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Spatial Transformer for 3D Point Clouds
Jiayun Wang Rudrasis Chakraborty Stella X. Yu

Abstract—Deep neural networks are widely used for understanding 3D point clouds. At each point convolution layer, features are
computed from local neighbourhoods of 3D points and combined for subsequent processing in order to extract semantic information.
Existing methods adopt the same individual point neighborhoods throughout the network layers, defined by the same metric on the fixed
input point coordinates. This common practice is easy to implement but not necessarily optimal. Ideally, local neighborhoods should be
different at different layers, as more latent information is extracted at deeper layers. We propose a novel end-to-end approach to learn
different non-rigid transformations of the input point cloud so that optimal local neighborhoods can be adopted at each layer. We propose
both linear (affine) and non-linear (projective and deformable) spatial transformers for 3D point clouds. With spatial transformers on the
ShapeNet part segmentation dataset, the network achieves higher accuracy for all categories, with 8% gain on earphones and rockets in
particular. Our method also outperforms the state-of-the-art on other point cloud tasks such as classification, detection, and semantic
segmentation. Visualizations show that spatial transformers can learn features more efficiently by dynamically altering local
neighborhoods according to the geometry and semantics of 3D shapes in spite of their within-category variations.

Index Terms—point cloud, transformation, deformable, segmentation, 3D detection
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1 INTRODUCTION

3D Computer vision has been on the rise with more
advanced 3D sensors and computational algorithms.

Depth cameras and LiDAR sensors output 3D point clouds,
which become key components in several 3D computer vision
tasks including but not limited to virtual / augmented reality
[1], [2], 3D scene understanding [3], [4], [5], and autonomous
driving [6], [7], [8].

On the algorithmic side, convolutional neural networks
(CNNs) have achieved great success in many computer
vision tasks [9], [10]. However, the concept of convolution
cannot be directly applied to a point cloud, as 3D points are
not pixels on a regular grid with regular neighbourhoods.
One line of approaches is to convert the 3D point cloud into
a representation where CNNs are readily applicable, e.g.,
a regular voxel representation [11], [12], [13] or 2D view
projections [14], [15], [16], [17].

Another line of approaches is to develop network archi-
tectures that can directly process point clouds [18], [19], [20],
[21]. Analogous to convolution on 2D pixels, convolution on
3D points needs to first identify local neighborhoods around
individual input points. This step is achieved by computing
the so-called point affinity matrix, i.e., the adjacency matrix
of a dense graph constructed from the point cloud. These
neighborhoods are then used for extracting features with
point-wise convolutions. By stacking basic point convolution
layers, a neural network can extract information from the
point cloud with an increasing level of abstraction.

However, unlike images where 2D pixels are laid out on
a regular grid with simple and well-defined local neighbor-
hoods, local neighborhoods of 3D points are ill-defined and
subject to various geometric transformations of 3D shapes.
Most methods [18], [19], [22], [23] define local neighborhoods
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as nearest neighbors in the Euclidean space of the input 3D
point coordinates.

This common practice of defining a nearest neighbor
graph according to the Euclidean distances on the fixed input
3D point coordinates may be simple but not optimal. First,
such distances may not be able to efficiently encode semantics
of 3D shapes, e.g., semantically or topologically far points
might be spatially close in terms of the Euclidean distances.
Secondly, fixed neighborhoods throughout the network may
reduce the model’s learning capacity as different layers
capture information at different levels of abstraction, e.g.,
objects have a natural hierarchy and in order to segment out
their parts, it would be more efficient to provide different
layers the ability to parse them at different spatial scales.

We propose to address these fixed point neighbourhood
restrictions by dynamically learning local neighborhoods and
transforming the input point cloud at different layers. We
use a parametric model that takes both point coordinates
and learned features as inputs to learn the point affinity
matrix. At different layers of the network, we learn several
different transformations (dubbed as spatial transformers
or transformers hereafter, Fig.1) and corresponding point
local neighborhoods (Fig.2). Spatial transformers allow the
network to adaptively learn point features covering different
spatial extensions at each depth layer.

To spatially transform a point cloud, we learn a function,
Φ, that generates transformed point coordinates from the
input point coordinates and feature maps. However, it is
nontrivial to learn Φ without smoothness constraints. Since
any isometric (e.g. rigid) transformation cannot change the
distance metric, we consider non-rigid transformations, both
linear and non-linear families. That is, our spatial transformers
are parameterized functions conditioned on the input point
coordinates P and feature map F ; they are subsequently used
to transform the point coordinates, resulting in a new point
affinity matrix for obtaining dynamic local neighborhoods.

We consider three families of spatial transformers.
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Fig. 1. Spatial transformers learn several global transformations at each layer to obtain different local point neighborhoods. We show transformed
point clouds at different layers learned by spatial transformers for different instances of a category (e.g. tables). Compared with previous works
adopting fixed local neighborhoods, dynamic point neighborhoods make the network more powerful in learning semantics from point clouds. For
example, corresponding geometric transformations capture similar semantic information even high intra-class spatial variations exist. The second
transformation at layer 1 deforms different tables to be more semantically similar, and makes parsing the part of table base easier. Furthermore, the
proposed transformer is a stand-alone module and can be easily added to existing point cloud processing networks.
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Fig. 2. At each layer, we apply multiple spatial transformers to deform
the input point cloud for learning different neighborhoods. We show local
neighborhoods of input point cloud examples with and without deformable
transformers. Different colors indicate different neighborhoods, and inten-
sities indicate distances to the central point. The dynamic neighborhood
enhance the network capacity to learn from objects with large spatial
variations. Rotating table and earphone for better visualizations.

1) Affine transformation P 7→ AP , where A is an affine
matrix. 2) Projective transformer P̃ 7→ BP̃ , where P̃ is 3D
points expressed in homogeneous coordinates. 3) Deformable

transformer P 7→ CP + DF , where C,D are respective
transformation matrices of point coordinates and features
F . The transformation depends on both the input point
coordinates and the features the points assume.

