
1

CIE XYZ Net: Unprocessing Images for
Low-Level Computer Vision Tasks

Mahmoud Afifi Abdelrahman Abdelhamed Abdullah Abuolaim
Abhijith Punnappurath Michael S. Brown

Abstract—Cameras currently allow access to two image states: (i) a minimally processed linear raw-RGB image state (i.e., raw sensor
data) or (ii) a highly-processed nonlinear image state (e.g., sRGB). There are many computer vision tasks that work best with a linear
image state, such as image deblurring and image dehazing. Unfortunately, the vast majority of images are saved in the nonlinear
image state. Because of this, a number of methods have been proposed to “unprocess” nonlinear images back to a raw-RGB state.
However, existing unprocessing methods have a drawback because raw-RGB images are sensor-specific. As a result, it is necessary
to know which camera produced the sRGB output and use a method or network tailored for that sensor to properly unprocess it. This
paper addresses this limitation by exploiting another camera image state that is not available as an output, but it is available inside the
camera pipeline. In particular, cameras apply a colorimetric conversion step to convert the raw-RGB image to a device-independent
space based on the CIE XYZ color space before they apply the nonlinear photo-finishing. Leveraging this canonical image state, we
propose a deep learning framework, CIE XYZ Net, that can unprocess a nonlinear image back to the canonical CIE XYZ image. This
image can then be processed by any low-level computer vision operator and re-rendered back to the nonlinear image. We demonstrate
the usefulness of the CIE XYZ Net on several low-level vision tasks and show significant gains that can be obtained by this processing
framework. Code and dataset are publicly available at https://github.com/mahmoudnafifi/CIE XYZ NET.

Index Terms—CIE XYZ Color Space, Color Linearization, Scene-Referred Image Reconstruction, Image Rendering

F

1 INTRODUCTION

AN Image signal processor (ISP) onboard a camera
processes the initial captured sensor image in

a pipeline fashion, with routines being applied one after
the other. The ISP used by consumer cameras performs
operations as two distinct stages. First, a “front-end” stage
applies linear operations, such as white balance and color
adaptation, to convert the sensor-specific raw-RGB image
to a device-independent color space (e.g., CIE XYZ or its
wide-gamut representation, ProPhoto) [1]. The image states
associated with the front-end process are called a scene-
referred image because the image remains related directly
to initial recorded sensor values related to the physical
scene. Next, a “photo-finishing” stage is performed that
applies nonlinear steps and local operators to produce a
visually pleasing photograph. For example, selective color
manipulation is often applied to enhance skin tone or make
the overall colors more vivid, while local tone manipulation
increases local contrast within the image. After the photo-
finishing stage, the image is encoded in an output color
space (e.g., sRGB, AdobeRGB, or Display P3). The image
states associated with the photo-finishing process are re-
ferred to as display-referred as they are encoded for visual
display. Cameras currently allow access only to either the
minimally processed scene-referred image state (i.e., raw-
RGB image) or the final display-referred image state (e.g.,
sRGB, AdobeRGB, or Display P3). Unfortunately, these two

• All authors are with the Department of Electrical Engineering and Com-
puter Science, Lassonde School of Engineering, York University, Toronto,
ON, Canada.
E-mails: {mafifi, kamel, abuolaim, pabhijith, mbrown}@eecs.yorku.ca.

(A) Input sRGB
rendered image

(C) Ground-truth
SR image

(B) Our image decomposition (D) Our re-rendered
sRGB image

Local “photo-
finishing” layer

Linear scene-
referred (SR) colors

Fig. 1. We propose a cycle framework that can unprocess sRGB images
back to the linear CIE XYZ color space and re-render the CIE XYZ
images into the nonlinear sRGB color space. (A) The input camera-
rendered sRGB image. (B) Our image decomposition (left: residual
photo-finishing layer, right: scene-referred CIE XYZ reconstruction). (C)
The ground-truth scene-referred CIE XYZ image. (D) Our re-rendering
result from the reconstructed CIE XYZ image. To aid visualization, CIE
XYZ images are scaled by a factor of two. Input image is taken from the
MIT-Adobe FiveK dataset [2].

image states are not ideal for low-level computer vision
tasks.

