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Abstract—In a real life process evolving over time, the relationship between its relevant variables may change. Therefore, it is

advantageous to have different inference models for each state of the process. Asymmetric hidden Markov models fulfil this dynamical

requirement and provide a framework where the trend of the process can be expressed as a latent variable. In this paper, we modify

these recent asymmetric hidden Markov models to have an asymmetric autoregressive component in the case of continuous variables,

allowing the model to choose the order of autoregression that maximizes its penalized likelihood for a given training set. Additionally, we

show how inference, hidden states decoding and parameter learning must be adapted to fit the proposed model. Finally, we run

experiments with synthetic and real data to show the capabilities of this new model.

Index Terms—Hidden markov models, Bayesian networks, model selection, structure learning, time series, information asymmetries, linear

gaussian, autoregressive, Yule-Walker equations
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1 INTRODUCTION

HIDDEN Markov models (HMMs) have been successfully
used to analyze dynamic signals, e.g., in speech recog-

nition [1] and tool wearing monitoring [2] or sequential sig-
nals, e.g., in gene prediction [3]. These models assume the
existence of a latent or hidden variable that drives an
observable set of variables. However, traditional HMMs in
the case of continuous data, make the hypothesis that for all
the driving dynamical process, a complete dependence
probabilistic model involving all the variables is held, which
can be untrue. This causes that the models learn a consider-
able number of unnecessary parameters that may cause
data overfitting.

The idea of asymmetric HMMMs is introduced in [4] and
[5]. These models imply that depending on the value of cer-
tain variables, the distribution of the remaining variables
may change. For HMMs, the asymmetric component is
expressed with the hidden variable, with which depending
on its value, a context-specific Bayesian network [6] encodes
the distribution of the emission probabilities. These context-
specific Bayesian networks reduce the number of parame-
ters needed.

Autoregressive (AR) processes have been studied for a
long time, especially for regression tasks [7]. However, the
traditional approaches to AR processes make strong
assumptions as to stationariness that do not hold for many

real case scenarios. This issue was addressed by [8], allow-
ing the models to have changing parameters depending on
the value of a hidden variable. Nevertheless the order of the
AR process had to be fixed beforehand by trial and error.
HMMs and AR processes were combined in [9], where AR
coefficients were added to the emission probabilities.

In this paper we combine the ideas of asymmetric HMMs
with AR processes to overcome the previous shortcomings:
determine the AR order of a model for each hidden state
and reduce the number of unnecessary parameters. Specifi-
cally, our model enables each variable, depending on the
hidden state, to determine its parents within the context-
specific Bayesian network and the number of lags that its
distribution requires to maximize a model fitting score.

The structure of this document is as follows. Section 2
describes related work about asymmetric probabilistic mod-
els and HMMs with AR processes. Section 3 reviews HMMs
in general and summarizes the expectation maximization
algorithm (EM), the structural EM and the Yule-Walker
equations [7] that are relevant tools for our model. Section 4
introduces the proposed autoregressive asymmetric linear
Gaussian hidden Markov model (AR-AsLG-HMM). In this
section we discuss the adaptation of the forward-backward
and Viterbi algorithms [1]. We also describe the parameter
and structural learning and show that the EM algorithm
iteratively improves the log-likelihood of the data for our
model. Section 5 presents experiments with synthetic data,
real air quality and ball-bearing degradation data. The
results obtained using the AR-AsLG-HMM are compared
against its non-AR version and other state-of-the-art
approaches. The paper is rounded off in Section 6 with con-
clusions and comments regarding possible future research.

2 RELATED WORK

In this section we review the related work regarding HMMs
with AR behavior and asymmetric probabilistic models.

� Carlos Puerto-Santana is with the Universidad Polit�ecnica de Madrid,
28040 Madrid, Spain, and also with the Aingura IIoT, 20009 San
Sebasti�an, Spain. E-mail: ce.puerto@alumnos.upm.es.

� Pedro Larra~naga and Concha Bielza are with the Universidad Polit�ecnica
de Madrid, 28040 Madrid, Spain. E-mail: {pedro.larranaga, mcbielza}@fi.
upm.es.

Manuscript received 18 June 2020; revised 2 Dec. 2020; accepted 14 Mar.
2021. Date of publication 25 Mar. 2021; date of current version 4 Aug. 2022.
(Corresponding author: Carlos Puerto Santana.)
Recommended for acceptance by L. Li.
Digital Object Identifier no. 10.1109/TPAMI.2021.3068799

4642 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 9, SEPTEMBER 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8827-0317
https://orcid.org/0000-0002-8827-0317
https://orcid.org/0000-0002-8827-0317
https://orcid.org/0000-0002-8827-0317
https://orcid.org/0000-0002-8827-0317
https://orcid.org/0000-0003-0652-9872
https://orcid.org/0000-0003-0652-9872
https://orcid.org/0000-0003-0652-9872
https://orcid.org/0000-0003-0652-9872
https://orcid.org/0000-0003-0652-9872
mailto:ce.puerto@alumnos.upm.es
mailto:pedro.larranaga@fi.upm.es
mailto:mcbielza@fi.upm.es


Table 1 shows the reviewed articles grouped according to
their contribution.

2.1 Modified Emission Probabilities in HMMs

One of the first combinations of HMM and AR models
attempted to process speech data [9]. Autoregressive polyno-
mials were added to the Gaussian emission probabilities, in
which coefficients were determined via the Baum-Welch
algorithm [1]. Later, [10] proposedmixtures of Gaussian hid-
den Markov models (AR-MoG-HMMs) where the emission
probabilities were modelled as mixtures of Gaussians. These
models were used for speech recognition. In [12] a vectorial
AR multivariate Gaussian HMM (VAR-MVGHMM) was
introduced. This model enables variables to have temporal
dependencies with all the other variables. Again, the model
was used for speech recognition.

Some authors [13] modified the emission probabilities
such that they behave as an AR Gaussian but with an error
coefficient given by the linear prediction residuals [28].

Others also considered variations of HMMs such as hid-
den semi-Markov models (HSMMs), where the time dura-
tion of each hidden state can be modified to not always
follow a geometric distribution, or hierarchical hidden Mar-
kov models (HHMMs) where AR behavior was considered.
For instance, [14] proposed an AR-HSMM, where AR varia-
bles and non-AR variables could be considered in the same

model depending on the modeller’s decision. [16] proposed
a vector AR hierarchical hidden semi-Markov model (VAR-
HHSMM) to classify and determine hand movements.

Other approximations of HMMs with AR properties can
be found in [11] and [8]. The author proposed an edited log-
likelihood function to represent the AR behavior in data.
Markov mean-switching AR models (MMSAR) and linear
Markov-switching AR model (LMSAR) were studied and
their parameters were calculated with the EM algorithm.
[15] proposed the transitional Markov switching autoregres-
sive (TMSAR) model as an extension of MMSAR and
LMSAR models. In this case, the emission probabilities
depend on past values of the hidden process to determine
changes in its mean and its weight. The authors used maxi-
mum likelihood methods with a Newton-Raphson strategy
to estimate the model parameters.

2.2 Modified Hidden Variables

In more recent works, new approaches have been proposed
in which the assumptions about the hidden variables that
govern the process were modified such as the model given
by [17], where the authors edited an autoregressive hidden
Markov model (AR-HMM) by introducing a memoryless
hidden variable. The Markovian hidden states had a proba-
bilistic dependency of this memoryless hidden variable. AR
higher-order HMMs (AR-HO-HMMs) were introduced in
[18]. The authors not only considered an autoregressive
property in the observations, but also a fixed order Markov
assumption in the hidden states specified by the user. They
used mixtures of Gaussians with AR properties for the
emission probabilities.

2.3 Missing Data in HMMs

Other works focused on the missing data. In [19] an AR-
HMM with a missing at random assumption was proposed
to perform exact inference in such scenarios. In [20] the miss-
ing data was considered as latent variables. Specially, when
the sampling rate of the signal was not high enough, hidden
variables were added between observations. Additionally,
the authors proposed a modified forward-backward algo-
rithm and Baum-Welch parameter updating formulas.

