial dependencies. Since
IndRNN has no interaction between neurons it is difficult to
achieve good spatio-temporal modeling effectively.

To process image sequence data, computer vision sys-
tems often rely on Convolutional LSTMs [46]. But while
very deep CNNs are very effective and now standard [21],
[35], stacks made of more than a few convLSTMs do not
train well. Moreover, the computational cost increase rather
quickly due to the large numbers of parameters in each
LSTM cell. In practice, shallow versions are preferred, for in-
stance [26] use a single layer for action recognition, and [48]
use two layers to recognise hand gestures (combined with a
deeper feature extractor without recursion).

3 BACKGROUND AND PROBLEM STATEMENT

In this section we revisit the mathematics of RNNs with
particular emphasis on the gradient propagation. We will
then leverage this analysis to design a more stable recurrent
cell, which is described in Sec. 4. A RNN cell is a non-linear
transformation that maps the input signal x;, at time ¢ and
the hidden state of the previous time step ¢ —1 to the current
hidden state h;:

h; = f(fl?t, hi_y, W) s 1)

with W the trainable parameters of the cell. The input
sequences have an overall length of T, which can vary.
It depends on the task whether the final state h7, the
complete sequence of states {h;}, or a single sequence label
(typically defined as the average % >+ hy) are the desired
target prediction for which loss £ is computed. Learning
amounts to fitting W to minimise the loss, usually with
stochastic gradient descent.

When stacking multiple RNN cells on top of each other,
the hidden state of the lower level [ —1 is passed on as input
to the next-higher level [ (Fig. 1). In mathematical terms this
corresponds to the recurrence relation

hé = f(hiilv héflvw) . )

Temporal unfolding leads to a two-dimensional lattice with
depth L and length T' (Fig. 1), the forward pass runs from
left to right and from bottom to top. Gradients flow in
opposite direction: at each cell the gradient w.r.t. the loss
arrives at the output gate and is used to compute the
gradient w.rt. (i) the weights, (i) the input, and (iii) the
previous hidden state. The latter two gradients are then
propagated through the respective gates to the preceding
cells in time and depth. In the following, we investigate how
the magnitude of these gradients changes across the lattice.
The analysis, backed up by numerical simulations, shows
that common RNN cells are biased towards attenuating or
amplifying the gradients and thus prone to destabilising the
training of deep recurrent networks.
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Fig. 1: (a) General structure of an unfolded deep RNN (b)
Detail of the gradient backpropagation in the two dimen-
sional lattice.

3.1 Gradient Magnitudes

The gradient w.r.t. the trainable weights at a single cell in
the lattice is

8hl
Guw = ow ghl 3)

where 2 a
vector contammg the partial derivatives of the loss wrt. the
cell’s output (hidden) state. From the equation, it becomes
apparent that the Jacobian acts as a “gain matrix” on the
gradients, and should on average preserve their magnitude
to prevent them from vanishing or exploding. We obtain the
recurrence for propagation by expanding the gradient gy,
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with J! the Jacobian w.rt. the input and H} the Jacobian
w.r.t. the hidden state. Ideally we would like the gradient
magnitude ||gp |2 to remain stable for arbitrary [ and ¢.
Characterising that magnitude completely is difficult be-
cause correlations may exist between G+t and ghz+ for
instance, due to weight sharing. Nonetheless, it is evident
that the two Jacobians J; ™' and H! 11 play a fundamental
role: if their singular values are small, they will attenuate the
gradients and cause them to vanish sooner or later. If their
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singular values are large, they will amplify the gradients
and make them explode.'

In the following, we analyse the behaviour of the two
matrices for two widely used RNN cells. We first consider
the most simple RNN cell, hereinafter called Vanilla RNN
(VRNN). Its recurrence equation reads

h! = tanh(W,h!™' + W,,h!_, +b) (5)
from which we get the two Jacobians

J=D

Hl =D

tanh(thi*wWhhg_ﬁb)'WI (6)
tanh(WIhi_1+Whhlt71+b)’Wh @)

where D, denotes a diagonal matrix with the elements of
vector x as diagonal entries. Ideally, we would like to know
the expected values of the two matrices’ singular values.
Unfortunately, there is no easy way to derive a closed-
form analytical expressions for them, but we can compute
them for a fixed, representative point. The most natural and
illustrative choice is to set hi™' = hl! | = 0 because (i)
in practice, RNNs’ initial hidden states are set to hl, = 0
(like in our experiments), and (ii) it is a stable and attracting
fixed point so if the hidden state is perturbed around this
point, it tends to return to its initial point. Note that this
does not mean that the hidden state of the network is always
equal to zero. The goal of the assumption is only simply to
fix the value of the hidden state, in order to analyse the
gradient propagation. We further choose weight matrices
W), and W, with average singular value equal to one
and b = 0 (different popular initialisation strategies, such
as orthogonal and identity matrices, are aligned with this
assumption). Moreover, according to [18], [24], in the limit
of a very wide network the parameters tend to stay close to
their initial values, as a result the assumptions made are still
legitimate during training (see the Appendix for empirical
evidence). Since the derivative tanh’(0) = 1, the average
singular values of all matrices in Eq. (7) are equal to 1 in
this configuration.