The raw-RGB image state preserves the linear relation-
ship of incident scene radiance. This linear image formation
makes raw-RGB images suitable for a wide range of low-
level computer vision tasks, such as image deblurring, im-
age dehazing, image denoising, and various types of image
enhancement [3], [4], [5], [6]. However, the drawback of raw-
RGB is that the physical color filter arrays that make up the
sensor’s Bayer pattern are sensor-specific. This means raw-
RGB values captured of the same scene but with different
sensors are significantly different [7]. This often requires
learning-based methods to be trained per sensor or camera
make and model (e.g., [5], [8], [9], [10], [11]).

ar
X

iv
:2

00
6.

12
70

9v
1

 [
cs

.C
V

]
 2

3
Ju

n
20

20

https://github.com/mahmoudnafifi/CIE_XYZ_NET
mailto:mafifi@eecs.yorku.ca; kamel@eecs.yorku.ca; abuolaim@eecs.yorku.ca; pabhijith@eecs.yorku.ca; mbrown@eecs.yorku.ca

2

The more common display-referred image state (in this
paper, assumed to be in the sRGB color space) also has
drawbacks. While this image state is the most widely used
and is suitable for display, cameras apply their own propri-
etary photo-finishing to enhance the visual quality of the
image. This means images captured of the same scene but
using different camera models (and sometimes the same
camera but with different settings) will produce images that
have significantly different sRGB values [1], [4], [12].

As previously discussed, the front-end processor of
a typical camera ISP performs a colorimetric conversion
to map the raw-RGB image to a standard perceptual
colorspace—namely, CIE 1931 XYZ [1]. While there exists no
formal image encoding for this image state, it is possible to
convert existing raw-RGB images stored in digital negative
(DNG) format to this intermediate state by applying a soft-
ware camera ISP (e.g., [1], [13]). This provides a mechanism
to standardize all images into a canonical linear scene-
referred image state and is the impetus of our work.
Contribution We propose a method to decompose non-
linear sRGB images into two parts: 1) a canonical linear
scene-referred image state in the CIE XYZ color space and 2)
a residual image layer that resembles additional non-linear
and local photo-finishing operations. Through such decom-
position strategy, we learn a model that can accurately map
back and forth between non-linear sRGB and linear CIE XYZ
images. An example is shown in Fig. 1. Unlike raw-RGB, the
CIE XYZ color space is device-independent, and as a result,
helps with model generalization. Furthermore, CIE XYZ
images can be encoded as standard three-channel images
that can be easily handled by existing computer vision
frameworks. We show that our proposed model maps im-
ages back to the CIE XYZ color space more accurately com-
pared to alternative approaches. In addition, we perform
extensive experiments on tasks such as image denoising,
deblurring, and defocus estimation, to show that employing
our proposed CIE XYZ model provides the performance
boost anticipated from using linear images. Finally, we also
show that using our decomposed image layers (CIE XYZ
and a residual layer), our model can be used to perform
various image enhancement and photo-finishing tasks.

2 RELATED WORK

In this section, we first discuss the camera imaging pipeline
that is necessary in order to understand how and why we
access the camera image once converted to the CIE XYZ
color space. We then review various methods proposed for
linearization of camera-rendered images.

2.1 Camera Imaging Pipeline

Images captured by a camera undergo a sequence of pro-
cesses in order to transform an initial image obtained by the
raw sensor data (raw-RGB image) into a visually perceivable
color space (e.g., sRGB) and a suitable format for storage
and display (e.g., JPEG) [1], [14], [15], [16]. A simplified
depiction of the imaging pipeline is shown in Fig. 2. The
pipeline processes can be divided into two main stages.
The first stage is colorimetric processing that transforms the
image into a linear color space (e.g., CIE XYZ or ProPhoto)

sRGB-JPG
image

Color space
transform

Pre-
processing

White
balance Demosaic Color

rendering

Black level offset,
normalization,

lens shading, etc.

Gamma compression,
tone mapping, color
manipulation, etc.

Raw-RGB
image

CIE XYZ
image

Colorimetric, linear,
color balanced

image state

Fig. 2. A simplified depiction of a camera imaging pipeline, adapted
from [1], [14], [15], [16]. Our method allows mapping back and forth
between the common nonlinear sRGB image and to the colorimetric,
linear, color-balanced CIE XYZ image state for computer vision tasks.

that preserves the direct mapping between the recorded
scene values and the image. The second stage in the camera
pipeline is the camera-rendering or photo-finishing stage
that applies nonlinear transformations (e.g., gamma com-
pression), selective color manipulation, and locally varying
processing (e.g., local tone mapping) that break the relation
between the image and the scene. Using images in the linear
stages of the imaging pipeline has been shown to be more
effective for image restoration and enhancement tasks [1],
[4], [5]. However, due to the complexity and proprietary
nature of imaging pipelines on-board cameras, it is hard to
obtain colorimetric images from cameras without the effort
of saving raw sensor data or inverting the imaging pipeline
stages [4], [5].