2.4 Asymmetric Models

Regarded as asymmetric probabilistic graphical models, the
Bayesian multinets introduced in [22] were used to describe
different local graphical models depending on the values of
certain observed variables; the similarity networks in [21]
allowed the creation of independent influence diagrams1

for subsets of a given domain. Context-specific indepen-
dence in Bayesian networks in [6] used tree structured con-
ditional probability distributions with a D-separation-based
algorithm to determine statistical dependencies between
variables according to contexts given by instantiations of
subsets of variables. Following these ideas, more recently in
[25], stratified graphical models (SGM) were proposed,
where the concept of stratum was introduced to allow

TABLE 1
Reviewed Articles and Their Contributions to

Asymmetric HMMs and AR HMMs

Modified emission probabilities in HMMs:

AR polynomials in emission probabilities [9]
AR Mixture of Gaussians HMM (AR-MoG-HMM) [10]
Markov mean-switching AR model (MMSAR) [11]
Vector AR multivariate Gaussian HMM (VAR-MVGHMM)
[12]
Linear Markov switching AR model (LMSAR) [8]
Gaussian AR-HMMs with a linear error coefficient [13]
AR hidden semi-Markov model (AR-HSMM) [14]
Transitional Markov switching autoregressive model
(TMSAR) [15]
Vector AR hierarchical HSMM (VAR-HHSMM) [16]

Modified hidden variables:
AR-HMMwith an additional memoryless hidden variable
[17]
Higher-order AR-HMM (AR-HO-HMM) [18]

Missing data in HMMs:
AR-HMMwith a missing at random assumption [19]
AR-HMMwith missing data as latent variables [20]

Asymmetric models:
Similarity networks [21]
Bayesian multinets [22]
Context-specific Bayesian networks [6]
Buried Markov model (BMM) [23]
Conditional Chow-Liu trees with HMMs [4]
Chain events graph (CEG) [24]
Stratified graphical model (SGM) [25]
Dynamic chain events graph[26]
Asymmetric HMMwith discrete variables (As-HMM)[5]
Asymetric HMMwith continuous variables (AsLG-HMM)
[27]

1. An influence diagram is a probabilistic graphical model used for
decision problems, where random, decision and value nodes are pres-
ent [29].
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different factorizations for a probability distribution
depending on the values of some of the variables. A nonre-
versible Metropolis-Hastings algorithm to calculate mar-
ginal likelihoods and learn decomposable SGMs was given.
[24] introduced the chain events graphs (CEG). A CEG con-
sists of a directed colored graph obtained from a staged
tree2 by successive edge contraction operations. The
obtained graphical model can represent conditional inde-
pendence and causal behavior that traditional Bayesian net-
works cannot show. Later, a dynamic version was proposed
[26].

Other authors have attempted to combine asymmetric
models with HMMs. For example, in [23] the buried Mar-
kov models (BMM) were introduced. In these articles, the
models of [12] were used, but the temporary dependencies
can vary depending on the hidden state. These context-spe-
cific dependencies are learned using mutual information
strategies. [4] used Chow-Liu trees and conditional Chow-
Liu trees coupled with HMMs. The HMMs were used to
model the dynamic behavior of a process, and the Chow-
Liu tree was used to model the emission probabilities. A
Chow-Liu tree or conditional Chow-Liu tree was associated
with each value of the hidden variable. The parameters of
the model were computed with the EM algorithm; specifi-
cally, the tree structure was determined in the maximization
step. However, the model was specified only for discrete
variables. More recently, asymmetric hidden Markov mod-
els (As-HMMs) were proposed in [5], where a local graphi-
cal model was associated with each value of the hidden
variable, and the graphical model was not restricted to
Chow-Liu trees. However, again only models with discrete
observable variables were allowed. In [27], this issue was
addressed with the asymmetric linear Gaussian HMMs
(AsLG-HMMs), where the emission probabilities were mod-
eled as conditional linear Gaussian Bayesian networks. The
estimation of the model parameters was performed with the
EM algorithm.

In this paper, we extend asymmetric HMMs for continu-
ous variables of [27], where the model during its learning
phase can estimate for each variable the order of the AR
process as well as its parameters depending on the context
or value of the hidden variable. Thus, we couple for the first
time asymmetric linear Gaussian HMMs with AR processes.

3 THEORETICAL FRAMEWORK

Because the proposed model needs to fit the forward-back-
ward and Viterbi algorithms, we first review these algo-
rithms and the traditional HMM. The parameter and
structure learning of the proposed model will be performed
via the EM and SEM algorithms; therefore, we also review
these algorithms and their properties. Additionally, because
the Yule-Walker equations will be used to determine the
order of an AR process, they are briefly examined. Addi-
tionally, in Table 2, a description of relevant symbols used
in this article is shown.

3.1 Hidden Markov Models

An HMM can be seen as a double chain stochastic model,
where a chain is observed, namely XX0:T ¼ ðXX0; . . . ; XXT Þ,
where XXt ¼ ðXt

1; . . . ; X
t
MÞ 2 RM and the other chain is hid-

den, namely QQ0:T ¼ ðQ0; . . . ; QT Þ. Here, T is the length of
the data. The usual approach for HMMs [1] is to assume
that the hidden process has the first-order Markovian prop-
erty, that is, P ðQtjQQ0:t�1Þ ¼ P ðQtjQt�1Þ. Furthermore, it is
assumed that the observable process depends on the hidden
process, more specifically P ðXXtjXX0:t�1; QQ0:tÞ ¼ P ðXXtjQtÞ.

TABLE 2
Symbols Used in Sections 3 and 4

Symbol Meaning

N Number of hidden states
M Number of variables
QQ0:T Sequence of hidden states from time 0 up time T
XX0:T Sequence of observations from time 0 up time T
Rð�Þ Range of a random variable
A Transition matrix
aij Transition probability of hidden state i to j
pp Initial probability distribution
pi Probability of starting at hidden state i
B Emission probabilities
bp

�
i ðxxtÞ Emission probability for the proposed model
V Space of model parameters
s2
im Variance of the Gaussian of variableXm at state i

�� Model parameters
��0 Prior parameters
atðiÞ Forward variable at time t for the hidden state i
at
p� ðiÞ Forward variable for the proposed model

btðiÞ Backward variable at time t for hidden state i
bt
p� ðiÞ Backward variable for the proposed model

dtðiÞ Most probable sequence of hidden states up to time
t� 1

dtp� ðiÞ Most probable sequence of hidden states for the
proposed model

ctðiÞ Most probable transition from hidden state i at time
t

gtðiÞ Probability of hidden state i at time t
�tði; jÞ Transition probability from hidden state i to j at

time t
Q Auxiliary optimization function
Qp� Auxiliary optimization function for the proposed

model
B Probabilistic graphical model
B0 Prior probabilistic graphical model
#ð�Þ Number of parameters of the input graphical model
fkj Weight of the j lag when k lags are used
rk Correlation betweenXt andXt�k

Fk rk but removing intermediary lags effect
E½�� Expectation operator
p� Maximum admissible lag
PaiðXmÞ The set of parents ofXm for hidden state i
patim Value at t of PaiðXmÞ for hidden state i
Uimk kth parent of variableXm at hidden state i
kim Number of fathers for variableXm at the hidden

state i
bbim Weights of patim for the linear dependency ofXm

dt
im Value at t of the AR variables ofXm for hidden state

i
hhim Weights of dt

im for the linear dependency ofXm

ftim bbim � patim þ hhim � ddtim
gðiÞ Numeric label to hidden state i
kk Standard values for labelling
v Scaling vector for labelling

2. A staged tree is a probabilistic graphical model, where the graph
is a tree and the nodes are random variables whose non leaf variables
are identified with the same color if they have the same conditional
probabilistic relationships with their children nodes [24].
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Additionally it is assumed that the range R of the hidden
variable is finite, i.e., RðQtÞ ¼ f1; 2; . . . ; Ng for t ¼
0; 1; . . . ; T . Moreover RRðQQ0:T Þ ¼ f1; 2; . . . ; NgTþ1.

All the previous HMM specifications can be summarized
with the parameter �� ¼ ðA;B;ppÞ 2 V, where V denotes the
space of all possible parameters, A ¼ ½aij�Ni;j¼1 is a matrix
representing the transition probabilities between hidden
states i; j 2 RðQtÞ over time, i.e., aij ¼ P ðQtþ1 ¼ jjQt ¼ i; ��Þ;
B is a vector representing the emission probability of the
observations given the hidden state, B ¼ ½biðxtÞ�Ni¼1, where
biðxxtÞ ¼ P ðXXt ¼ xxtjQt ¼ i; ��Þ is a probability density func-
tion; pp is the initial probability distribution of the hidden
states, pp ¼ ½pj�Nj¼1, where pj ¼ P ðQ0 ¼ jj��Þ.

Additionally, an HMM can be seen as a probabilistic
graphical model [30] (Fig. 1), where the nodes of the graph
represent random variables and the arcs represent direct
probabilistic dependencies.

Three main tasks can be performed in the context of HMMs.
First, compute the likelihood of an observation xx0:T given a
model ��, i.e., P ðx0:T j��Þ, which can be performed using the for-
ward-backward algorithm. Second, compute the most likely
sequence of hidden states and observations, i.e., find the value
of dtðiÞ ¼ maxqq0:t�1fP ðxx0:t; qq0:t�1;Qt ¼ ij��Þg, t ¼ 0; . . . ; T , i ¼
1; . . . ;N , which can be solved using the Viterbi algorithm.
Third, learn the parameter ��, which is estimated with the EM
algorithm. A theoretical tutorial for understanding these algo-
rithms can be found in [1]. We briefly review them below.

3.2 The Forward-Backward Algorithm

To execute the forward-backward algorithm, we first must
define the forward and backward variables: atðiÞ ¼ P ðQt ¼
i; xx0:tj��Þ, btðiÞ ¼ P ðxxtþ1:T jQt ¼ i; ��Þ, respectively, i ¼
1; . . . ; N , t ¼ 0; . . . ; T . The forward and backward variables
can be written recursively

atþ1ðiÞ ¼
XN
j¼1

biðxxtþ1ÞajiatðjÞbtðiÞ ¼
XN
j¼1

bjðxxtþ1Þaijbtþ1ðjÞ:

Their initial values are a0ðiÞ ¼ pibiðxx0Þ and bT ðiÞ ¼ 1. The for-
ward variable can help us compute the likelihood of xx0:T since

P ðxx0:T j��Þ ¼
XN
i¼1

P ðxx0:T ;QT ¼ ij��Þ ¼
XN
i¼1

aT ðiÞ:

3.3 The Viterbi Algorithm

Variable dtðiÞ for time t ¼ 0; . . . ; T and hidden state i ¼
1; . . . ; N can be written as

dtðiÞ ¼ max
j¼1;...;N

fajidt�1ðjÞgbiðxxtÞ:

Its initial value is d0ðiÞ ¼ pibiðxx0Þ. However, to find the most
likely sequence of states qq0:T , it is necessary to iteratively cal-
culate an auxiliary variable ctðiÞ ¼
argmaxj¼1;...;Nfdt�1ðjÞajig, i ¼ 1; . . . ; N , t ¼ 0; . . . ; T , which
records the most likely transitions between states. Then, a
backtracking process must be performed to recover qq0:T , tak-
ing qT ¼ argmaxi¼1;...;NfdT ðiÞg and qt ¼ ctþ1ðqtþ1Þ for
t ¼ T � 1; . . . ; 0.