We expect to obtain a gradient g;: with a larger mag-
nitude by combining the contributions of gpi+ and gni,
To obtain a more precise estimate of the resultmg gradlent
we should take into account the correlation between the
two terms. However, if we examine two extreme cases (i)
there is no or very small correlation between two gradient
contributions, and (ii) they are highly (positively) correlated.
The scaling factors of vVRNN for the gradient are 1.414 and 2.
respectively. Therefore, regardless of the correlation between
the two terms, the gradient of vRNN is systematically grow-
ing while it propagates back in time and through layers. A
deep network made of vRNN cells with orthogonal or iden-
tity initialisation can thus be expected to suffer, especially
in the initial training phase, from exploding gradients as we
move towards shallower layers and further back in time.
To validate this assumption, we set up a toy example of a
deep VRNN and compute the average gradient magnitude
w.r.t. the network parameters for each cell in the unfolded
network. For the numerical simulation we initialise all the

1. A subtle point is that sometimes large gradients are the precursor
of vanishing gradients, if the associated large parameter updates cause
the non-linearities to saturate.
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hidden states and biases to 0, and chose random orthogonal
matrices for the weights. Input sequences are generated
with the random process ; = axz;_1 + (1 — a)z, where
z ~ N(0,1) and the correlation factor a = 0.5 (the choice
of the correlation factor does not seem to qualitatively affect
the results). Figure 2 depicts average gradient magnitudes
over 10K runs with different weight initialisations and in-
put sequences. As expected, the magnitude grows rapidly
towards the earlier and shallower part of the network.

We perform a similar analysis for the classical LSTM
cell [16]. The recurrent equations of the LSTM cell are the
following;:

it = o(Wyihi™' + Wihi_, + b)) (10)
fl=o(Waphi™ + Wiphi_; + by) (11)
o} = o(Waohy ™ + Wiohi_, + b,) (12)
zl = tanh(W,,hi™* + W,.h! | +b,) (13)
¢ =floci_ +ij0z (14)
hl = ol o tanh(c!), (15)

where i, f, o are the input, forget, and output gate activa-
tions, respectively, c is the cell state. The expressions of the
Jacobians are reported in Egs. (8,9) where D,, again denotes
a diagonal matrix with the elements of vector x as diagonal
entries. The equations are slightly more complicated, but
are still amenable to the same type of analysis. We again
choose the same exemplary conditions as for the vVRNN
above, ie., hidden states and biases equal to zero and
orthogonal weight matrices. By substituting the numerical
values in the aforementioned equations, we can see that
the sigmoid function causes the expected singular value of
the two Jacobians to drop to 0.25. Contrary to the vVRNN
cell, we expect that even the two Jacobians combined will
produce an attenuation factor well below 1 (considering
the same two extreme cases, i.e., uncorrelated and highly
correlated, the value is 0.354 and 0.5, respectively) such that
the gradient magnitude will decline and eventually vanish.
We point out that LSTM cells have a second hidden state, the
so-called “cell state”. The cell state only propagates along
the time dimension and not across layers, which makes the
overall effect of the corresponding gradients more difficult
to analyse. However, for the same reason one would, in a
first approximation, expect that the cell state mainly influ-
ences the gradients in the time direction, but cannot help
the flow through the layers. Again the numerical simulation
results support our hypothesis as can be seen in Fig. 2.
The LSTM gradients propagate relatively well backward
through time, but vanish quickly towards shallower layers.

In summary, the gradient propagation behaves differ-
ently in time and depth directions. When considering the
latter we need to take into consideration the gradient of the
output w.r.t. the input state, too, and not exclusively con-
sider the gradient w.r.t. the previous hidden state. Moreover,
we need to take into account that the output of each cell is
connected to two cells rather then one adjacent cell. Note that

D(fé)/th +Dz£D(ii)’WIi +DiéD(z%)’WhZ) (9)

STAR

LSTM

Fig. 2: Mean value of gradient magnitude with respect to the
parameters for different RNN units. top row: loss £(h%) only
on final prediction. bottom row: loss L(h¥ ...h%L) over all
time steps. As the gradients flow back through time and lay-
ers, for a network of vanilla RNN units they get amplified;
for LSTM units they get attenuated; whereas the proposed
STAR unit approximately preserves their magnitude. See the
Appendix for the results with the real data.

this analysis is valid both when the loss is computed only
using the final state 7', and when all states are used (Fig. 2).
In the latter case, we simply need to sum the contribution
of all the separate losses. Usually, parameters are shared
among different times ¢ in RNNSs, but not among different
layers. If parameters are shared among different time steps,
gradients accumulate row-wise (Fig. 2) increasing the gra-
dient magnitude w.r.t. the parameters. This, however, is not
true in the vertical direction as weights are not shared. As a
consequence, it is particularly important to ensure that the
gradient magnitude is preserved between adjacent layers.