Our work makes the following contributions.
• We propose to learn linear (affine) and non-linear (pro-

jective, deformable) spatial transformers for new point
affinity matrices and thus dynamic local neighborhoods
throughout the neural network.

• We demonstrate that our spatial transformers can be eas-
ily added to existing point cloud networks for a variety
of tasks: classification, detection, and segmentation.

• We apply spatial transformers to various point cloud
processing networks, with point-based and sampling-
based metrics for point neighborhoods, and observe
performance gains of dynamic graphs over fixed graphs.

2 RELATED WORK

We discuss related works that motivate the necessity of our
proposed spatial transformers.
View-based methods project 3D shapes to 2D planes and
use images from multiple views as representations. Taking
advantages of the power of CNNs in image processing [24],
[25], [15], [14], view-based methods achieve reasonable 3D
processing performance. However, certain information about
3D structures gets lost when 3D points are projected to 2D
image planes; occluded surfaces and density variations are
thus often troublesome for these methods.
Voxel-based methods represent 3D shapes as volumetric
data on a regular 3D grid, and proceed with 3D convolution
[11], [26], [27]. Their caveates are quantization artifacts,

https://drive.google.com/file/d/1261A3Pgnx8FWnZdiKLm6qReQev_j_aSK/view?usp=sharing
https://drive.google.com/file/d/11iaI_rKzueMRdlPCpFFBaDBZeLABFMwV/view
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inefficient usage of 3D voxels, and low spatial resolutions due
to a large memory requirement. In addition, 3D convolutions
are not biased towards surface property extraction and thus
cannot capture geometrical and semantic information effi-
ciently. Recent works that apply different partition strategies
[28], [12], [27], [13] relieve these issues but depend heavily
on bounding volume subdivision instead of local geometric
shapes. In contract, our method works directly on the 3D
point cloud, minimizing geometric information loss and
maximizing processing efficiency.
Point cloud processing methods take a point cloud as the
input and extract semantic information by point convolutions.
PointNet [18] directly learns the embedding of every 3D
point in isolation and gather that information by pooling
point features later on. Although it achieves good perfor-
mance at the time, PointNet does not learn any 3D local
shape information since each local neighborhood contains
only one point. PointNet++ [19] addresses this caveate by
adopting a hierarchical application of isolated 3D point
feature learning to multiple subsets of a point cloud. Many
other works also explore different strategies for leveraging
local structure learning from point clouds [22], [23]. Instead
of finding neighbors of each point, SplatNet [29] encodes
local structures from the sampling perspective: it groups
points based on permutohedral lattices [30], and then applies
bilateral convolution [31] for feature learning. Super-point
graphs [32] partition a point cloud into super-points and
learn the 3D point geometric organization. Many works
focus on designing novel point convolutions given 3D point
local neighborhoods [19], [29], [23], ignoring how the local
neighborhoods should be formed.

Unlike pixels in a 2D image, points in a 3D point
cloud are un-ordered, with irregular and heterogeneous
neighborhoods; regular convolution operations thus cannot
be applied. Many works [22], [23], [33], [34], [35], [36] aim to
design point convolution operations that resemble regular
2D convolutions. Fixed input point coordinates are used
to define local neighborhoods for the point convolution,
resulting in the same local neighbourhoods at different layers
that limit the model’s processing power. In contrast, our work
uses spatial transformers at each layer to learn dynamic local
neighborhoods in a more adaptive, flexible, and efficient way.
Spatial Transformations. The idea of enabling spatial trans-
formation in neural networks has been explored for 2D image
understanding [37]. It is natural to extend the idea to 3D
point clouds. PointNet [18] adopts a rigid transformation
module on the input point cloud to factor out the object pose
and improve classification accuracy. KPConv [38] applies
local deformation in the neighborhood of point convolution to
enhance its learning capacity. In contrast, our work learns
several different global transformations to apply on the input
point cloud at each layer for dynamic neighborhoods.

3 METHODS

We first briefly review different geometric transformation
methods and their influence on the affinity matrix of point
cloud data, then describe the design of our three spatial trans-
formers, namely, (a) affine, (b) projective and (c) deformable.
We apply the spatial transformer block, consisting of multiple
spatial transformers, to each layer of a network for altering

DeformableRigid Affine Projective

linear transformations non-linear transformations

Fig. 3. Geometric transformations. We illustrate how a grey square
transforms after rigid, affine, projective and deformable transformations.

local neighborhoods for better point feature learning. We
conclude the section by introducing how the transformers
can be added to existing point cloud processing networks
and the relevance to other works.

3.1 Geometric Transformations
We propose to learn transformations on the input point cloud
to deform its geometric shape, and alter local neighborhoods
with new point affinity matrices. The hypothesis behind the
usage of geometric transformation is as follows:

Hypothesis 1. Let P = {pi} be the input point cloud and letNi

be the local neighborhood around pi ∈ R3 from which we extract
local features. Let N = {Ni} be the set of local neighborhoods.
Assume Ñ =

{
Ñi

}
be the optimal neighborhood for learning

local features, then ∃(smooth) Φ : Ni → Ñi for all pi.

Essentially we are going to use different types of geo-
metric transformations to approximate Φ. The new learned
affinity matrix will dynamically alter local neighborhoods to
allow better feature learning.