3.4 The EM Algorithm

To learn the parameter �� ¼ ðA;B;ppÞ given a dataset xx0:T

and a priori ��0, the traditional EM approach [31] is used. In
the EM algorithm, two steps called the expectation step (E-
step) and maximization step (M-step) are iterated until con-
vergence is met.

For the E step, we will need only to calculate the proba-
bilities gtðiÞ :¼ P ðQt ¼ ijxx0:T ; ��0Þ and �tði; jÞ :¼ P ðQt ¼
i; Qtþ1 ¼ jjxx0:T ; ��0Þ i; j ¼ 1; . . . ; N , t ¼ 0; . . . ; T , which are
related in the following manner:

PN
j¼1 �

tði; jÞ ¼ gtðiÞ.
For the M step, we must derive the updating formulas for

parameter ��. For pi and aij for the hidden states i; j ¼
1; . . . ; N , are

p�
i ¼ g0ðiÞ; a�ij ¼

PT�1
t¼0 �tði; jÞPT
t¼0 g

tðiÞ :

The updating formula for parameter B relies on the
assumptions made over the transition and emission proba-
bilities. For example, in [1], the updating formulas are calcu-
lated when the emission probabilities are assumed to be
discrete, a mixture of Gaussians (MoG) or a mixture of AR
Gaussians (AR-MoG). If the hypotheses about the transition
probabilities or the initial distribution change, the formulas
given above are no longer valid.

3.5 The SEM Algorithm

When we deal with an unknown a priori probabilistic
graphical model B, it is desirable to find the structure that
maximizes the likelihood of the data. However, as many
parameters are used in dense networks, the likelihood
improves but it can be due to data overfitting. Therefore,
penalized likelihood-based scores such as the Bayesian
information criterion (BIC) or Akaike information criterion
are used in structure optimization algorithms to prevent
this issue. In [32], the structural EM (SEM) algorithm is
introduced with its convergence and optimality properties.
SEM finds both the desired model and the parameters. SEM
tries to maximize the function QðB; ��jB0; ��0Þ, where B0 is a
previous or a prior graphical model

QðB; ��jB0; ��0Þ ¼ EP ðqq0:T jxx0:T ;B0;��0Þ½ lnP ðxx0:T ; qq0:T jB; ��Þ�
� 0:5#ðBÞ lnðT Þ:

(1)

Eq. (1) considers changes in the structure of the probabilistic
graphical model and its parameters, and to prevent overfit-
ting, it is penalized by the number of parameters in the
model #ðBÞ and the logarithm of the length of the data T .

Fig. 1. An HMM as a probabilistic graphical model.
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The SEM algorithm consists of using the EM algorithm with
a prior model, B0, and a prior parameter ��0 to obtain the
parameters ��00; then, using the latent probabilities
P ðqq0:T jxx0:T ;B0; ��00Þ and the parameters ��00 finding a new
structure B00 by solving maxBQðB; ��00jB0; ��00Þ. Finally, the EM
is again applied to the new structure. This process is iter-
ated until convergence is met.

3.6 The Yule-Walker Equations

The Yule-Walker equations [7] will be a key issue in con-
structing the proposed model. A linear AR process with k
time lag coefficients for a one-dimensional variable Y t can
be described as

Y t ¼ fk1Y
t�1 þ � � � þ fkkY

t�k þ �t; (2)

where �t � Nð0; s2Þ is an error term following a Gaussian
distribution with mean zero and variance s2. Correlogram
function rk returns the correlation between Y t and Y t�k. We
define �Y t :¼ Y t � mY where mY is the mean of Y t and zk :¼
E½ �Y t �Y t�k�, which is the expected value of the product of both
shifted variables. The correlogram function is computed as

rk: :¼
zk
z0

:

The partial correlogram function FðkÞ encodes the corre-
lation between variables Y t and Y t�k once the effect from
intermediary lags has been removed. To determine these
partial correlations, observe that for l 2 f1; . . . ; kg

�Y t ¼ fk1
�Y t�1 þ � � � þ fkk

�Y t�k þ �t �Y t �Y t�l

¼ fk1
�Y t�1 �Y t�l þ � � � þ fkk

�Y t�k �Y t�l þ �t �Y t�lrl

¼ fk1rl�1 þ � � � þ fkkrk�l: (3)

In the last line of Eq. (3), we applied the expectation oper-
ator and divided by z0. We assumed that E½ �Y t�l�t� ¼ 0 for all
t, which implies that Y t is not correlated with the error term;
a plausible hypothesis in real situations. Additionally,
rð0Þ ¼ 1. Moreover, notice that if these equations are com-
puted for l ¼ 1; . . . ; k, we obtain a system of linear equa-
tions, which corresponds to the Yule-Walker equations

r1
r2

..

.

rk

2
6664

3
7775 ¼

1 r1 r2 � � � rk�1

r1 1 r1 � � � rk�2

..

. ..
. ..

. . .
. ..

.

rk�1 rk�2 rk�3 � � � 1

2
6664

3
7775

fk1

fk2

..

.

fkk

2
6664

3
7775:

The partial correlogram function returns FðkÞ :¼ f̂kk. Note
that if we wish to evaluate up to k lags for the partial correlo-
gram function, wemust construct and solve k linear systems.

Assume that the sample is white noise. Then the parame-
ter f̂kk is distributed approximately as Nð0; 1=TÞ. With this
information, it is possible to perform hypothesis tests to
determine the relevancy of each lag parameter. IfFðp�Þ is the
higher time lag coefficient that is significantly different from
zero, then p� is considered the AR order of the model [7].

It is worth mentioning that the previous lag estimation is
only useful when the observed data are stationary; in other
words, the parameters do not change over time. This partic-
ular assumption is violated for the problems in which we
want to use HMMs because identifying changes in the
model parameters according to changes in the data distribu-
tion is sought. With our proposed model, however, we will
see that the order of the AR process within the HMM will
be able to change dynamically and self adapt depending on
the state of the hidden variable.

4 PROPOSED MODEL

The proposed model uses context-specific linear Gaussian
Bayesian networks to factorize the emission probabilities.
The context is given by the hidden variable. Also, an AR
component is added to each variable. The AR order of each
variable for each possible context is determined by the SEM
algorithm and the Yule-Walker equations when a score (to
be specified later on) is optimized. Furthermore, for the pro-
posed model, the likelihood function is modified; therefore,
the forward-backward, Viterbi and EM algorithms have to
be adapted.

4.1 Autoregressive Asymmetric Linear Gaussian
Hidden Markov Models

Let p�m be the AR order (time lag) determined by the Yule-
Walker equations and the individual relevancy hypothesis
tests for each variable Xt

m, m ¼ 1; . . . ;M. Set p� ¼ maxmp
�
m.

For our proposed model we work with the following log-
likelihood function which ensures that during the SEM
algorithm, the updated structures and AR orders are com-
parable

LLð��Þ ¼ lnP ðxxp�:T jxx0:p��1; ��Þ
¼ ln

X
qq0:T2RRðQQp� :T Þ

P ðqqp�:T ; xxp�:T jxx0:p��1; ��Þ: (4)

For this proposed HMM model which is, as explained
below, asymmetric autoregressive with linear Gaussian
emission probabilities (AR-AsLG-HMM), we modify the
emission probabilities fbiðxxtÞgNi¼1 such that they can be fac-
torized into linear Gaussian Bayesian networks [33] with an
asymmetric component [5], i.e., each variable Xm for each
state i 2 RðQÞ is associated with a set of parents PaiðXmÞ ¼
fUim1; . . . ; Uimkimg � fX1; . . . ; XMg of size kim (apart from
Q) which influences its mean in a linear form. Additionally,
the emission probabilities are now conditional probabilities
given pim 	 p� past values of the variables Xt

m, m ¼
1; . . . ;M (AR terms) for each state i 2 RðQÞ. More specifi-
cally, we define

bp
�
i ðxxtÞ ¼ P ðxxtjQt ¼ i; xxt�p�:t�1; ��Þ

¼
YM
m¼1

P ðxt
mjQt ¼ i; xt�pim:t�1

m ;PaiðXmÞ; ��Þ

¼
YM
m¼1

Nðxt
mjbbim � patim þ hhim � ddtim; s2

imÞ: (5)
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In Eq. (5), we have bbim ¼ ðbim0; . . . ;bimkim
Þ, patim ¼

ð1; ut
im1; . . . ; u

t
imkim

Þ, hhim ¼ ðhim1; . . . ; himpim
Þ and

ddtim ¼ ðxt�1
m ; . . . ; xt�pim

m Þ. Fig. 2 shows an example of an AR-
AsLG-HMM. In this example, when Qt ¼ 1 (top), variable
Xt

2 is dependent on Qt, Xt
1, X

t�1
2 and Xt�2

2 , but Xt
1 depends

only on Qt and Xt�1
1 . However, when Qt ¼ 2 (bottom), Xt

1

depends only on Qt and Xt
2 is dependent on Xt�1

2 and Qt. In
terms of the model, this can be expressed as p11 ¼ 1, p12 ¼ 2
AR terms, k11 ¼ 0 and k12 ¼ 1 when Q ¼ 1, and p21 ¼ 0,
p22 ¼ 1 AR terms, k21 ¼ 0 and k22 ¼ 0 when Q ¼ 2. From the
model we can see that p� 
 2, because pim 	 2 for i ¼ 1; 2
andm ¼ 1; 2.