4 THE STAR UNIT

Building upon the previous analysis, we introduce a novel
RNN cell designed to avoid vanishing or exploding gra-
dients while reducing the number of parameters. We start
from the Jacobian matrix of the LSTM cell and investigate
what design features are responsible for such low singular
values. We see in Eq. (9) that every multiplication with
tanh non-linearity (Diann(.)), gating functions (D)), and
with their derivatives can only ever decrease the singular
values of W, since all those terms are always <1. The
effect is particularly pronounced for the sigmoid and its
derivative, |0’(-)] < 0.25 and E[|o(z)|] = 0.5 for zero-
mean, symmetric distribution of z. In particular, the output
gate ol is a sigmoid and plays a major role in shrinking
the overall gradients, as it multiplicatively affects all parts
of both Jacobians. As a first measure, we thus propose to
remove the output gate, which leads to h! and ¢! carrying
the same information (the hidden state becomes an element-
wise non-linear transformation of the cell state). To avoid
this duplication and further simplify the design, we transfer
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Fig. 3: RNN cell structures: STAR, GRU and LSTM, respectively.

the tanh non-linearity to the hidden state and remove the
cell state altogether.

As a final modification, we also remove the input gate 3}
from the architecture and couple it with the forget gate. We
observed in detailed simulations that the input gate harms
performance of deeper networks. This finding is consistent
with the theory: for an LSTM cell with only the output gate
removed, the Jacobians HY, J! will on average have singular
values 1, respectively 0.5 (under the same conditions of
Sec. 3). This suggests exploding gradients, which we indeed
observe in numerical simulations. Moreover, signal propa-
gation is less stable: state values can easily saturate if the two
gates that control flow into the memory go out of sync. The
gate structure of RHN [49] is similar to that configuration,
and does empirically suffer from exploding, then vanishing,
gradient (Fig. 4b).

More formally, our proposed STAR cell in the [-th layer
takes the input hifl (in the first layer, x;) at time ¢ and non-
linearly projects it to the space where the hidden vector h'
lives, equation 16. Furthermore, the previous hidden state
and the new input are combined into the gating variable
k! (equation 17). k! is our analogue of the forget gate and
controls how information from the previous hidden state
and the new input are combined into a new hidden state.
The complete dynamics of the STAR unit is given by the
expressions

z! = tanh(W,h!"! +b.) (16)
El = o(W,h!" + W,k | +by) (17)
h. =tanh ((1 — ki) o hl_, + ki o z}). (18)

The Jacobian matrices for the STAR cell can be computed
similarly to how it is done for the vRNN and LSTM (see the
Appendix). In this case each of the two Jacobians has aver-
age singular values equal to 0.5. In the same two extreme
cases previously considered, the scaling factor for the gradi-
ent becomes 0.707 and 1, respectively. Even if the gradient
decays in the first case (worst case scenario, no correlation
between two gradient contributions), it does so more slowly
compared to LSTM. In the second case, the gradient can
propagate without decaying or amplifying which is the ideal
scenario. Empirically we have observed that, for an arbitrary
STAR cell in the grid, these two terms are highly positively
correlated, leading, ultimately, to a gradient scaling factor
close to one. We repeat the same numerical simulations as
above for the STAR cell, and find that it indeed maintains
healthy gradient magnitudes throughout most of the deep
RNN (Fig. 2). Finally, we point out that our proposed STAR
architecture requires significantly less memory than most
alternative designs. For the same input and hidden state

size, STAR has a 50%, respectively and 60% smaller memory
footprint than GRU and LSTM. In the next section, we
experimentally validate on real datasets that deep RNNs
built from STAR units can be trained to a significantly
greater depth while performing on par or better than state-
of-the-art despite having fewer parameters.

5 EXPERIMENTS

We evaluate the performance of several well-known RNN
cells as well as that of the proposed STAR cell on differ-
ent sequence modelling tasks with ten different datasets:
sequential versions of MNIST [23], the adding [16], and
copy memory [6] problems, music modeling [2], [29],
character-level language modeling [27], which are a com-
mon testbeds for recurrent networks; three different remote
sensing datasets, where time series of intensities observed
in satellite images shall be classified into different agricul-
tural crops [31], [32], [33]; and Jester [1] for hand gesture
recognition. We use convolutional layers for gesture recogni-
tion and pixel-wise crop classification, whereas we employ
conventional fully connected layers for the other tasks. The
recurrent units we compare include the vRNN, the LSTM,
the LSTM with only a forget gate [40], the GRU, the RHN
[49], IndRNN [25], temporal convolution network (TCN) [4],
transformer [41], and the proposed STAR. The experimental
protocol is similar for all tasks: For each model variant,
we train multiple versions with different depth (number of
layers) and the best performing one is picked. Classification
performance is measured by the rate of correct predictions
(top-1 accuracy) for classification tasks, bits per character for
character-level language modeling task and negative log-
likelihood (NLL) for the rest of the tasks. Throughout the
different experiments, we use orthogonal initialisation for
weight matrices of RNNs. Training and network details for
each experiment can be found in the Appendix.?