Illustrated in Fig.3, transformations can be categorized
into rigid and non-rigid transformations, and the latter can
be further categorized into linear and non-linear transforma-
tions. We now discuss different spatial transformations.
Rigid Transformations. The group of rigid transformations
consist of translations and rotations. However, rigid transfor-
mations are isometric (in `2 distance) and therefore preserves
the point affinity matrix. Thus, local neighborhoods are
invariant to rigid transformations in terms of k-NN graphs.
Hence, we do not consider rigid transformations.
Affine Transformations. Affine transformations belong to
non-rigid linear transformations. Consider a 3D point cloud
P = {pi}Ni=1 ⊂ R3 consisting of N three-dimensional
vectors pi ∈ R3. Then, an affine transformation can be
parameterized by an invertible matrix A ∈ R3×3 and a
translation vector b ∈ R3. Given A,b, the affine transformed
coordinates pi can be written as pi 7→ Api + b. Note that
translation b does not change the point affinity matrix and
point neighborhoods. Recall that an affine transformation
preserves collinearity, parallelism, and convexity.
Projective Transformations. Projective transformations are
non-rigid non-linear transformations. We first map the 3D
point cloud P to the homogeneous space and get P̃ , by
appending one-vectors to the last dimension. The projective
transformation is parameterized by A ∈ R4×4 and the
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transformed point p̃i 7→ Ap̃i. Compared to the affine
transformations, projective transformations have more de-
grees of freedom but cannot preserve parallelism. Projective
transformations preserve collinearity and incidence, hence
fail to capture all possible deformations. For example, points
lying on the same line will always be mapped to a line,
and this constraint may be overly restrictive. It is of interest
to be able to break this constraint if these points are from
different semantic categories. A more general transformation
that covers various deformations may be more effective.
Deformable Transformations. When all the points have the
freedom to move without much constraint, the 3D shape can
deform freely. We refer to this general spatial transformation
as a deformable transformation. It has more degrees of freedom
and does not necessarily preserve the topology.

Learning new per-point offsets would be computationally
hard and costly, we thus use a parametric offset model
instead. Taking both point coordinates and features as inputs,
the model would learn offsets dependent upon both spatial
and feature representations of the input point cloud.

3.2 Spatial Transformers for 3D Point Clouds
Our so-called spatial transformer method applies a geometric
transformation to the input point cloud to obtain different
local neighborhoods for feature learning. It can be applied
to existing point cloud processing networks as spatial
transformers only alter local neighborhoods.

Suppose at layer t, the spatial transformer block contains
k(t) transformers. Each transformer learns a transformation
to apply to the input point coordinates. We refer to the
transformed points as nodes of a sub-graph and their feature
on it the corresponding sub-feature. We then concatenate all
sub-features from these transformers to form the final output
of the learning block. Suppose that the ith spatial transformer
at the tth layer takes as input the original point cloud P ∈
R3×N and previous feature map F (t−1) ∈ Rf(t−1)×N .
Affine. We form k(t) new transformed point from pj as:

g
(t)
i,j = A

(t)
i pj + b

(t)
i , i = 1, 2, ..., k(t). (1)

Since the point affinity matrix is invariant under uniform
scaling and translation, we set ‖Ai‖F = 1, b = 0, for all i.
Thus, with G

(t)
i =

{
g
(t)
i,j

}
j
, we simplify Equation 1 as:

G
(t)
i = A

(t)
i P, i = 1, 2, · · · , k(t). (2)

We compute the k nearest neighbours of each transformed
point G(t)

i and obtain the point affinity matrix S
(t)
i , based

on which we define local neighborhoods and apply point
convolutions on previous point cloud feature mapF (t−1). We
get the point cloud feature F

(t)
i ∈ Rf

(t)
i ×N of the sub-graph

from i-th transformation and its altered neighborhoods:

F
(t)
i = CONV(F (t−1), S

(t)
i , k), i = 1, 2, ..., k(t), (3)

where CONV denotes the point convolution: It takes (a) previ-
ous point cloud features, (b) the affinity matrix (for defining
local neighborhoods of every point) and (c) the number of
neighbors (for defining the size of neighborhoods) as inputs.

In point convolutions such as [22], the point affinity
matrix changes the input feature in a non-differentiable

way. Therefore, we append the transformed point cloud
P

(t)
i to the input feature for the sake of back-propagating

the transformation matrix A. In sampling-based convolu-
tions such as bilateral convolution [29], the point affinity
matrix changes the input feature in a differentiable way; no
additional operation is needed.

For all the k(t) sub-graph in layer/ block t, we learn k(t)

point cloud features F
(t)
i . The output of this module is the

concatenation of all the sub-graph point cloud features:

F (t) = CONCAT(F
(t)
1 , F

(t)
2 , ..., F

(t)

k(t)), (4)

where F
(t)
i ∈ Rf

(t)
i ×N and f(t) =

∑k(t)

i f
(t)
i , F (t) ∈ Rf(t)×N .

In our implementation, we randomly initialize A from the
standard normal distribution N (0, 1). Before computing the
coordinates of the transformed point cloud, we normalize A
by its norm ‖A‖F , as the point affinity matrix is invariant
under uniform scaling.
Projective. Analogous to the affine spatial transformer, for
the ith graph at tth layer, we apply a projective transformation
to the point cloud P̃ in homogeneous coordinates and get
the transformed point cloud as:

G̃
(t)
i = B

(t)
i P̃ , i = 1, 2, · · · , k(t), (5)

where B
(t)
i ∈ R4×4 is the transformation matrix in homoge-

neous coordinates. We then follow the same procedure as in
Equations 3 and 4 to get the output feature F t.
Deformable. Affine and projective transformations can trans-
form the input point cloud, alter the point affinity matrix, and
provide learnable local neighborhoods for point convolutions
at different layers. However, they are limited as affine
transformations are linear and projective transformations
map lines to lines only. We define a non-linear deformable
spatial transformer at the tth layer and ith sub-graph as

G
(t)
i = A

(t)
i P + D

(t)
i , (6)

where A
(t)
i P is the affine transformation component and

D
(t)
i ∈ R3×N gives every point additional freedom to move,

so the point cloud has the flexibility to deform its shape. Note
that the translation vector b in Equation 1 is a special case
of the deformation matrix D

(t)
i . In general, the deformation

matrix D
(t)
i can significantly change local neighborhoods.