Some comments on Eq. (5) follow. The set of parents
PaiðXmÞ of each variable Xm for each state i 2 RðQÞ is
related to a context-specific Bayesian network Bi. Further-
more, depending on that hidden state, each variable Xm

may have a different AR order, namely pim, which is upper
bounded by p�. This model must estimate the new parame-
ters fbim0; . . . ;bimkim

; him1; . . . ; himpim
; s2

imgM;N
m¼1;i¼1. Addition-

ally, because the first p� observations are used as
conditionals in Eq. (4), the pp parameter is shifted to predict
the initial distribution of the Qp� hidden variable, i.e.,
fpigNi¼1 ¼ fP ðQp� ¼ ij��ÞgNi¼1. Observe that the complete
information probability of an instance xxp�:T of XXp�:T and an
instance qqp

�:T of QQp�:T can be expressed as

P ðqqp�:T ; xxp�:T jxx0:p��1; �Þ ¼ pqp
�
YT�1

t¼p�
aqtqtþ1

YT
t¼p�

bp
�
qt
ðxxtÞ:

4.2 Feasibility of the EM Algorithm in
AR-AsLG-HMMs

To perform the parameter learning, the EM algorithm can
be applied. However, we must define an auxiliary function
Q for the log-likelihood defined in Eq. (4). We propose
Qp�ð��j��0Þ as the auxiliary function for the EM algorithm,
defined as

Qp�ð��j��0Þ
¼

X
RRðQQp� :T Þ

P ðqqp�:T jxx0:T ; ��0Þ lnP ðqqp�:T ; xxp�:T jxx0:p��1; ��Þ:

(6)

Moreover,Qp� ð��j��0Þ can be decomposed as

Qp� ð��j��0Þ ¼
X

RRðQQp� :T Þ
P ðqqp�:T jxx0:T ; ��0Þ lnP ðqqp�:T jxx0:T ; ��Þ

þ lnP ðxxp�:T jxx0:p��1; ��Þ
X

RRðQQp� :T Þ
P ðqqp�:T jxx0:T ; ��0Þ

¼
X

RRðQQp� :T Þ
P ðqqp�:T jxx0:T ; ��0Þ lnP ðqqp�:T jxx0:T ; ��Þ þ LLð��Þ:

(7)

If we defineHp�ð��j��0Þ as the first summand of Eq. (7), i.e.,

Hp�ð��j��0Þ
:¼

X
RRðQQp� :T Þ

P ðqqp�:T jxx0:T ; ��0Þ lnP ðqqp�:T jxx0:T ; ��Þ;

therefore we have that Qp�ð��j��0Þ ¼ Hp� ð��j��0Þ þ LLð��Þ. We
now show that if we apply the EM algorithm with
Qp�ð��j��0Þ, each iteration does not decrease the log-likelihood
as required.

Lemma 1. Let ��ðsÞ be the parameters at iteration s of the EM and
��ðsþ1Þ be the resulting parameters after the next iteration of the
EM. We have thatQp� ð��ðsþ1Þj��ðsÞÞ 
 Qp� ð��ðsÞj��ðsÞÞ.

Lemma 2. Given two arbitrary models with respective parame-
ters �� and ��0, we have that Hp� ð��j��0Þ 	 Hp�ð��0j��0Þ, and the
equality holds when P ðqqp�:T jxx0:T ; ��Þ ¼ P ðqqp�:T jxx0:T ; ��0Þ.

Theorem 1. Let ��ðsÞ be the parameters at an iteration s of the
EM and ��ðsþ1Þ be the resulting parameters after the next itera-
tion of the EM. We have that

(a) LLð��ðsþ1ÞÞ 
 LLð��ðsÞÞ. In other words, the log-likeli-
hood of the model cannot worsen after an EM iteration.

(b) The sequence fLLð��ðsÞÞgs converges.
The proofs of the lemmas and theorems can be found in

the supplementary material, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2021.3068799.

4.3 The Forward-Backward Algorithm in
AR-AsLG-HMMs

As the likelihood function of Eq. (4) and the emission proba-
bilities given by Eq. (5) have changed, the forward-backward
algorithm must be adapted. In the E step, we compute the
probabilities gtðiÞ ¼ P ðQt ¼ ijxx0:T ; ��Þ for t ¼ 0; . . . ; T and i ¼

Fig. 2. Graphical representation of an AR-AsLG-HMMmodel.
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1; . . . ; N as the initial point to fit the forward-backward algo-
rithm. Note that gtðiÞ can be expressed as

gtðiÞ ¼ P ðQt ¼ i; xxp�:T jxx0:p��1; ��Þ
P ðxxp�:T jxx0:p��1; ��Þ

¼ P ðQt ¼ i; xxp�:t; xxtþ1:T jxx0:p��1; ��Þ
P ðxxp�:T jxx0:p��1; ��Þ

¼ P ðxxtþ1:T jQt ¼ i; xx0:t; ��ÞP ðQt ¼ i; xxp�:tjxx0:p��1; ��Þ
P ðxxp�:T jxx0:p��1; ��Þ

¼ btp�ðiÞat
p� ðiÞPN

j¼1 b
t
p� ðjÞat

p� ðjÞ
:

(8)

From Eq. (8), the forward variable is at
p� ðiÞ :¼ P ðQt ¼

i; xxp�:tjxx0:p��1; ��Þ and the backward variable is bt
p� ðiÞ :¼

P ðxxtþ1:T jQt ¼ i; xx0:t; ��Þ. Observe that these equations only
make sense when t 
 p�. The next lemma shows that we
can easily adapt the forward-backward algorithm to
compute the ap� and bp� parameters of an AR-AsLG-
HMM.

Lemma 3. at
p�ðiÞ and bt

p� ðiÞ can be computed as

at
p� ðiÞ ¼

XN
j¼1

bp
�
i ðxxtÞajiat�1ðjÞbt

p� ðiÞ

¼
XN
j¼1

btþ1ðjÞbp�j ðxxtþ1Þaij; (9)

for t ¼ p�; . . . ; T and i ¼ 1; . . . ; N , with initial values
a
p�
p� ðiÞ ¼ pib

p�
i ðxxp�Þ and bT

p� ðiÞ ¼ 1, i ¼ 1; . . . ; N .

4.4 Parameter Learning in AR-AsLG-HMMs

To execute the EM algorithm, we must iterate the E step and
the M step. For the E step we can use the adapted forward-
backward algorithm of Section 4.3 to compute gtðiÞ and
�tði; jÞ for i; j ¼ 1; . . . ; N and t ¼ 0; . . . ; T

gtðiÞ ¼ bt
p�ðiÞat

p� ðiÞPN
j¼1 b

t
p� ðjÞat

p� ðjÞ
�tði; jÞ

¼ at
p� ðiÞaijbp

�
j ðxxtþ1Þbtþ1

p� ðjÞPN
u;v¼1 a

t
p�ðuÞauvbp

�
v ðxxtþ1Þbtþ1

p� ðvÞ : (10)

Computing these quantities is enough for the E step because
Qp� ð��j��0Þ can be expressed as

Qp� ð��j��0Þ ¼
XN
i¼1

gp
� ðiÞ lnpi

þ
XT�1

t¼p�

XN
i¼1

XN
j¼1

�tði; jÞ ln aij þ
XT
t¼p�

XN
i¼1

gtðiÞ ln bp�i ðxxtÞ:

(11)

Now, for the M step, we must find the updating for-
mulas for the parameters ðA;B;ppÞ, where B includes the
parameters himr, bimk and s2

im. In the following theorem,

we provide the updating formulas for the proposed
model.

Theorem 2. The M-step for an AR-AsLG-HMM model can be
performed using the following updating formulas: parameter
pp ¼ fpigNi¼0 is updated as:

p�
i ¼ gp� ðiÞ: (12)

The parameterA ¼ faijgNi;j¼1 is updated as

a�ij ¼
PT�1

t¼p� �
tði; jÞPT�1

t¼p� g
tðiÞ : (13)

If we set ftim :¼ bbim � patim þ hhim � ddtim, the parameters
fhimrgpimr¼1, fbimkgkimk¼0 can be updated jointly, solving the fol-
lowing linear system:

PT
t¼p� g

tðiÞxt
m ¼ PT

t¼p� g
tðiÞft

imPT
t¼p� g

tðiÞxt
mu

t
im1 ¼

PT
t¼p� g

tðiÞut
im1f

t
im

..

. ..
. ..

.

PT
t¼p� g

tðiÞxt
mu

t
imkim

¼ PT
t¼p� g

tðiÞut
imkim

ftimPT
t¼p� g

tðiÞxt
mx

t�1
m ¼ PT

t¼p� g
tðiÞxt�1

m ft
im

..