5.1 Pixel-by-pixel MNIST

We flatten all 2828 grey-scale images of handwritten digits
of the MNIST dataset [23] into 784 x1 vectors, and the 784
values are sequentially presented to the RNN. The models’
task is to predict the digit after having seen all pixels. The
second task, pMNIST, is more challenging. Before flattening
the images pixels are shuffled with a fixed random permuta-
tion, turning correlations between spatially close pixels into
non-local long-range dependencies. As a consequence, the

2.Code and trained models (in Tensorflow), as well as
code for the simulations (in PyTorch), are available online:
https://github.com/0zgur0/STAR_Network.
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model needs to remember dependencies between distant
parts of the sequence to classify the digit correctly. Fig. 4a
shows the average gradient norms per layer at the start
of training for 12-layer networks built from different RNN
cells. Propagation through the network increases the gra-
dients for the vRNN and shrinks them for the LSTM. As
the optimisation proceeds, we find that STAR and IndRNN
remain stable, whereas all other units see a rapid decline of
the gradients already within the first epoch, except for RHN,
where the gradients explode, see Fig. 4b. Consequently,
STAR and IndRNN are the only units for which a 12-layer
model can be trained, as also confirmed by the evolution of
the training loss, Fig. 4c.

IndRNN’s gradient propagation through layers is also
stable even though not as good as STAR’s. However, In-
dRNN strongly relies on Batch Normalization (BN) [17] for
stable gradient propagation through layers while STAR does
not require BN. If we remove the BNs between consecutive
layers in IndRNN (denoted IndRNN w /o BN), its gradient
propagation through layers and iterations becomes very
unstable (see Fig. 4a and 4b). Indeed, IndRNN cannot be
trained in those cases. It does not only fail for deeper,
12-layer setups applied to sequential MNIST, but also for
shallower designs. Apart from increasing the computation
overhead, general drawbacks of IndRNN’s dependency on
BN are: (i) slow convergence during training and (ii) poor
performance during inference if batch size is small (see the
Appendix for further quantitative analysis).

Fig. 5 confirms that stacking into deeper architectures
does benefit RNNs (except for vRNN); but it increases the
risk of a catastrophic training failure. STAR is significantly
more robust in that respect and can be trained up to >20 lay-
ers. On the comparatively easy and saturated MNIST data,
the performance is comparable to a successfully trained
LSTM (at depth 2-8 layers, LSTM training sometimes catas-
trophically fails; the displayed accuracies are averaged only
over successful training runs).

In 1 we show that our STAR cell mostly outperforms ex-
isting methods. As STAR is specifically designed to improve
gradient propagation in the vertical direction, we conduct
one additional experiment with a hybrid architecture: we
use LSTM with a forget gate (which achieves good perfor-
mance on the MNIST dataset in the one layer case) as first
layer of the network and we stack seven layers of STAR cells
on top. Such a design increases the capacity of the first layer
without endangering gradient propagation. This further
improves accuracy for both MNIST and pMNIST, leading
to on par performance across both tasks with the best state-
of-the-art methods BN-LSTM [12] and IndRNN [25]. Both
methods employ Batch Normalization [17] inside the cells to
improve the performance wrt to the simpler form of LSTM
and IndRNN. We tested a version of the STAR cell which
used BN and also in this case the modification lead to some
performance improvements. This modification, however, is
rather general and independent of the cell architecture, as it
can be added to most of the other existing methods.

5.2 Adding Problem / Copy Memory

The adding problem [16] and the copy memory [6] are
common benchmarks to evaluate whether a network is able
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Fig. 5: Accuracy results for pixel-by-pixel MNIST tasks.

to learn long-term memory. In the adding problem, two
sequences of length T" are taken as input: the first sequence
consists of independent samples in range (0, 1), while the
second sequence is a binary vector with two entries set to 1
and the rest 0. The goal is to sum the two entries of the first
sequence indicated by the two entries of 1 in the second
sequence. In copy memory task, the input sequence is of
length T"+20. The first 10 values in the sequence are chosen
randomly among the digits {1, ..., 8}, the sequence is then
followed by T zeros, the last 11 entries are filled with the
digit 9 (the first 9 is a delimiter). The goal is to generate an
output of the same length that is zero everywhere except
for the last 10 values after the delimiter, where the model
is expected to repeat the 10 values encountered at the
beginning of the input sequence. We perform experiments
with two different sequence lengths, 7' = 200 and T = 1000,
using different RNNs with the same number of parameters
(7T0K). The results are shown in Fig. 6, 7. The vRNN is
unable to perform long-term memorization, whereas LSTM
has issue with longer sequences (1" = 1000). In contrast,
both STAR and GRU, can learn long-term memory even

Method MNIST pMNIST  units
vRNN (1 layer) 24.3% 44.0% 128
LSTM (2 layers) 98.4% 91.9% 128
GRU (2 layers) 98.8% 93.9% 128
RHN (2 layers) 98.4% 89.5% 128
iRNN [22] 97.0% 82.0% 100
uRNN [3] 95.1% 91.4% 512
FC uRNN [45] 96.9% 94.1% 512
Soft ortho [43] 94.1% 91.4% 128
AntisymRNN [8] 98.8% 93.1% 128
IndRNN [25] 99.0% 96.0% 128
BN-LSTM [12] 99.0% 95.4% 100
sTANH-RNN [47]  98.1% 94.0% 128
STAR (8 layers) 99.2% 94.1% 128
STAR (12 layers) 99.2% 94.7% 128
LSTMW/ESTAR g9 40, 954% 128
(8 layers)

TABLE 1: Performance comparison for pixel-by-pixel
MNIST tasks. Our best performing configuration
bold underlined, top performers state-of-the-art bold.

when the sequences are very long. An advantage of STAR
in this case is its faster convergence.