The spatial transformer parameters are learned in an
end-to-end fashion from both point cloud coordinates and
features. Since affine transformation A

(t)
i P is dependent

on spatial locations, we let the deformation matrix D
(t)
i

depend on the features: D(t)
i = C(t)i F (t−1), where C(t)i ∈

R3×f transforms the previous layer feature F (t−1) ∈ Rf×N

from Rf to R3. Hence, the deformable transformation in
Equation 6 can thus be simplified as:

G
(t)
i =

[
A

(t)
i C(t)i

] [ P
F (t−1)

]
= C

(t)
i

[
P

F (t−1)

]
, (7)

where C
(t)
i ∈ R3×(3+f(t−1)) is the concatenation of affine

and deformable transformation matrix that captures both
point cloud coordinates and features.

After we compute the transformed point coordinates
G(t), we follow Equations 3 and 4 to learn the feature of each
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transformed sub-graph and concatenate them as the final
output feature of layer t.

Our deformable spatial transformer has two parts: A(t)
i P

and C(t)i F (t−1), for a linear transformation of 3D spatial
coordinates and a nonlinear transformation of point features
(which reflect semantics) respectively. In Section 4.5, we
provide empirical analysis of these two components.

3.3 Spatial Transformer Networks

We spatially transform the input point cloud in order to
obtain dynamic local neighborhoods for point convolutions.
The transformer can be easily added to existing point cloud
processing networks. We first describe the procedure and
then provide three applications with several networks.
Point Cloud Networks with Spatial Transformers. Con-
sider segmenting N 3D points into C classes as an example.
Fig.4 depicts a general network architecture for point cloud
segmentation, where several spatial transformers are used
at different layers. At layer t, we learn k(t) transformation
matrices {A(t)

i }k
(t)

i=1 , apply each to the input point coordinates
P , and then compute the point affinity matrices {S(t)

i }k
(t)

i=1,
e.g., based on k-NN graphs for the edge convolution [22].

For each sub-transformation, we learn a feature F
(t)
i of

dimension N × f
(t)
i . We then concatenate all k(t) features at

this layer to form an output feature F t of dimension N × f(t),
where f(t) =

∑k(t)

i f
(t)
i . The output feature serves as the

input to the next layer for further feature learning.
Note that affine or projective transformation matrices

are applied to the original point cloud coordinates P , since
each layer has not just one but multiple spatial transformers.
However, the deformable transformation matrix C(t)i is ap-
plied to the previous feature map, the feature transformation
component is thus progressively learned.

By stacking several such transformation learning blocks
and finally a fully connected layer of dimension C, we
can map the input point cloud to the segmentation map of
dimension C ×N , or downsample to a vector of dimension
C for classification tasks. For the spatial transformer block in
a point cloud detection network (Fig.5), C is the dimension
of the output feature. We train the network end-to-end.
Classification Networks. A point cloud classifier [19], [23]
takes 3D points, learns features from their local neighbor-
hoods, and outputs C classification scores, where C is the
number of classes. We add spatial transformers at each layer
to obtain different local neighborhoods for feature learning.
Point-based Segmentation Networks. These networks [19],
[18], [23], [22] take 3D points and compute their point affinity
matrices and local neighborhoods from the point coordinates.
Features are learned by applying convolution operators on
the points and their local neighborhoods.

We use the edge convolution in [22] as our baseline, which
takes relative point coordinates as inputs and achieves the
state-of-the-art performance. Specifically, we retain their
learning settings and simply insert spatial transformers to
generate new local neighborhoods for the edge convolutions.
Sampling-based Segmentation Networks. To demonstrate
the general applicability of our spatial transformers, we
consider point affinity matrices on transformed point clouds
as defined in sampling-based networks such as SplatNet [29].

SplatNet groups 3D points onto a permutohedral lattice
[30] and applies bilateral filters [31] on the grouped points
to get features. The permutohedral lattice defines the local
neighborhoods of every point and makes the bilateral
convolution possible. We add spatial transformers to deform
the point cloud and form various new lattices. The local
neighborhoods can dynamically configure for learning point
cloud semantics. We keep all the other settings of SplatNet.
Detection Networks. Detecting objects in a 3D point cloud
generated from e.g. LiDAR sensors is important for au-
tonomous navigation, housekeeping robots, and AR/ VR.
These 3D points are often sparse and imbalanced across
semantic classes. Our spatial transformers can be added to
a detection network and improve feature learning efficiency
and task performance with dynamic local neighborhoods.

Our baseline is VoxelNet [39], the state-of-the-art 3D
object detector for autonomous driving data. We adopt all
its settings, and add spatial transformers on the raw point
cloud data, before point grouping (Fig.5). To demonstrate that
spatial transformers enhance feature learning for point cloud
processing, we let transformers only affect point features but
not point coordinates for grouping. With spatial transformers,
point coordinates could also be transformed at the grouping
stage, which would lead to non-cuboid 3D detection boxes.
Although interesting, we do not explore this variation and
deem it beyond the scope of this paper.

3.4 Relevance to Other Works
We review related works on deformable convolutions [40],
[38] and DGCNN [22].
Deformable Convolutions. Deformable convolutional net-
works [40] learn dynamic local neighborhoods for 2D images.
Specifically, at each location p0 of the output feature map
Y , deformable convolutions modify the regular grid R with
offsets {∆pn}Nn=1, where N = |R|. The output on input X
by convolution with weight w becomes:

Y (p0) =
∑

pn∈R3

w(pn)X(p0 + pn + ∆pn) (8)

Note that KPConv [38] directly adapts this formula to
point clouds as deformable point convolutions. Although
also achieving dynamic local neighborhoods, our spatial
transformers alter neighborhoods differently:
1) Deformable point convolutions learn to alter each neigh-

borhood with an offset to the regular grid R. We learn
global transformations on the input point cloud and the
metric of defining local neighborhoods changes. Global
transformations like affine transformations can retain
the global geometric properties such as collinearity and
parallelism, while local transformations has no such
constraints as only local neighborhoods are available.

2) Offsets of deformable point convolutions are dependent
upon feature values, while transformation matrices of
our spatial transformers are dependent upon point co-
ordinates for affine and projective transformations, or
both point coordinates and feature values for deformable
transformations. Access to point coordinates provides
additional information and regularzation.