. ..
. ..

.

PT
t¼p� g

tðiÞxt
mx

t�pim
m ¼ PT

t¼p� g
tðiÞxt�pim

m ftim

8>>>>>>>>>>>><
>>>>>>>>>>>>:

: (14)

If we set f̂ t
im :¼ b�

im0 þ b�
im1u

t
im1 þ � � � þ b�

imkim
ut
imkim

þ
h�im1x

t�1
m þ � � � þ h�impim

xt�pim
m , then, s2

im can be updated as

ðs2
imÞ� ¼

PT
t¼p� g

tðiÞðxt
m � f̂ t

imÞ2PT
t¼p� g

tðiÞ : (15)

This update must be done for every variablem ¼ 1; . . . ;M and
hidden state i ¼ 1; . . . ; N .

Eq. (14) forms a linear system of kim þ pim þ 1 unknowns
with kim þ pim þ 1 equations. If the resulting context-spe-
cific Bayesian model for every hidden state is a naı̈ve Bayes-
ian network and pim ¼ 0 for i ¼ 1; . . . ; N and m ¼ 1; . . . ;M,
then we only require to update the parameters
fbim0gN;M

i¼1;m¼1. Its updating formula is

b�
im0 ¼

PT
t¼p� g

tðiÞxt
mPT

t¼p� g
tðiÞ :

Otherwise, we must solve the linear system which can be
done using exact or iterative methods. If we use for example
the Gauss-Jordan reduction algorithm to solve the linear sys-
tem, an additional computational cost of Oððkim þ pim þ 1Þ3Þ
must be assumed. Therefore, simpler structures are recom-
mended in order to not slow down the learning process. This
requirement is taken into account during the SEM algorithm
as mentioned in Section 3.5.

A pseudocode of the adapted EM algorithm can be found
in Fig. 3.
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4.5 The Viterbi Algorithm in AR-AsLG-HMMs

In the following lemma we show that the traditional Viterbi
algorithm can be adapted to determine the most probable
sequence of hidden states in AR-AsLG-HMMs.

Lemma 4. If dtp�ðiÞ ¼ maxqqp� :t�1fP ðxxp�:t; qqp�:t�1; Qt ¼
ijxx0:p��1; ��Þg represents the most probable sequence of hidden
states up to time t� 1 for state i at time t, then dtp�ðiÞ can be
computed recursively.

dtp� ðiÞ ¼ max
j¼1;...;N

fdt�1
p� ðjÞajigbp

�
i ðxtxtÞ:

The Viterbi algorithm is initialized with dp
�
p� ðiÞ ¼ pib

p�
i ðxxp�Þ.

4.6 The SEM Algorithm in AR-AsLG-HMMs

Regarding the structural optimization process, the SEM
algorithm for AR-AsLG-HMMs must also be modified. The
proposed auxiliary function is

Qp� ðB; ��jB0; ��0Þ ¼ EP ðqqp� :T jxx0:T ;B0;��0Þ

� ½lnP ðxxp�:T ;QQp�:T jB; xx0:p��1; ��Þ� � 0:5#ðBÞ lnðT Þ:
(16)

The steps for the adapted SEM algorithm are the same as in
the general SEM. However, we must consider that given a
time slice t, the algorithm must not only look for the best
instantaneous structure at time t or the best structure with
variables ðXt

1; . . . ; X
t
MÞ but also look for the best transition

structure at time t or the relationships between
ðXt

1; . . . ; X
t
MÞ variables and their AR versions, i.e.,

ðXt�1
1 ; Xt�2

1 ; . . . ; Xt�p��1
M ;Xt�p�

M Þ, which implies that the
search space dimension increases. More specifically, we
have to search not only in the space of directed acyclic
graphs (DAGs) for the best instantaneous structures, but
also in the space Sp� ¼ f0; 1; . . . ; p�gN � f0; 1; . . . ; p�gM , for
the best transition structure. A component pim of a matrix
pp 2 Sp� indicates the number of lags for variable Xm in the
hidden state i 2 RðQÞ. For instance, if pim ¼ 2, Xt

m has
incoming arcs from the variables Xt�2

m and Xt�1
m when Qt ¼

i. A pseudocode of the adapted SEM is given in Fig. 4.
It is pertinent to mention that in the SEM algorithm in the

step of finding BðsÞ ¼ argmaxBQp�ðB; ��ðsÞjBðs�1Þ; ��ðsÞÞ it is not
necessary to use Eq. (16), since the initial distribution and
the transition matrix are kept unchanged. We can take

advantage of the linearity of Eq. (16) to compare structures,
i.e., if a dependency of Xm has been added or deleted (AR
or parent parameter) at the hidden state i, it is reasonable to
use the following score:

scoreim ¼
XT
t¼p�

gtðiÞ lnðN ðxt
mjft

im; s
2
imÞÞ: (17)

If changes have been done to many variables in many
hidden states, it is better to use the following score:

score ¼
XN
i¼1

XM
m¼1

scoreim: (18)

To perform the structural optimization step, we must
search in the space of structures. In this article we use a heu-
ristic forward greedy algorithm to perform the structure
optimization. In this approach, we initialize all the struc-
tures in a naı̈ve form with no AR parameters. During the
optimization, we visit each variable for each hidden state
and add AR or parent dependencies as long as Eq. (17)
improves. Its pseudocode is shown in Fig. 5.

Other algorithms have been used to search in the graph
space during the SEM algorithm, e.g., [5] used a tabu search
algorithm [34], and [27] used a simulated annealing algo-
rithm [35]. In general, any meta-heuristic or heuristic can be
used to search in the space of graphs.

4.7 Hidden States Labelling

In practice, when HMMs are used, categorical labels are
given to the hidden states for interpretation purposes. How-
ever, only after training the model, the model parameters
are manually checked to determine which categorical label
corresponds with each trained hidden state. Here, we pro-
pose an automatic numerical labelling for trained models,
where a numerical function is used to label a trained hidden
state. Let g : RðQÞ ! R be a function that maps each hidden
state into a real number depending on the models parame-
ters. This function g not only helps us determine whether a
change in hidden states occurs but also the magnitude of
the change. For example, if deviations from known

Fig. 3. Pseudocode for the adapted EM algorithm.

Fig. 4. Pseudo-code for the adapted SEM algorithm.
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standards or desired values kk ¼ fk1; . . . ; kmg of XX imply
changes in state, the following g functions described in
Eqs. (19) and (20) can be used to help in hidden states label-
ling in AR-AsLG-HMMs

g1ðiÞ ¼
XM
m¼1

vmðnim � kmÞ (19)

g2ðiÞ ¼ max
m¼1;...;M

fvmðnim � kmÞg: (20)

Where

nim ¼ bim0 þ bim1niuim1
þ � � � þ bimkim

niuimkim

1� ðhim1 þ � � � þ himpim
Þ : (21)

Observe that in Eq. (21), the value of nim depends on the n

value of the parents of variable Xm in the context-specific
graph related to the i state, so Eqs. (19) and (20) must be cal-
culated recursively. The recursion begins with those varia-
bles that fulfil the following condition: PaiðXmÞ ¼ ;. Next,
the recursion is computed for their descendants in the con-
text-specific graph, until no variables are left. In general, nim

can be interpreted as the mean of variable Xm at the hidden
state i. Additionally, the vector v ¼ ðv1; . . . ; vMÞ for m ¼
1; ::;M can be considered a feature relevance constant vector
or a scaling constant vector that can be tuned according to
the nature of the problem.

Eq. (19) can be used in cases where the addition of errors
determines the driven process. For example, in the case of a
country economy where the aggregation of economic varia-
bles can determine if there is economic growth or not. Or in
the case of bearings degradation, where the aggregation of
the amplitude of desired frequencies represents the pres-
ence of failure. On the other hand, Eq. (20) can be used
when high deviations from a single variable is enough to
determine the dynamical process. For example, consider a
patient with a chronic disease with many sensors that mea-
sure different biological variables. For each variable there is
a desirable value that determine good health. If only one
variable drifts from the desirable value, the health of the
patient can be in danger. In conclusion, the experiment and
context of the problem may require a different g function to
describe the hidden states.

5 EXPERIMENTS

In this section, we will compare our model (AR-AsLG-
HMMs) with AsLG-HMMs, LMSAR, AR-MoG-HMMs,
MoG-HMMs, VAR-MVGHMMs, BMMs and a simple AR-
AsLG-HMMwith naı̈ve Bayes context-specific Bayesian net-
works that we will call naı̈ve-HMMs (this kind of models
have been used in [36]). In the case of LMSAR [8]3 and AR-
MoG-HMM [10], it was defined only for one variable.
Therefore, in these experiments, we will assume that for
these models every variable is independent. In particular,
LMSAR is a special case of an AR-AsLG-HMM, where only
AR parameters are used in the mean, but the number of
them do not change with the hidden state and the variance
of the model does not depend on the hidden state. In the
case of AR-MoG-HMM, the model assumes that the varian-
ces are unitary and do not depend on the hidden state; in
spite of that it cannot be expressed directly as an AR-AsLG-
HMM. Also, both AR-AsLG-HMM and AsLG-HMM use
the forward-greedy algorithm in the SEM algorithm to
ensure reproducibility. The aim is to show the capabilities
of our model to change the number of AR parameters and
the context-specific Bayesian networks when they are
needed.