5.3 TUM & BreizhCrops Time Series Classification

We evaluate model performance on a more realistic se-
quence modelling problem, where the aim is to classify
agricultural crop types using sequences of satellite images.
In this case, time-series modelling captures phenological
evidence, i.e. different crops have different growing patterns
over the season. For the TUM dataset, the input is a time
series of 26 multi-spectral Sentinel-2A satellite images with
a ground resolution of 10m collected over a 102 km x 42
km area north of Munich, Germany between December
2015 and August 2016 [31]. We use patches of 3x3 pixels
recorded in 6 spectral channels and flattened into 54x1
vectors as input. For the BreizhCrop dataset, the input is a
time series of 45 multi-spectral Sentinel-2A satellite images
with a ground resolution of 10m collected from 580k field
parcels in the Region of Brittany, France of the season 2017.
The input is 4 spectral channels (R, G, B, NIR) [33]. In
the first task, only TUM dataset is used. The vectors are
sequentially presented to the RNN model, which outputs
a prediction at every time step (note that for this task the
correct answer can sometimes be “cloud”, “snow”, ”cloud
shadow” or “water”, which are easier to recognise than
many crops). STAR outperforms all baselines, and it is again
more suitable for stacking into deep architectures (Fig. 8). In
the second task, both datasets are used. The goal is a single-
step prediction i.e., the model predicts a crop type after
the entire sequence is presented. STAR significantly out-
performs all the baselines including TCN and the recently
proposed method, IndRNN [25] (Tab. 2). Note that IndRNN
also aims to build deep multi-layer RNNs. The performance
gain is stronger in the BreizhCrop datasets. This is probably
because the sequence is longer and the depth of the network
helps to capture more complex dependencies in the data.

5.4 Music Modeling

JSB Chorales [2] is a polyphonic music dataset consisting
of the entire corpus of 382 four-part harmonized chorales
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TUM BreizhCrops JSB Chorales Piano-Midi
Method Acc  #params  Acc  #params Method NLL #params NLL #params
vRNN (2 layers) 84.4% 45k 38.1% 55k vRNN [37 8.72 40k 7.65 140k
LSTM (2 layers) 85.9% 170k 60.1% 210k LSTM [37 8.51 650k 7.84 480k
LSTM w/f (2 layers)  85.7% 90k 58.3% 105k GRU [37 8.53 640k 7.62 690k
GRU (2/4 layers) 85.7% 130k 66.4% 350k diagRNN [37] 8.14 420k 7.48 360k
RHN (2 layers) 85.6% 100k - - TCN (2 layers) [4]  8.10 300k - -
IndRNN (4 layers) 85.5% 90k 56.8% 105k
o o STAR (2 layers) 8.13 360k 7.40 480k
TCN (2 layers) 84.9% 300k 61.5% 360k STAR (4 layers) 8.09 830k i )
STAR (4 layers) 87.7% 130k 68.2% 170k
STAR (6 layers) 87.6% 210k 69.6% 270k

TABLE 2: Performance comparison for time series crop
classification.

by J. S. Bach. Each input is a sequence of chord elements.
Each element is an 88-bit binary code that corresponds to
the 88 keys of a piano, with 1 indicating a key pressed
at a given time. Piano-Midi [29] is a classical piano MIDI
archive that consists of 130 pieces by various composers.
These datasets have been used in several previous works to

TABLE 3: Performance comparison for music task. The
performance is measured in terms of negative log-likelihood
(NLL).

investigate the ability of RNNs to represent music [10], [37].
The performance on both tasks is measured in terms of per-
frame negative log-likelihood (NLL) on a test set. We follow
the exact same experimental setup described in [37]. STAR
works better than all tested RNN baselines, and performs
on par with TCN (see Tab. 3).
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5.5 Character-level Language Modeling

For this task we used the PennTreebank (PTB) [27]. When
used as a character-level language corpus, PTB contains
5,059K characters for training, 396K for validation, and 446K
for testing, with an alphabet size of 50. The goal is to predict
the next character given the preceding context. We follow
the exact same experimental setup as [4]. The performance
is measured in terms of bits per character (BPC, i.e. average
cross entropy over the alphabet) on the test set. On this task
STAR outperforms all baselines, including Transformer and
TCN (see Tab. 4).

5.6 Hand-gesture recognition from video

We also evaluate STAR on sequences of images, using con-
volutional layers. We analyse performance of STAR versus
state-of-the-art on gesture recognition from video and pixel-
wise crop classification. The 20BN-Jester dataset V1 [1] is a
large collection of densely-labelled short video clips, where
each clip contains a predefined hand gesture performed by
a worker in front of a laptop camera or webcam. In total,
the dataset includes 148’094 RGB video files of 27 types of
gestures (see Fig. 11). The task is to classify which gesture
is seen in a video. 32 consecutive frames of size 112x112
pixels are sequentially presented to the convolutional RNN.