Dynamic Graph CNN. Dynamic local neighborhoods have
also been explored in DGCNN [22] for point cloud processing.
It has three main differences with our work.
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Fig. 5. The object detection network. We add spatial transformers to
the the point feature learning network of [39] for obtaining dynamic local
neighborhoods. Transformers only affect feature learning but not point
coordinates for grouping.

1) How neighborhoods are defined is different. DGCNN
uses high-dimensional feature maps to construct the point
affinity matrix and generate local neighborhoods. Our
local neighborhoods are from transformed point clouds.
Reusing point features for defining neighborhoods may
be straightforward, but reduce the distinction between
spatial and semantic information and hurt generalization.

2) It is computationally costly to build dense nearest neigh-
bor graphs in a high-dimensional feature space.

3) DGCNN [22] uses only one nearest neighbor graph at
different layers, whereas we have multiple graphs at each
layer for capturing different geometric transformations.

With less computational cost and more flexibility in geometric
transformations, we achieve better empirical performance on
semantic segmentation (Table 2 and Table 3).

4 EXPERIMENTS

We conduct comprehensive experiments to verify the effec-
tiveness of our spatial transformers. We benchmark with
two types of networks, point-based and sampling-based

metrics for defining point neighborhoods, on four point cloud
processing tasks: classification, part segmentation, semantic
segmentation and detection. We conduct ablation studies
on deformable spatial transformers. We further provide
visualization, analysis and insights of our method.

4.1 Classification
We benchmark on ModelNet40 3D shape classification [11].
We add transformers to two baselines [22], [29] and adopt
the same network architecture, experimental setting and
evaluation protocols. Table 1 and Fig.4.1 show that adding
spatial transformers to point-based and sampling-based
method gives 1% and 2% gain.

In addition, our performance gain over [22], which builds
one per-layer dynamic neighborhood graphs with high-
dimensional point features, demonstrates the advantages
of our method of building multiple dynamic neighborhood
graphs with transformed 3D point coordinates.

Fig.12 shows that spatial transformers align the 3D shape
better according to its semantics. We augment training and
testing data with random rotations, and observe that spatial
transformers gain 3% over its fixed graph counterpart.

4.2 Part Segmentation
We benchmark on ShapeNet part segmentation [41], where
the goal is to assign a part category label (e.g. chair leg, cup
handle) to each 3D point. The dataset contains 16, 881 shapes
from 16 categories, annotated with 50 parts in total, and the
number of parts per category ranges from 2 to 6.

4.2.1 Point-based Method
Network Architectures. Point-based methods construct neigh-
borhoods based on point coordinate operations such as edge
convolution for our baseline DGCNN [22]. We follow the
same network architecture and evaluation protocols of [22].
The network has 3 convolutional layers; the output feature
dimension is 64. To capture information at different levels, all
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TABLE 1
Spatial transformers improves ModelNet40 classification accuracy. We report ModelNet40 classification accuracy of different
baselines, without and with spatial transformers, with or without random rotations. Point-based refers to the baseline method

adopting Euclidean-distance based affinity matrices [22]. Sampling-based refers to the baseline method adopting
permutohedral-lattice based affinity matrices [29]. We observe accuracy gains for different baseline networks with spatial

transformers. Transformer gains are invariant to input rotations.

Point-based Point-based with rand. input rotations Samplin-based
PointNet [18] DGCNN [22] [22] (fixed) Affine Proj. Deformable [22] (fixed) Deformable SplatNet[29] Affine Proj. Deformable

Avg. 86.2 89.2 88.8 89.3 89.2 89.9 85.7 88.3 86.3 87.4 87.1 88.6

11.2%
10.1%

14.3%

11.7%
13.7%

11.4%

0%

4%

8%

12%

16%

Fix Dynamic Fix Dynamic Fix Dynamic

ModelNet40 Classification Error

Point-based method
Point-based method

w/ random input rotation Sampling-based method

Fig. 6. Spatial transformers lead to higher accuracy and more rotation
invariance on ModelNet40. We report classification errors for different
baselines, without and with spatial transformers, with or without random
rotations. Transformers consistently lead to the lower errors than fixed
graph baselines, and the improvement is larger upon random rotations.

Ground-truth Fix Our Dynamic

Fig. 7. Spatial transformers improve the part segmentation performance.
We show part segmentation results of different baselines, where different
parts are marked with different colors. With spatial transformers, part
segmentation for objects with less rigid and more complicated structures
improves (1st and 2nd row, lamp). The segmentation consistency within
each part also improves (3rd row, rocket).

the convolutional features are concatenated and fed through
several fully connected layers to output the segmentation.

As a fixed graph baseline, we use the same input point
coordinates as the metric to define fixed local neighborhoods.
We insert spatial transformers to alter the metric for defin-
ing point neighborhoods for edge convolutions. There are

point-based affine, projective and deformable networks when
inserting different spatial transformers (Section 3.2). As for
classification, [22] directly uses learned features to build
point affinity matrices for dynamic neighborhoods.

We follow [22] and use three edge convolution layers.
At each layer, we keep the number of graphs k and sub-
graph feature dimension f the same, and search for the
best architecture. We report results of affine, projective
and deformable networks with k = 4, f =!32. For fair
comparisons, we increase the number of channels of baselines
so all the methods have the same number of parameters.
Results and Analyses. In Table 2, we report the instance
average mIOU (mean intersection over union), as well as
the mIOU of some representative categories in ShapeNet.
Compared with the fixed graph baseline, the affine, projective
and deformable spatial transformers achieve 0.5%, 0.2%
and 1.1% improvement respectively and beats the fixed
graph baseline methods in most categories. Specifically, we
observe 8.0%, 8.3% and 4.7% performance boost with spatial
transformers over the fixed graph baseline. Our deformable
spatial transformers gain 4.0% over [22].

We also beat other state-of-the-art methods [18], [19],
[20] by a significant margin. Adding deformable spatial
transformers to PointCNN [23] gains 6% (4%) on motorbike
(bag) and 1% on average. We observe that categories with
fewer samples are more likely to gain possibly due to
regularization by transformers. Fig.7 shows that deformable
spatial transformers make more smooth predictions and
achieve better performance than the fixed graph baseline.