Experiments with synthetic data are performed. The data
are generated such that over time, the AR process changes.
Two dynamic processes are used with six variables. The
models are learned using only one time series, where three
possible hidden states are present and appear in time
blocks. We aim to determine for new data the most likely
sequence of hidden states. This sequence tells us the current
probabilistic distribution of the data and therefore which
probabilistic relationships are relevant. Also, the number of
parameters and BIC score play an important role to identify
which model is better as explained in Section 4.6.

Air quality data and real bearing degradation data are
also used. The p� values are computed using the Yule-

Fig. 5. Pseudo-code for the forward greedy algorithm.

3. See page 57.

4650 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 9, SEPTEMBER 2022



Walker equations. These are used as well for AR-MoG-
HMM, BMM, VAR-MVGHMM and LMSAR to determine
the maximum lag during the learning task. For the mixture
models, two and three mixture components were used, and
the models with two mixture components had the highest
BIC and log-likelihood. Then, just two mixture components
were used.

For both synthetic and real data, the models are initial-
ized with a uniform transition matrix A, specifically aij ¼
1=N ; for i; j ¼ 1; . . . ; N ; the same for the initial distribution
pp, specifically, pi ¼ 1=N for i ¼ 1; . . . ; N . In the case of our
AR-AsLG-HMM, we evaluate the partial correlation func-
tion up to five AR values to prevent high computational
times and set pim ¼ 0 for i ¼ 1; . . . ; N andm ¼ 1; . . . ;M; this
means that no AR relationships are assumed a priori in the
models. For both AR-AsLG-HMM and AsLG-HMM, all the
context-specific Bayesian networks are initialized as naı̈ve
Bayes networks. The emission probabilities for the AR-
AsLG-HMM and AsLG-HMM are initialized with bim0 ¼
iðmaxtx

t
m �mintx

t
mÞ=ðN þ 1Þ þmintx

t
m and s2

im ¼
2ðmaxtx

t
m �mintx

t
mÞ for i ¼ 1; ::N and m ¼ 1; . . . ;M. The

purpose of this selection for bim0 is to initialize the mean of
each variable for each hidden state in an equally separated
different point in the possible range of values given by the
training dataset. The selection of s2

im, is to avoid infinite or
nan values in the first iterations of the forward-backward
algorithm. For the mixture models, the distribution of the
mixture coefficients is uniform, and the mean coefficients
for the mixtures models are initialized using a k-means algo-
rithm of clustering.

All the models were implemented in python 3 and the
used libraries were numpy, matplotlib, pandas, networkx,
math, pickle and the k-means algorithm from the scikit-
learn library. No parallelization or own created external
functions or libraries (like in C or C++) to improve the per-
formance were used. The software in python 3 will be avail-
able upon request after publication.

5.1 Synthetic Data

We consider two scenarios with three known hidden states.
One follows AR-AsLG-HMM emission probabilities and
another AR-MoG-HMM emission probabilities. We gener-
ate blocks of data for each hidden state. We mix these blocks
as indicated by Fig. 6 depending on the scenario to create a
signal and train every model with it. We try to simulate
data as in real life applications where hidden states may not
have a particular order of appearance i.e., any possible tran-
sition between hidden states is possible. We will evaluate

the learned models with two different types of sequences of
hidden states. These two sequences are generated fifty times
to be evaluated in the testing phase. From the fifty evalua-
tions we report the the mean log-likelihood (LL), mean BIC,
the standard deviation of the log-likelihoods (Std) and the
number of parameters in the model (#).

Both scenarios use six variables. From the parameters, in
the case of AR-AsLG-HMM emission probabilities, we have
a hidden state with no structural complexity (no-AR and
no-parent relationships in ftim), a second one with some
structural complexity and the last one with a complex struc-
ture (several AR and parent relationships in ft

im). We also
edit the parameters in AR-AsLG-HMM in such a way that
the more complex the context-specific Bayesian networks
are, the greater amplitudes for the g1ðiÞ (Eq. (19)) function
are. The parameters used for the hidden states for both AR-
AsLG-HMM and AR-MoG-HMM can be found in the sup-
plementary material, available in the online supplemental
material. The g1ðiÞ function used for all the experiments has
vm ¼ 1 for m ¼ 1; . . . ;M and km ¼ 0, for m ¼ 1; . . . ;M. The
sequence of hidden states used to construct the training sig-
nal for both scenarios can be seen in Fig. 6. The two sequen-
ces of hidden states used to generate the testing signals
(fifty testing signals are generated for each sequence and
each scenario) are illustrated in Fig. 7.

In Tables 3 and 4, we observe the results for Scenario 1
and 2 respectively, for both sequences. We observe that AR-
AsLG-HMM obtained the best results in LL and BIC score.

Fig. 6. Sequences of hidden states used to construct the training signals
for scenario 1 (a) and for scenario 2 (b).

Fig. 7. Sequences of hidden states used to construct the test signals.
Sequence 1 (a) and sequence 2 (b) are used for both scenarios.

TABLE 3
Results for Each Testing Sequence of Scenario 1

Seq Model mean LL mean BIC Std #

1 AR-AsLG-HMM -25909.45 52432.48 86.19 64
AsLG-HMM -32817.77 66181.78 193.74 55

LMSAR -30389.47 61587.06 112.36 108
AR-MoG-HMM -28960.25 59357.17 25.02 192
MoG-HMM -68411.13 138124.24 1.67 174
Naı̈ve-HMM -33251.80 66997.46 199.35 48

BMM -56348.00 113997.98 19.58 174
VAR-MVGHMM -68243.34 140415.08 0.84 525

2 AR-AsLG-HMM -41478.86 83608.50 87.76 64
AsLG-HMM -54167.33 108914.01 176.69 55

LMSAR -48356.20 97569.52 94.83 108
AR-MoG-HMM -45547.16 92618.09 32.21 192
MoG-HMM -107682.31 216745.54 1.72 174
Naı̈ve-HMM -54395.72 109315.24 163.32 48

BMM -88693.42 178767.76 21.12 174
VAR-MVGHMM -107504.80 219176.15 1.50 525
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The naı̈ve-HMM, AsLG-HMM and AR-MoG-HMM
obtained fair results. The mixture models: MoG-HMM,
VAR-MVGHMM and BMM obtained poor results in LL and
BIC score. In the case of BIC score, the penalization for mix-
ture models was higher since a greater number of parame-
ters were needed for these models. In terms of standard
deviation, MoG-HMM and VAR-MVGHMM obtained the
best results, nevertheless also they obtained the worst
results in BIC score. Next, we find that AR-MoG-HMM,
AR-AsLG-HMM and LMSAR obtained fair results in stan-
dard deviation with a good BIC score. Finally, AsLG-HMM
and naı̈ve-HMM obtained the worst standard deviation val-
ues in spite of their BIC score. In terms of the number of
parameters, the naı̈ve-HMM used the fewest number of
parameters since it has the simplest structure and VAR-
MVGHMM used the highest number of parameters since it
considers cross-AR dependencies between variables. AR-
AsLG-HMM and AsLG-HMM used fewer parameters than
mixture models, whereas mixture models used between
four to eleven times the number of parameters used by
naı̈ve-HMM. We also observe that LMSAR had a fair num-
ber of parameters since it assumes independence between
variables for all hidden states, standard deviations indepen-
dent of the hidden state and only AR parameters are used.
In the supplementary material, available in the online sup-
plemental material, an analysis of the obtained Viterbi paths
for some sequences can be found.

For training the models we set the maximum number of
EM iterations to 200 and the convergence threshold to 1�
10�10. For the SEM, the number of iterations are set to 200
and the convergence threshold to 1� 10�5. Table 5 shows
the required times for learning the models in each scenario.
All the models converged with some exceptions. In sce-
nario 1, MoG-HMM and VAR-MVGHMM had to limit their
number of EM iterations since singular-covariance matrices
raised in the parameters, in particular, MoG-HMM had to
iterate 8 times and VAR-MVGHMM iterated 26 times before
singular covariance matrices appeared. In the case of Sce-
nario 2, LMSAR and MoG-HMM had similar problems and
MoG-HMM iterated 13 times and LMSAR just could iterate
1 time. We can observe that BMM is the most expensive in

time among all the models. This is due to the structure
learning process that it does [23], where several mutual
information quantities must be computed to determine the
best AR-relationships. On the other hand, the fastest algo-
rithm that converged was the naı̈ve-HMM, which was
expected since it had the simplest structure of all the mod-
els. In spite of that, we observe that AR-AsLG-HMM and
AsLG-HMM obtained the second best times for training,
and the remaining models had longer training times.

We can observe from these experiments that AR-AsLG-
HMM is capable of being simple enough to explain linear
Gaussian autoregressive and mixture Gaussian processes
and prevent overfitting, but can be complex enough to
detect relevant parameters that drive the hidden states.
AsLG-HMM has this property as well, but as can be seen
from the obtained BIC scores and standard deviations, the
AR variables are pertinent. In terms of variance of the pre-
dictions, AR-AsLG-HMM had decent results, which implies
it is stable.