Method BPC  #params
vRNN [4] 1.48 3M
LSTM (2 layers) [4] 1.36 3M
GRU [4] 1.37 3M
IndRNN (6 layers)* 1.42 3M
TCN (3 layers) [4] 1.31 3M

Transformer (3 layers) [44]  1.45 -

STAR (6 layers) 1.30 3M

TABLE 4: Performance comparison for PennTreebank
character-level language modeling. The performance is mea-
sured in terms of bits per character (BPC). *We run this
experiment as designed in [4]’s experimental setup with a
limited number of parameters to allow for a fair comparison.

Note that [25] reports a better result, but uses many more
model parameters.
Method Accuracy #params
convLSTM (8 layers) 91.8 % 2.2M
convLSTM w/f (8 layers) 92.0 % 1.1IM
convGRU (12 layers) 92.5 % 2.5M
convSTAR (8 layers) 92.3 % 0.8M
convSTAR (12 layers) 92.5 % 1.2M
convLSTM convSTAR (8 layers) 92.7 % 0.9M

TABLE 5: Performance comparison for the gesture recogni-
tion task (Jester).

At the end, the model again predicts a gesture class via
an averaging layer over all time steps. The outcome for
convolutional RNNs is coherent with the previous results,
see Fig. 8b, Tab. 5. Going deeper improves the performance
of all four tested convRNNSs. The improvement is strongest
for convolutional STAR, and the best performance is reached
with a deep model (12 layers). In summary, the results
confirm both our intuitions that depth is particularly useful
for convolutional RNNs, and that STAR is more suitable for
deeper architectures, where it achieves higher performance
with better memory efficiency. We note that in the shallow
1-2 layer setting the conventional LSTM performs a slightly
better than the three others, likely due to its larger capacity.
Lastly, we conduct the same additional experiment with the
hybrid architecture as we do for MNIST tasks. We stack
seven layers of STAR on top of one layer of LSTM. This
further improves the results and achieves 92.7% accuracy
(compared this to eight LSTM layers, which achieve only
91.8% accuracy with about twice as many parameters).

5.7 TUM image series pixel-wise classification

In another experiment with convolutional RNNs, we clas-
sify crops pixel-wise (and thus use convolutional layers)
using a dataset [32] (TUM) containing Sentinel-2A op-
tical satellite image sequences (RGB and NIR at 10 m
ground sampling distance) accompanied by ground-truth
land cover maps. Each satellite image sequence contains
30 images of size 48 x 48 px collected in 2016 within a
102 km x 42 km region north of Munich, Germany (see
Fig. 12). We compare pixel-wise classification accuracy for a
network with a fixed depth of four layers and for four dif-
ferent basic recurrent cells LSTM, LSTM with only a forget
gate, GRU, and the proposed STAR cell (Tab. 6). Moreover



Method Acc  #params #compute
biconvGRU g9 70, 6om 46bn
(1 layer) [32]

convLSTM 90.6% 292k 2.7bn
(4 layers)
convLSTM w/f 89.6% 161k 1.5bn

(4 layers)

CovERU 9519, 207k 2.1bn

(4 layers)

convSTAR 91.9% 124k 1.1bn
(4 layers)

TABLE 6: Performance comparison for TUM pixel-wise im-
age classification task.
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Fig. 9: Accuracy versus number of model parameters for the
gesture recognition task (Jester).

we include the performance obtained in [32] using a bidi-
rectional convolutional GRU with a single layer. Our STAR
cell outperforms all other methods (Tab. 6) while requiring
less memory and being computationally less costly.

5.8 Computational Resources and Training Time

Last, we compare to widely used recurrent units LSTM and
GRU in terms of parameter efficiency and training time
for the convolutional version used in gesture recognition.
We plot performance versus number of parameters (Fig. 9)
STAR outperforms LSTM and performs on par with GRU,
but requires only half the number of parameters. We plot
accuracy on the validation dataset versus training time for
different recurrent units for the gesture recognition task in
Fig. 10. STAR does not only require significantly less pa-
rameters but can also be trained much faster: the validation
accuracy on the dataset after 8 hours is comparable to the
best validation achieved by the LSTM and the GRU after 20
hours of training.

6 CONCLUSION

We have proposed STAR, a novel stackable recurrent cell
type that it is specifically designed to be employed in deep
recurrent architectures. A theoretical analysis and associated
numerical simulations indicated that widely used standard
RNN cells like LSTM and GRU do not preserve gradient
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Fig. 10: Test accuracy versus training time for the gesture
recognition task (Jester), 4 layers networks.

magnitudes in the “vertical” direction during backpropaga-
tion. As the depth of the network grows, the risk of either
exploding or vanishing gradients increases. We leveraged
this analysis to design a novel cell that better preserves the
gradient magnitude between two adjacent layers, is better
suited for deep architectures, and requires fewer parameters
than other widely used recurrent units. An extensive ex-
perimental evaluation on several publicly available datasets
confirms that STAR units can be stacked into deeper archi-
tectures and in many cases performs better than state-of-the-
art architectures.