2.2 Camera-Rendered Image Linearization

To obtain a linear image from its camera-rendered ver-
sion, we need to reverse the nonlinear camera-rendering
stage in the pipeline. Many methods have been proposed
to model a parametric relationship that maps from the
camera-rendered image (i.e., sRGB image) back to its raw-
RGB version (e.g., [4]). However, raw-RGB space is camera-
dependent and requires having a separate model per cam-
era. Other approaches involve simple linearization by in-
verting the global tone mapping and the gamma compres-
sion followed by applying a linearization matrix to obtain
a linear sRGB or CIE XYZ image [5]. Such approaches are
too simple and do not account for the local processing
or dynamic range adjustments. Unlike prior approaches,
instead of trying only to obtain a linear image, our ap-
proach is to decompose the nonlinear image into globally
processed and locally processed layers. The locally pro-
cessed layer represents local color processing, such as local
tone mapping. Then, we learn a global mapping from the
globally processed image to the linear image. Another line
of research targeting the problem of image linearization
is radiometric calibration [17], [18]. Unlike our approach,
radiometric calibration methods do not target a specific,
well-defined color space, and do not address the problem
of local processing.

3 OUR FRAMEWORK

This section describes our overall framework, including net-
work architecture, dataset generation, and training details.

3.1 Formulation

Inside a camera imaging pipeline, a raw-RGB image xraw ∈
Rh×w undergoes a sequence of processing stages to be trans-
formed to the final output sRGB image xsrgb ∈ Rh×w×3,

3

where h and w represent the image height and width, re-
spectively. As mentioned earlier, the raw-RGB image xraw is
in a camera-dependent color space that is linear with respect
to scene light irradiance falling on the sensor. One of the
early steps in the camera processing pipeline is to convert
the camera-dependent color space to a device-independent
color space—namely, CIE XYZ. Based on this observation,
instead of modeling the whole pipeline back to the raw-RGB
image, we choose to model an intermediate representation
of the image in the CIE XYZ color space xxyz ∈ Rh×w×3

that is still linear with respect to scene irradiance, but is in
a canonical color space. We are interested in the on-camera
rendering procedures that map the CIE XYZ images into the
final display-referred (i.e., photo-finished) sRGB color space.
This operation can be described as

xsrgb = F(xxyz). (1)

In our method, instead of relying on a single function to
model the pipeline stages between sRGB and CIE XYZ, we
decompose this mapping into two parts: 1) global processing,
denoted collectively as Fglob(·), that is globally applied to
all image pixels and 2) local processing, denoted collectively
as Floc(·), that represents local photo-finishing operations,
such as local tone mapping and selective color adjustments.
The forward pipeline from xxyz to xsrgb can be represented
as a cascade of the global and the local processes. The global
processing stage is represented as

Mfwd = Fglob(xxyz), (2)

xglob = ψ (Mfwd φ(xxyz)) , (3)

where Mfwd ∈ R3×6 is a global transformation matrix and
xglob is the globally processed image layer. The operator
φ(·) reshapes the image to be 6 × n where n is the number
of pixels in the image and each pixel is transformed from
three to six dimensions: [R,G,B] → [R,G,B,R2, G2, B2],
while the operator ψ reshapes the image from 3× n back to
h×w× 3. We chose Mfwd to be nonlinear to capture global
color processing operations, such as gamma compression.

As most consumer cameras locally process the captured
scene-referred images to improve the quality of final ren-
dered images [19], such global color processing may not be
able to effectively model the function F . To that end, we use
a residual learning mechanism where we model the residual
layer xres between the locally and globally processed layers
of the image as follows:

xres = Floc(xglob), (4)

xsrgb = xglob + xres. (5)

Now, the decomposition process applies the inverse pro-
cess of Equations 2 – 5 as follows:

xres = Gloc(xsrgb), (6)

xglob = xsrgb − xres, (7)

Minv = Gglob(xglob), (8)

Restoration/
Enhancement

Input sRGB image

XYZ sRGB
(forward)

Output sRGB imageOuput XYZ image

sRGB XYZ
(inverse)

Input sRGB image Input XYZ image

Restoration/
Enhancement

(b) Our framework

(a) Conventional framework

Output sRGB image

Fig. 3. An illustration of using our inverse and forward image processing
pipelines in an sRGB image restoration/enhancement framework.

xxyz = ψ (Minv φ(xglob)) , (9)

where Gloc(·) represents the inverse of residual local pro-
cessing layer and Gglob(·) is constrained to produce a global
transformation matrix Minv ∈ R3×6 that represents the
inverse global processing stage.