5.2 Real Data

5.2.1 Air Quality in Beijing

Here we use a dataset found in the UCI Machine Learning
Repository named: ”Beijing Multi-Site Air-Quality Data
Data Set” [37]. The dataset consists of measurements of air
quality in different monitoring stations in Beijing. We in
particular take the measurements from the file ”PRSA Data
Aotizhongxin” which represent the name of the monitoring
station Aotizhongxin. This dataset has hourly measure-
ments from March 2013 until February 2017. The data con-
tains missing data (3.37 percent of the dataset for the
selected variables). The missing data is filled using the
mean of the values of the five previous hours. The hidden
variable in this problem can be understood as the air qual-
ity. For this study we use the following variables: sulfur
dioxide (SO2 in mg=m3), nitrogen dioxide (NO2 in mg=m3),
carbon monoxide (CO in mg=m3), ozone (O3 in mg=m3),
coarse particulate matter (PM10 in mg=m3) and fine particu-
late matter (PM2:5 in mg=m3). Bayesian networks and HMM
have been used before to determine air quality [38], [39],
[40], [41], showing advantages in the generation of informa-
tion and discovery of relationships between variables.

The Chinese air quality limits for hourly, daily and
monthly measurements are expressed in the law GB 3095-
2012. These limits are used to model the g function for this
problem. In particular, kk ¼ f500; 200; 10000; 200; 150; 75g
and v ¼ f1=500; 1=200; 1=10000; 1=200; 1=150; 1=75g. The g

TABLE 4
Scores for Each Testing Sequence of Scenario 2

Seq Model mean LL mean BIC Std #

1 AR-AsLG-HMM -19822.87 40573.45 114.66 106
AsLG-HMM -20255.87 41304.78 118.92 88

LMSAR -26212.61 53233.23 112.16 108
AR-MoG-HMM -22990.46 47417.38 10.42 192
MoG-HMM -52213.44 105728.67 2.17 174
Naı̈ve-HMM -23135.52 46764.83 138.46 48

BMM -40292.46 81886.72 23.05 174
VAR-MVGHMM -52069.19 108066.19 0.76 525

2 AR-AsLG-HMM -32883.36 66750.73 192.35 106
AsLG-HMM -33867.52 68576.21 236.21 88

LMSAR -44482.64 89822.32 226.24 108
AR-MoG-HMM -36504.69 74533.01 14.41 192
MoG-HMM -82248.49 165877.78 3.95 174
Naı̈ve-HMM -38804.18 78132.11 241.70 48

BMM -63655.48 128691.74 39.42 174
VAR-MVGHMM -82064.02 168294.22 1.04 525

TABLE 5
Scenario 1 and 2 Learning Times

Model Times 1 (s) Times 2 (s)

AR-AsLG-HMM 6.842 55.098
AsLG-HMM 4.608 33.009
LMSAR 70.797 2.458
AR-MoG-HMM 189.114 223.762
MoG-HMM 110.749 190.766
Naı̈ve-HMM 3.702 8.904
BMM 266.231 5762.679
VAR-MVGHMM 11.165 131.059
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function in this case uses Eq. (20). If g2ðiÞ > 0 it means that
one or many variables are above the permissible limit and
the air quality is pretty bad. Great negative values are desir-
able for g2 since it implies good air quality. The aim is to
learn models to determine the air quality when new obser-
vations arrive. We use the first year of data to train the mod-
els: from march of 2013 to February of 2014. A first
experiment with only two hidden states is considered with
p� ¼ 1. We use this model to check if the model is capable of
determining in a binary manner the air quality using AR
processes of order one. Later, another model is trained
where the number of hidden states is set using the naı̈ve-
HMM since this model is the simplest one. The selection of
the number of hidden states could be done with the same
AR-AsLG-HMM but for fairness, this strategy is used. Two
to eleven hidden states were considered, but with three hid-
den states, naı̈ve-HMM obtained the best LL for the year
2013 and all the models could be trained. For each model
we predict individually the air quality of the three following
years of data: from March of 2014 to February of 2017. As
above, we record the mean likelihoods, mean BICs, stan-
dard deviation of likelihoods and number of parameters of
each model.

Tables 6 and 7 show the scores obtained. We can observe
that AR-AsLG-HMM, VAR-MVGHMM and AR-MoG-
HMM attained the best results in the LL and BIC scores.
The remaining models got fair results. In terms of stability,
we see that AR-MoG-HMM has the lowest standard devia-
tion, followed by BMM, naı̈ve-HMM and AR-AsLG-HMM.
In terms of the number of parameters, we observe that
naı̈ve-HMM and AsLG-HMM have the fewest number of
parameters. Followed by these models, LMSAR and AR-
AsLG-HMM achieved a fair number of parameters and
finally, mixture models, as expected, had to use a great
amount of parameters.

Fig. 8 shows the predicted air quality for the first two weeks
of 2016 for each model using the Viterbi algorithm when
two hidden states are used. Real readings are shown in
Fig. 8i, where we express 1 when any of the variables sur-
passes the law limits and -1 when all the variables are under
the law limits. From Fig. 8i, we observe that there are four
periods of time where pollution levels out of the legal levels
are found: from 0 to 75 hours, from 115 to 120 hours, from
186 to 219 hours and from 322 to 360 hours. Clearly Fig. 8i
does not tell us the severity of the pollution nor the close-
ness to an outlaw pollution level. We can see that the model
with the highest score (AR-MoG-HMM Fig. 8d) shows a
horizontal line below zero, which implies that the pollution
level is always close to an outlaw level, which is not

TABLE 6
Air Quality Scores When Two Hidden States are Used

Model mean LL mean BIC Std #

AR-AsLG-HMM -167390.66 335516.71 1646.68 69
AsLG-HMM -221071.33 442778.17 3183.77 58
LMSAR -183257.57 366841.98 3034.64 36
AR-MoG-HMM -138174.57 277493.09 405.75 126
MoG-HMM -213999.24 429033.48 2692.62 114
Naı̈ve-HMM -228682.23 457745.78 2126.03 30
BMM -214429.71 429894.41 2521.67 114
VAR-MVGHMM -162813.92 326826.25 1393.19 132

TABLE 7
Air Quality Scores When Three Hidden States are Used

Model mean LL mean BIC Std #

AR-AsLG-HMM -161077.29 323525.48 3346.94 133
AsLG-HMM -214970.27 430930.13 3666.78 91
LMSAR -186458.75 373898.02 3702.09 108
AR-MoG-HMM -138001.78 277746.70 210.11 192
MoG-HMM -211794.34 425168.40 5376.60 174
Naı̈ve-HMM -219751.80 440102.81 2570.88 48
BMM -211524.89 424629.51 4456.12 174
VAR-MVGHMM -155614.62 315995.65 2875.60 525

Fig. 8. Viterbi paths for the air quality example during the first week of
2016 when two hidden states are used.
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consistent with what is shown in Fig. 8i. The next model
with the highest LL and BIC is VAR-MVGHMM Fig. 8h,
which shows a noisy behaviour but always above zero, indi-
cating a persistent outlaw pollution level with changes in
severity; however it does not match with the reality
observed in Fig. 8i. In the case of LMSAR, we observe transi-
tions between legal and illegal pollution levels; however, it
reads as persistent high pollution levels which are not con-
sistent with Fig. 8i. AR-AsLG-HMM shows a noisy predic-
tion; however, in this case there are variations between
outlaw levels and legal levels of pollution. There are four
moments where the pollution levels are illegal in Fig. 8a as
in Fig. 8i; however, the prediction is not so clear as in the
case of AsLG-HMM Fig. 8b, MoG-HMM Fig. 8e, naı̈ve-
HMM Fig. 8f and BMM Fig. 8g, where more consistent pre-
dictions are found with similar levels of the g2ðiÞ function.
Since the Viterbi paths achieved for three hidden states are
similar to those with two hidden states, they are shown in
the supplementary material, available in the online supple-
mental material.

The noisy predictions can be explained using the learned
transition matrices: in the case of non-ARmodels, the transi-
tion probabilities were concentrated on the diagonal of the
transition matrix as in the case of AsLG-HMM in Eq. (22)
with matrix A1A1; whereas AR models learned more uniform
transition matrices as in the case of AR-AsLG-HMM in
Eq. (22) with matrix A2A2.

A1A1 ¼ 0:96 0:04
0:04 0:96

� �
; A2A2 ¼ 0:80 0:20

0:38 0:62

� �
: (22)

The latter causes more likely jumps between hidden
states and noisy Viterbi paths can be obtained. Nonetheless,
from all the AR models, AR-AsLG-HMM was the only one
closest to the real scenario given by Fig. 8i.

Fig. 9 shows two learned graphs when three hidden
states were assumed. In the context-specific Bayesian net-
works, AR variables are denoted as Xm AR r, where r is
the number of lags for the variable Xm. In Fig. 9a we show
a graph when the air quality is good and in Fig. 9b it is
bad. In both graphs we can observe some interesting rela-
tionships similar to the ones found in [38]. For example,
in Fig. 9a we observe that CO depends on PM2:5 and PM10

and SO2 and NO2 are related to CO. These relationships
come from the process of combustion of gas and charcoal.
Also NO2 is related to O3 which indicates the photochem-
istry of NO2 for the production of O3. In Fig. 9b we see
that these relationships remain. However, the dependen-
ces on previous values for each variable changes, which
tells us the level of impact of the past on the pollution
levels.

5.2.2 Ball-Bearings Degradation

Ball-bearings are used inside many mechanic tools as drills,
rotors, etc. Ball-bearings represent critical components
inside these machines. The failure or degradation of these
components can be translated to loses in time, money and
assets for industries. Monitoring ball-bearings is crucial and
relevant, and the use of HMM can give insight of the bear-
ing degradation process and therefore help in the develop-
ment of maintenance policies [42].