From affine to deformable transformations, the perfor-
mance increases as the degree of freedom increases for
the transformer. Projective transformers, however, perform
slightly worse than affine transformers. The performance
drop could result from geometrical distortion caused by map-
ping 3D points with homogeneous coordinates. Furthermore,
for deformable transformers, when removing the constraint
that the transformed points should be similar to the input
point cloud (Fig.8, feature only G = CF ), the performance
also drops, indicating the necessity of the proposed similar-
to-input constraint on spatial transformers.

4.2.2 Sampling-based Method
Network Architectures. Sampling-based methods construct
neighborhoods are based on sampling operations on point
coordinates. SplatNet [29] groups points on permutohedral
lattices and applies learned bilateral filters [31] on naturally
defined local neighbors to extract features. We follow the
same architecture as SplatNet [29]. The network starts with
a single 1 × 1 regular convolutional layer, followed by 5
bilateral convolution layers (BCL). The output of all BCL are
concatenated and fed to a final 1× 1 regular convolutional
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TABLE 2
Spatial transformers improve part segmentation performance. We report mIoU(%) on ShapeNet PartSeg dataset. Compared with several other

methods, deformable spatial transformers achieve the SOTA in average mIoU.

Avg. aero bag cap car chair earphone guitar knife lamp laptop motorbike mug pistol rocket skateboard table
# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
3DCNN [18] 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8 76.4 51.2 65.3 77.1
PointNet[18] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [19] 85.0 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
FCPN [20] 81.3 84.0 82.8 86.4 88.3 83.3 73.6 93.4 87.4 77.4 97.7 81.4 95.8 87.7 68.4 83.6 73.4
DGCNN [22] 81.3 84.0 82.8 86.4 78.0 90.9 76.8 91.1 87.4 83.0 95.7 66.2 94.7 80.3 58.7 74.2 80.1
Point-based [22] fixed graph 84.2 83.7 82.4 84.0 78.2 90.9 69.9 91.3 86.6 82.5 95.8 66.5 94.0 80.8 56.0 73.8 79.8
Point-based affine 84.7 84.1 83.5 86.9 79.6 90.9 72.5 91.6 88.2 83.3 96.1 68.9 95.3 83.3 60.9 75.2 79.7
Point-based projective 84.4 84.3 84.2 88.5 77.9 90.4 72.8 91.2 86.6 81.7 96.0 66.6 94.8 81.3 61.6 72.1 80.5
Point-based deformable 85.3 84.6 83.3 88.7 79.4 90.9 77.9 91.7 87.6 83.5 96.0 68.8 95.2 82.4 64.3 76.3 81.5
Point-based deformable random 84.7 84.3 84.4 83.2 78.9 90.8 75.6 91.4 87.1 83.0 95.9 66.8 94.8 82.1 62.3 75.7 80.4
PointCNN [23] 84.9 82.7 82.8 82.5 80.0 90.1 75.8 91.3 87.8 82.6 95.7 69.8 93.6 81.1 61.5 80.1 81.9
PointCNN deformable 85.8 83.4 86.6 85.5 79.1 90.3 78.5 91.6 87.8 84.2 95.8 75.3 94.6 83.3 65.0 80.7 81.7
Sampling-based baseline [29] 84.6 81.9 83.9 88.6 79.5 90.1 73.5 91.3 84.7 84.5 96.3 69.7 95.0 81.7 59.2 70.4 81.3
Sampling-based projective 84.4 82.1 84.0 89.1 77.9 89.6 73.7 91.1 83.3 83.0 96.3 67.2 94.5 79.8 60.0 68.8 82.1
Sampling-based deformable 85.2 82.9 83.8 87.6 79.6 90.6 73.0 92.2 86.1 85.7 96.3 72.7 95.8 83.1 65.1 76.5 81.3
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Fig. 8. Transforming both point cloud coordinates and features for
dynamic local neighborhoods leads to the largest gain. We report different
parts of deformable transformers’ performance gain over fixed local
neighborhood baseline on ShapeNet part segmentation. 0% means
achieving the same accuracy as fixed local neighborhood baseline and
negative value means achieving worse accuracy than fixed neighborhood
baseline. Compared with preserving either affine part AP or feature part
CF , deformable spatial transformers (AP + CF ) achieves largest gains
on every category, specifically 8% gains on earphone and rocket.

layer to get the segmentation output. Since each BCL directly
takes raw point locations, we consider it as a fixed graph
baseline. We add deformable spatial transformers to the
network and feed transformed point graphs to BCL to
construct permutohedral lattices. With gradients on the
permutohedral lattice grid, we can make the transformation
matrix learned end-to-end. Note that we increase the channel
of convolution layers for fair comparisons.
Results and Analyses. Table 2 shows that our deformable
spatial transformers (with k = 1 at all BCLs) gains over the
sampling-based fixed graph baseline [29] in most categories
with 0.6% on average and 5.9% for the rocket category. It also
beats other state-of-the-art baselines.

4.3 Semantic Segmentation
We benchmark on the Stanford 3D semantic parsing dataset
[42]. It contains 3D scans by Matterport covering 6 areas and
271 rooms. Each point is annotated into one of 13 categories
such as chair, table, floor, clutter. We follow the data processing
procedure of [18]: We first split points by room, and then
sample rooms into several 1m ×1m blocks. When training,
4096 points are sampled from the block on the fly. We train
our network to predict the point class in each block, where
each point is represented by 9 values: XYZ, RGB and its
[0,1]-normalized location with respect to the room.

TABLE 3
Spatial transformers improve semantic segmentation performance. We

report mIoU(%) on S3DIS semantic segmentation dataset. Adding
spatial transformers to [22] and [29] improves the performance.