We see two main directions for future work. On the one
hand, it would be worthwhile to develop a more formal
and thorough mathematical analysis of the gradient flow,
and perhaps even derive rigorous bounds for specific cell
types, that could, in turn, inform the network design. On
the other hand, it appears promising to investigate whether
the analysis of the gradient flows could serve as a basis for
better initialisation schemes to compensate the systematic
influences of the cells structure, e.g., gating functions, in the
training of deep RNNSs.
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APPENDIX

A.1 RNN Cells Dynamics

In the following, we provide more detailed insights about
the updating rules of the tested cell types.

Vanilla RNN update rule:
h! = tanh(W,h!"! + W,h! | +b) (19)
LSTM update rule:
il = o(Wohl™' + Wihl | +b;) (20)
fi = o(Warhi™ + Wishi_y + by) 1)
ol = o(Wyohi™ + Wi,,hl_| +b,) (22)
zé = tanh(Wmhf1 + thhé,l +b.) (23)

ci=Ffioci_1+ijoz (24)

h! = ol o tanh(c!). (25)
LSTM with only forget gate, update rule:
fi = o(Washi™ + Wishi_y + by) (26)
Zé - tanh(Wthi_l + thh’é—l + bz) (27)
hl =tanh(floh! |+ (1 - fHoz) (28)
GRU update rule:
2t = o(Wo.hi™' + Wi hl_, +b.,) (29)
’l"i = O’(ngrhi_l + Whrhi_1 + b'r) (30)
hi=(1-z)ohl + (31)

+ Zi (¢] tanh (thhi_l + Whh(ri o hfﬁ—l) + bh)

STAR Jacobians:
Ji =Diann(n!_ +klo(zl—hl_,)) (32)
(Dziont_, Dty Wa + Dyt D21y W)
Hy =Dyannny_,+klo(=h—hi_,)y (33)

(I + Dz p_ DigiyWh — D)

Convolutional STAR: We briefly describe the convolutional
version of our proposed cell. The main difference is matrix
multiplications now become convolutional operations. The
dynamics of the convSTAR cell is given in the following
equations.

K. =o(W,*H, " + W, xH,_, +Bg) (34)
Z, = tanh(W, +H. "' + B,) (35)
H, = tanh(H;_, +Kj o (Z{ — H;_,)) (36)

A.2 Further Numerical Gradient Propagation Analysis

In this section, we extend the numerical simulations of the
gradient propagation in the unfolded recurrent neural net-
work to two further cell architectures, namely the GRU [10]
and the LSTM with only forget gate for the synthetic dataset
(Sec. A.2.1); and for the real dataset, MNIST (Sec. A.2.2).
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A.2.1 Synthetic Dataset

The setup of the numerical simulations is the same as the
one described in Section 3. As can be seen from Fig. 13
the GRU and the LSTM with only forget gate mitigate the
attenuation of gradients to some degree. However, we ob-
serve that the corresponding standard deviations are much
higher, i.e., the gradient norm greatly varies across different
runs, see Fig. 14. We found that the gradients within a single
run oscillate a lot more, for both LSTMw/f and GRU, and
make training unstable which is undesirable. Moreover, the
gradient magnitudes evolve very differently for different
initial values, meaning that the training is less robust against
fluctuations of the random initialisation.

LSTM wif Cell GRU Cell STAR Cell

10 10 10

100 100

final output loss

102 102

GRU Cell STAR Cell

100 100

sequence loss
E
5

107 107

Fig. 13: Mean gradient magnitude w.r.t. the parameters for
LSTM with only forget gate, GRU, and the proposed STAR
cell. top row: loss L(h%) only on final prediction. bottom row:
loss £(h¥ ... hk) over all time steps.

LSTM w/f Cell STAR Cell

0 0 GRU Cell

final output loss

STAR Cell

GRU Cell

sequence loss
E
o

Fig. 14: Mean-normalised standard deviation of gradient
magnitude for LSTM with only forget gate, GRU, and the
proposed STAR cell. top row: loss L(h%) only on final pre-
diction. bottom row: loss L(h¥ ... h%) over all time steps.

A.2.2 MNIST Dataset

In this section, we perform the same numerical analysis
conducted before but using MNIST as input data. The goal
is to verify whether during the first epoch the gradient
propagation behaves in the same way as for the synthetic



dataset. First, in Fig 17 and Fig 18, we plot the evolution
of the Hilbert-Schmidt norm (also called Frobenius norm)
normalized by the square root of the hidden state size
and the average hidden state value, respectively. The ex-
periments are conducted using the proposed STAR method
with MNIST as input data, the figures show the evolution
of the norms and hidden states for the different layers of
the recurrent network. The plots show the validity of our
assumptions, during the initial training phase and with
orthogonal matrix initialization the norm of the matrices is
close to one, which translates to singular values close to
one. The mean values of the hidden states are instead close
to zero, which is consistent with the analysis conducted in
Section 3. We reiterate that the plot shows how the average
value of the hidden state remains close to 0 during training.
This does not say that the hidden state is always =0.

Additionally, we show the gradient propagation in the
two-dimensional lattice, as done in Fig. 13, for different cell
types with MNIST as input data. We create 12-by-784 latices
with twelve layers RNNs. RNN weights are initialized the
same way in the real experiments except the forget bias of
the LSTM which is set to one (popular initialization scheme
for the LSTM) due to numerical instability with the chrono
method [39].