Our ultimate goal is to allow the manipulation of the
reconstructed CIE XYZ image by arbitrary image restora-
tion/enhancement algorithms between the inverse and for-
ward pipeline stages (see Fig. 3). It is, however, non-trivial
to infer the inverse functions G−1

loc (·) and G−1
glob(·) to render

back the reconstructed image, as its values may be changed
by the image restoration or enhancement algorithms. To that
end, we model each of Fglob(·), Floc(·), Gglob(·), and Gloc(·)
by a neural network.

3.2 Network Design
Imitating this division of the camera imaging pipeline, we
build our network architecture to include two sub-networks
for modeling both the global and local processing parts for
the forward and inverse directions of the imaging pipeline.
As shown in Fig. 4, we start with the inverse pipeline where
the first part is a fully convolutional neural network (CNN)
that models the local processing applied to an input non-
linear image (i.e., sRGB image) by predicting the residual
image xres (Equation 6). Once the local processing layer is
predicted, it can be subtracted from the input image xsrgb to
get the globally processed image xglob (Equation 7). Then,
xglob is fed to another sub-network that predicts a global
transformation Minv that inverts xglob back to the linear CIE
XYZ image xxyz (Equation 9). With this inverse pipeline, we
decompose the input image xsrgb into two image layers,
xres and xglob, which represent local and global processing,
respectively, and finally output the linear CIE XYZ image
xxyz.

As discussed in Section 1, there are computer vision
tasks, such as image restoration, that are best processed in a
linear image state. A use case of the framework is to convert

4

Fully CNN
() Sampling CNN () Global

mapping
Local

mapping

SamplingGlobal
mapping

Fully CNN
() CNN ()Local

mapping

Training patch
(256 256)

Learned local
mapping

Learned global
mapping

(sRGB CIE XYZ)
Sub−sampled
(128 128)

(b) From reconstructed CIE XYZ to sRGB

(a) From sRGB to CIE XYZ

Result patch
(256 256)

Learned local mapping

Globally processed
patch

Sub−sampled
(128 128)

Learned global
mapping

(CIE XYZ sRGB)

Globally unprocessed
patch Learned

CIE XYZ image

Fig. 4. Our CIE XYZ image pipeline. The upper part is the inverse pipeline that unprocesses an sRGB image into a CIE XYZ image. The lower part
is the forward pipeline that processes a CIE XYZ image into its equivalent sRGB image. The full framework is trainable end-to-end. The CIE XYZ
images are scaled 2x to aid visualization.

(A) Input sRGB
rendered image

(B) Local mapping layer (C) Result of A – B (D) Global mapping to
CIE XYZ

(H) Ground truth CIE
XYZ

(G) Result of E + F
(re-rendered)

(F) Local mapping layer (E) Global mapping to
sRGB

Fig. 5. Our inverse pipeline decomposites a given camera-rendered
sRGB image into a local processed layer and the corresponding CIE
XYZ image, while our forward pipeline maps the reconstructed CIE XYZ
image to the sRGB color space in an inverse way of our decomposition.
The shown image is taken from our testing set. To aid visualization, CIE
XYZ images are scaled by a factor of two.

the input image imxyz, process the imxyz image, and then
render the image back. In this scenario, after decomposing
an image and applying an image restoration task to the
linear XYZ image, we now need to merge these image
layers back to produce the fully processed sRGB image.
To model this forward pass of our pipeline, as shown in
Fig. 4, we use two sub-networks. The first sub-network
predicts a global transformation Mfwd that maps xxyz to
xglob (Equation 3). The second sub-network predicts the
residual local processing xres that needs to be applied to
xglob to obtain the final sRGB image xsrgb (Equation 5).
This framework is illustrated in Fig. 3 and compared to the
conventional way of directly processing the sRGB image.

In order to allow the networks Gglob(·) and Gloc(·) to
separate the globally and locally processed image layer
without having ground truth for both xglob and xres, we
apply a scaling factor to the output of the local processing
networks Gglob(·), in both inverse and forward passes, such
that the values of xres are much smaller than xglob. In our
experiments, we set this scaling factor to 0.25. Fig. 5 shows
an example of the output of each sub-network.