PointNet[18] DGCNN[22] [22](FIXED) [22]+AFF [22]+DEF SplatNet [29] [29]+DEF
47.7 56.1 56.0 56.9 57.2 54.1 55.5

ceiling floor wall beam column window clutter
[22](FIXED) 92.5 93.1 76.1 51.0 41.7 49.6 46.8

[22]+AFF 92.7 93.6 76.7 52.6 41.2 48.7 47.8
[22]+PROJ 92.5 93.5 76.7 52.7 40.7 48.5 48.0
[22]+DEF 92.8 93.6 76.8 52.9 41.1 49.0 48.0

door table chair sofa bookcase board
[22](FIXED) 63.4 61.8 43.1 23.3 42.0 43.5

[22]+AFF 63.7 63.4 45.1 27.0 41.3 44.8
[22]+PROJ 63.5 62.3 44.8 27.0 41.5 44.9
[22]+DEF 63.5 64.2 45.2 28.1 41.7 46.1

TABLE 4
Spatial transformers improve object detection performance. We report

car detection AP(%) on KITTI validation set. Adding spatial transformers
leads to 2% performance gain.

birds’ eye 3D
Easy Medium Hard Easy Medium Hard

VoxelNet[39] 77.3 59.6 51.6 43.8 32.6 27.9
VoxelNet + fixed graph 84.3 67.2 59.0 45.7 34.5 32.4
VoxelNet + deformable 85.3 69.1 60.9 46.1 35.9 34.0

Network Architectures. We adopt DGCNN [22] as Section
4.2, with C = 13, the number of semantic categories.
Results and Analyses. In terms of average mIoU, Table 3
shows that affine and deformable spatial transformers gain
0.9% and 1.2% respectively over the fixed graph baseline.
Deformable transformers also gain 1.1% over [22] and beat all
other state-of-the-art methods. Likewise for sampling-based
methods [29], we observe 1.4% gain.

As for part segmentation, semantic segmentation perfor-
mance improves when point clouds are given more freedom
to deform (from affine to deformable spatial transformers)
based on transformation of original locations and feature
projections. Projective transformers give least performance
gain, suggesting that mapping 3D points via homogeneous
coordinates may not be most efficient.

Fig.9 shows that semantic segmentation results are
smoother and more robust to missing points and occlusions
with our deformable transformers.

4.4 3D Object Detection
We benchmark on KITTI 3D object detection [43]. It contains
7,481 training images / point clouds and 7,518 test images
/ point clouds, covering three categories: Car, Pedestrian,
and Cyclist. For each class, detection outcomes are evaluated
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Fig. 9. Spatial transformers improve semantic segmentation results. We show qualitative visualizations for semantic segmentation of deformable
spatial transformers and the fixed local neighborhood baseline. The first column is the input point cloud, the second and the third column shows the
fixed graph and our spatial transformer results, and the last column is the ground truth. Points belonging to different semantic regions are colored
differently. We observe better and more consistent segmentation result with our spatial transformer, specifically for the areas circled in red.

based on three difficulty levels: easy, moderate, and hard,
according to the object size, occlusion state and truncation
level. We follow the evaluation protocol in VoxelNet [39] and
report car detection results on the validation set.
Network Architectures.. Shown in Fig.5, the network first
partitions raw 3D points into voxels. We add deformable spa-
tial transformers; points in each voxel are represented with
point features. There are two deformable feature learning
layers, each layer having 2 sub-graphs with 16-dimensional
outputs. Note that the voxel partition is based on the input
point coordinates. As in VoxelNet, the point features in
each voxel are fed to 2 voxel feature encoding layers with
channel 32 and 128 to get sparse 4D tensors representing the
space. The middle convolutional layers process 4D tensors to
further aggregate spatial contexts. Finally a Region Proposal
Network (RPN) generates the 3D detection.

We report the performance of 3 networks: (1) VoxelNet
baseline [39]; (2) the fixed graph baseline, where we used the
original point cloud location to learn the point feature at the
place of spatial transformer blocks; (3) deformable spatial
transformer networks as discussed above.
Results and Analyses. Table 4 reports car detection results
on KITTI validation set.1 Compared with baseline, having

1. The authors did not provide code. We use the implementation by
[44] and obtain lower performance than the original paper.

TABLE 5
Performance of different number of deformable transformation modules.

Metric is average mIOU (%).

fixed graph 1 graph 2 graphs 4 graphs
f
(t)
i = 32 84.2 84.9 85.2 85.3

f
(t)
i k

(t)
i = 64 84.2 85.3 85.2 83.5

In the first row, the output feature of each sub-graph is of dim. 32, while
the number of subgraphs changes; the second row limits the multiplication of
number of sub-graphs and sub-feature dim. to be 64.

a point feature learning module improves the performance
by 7.3% and 2.8% for birds’ eye view and 3D detection per-
formance on average, respectively. The deformable module
further improves 8.9% and 3.9% respectively over VoxelNet.

4.5 Ablation Studies
We conduct ablation studies to understand how many
spatial transformers may be sufficient to achieve satisfac-
tory performance. We also study transformations of point
coordinates and features of deformable spatial transformers.
The influences of updating transformation matrices and
transformers at different layers are investigated.
The Number of Transformers. Table 5 shows that for the
fixed sub-feature dimension, the more graphs in each layer,
the higher the performance. With the fixed complexity, (i.e.,
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Fig. 10. Part segmentation performance (average mIOU) of deformable
transformers at different layers. When applying all transformers at three
layers, the performance is highest. Removing transformers at different
layer lead to performance drop. Removing transformers at layer 3 gives
the most performance drop.

the product of the number of sub-graphs and the sub-feature
dimension fixed at 64), the best performance is achieved at
k = 1, f = 64 and k = 2, f = 32 .
Two Components in Deformable transformers. A de-
formable spatial transformer has two components (Equation
7): affine transformation on point coordinates, AP , and
three-dimensional projection of high-dimensional feature,
CF . Fig.8 shows that both affine and feature only spatial
transformers also improve performance, but the combination
of both leads to the largest gain.
Updating Transformation Matrices. The transformation ma-
trices are updated in an end-to-end fashion with the ultimate
goal of increasing the task performance. It is of interest to
understand if updating transformation matrix boosts the
performance. Specifically, we randomly initialize transfor-
mation matrices of deformable spatial transformers and
keep them not updated during training. The performance is
0.5% better than fixed graphs, indicating that adding more
transformation graphs at different layers helps; however,
it is 0.6% worse than updating transformation matrices,
indicating learning to update transformation matrices in
an end-to-end fashion is helpful.
Transformers at Different Layers. We start with all de-
formable transformers effective at three layers, and remove
transformers at one layer a time. Fig.10 shows that for part
segmentation, the performance is best with all transformers,
whereas removing transformers at layer 3 gives the largest
performance drop, suggesting that transformers at every
layer help and those at the last layer are most important.