In Fig. 15 we can see that cells show similar behavior
for the MNIST dataset. Even though on average STAR and
GRU signal propagation looks fine, gradients within a single
run oscillate a lot more for GRU (see Fig. 16) as seen in the
previous numerical simulation (see Fig. 14).

A.3 Training details

We provide more details about training procedures for the
experimental analysis in the main paper in this section.

A.3.1 Pixel-by-pixel MNIST

Following [39], chrono initialisation is applied for the bias
term of k, b;.. The basic idea is that k should not be too
large; such that the memory h can be retained over longer
time intervals. The same initialisation is used for the input
and forget bias of the LSTM and the RHN and for the forget
bias of the LSTMw /f and the GRU. For the final prediction,
a feedforward layer with softmax activation converts the
hidden state to a class label. The numbers of hidden units in
the RNN layers are set to 128. All networks are trained for
100 epochs with batch size 100, using the Adam optimizer
[20] with learning rate 0.001, 8; = 0.9 and 2 = 0.999.

A.3.2 TUM time series classification

We use the same training procedure as described in the
previous section for pixel-by-pixel MNIST. Again, a feed-
forward layer is appended to the RNN output to obtain a
prediction. The numbers of hidden units in the RNN layers
is set to 128. All networks are trained for 30 epochs with
batch size 500, using Adam [20] with learning rate 0.001,
ﬁl = 0.9 and ﬁg = 0.999.

A.3.3 BreizhCrop time series classification

A feedforward layer is appended to the RNN output to
obtain a prediction. The numbers of hidden units in the
RNN layers is set to 128. All networks are trained for 30

14

epochs with batch size 1024, using Adam [20] with learning
rate 0.001 and 37 = 0.9 and Sy = 0.999. The learning rate
scheduler of [41] is used with 10 warm-up steps.

A.3.4 Adding problem / Copy memory

Following [39], chrono initialisation is applied for the bias
term of k, by. The same initialisation is used for the input
and forget bias of the LSTM and for the forget bias of the
GRU. The number of hidden units is set to 128 for STAR
and LSTM, 150 for GRU and 256 for vRNN. 2-layer STAR
is used to have same number of parameters. Networks are
trained using Adam [20] with learning rate 0.001, 3, = 0.9
and (2 = 0.999.

A.3.5 Music modeling

We follow the exact same experimental setup described
in [37]. Baseline results are taken from [37]. The input
sequence length is set to 200. STAR is trained for 500 itera-
tions with batch size 1, using RMSProp. Dropout with keep
probability 0.8 is applied. Other hyper-parameters (number
of layer, momentum etc.) are searched as described in [37].

A.3.6 Character-level language modeling

We follow the exact same experimental setup described
in [4]. Results for vRNN, LSTM, GRU and TCN are di-
rectly taken from [4]. The input sequence length is set
to 400. The number of hidden units is set to 410 for
STAR; therefore, the total number of parameters for 6-
layers STAR makes 3M. STAR is trained for 50 epochs
with batch size 32, using Adam [20] with learning rate
0.001, 1 = 0.9 and By = 0.999. The learning rate is
decayed when the validation performance is no longer
improved. Gradient clipping with 1 is applied. For IndRNN,
the input sequence length is set to 50 because it performs
poorly if set to 400. We set the number of hidden units
to 660; therefore, the total number of parameters for 6-
layers IndRNN is 3M and we train it for 100 epochs.
Note that we took the IndRNN implementation from
https:/ /github.com/Sunnydreamrain/IndRNN_pytorch.

A.3.7 Hand-gesture recognition from video

All convolutional kernels are of size 3x3. Each convolu-
tional RNN layer has 64 filters. A shallow CNN is used
to convert the hidden state to a label, with 4 layers that
have filter depths 128, 128, 256 and 256, respectively. All
models are trained with stochastic gradient descent (SGD)
with momentum (8 = 0.9). The batch size is set to 8, the
learning rate starts at 0.001 and decays polynomially to
0.000001 over a total of 30 epochs. L2-regularisation with
weight 0.00005 is applied to all parameters.

A.3.8 TUM image series pixel-wise classification

All convolutional kernels are of size 3x3. Each convolu-
tional RNN layer has 32 filters. A shallow CNN is used to
convert the hidden state to a label, with 2 layers that have
filter depths 64. All models are fitted with Adam [20]. The
batch size is set to 1, the learning rate starts at 0.001 and
decays polynomially to 0.000001 over a total of 25 epochs.


https://github.com/Sunnydreamrain/IndRNN_pytorch
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Fig. 19: Performance comparison for different batch sizes
on the sequential MNIST task. If using a batch size of 128,
both STAR and IndRNN converge to a solution; IndRNN is
faster at the beginning but STAR eventually achieves better
performance. IndRNN becomes very slow to train for a
batch size of 2 (64x more steps per epoch) and it cannot
achieve the same test performance as with the standard
batch size (128). In contrast, STAR does not encounter these
problems and clearly performs superior.
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