3.3 Loss Function

The objective of the whole network is to minimize the mean
absolute error (MAE): 1) between the predicted XYZ image
x̂xyz and its ground truth x∗

xyz in the inverse pipeline and

2) between the predicted sRGB image x̂srgb and its ground
truth x∗

srgb in the forward pipeline, as follows:

λ
∣∣x̂xyz − x∗

xyz

∣∣+ ∣∣x̂srgb − x∗
srgb

∣∣ , (10)

where λ is a weighting factor that we use to deal with
the fact that XYZ images generally have lower intensity
compared to sRGB images; so this weight can balance
the learning behavior between the forward and inverse
pipelines. In our experiments, we set λ = 1.5.

3.4 Sub-Networks Architecture
Our local processing sub-networks (Floc and Gloc) each
consist of 15 blocks of 3× 3 convolutional (conv)–LReLU
layers. Each conv layer has 32 output channels, with stride
of 1 and padding of 1. The last layer of these sub-networks
has a single conv layer with three output channels, followed
by a tanh operator. As our global processing sub-networks
are not fully convolutional, we use a fixed size of input
by introducing a differentiable subsampling module that
uniformly subsamples 128× 128 color values of the pro-
cessed image by the previous sub-network. Our global sub-
network includes five blocks of 3×3 conv–LReLU–2×2 max
pooling layers. The conv layers have stride and padding of
1, while the max pooling layers have a stride factor of 2
with no padding. Then, we added a fully connected layer
with 1024 output neurons, followed by a dropout layer with
a factor of 0.5. The last layer of our global sub-network
has a fully connected layer with 18 output neurons to
formulate our 3×6 polynomial mapping function. Our entire
framework is a light-weight model with a total of 2,697,578
learnable parameters (∼11MB of memory) for both sRGB-to-
XYZ and XYZ-to-sRGB models, and it is fully differentiable
for end-to-end training.

3.5 Dataset
To train our proposed model, we need a dataset of sRGB
images with their corresponding linear images in the CIE
XYZ color space. To do so, we start from raw-RGB images
taken from the MIT-Adobe FiveK [2]. We then process the
raw-RGB images twice to obtain both the sRGB and XYZ
versions of each image. For processing raw-RGB images
into the XYZ color space, we used the camera pipeline
from [13]. This pipeline provides an access to the CIE XYZ

5

values after processing the sensor raw-RGB using the color
space transformation (CST) matrices provided with the raw-
RGB image. To obtain the camera-like sRGB images, we
used the Adobe Camera RAW software development kit
(SDK), which accurately emulates the nonlinearity applied
by consumer cameras [20]. Our dataset includes ∼1,200
pairs of sRGB and camera CIE XYZ images. Our dataset
will be publicly available upon acceptance.

3.6 Training
We divided our dataset into a training set of 971 pairs, a
validation set of 50 pairs, and a testing set of 244 pairs.
We trained our framework in an end-to-end manner on
patches of size 256×256 pixels randomly extracted from our
training set, with a mini-batch of size 4. We applied random
geometric augmentation (i.e., scaling and reflection) to the
extracted patches.

Our framework was trained in an end-to-end manner
for 300 epochs using Adam optimizer [21] with gradient
decay factor β1 = 0.9 and squared gradient decay factor
β2 = 0.999. We used a learning rate of 10−4 with a drop
factor of 0.5 every 75 epochs. We added an L2 regularization
with a weight of λreg = 10−3 to our loss in Equation 10 to
avoid overfitting.

4 EXPERIMENTAL RESULTS

In this section, we first validate the effectiveness of our
proposed model in mapping from camera-rendered sRGB
images to CIE XYZ, and processing CIE XYZ images back
to sRGB. Next, we demonstrate our method’s utility on a
number of classical image restoration tasks, such as image
denoising, motion deblurring, and image dehazing, that
assume a linear relationship between the scene radiance
and the recorded pixel intensity. Finally, we show that our
linear space is also advantageous for a variety of image
enhancement tasks.

4.1 From Camera-Rendered sRGB to CIE XYZ, and
Back
We first verify our network’s ability to unprocess sRGB im-
ages to CIE XYZ. We also demonstrate our ability to recon-
struct from CIE XYZ back to sRGB. We test our mapping to
sRGB using our reconstructed CIE XYZ results as a starting
point, and also using the ground-truth CIE XYZ images. For
comparison, we use the standard CIE XYZ mapping [22], [23],
which applies a simple 2.2 gamma tone curve, and the recent
unprocessing technique (UPI) from [5]. The UPI technique
provides a proxy for the major procedures of the camera
pipeline. For a fair comparison, we compare our results with
results of UPI obtained at the CIE XYZ stage.