4.6 Time and Space Complexity
With spatial transformers, the model size changes little and
the inference takes slightly more time (Table 6). Note that
for fair comparisons, we increase the number of channels in
the fixed graph baseline model for all the experiments. Even
without increasing the number of parameters of baselines
(not shown in Table 6), adding spatial transformers only
increases the number of parameters by 0.1%, as the number
of parameters of spatial transformers (only transformation
matrices) is very small.

TABLE 6
Model size and test time on ShapeNet part segmentation. Spatial

transformers slightly increase the inference time.

Sampling-based Point-based
[29] [29] + transformer [22] (fixed) [22] + transformer

# Params. 2,738K 2,738K 2,174K 2,174K
Inference time (s/shape) 0.352 0.379 0.291 0.315
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Part label 

with 2 query points

Nearest Neighbor Retrieval using

Fig. 11. Local neighborhoods of two query points (red and yellow)
using (transformed) 3D coordinates with nearest neighbor retrieval.
Neighborhoods of transformed point clouds makes semantic information
extraction more efficient: the neighborhood inside the dashed circle
adapts to table base part. View rotating version for better visualization.

4.7 Visualization and Analysis

We visualize the change in local neighborhoods when apply-
ing spatial transformers. We also visualize the transformed
3D points globally and locally.
Dynamic Neighborhood Visualization. To illustrate how
our spatial transformers learn diverse neighborhoods for 3D
shapes, we show the nearest neighbors of two query points
and use corresponding colors to indicate corresponding
neighborhoods. (1) Fig.11 shows that neighborhoods re-
trieved from deformed shapes encode additional semantic in-
formation, compared to neighborhoods from 3D coordinates.
(2) Fig.2 shows that for table and earphone, different graphs
enable the network to learn from diverse neighborhoods
without incurring additional computational cost.
Global Visualization of Deformable Transformations.
Fig.12 depicts some examples of learned deformable trans-
formations in ShapeNet part segmentation. Each graph at a
certain layer aligns the input 3D shape with similar semantic
geometric transformations. For example, regardless of the
shape of the rocket, graph 2 at layer 2 always captures the
rocket wing information.
Local Distributions after Deformable Transformations. 3D
Points often do not have balanced sampling, which makes
point convolution challenging, as the k-NN graph does
not accurately represents the exact neighborhood and 3D
structure information. Our deformable spatial transformer
gives every point flexibility and finds better neighborhoods.

We wonder if transformers make the point cloud closer
to balanced sampling. We normalize the point coordinates
for fair comparisons. Fig.13 visualizes the local distribution
around a sample point on skateboard: After deformable
transformation, the points are moved to a more uniform
distribution. We analyze the standard deviation of raw and
transformed point cloud coordinates in ShapeNet data. The
standard deviation of point coordinates decreases 50.2% over
all categories after spatial transformations, indicating a more
balanced distribution of transformed points.

We check if the point coordinates are statistically different
before and after the application of transformers. We perform
t-test on the original and transformed point clouds. The t-
score is 7.15 over all categories with p-value smaller than 1e-9.
The transformed point cloud distribution is thus statistically
different from the input point cloud distribution.

https://drive.google.com/file/d/1-Y5xp1hFAau6jBryPdD9upm8xR7XTWg8/view?usp=sharing
https://streamable.com/j2src
https://streamable.com/rma8m
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Fig. 12. Examples of learned deformable transformations in ShapeNet
part segmentation. 3D shapes include rocket, table and earphone
(from up to bottom). Every two rows depict an instance with learned
transformations. We observe that each transformation at certain layer
aligns input 3D shape with similar semantic geometric transformation,
e.g., graph 2 at layer 2 in rocket examples captures rocket wings. Graph
2 at layer 1 in table examples captures table surfaces.

5 CONCLUSION

We propose novel spatial transformers for 3D point clouds
that can be easily added onto to existing point cloud

layer 1 layer 2 layer 3

std 1.03e-3     1.01e-3     1.01e-3

input point cloud

deformable transformation

local distribution

local distribution

Skateboard

Fig. 13. Spatial transformers improve the point cloud processing
efficiency by improving local distributions of points. We show local
distributions of a point cloud without and with transformers. The standard
deviation of the transformed point cloud is smaller, enhancing the local
neighborhood grouping (e.g. when using k-NN for affinity matrices, more
balanced point distributions make feature learning in each neighborhood
suffer less variations and outliers) and feature learning efficiency.

processing networks. They can dynamically alter local point
neighborhoods for better feature learning.

We study one linear (affine) transformer and two non-
linear (projective and deformable) transformers. We bench-
mark them on point-based [22], [23] and sampling-based [29]
point cloud networks and on three large-scale 3D point cloud
processing tasks (part segmentation, semantic segmentation
and object detection). Our spatial transformers outperform
the fix graph counterpart for state-of-the-art methods.

There are some limitations of our spatial transformers.
First, there are not many constraints on deformable spatial
transformers to capture the geometry of the 3D point
clouds. More complex non-linear spatial transformers may
further improve the performance. On the other hand, spatial
transformers learn global transformations of 3D point clouds
for altering local neighborhoods. It is unclear if combining
both global and local transformations [40], [38] would further
improve the learning capacity and task performance.
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