The benchmark used to validate the proposed model in
this section comes from ball-bearing vibrational data [43].
The run-to-failure tool machine setup is shown in Fig. 11.
Four ball-bearings are tested in the setup. The signals are
obtained with vibrational sensors. The desired vibrations
are submerged in noise; therefore, filtration techniques
are required. In this study, the signals are filtered as in
[44], where spectral kurtosis algorithms are used. From
the filtered signal, we calculate its spectrum with the
Fourier transform and the ball-bearing fundamental fre-
quencies, namely, ball pass frequency outer (BPFO)
related to the ball-bearings outer race, ball pass frequency
inner (BPFI) related to the ball-bearings inner race, ball
spin frequency (BSF) related to the ball-bearings rollers
and the fundamental train frequency (FTF) related to the
ball-bearings cage.

The training signal consists of 2,156 records, while the
testing signal has 6,324 records. We use the fundamental
frequencies as variables of the models, hence four varia-
bles are used. We must recall that the dataset comes from
a coupled mechanical system. Therefore, in the presence
of a fail in any part of the system, vibrations will be gener-
ated that will transmit across the whole system. Fig. 10
shows the BPFO frequency of every testing ball-bearing.
As we can see, for all the ball-bearings, the magnitude of
their frequencies grows abruptly at the end of the meas-
ures indicating a phase of ball-bearing failing somewhere
in the mechanical setup. In the training dataset, Bearing 3
fails due to its inner race and Bearing 4 due to its rollers.

Fig. 9. Context-specific graphs learned by AR-AsLG-HMM. (a) shows a
graph where the air quality is good and (b), where the air quality is bad.
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In the testing dataset Bearing 3 fails due to its outer race.
The hidden variable for this context can be understood as
the ball-bearing health state. The number of hidden states
was set depending on the scores obtained by naı̈ve-HMM
in the training data. We observed that with seven hidden
states, the scores of the naı̈ve-HMM were optimized.

For this problem, we constantly obtained underflow
problems due to the small amplitudes of some frequencies.
Therefore, all the dataset were multiplied by 1,000.
The g function uses kk ¼ f0; 0; 0; 0g and v ¼
f1=1000; 1=1000; 1=1000; 1=1000g. Therefore if we use
Eq. (19), g1 adds the magnitude of all the relevant frequen-
cies. If there is a degradation in any of the ball-bearing com-
ponents, the relevant frequencies will have greater
magnitudes and this will be perceived by g1. Therefore, pre-
dicting the hidden state in the testing data can be seen as an
approximation of the degradation of the ball-bearing. The
idea here is to train models such that they can determine
the degradation state of forthcoming ball-bearings. This can
be accomplished with the Viterbi paths. In particular for
this dataset, we are interested in Bearing 3, since it fails in
both the training and testing dataset. Nevertheless, we will
train the models for all the bearings and show the scores
obtained in the testing dataset. Additionally we show the
Viterbi paths of Bearing 3 to see the respective degradation.

During the training time, the iterations of LMSAR and
BMM had to be tuned to prevent problems with the varian-
ces or covariance matrices. Additionally, for the BMM, no
structural optimization was performed, since it was unfeasi-
ble in time.

Table 8 shows the results obtained by the models for each
ball-bearing. We observe that the best results in BIC were
achieved by different models, say: AR-AsLG-HMM,
LMSAR and VAR-MVGHMM. The worst results were
attained generally by naı̈ve-HMM and BMM. We observe
as well that MoG-HMM and AsLG-HMM got fair results
but always worse than their AR counterparts (AR-MoG-
HMM and AR-AsLG-HMM, respectively). In particular, in
the case of B3, we observe that the use of AR parameters
improved significantly the LL and BIC scores. In terms of
the number of parameters, we see that naı̈ve-HMM, AsLG-
HMM and AR-AsLG-HMM used the least amount of
parameters for all the ball-bearings. The remaining models
used two or three times the amount of parameters used by
naı̈ve-HMM. This implies that AR-AsLG-HMM fulfils its
purpose of being a model which uses a reasonable amount
of parameters with a good fit for new data.

Fig. 12 shows the paths for the testing B3. We can observe
that AR-AsLG-HMM, AsLG-HMM, LMSAR and MoG-
HMM exhibit the expected behaviour of the bearings degra-
dation, since they maintain low g1ðiÞ values during most of
the bearing signal and g1ðiÞ grows abruptly at the end of the
bearing life. The models AR-MoG-HMM, Naive-HMM,
BMM and VAR-MVGHMM show pure noise or non consis-
tent Viterbi paths, i.e., the g1ðiÞ function shows high values
at the middle of the bearing signal and reduces its values at

Fig. 10. Test signals from BPFO.

TABLE 8
Model Scores for Ball-Bearing Data

B Model LL BIC #

B1 AR-AsLG-HMM -32095.06 64793.79 57
AsLG-HMM -33086.47 66662.88 44

LMSAR -43531.13 87727.18 76
AR-MoG-HMM -37134.66 75424.18 132
MoG-HMM -42949.20 86738.30 96
Naı̈ve-HMM -47619.04 95658.03 36

BMM -41397.04 83633.98 96
VAR-MVGHMM -35093.25 72338.73 246

B2 AR-AsLG-HMM -38443.65 77438.49 51
AsLG-HMM -39527.63 79571.46 47

LMSAR -29191.95 59048.81 76
AR-MoG-HMM -31924.73 65004.32 132
MoG-HMM -37927.80 76695.49 96
Naı̈ve-HMM -37296.65 75013.25 36

BMM -38705.65 78251.19 96
VAR-MVGHMM -35674.99 73502.21 246

B3 AR-AsLG-HMM -56375.55 113424.77 65
AsLG-HMM -103975.42 208510.78 52

LMSAR -44120.05 88800.04 64
AR-MoG-HMM -44835.74 90616.38 108
MoG-HMM -107638.87 216117.64 96
Naı̈ve-HMM -119225.39 238870.73 36

BMM -154597.02 310033.95 96
VAR-MVGHMM -108390.68 218513.65 198

B4 AR-AsLG-HMM -32480.33 65748.06 78
AsLG-HMM -43628.14 87833.7 54

LMSAR -40498.35 81661.61 76
AR-MoG-HMM -38785.03 78724.91 132
MoG-HMM -42247.63 85335.15 96
Naı̈ve-HMM -49034.67 98489.29 36

BMM -42300.06 85440.01 96
VAR-MVGHMM -31443.86 65039.97 246

Fig. 11. A rotomotor spins at a speed of 2000 RPM coupled with four
Rexnord ZA-2115 ball-bearings. A radial load of 2721.554 kg is applied
to B3. A signal record of 0.1 s is taken every twenty minutes. The sam-
pling rate is 20 kHz.
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the end of the bearing life. In the case of LMSAR, the desired
behaviour is observed but the differences in the g1ðiÞ func-
tion between the end of the bearing life and the rest of the
bearing signal are not significant which affects the model
predictive power.

A relevant part of the proposed model is the generation
of context-specific Bayesian networks. In Fig. 13 we
observe two context-specific Bayesian networks. Fig. 13a
represents a good health state. In this graph we observe
that the cage frequencies (FTF) determine the remaining
variables. This implies that knowing the behaviour of the
cage, determines the behaviour of the ball-bearing rollers
and races. Fig. 13b represents a bad health state and
shows a more complex structure. In this context-specific
Bayesian network AR values are relevant and are taken
into consideration. We again see the dominance of the
ball-bearings cage (FTF) to determine the dynamical pro-
cess of the model, but some frequencies are not directly
dependent on this variable e.g., the outer race frequencies
(BPFO) depend on the inner race frequencies (BPFI) and
the roller frequencies (BSF) and these depend directly on
the cage frequency (FTF). In summary, these graphs are
capable of explaining the ball-bearings dynamical process
depending on its health.

6 CONCLUSION

In this paper, we extended the development of asymmetric
hidden Markov models allowing us to determine and learn
the optimal number of time lags depending on the value of
the hidden state via the SEM algorithm. Also we introduced
a greedy-forward heuristic to find the best structure for the
model. We also theoretically adapted the forward-back-
ward, Viterbi and EM algorithms to our proposed log-likeli-
hood function. Additionally, we showed that every
iteration of the EM algorithm improves the log-likelihood of
the model. We introduced a numerical labelling function,
which can be helpful in determining the nature of the
learned hidden Markov models and to identify changes in
the magnitude of the hidden variable.

We used synthetic and real data to validate the proposed
model. We compared ourselves with many other models. In
general, the AR-AsLG-HMM obtained good results in
scores and predictions for synthetic data and real data. We
also showed the use of the learned context-specific Bayesian
networks to extract information about the nature of the
problem being modeled which is harder to obtain from tra-
ditional HMMs. Additionally, the number of parameters
learned by AR-AsLG-HMMwere usually in an intermediate
point between the simplest model (naı̈ve-HMM) and the
mixture models which as stated before is helpful to prevent
data overfitting.

In future work, we would like to combine the idea of
asymmetric autoregressive models with other types of
HMMs such as HSMMs or HHMMs. Finally, we want to

Fig. 12. Sequence of hidden states by each model for B3.

Fig. 13. Context-specific graphs learned by AR-AsLG-HMM. (a) shows a
graph where the bearings health is good and (b), where the bearings
health is bad.
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apply the proposed model to online environments and
observe its behaviour to detect and treat concept drifts.
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