Table 1 shows peak signal-to-noise ratio (PSNR) results
averaged over 244 unseen testing images from the MIT-
Adobe FiveK dataset [2]. The terms Q1, Q2, and Q3 refer to
the first, second (median), and third quantile, respectively, of
the PSNR values obtained by each method. For the standard
XYZ, the results of mapping from the reconstructed CIE
XYZ images back to sRGB are not reported because standard
XYZ uses an invertible transform. The sRGB reconstruction
error from the UPI model [5] is high due to the fact that

the tone mapping is not perfectly invertible. It can be ob-
served from the results that we outperform both competing
methods by a sound margin. Qualitative comparisons are
provided in Fig. 6.

As shown in Table 1, the mapping to sRGB from recon-
structed CIE XYZ is better than mapping from ground-truth
CIE XYZ. For our method, this behavior is expected because
the forward model is trained on the reconstructed CIE XYZ,
not the ground truth. Also, for the UPI method, as it is based
on matrix inversion, the mapping from the reconstructed
CIE XYZ makes the transformation more accurate than
mapping from the ground truth.

We compare our proposed network against a U-Net-
based baseline. This baseline consists of two U-Net-like [24]
models trained in an end-to-end manner using the same
training settings used to train our network (i.e., epochs,
training patches, and loss function). Each U-Net model
consists of a 3-level encoder/decoder with skip connections.
The output channels of the first conv layer in the encoder
unit has 28 channels. The two U-Net models have a total
of 2,949,246 learnable parameters, compared to 2,697,578
learnable parameters in our network, and they were trained
to map from sRGB to XYZ and from XYZ back to sRGB,
similar to our model.

Table 4.1 shows the results obtained by the U-Net base-
line and our network on our testing set.

4.2 Image Restoration Applications

As previously discussed, many image restoration tasks as-
sume a linear image formation model and work best with
linearized data. In the following sections, we apply our
method to the problems of image denoising, motion deblur-
ring, defocus blur detection, raw-RGB image reconstruction,
and image dehazing. We show improvement in performance
from working on CIE XYZ images compared to working
directly with sRGB images or applying existing linearization
methods. We would like to highlight that our objective is
not to outperform the state-of-the-art. Instead, our goal is
to show that having selected a particular algorithm for a
given task, its performance improves when applied to our
linearized images as compared to using sRGB images, or
employing existing linearization approaches.

4.2.1 Image Denoising
We first apply our decomposition method to the task of
image denoising. Image denoising algorithms can perform
better on linear images because of the simplicity of the
linear signal-dependent noise model [13], [25]. We demon-
strate this behavior using our CIE XYZ images for two
denoising methods: BM3D [26] and DnCNN [27]. The first
is statistics-based while the latter is learning-based. Both
methods are well established in the image denoising lit-
erature. We evaluated the chosen methods on the SIDD-
Validation dataset [13].

We compare denoising CIE XYZ images from our
method against the standard XYZ linearization [22], [23].
First, the sRGB images are linearized, denoising is per-
formed, and the denoised images are mapped back to sRGB.
As a baseline, we also apply denoising directly in the sRGB
space. For the BM3D denoiser, we used its color-variant

6

sRGB→ XYZ Rec. XYZ→ sRGB GT XYZ→ sRGBMethod Avg. Q1 Q2 Q3 Avg. Q1 Q2 Q3 Avg. Q1 Q2 Q3
Standard [22], [23] 21.84 16.88 20.91 25.24 - - - - 22.22 19.19 21.79 24.37
Unprocessing [5] 22.19 19.31 22.12 24.75 37.72 37.78 40.56 41.88 18.04 15.67 17.79 20.02
Ours 29.66 23.77 29.57 34.71 43.82 41.43 43.94 46.58 27.44 23.57 28.32 30.88

TABLE 1
Results (in terms of PSNR) of camera-rendered sRGB↔ CIE XYZ mapping. We compare our results against the standard XYZ mapping (the 2.2

gamma tone curve) [22], [23] and the recent unprocessing technique (UPI) [5]. Average PSNR (dB) results are reported on 244 unseen testing
pairs (camera-rendered sRGB and corresponding CIE XYZ images) from the MIT-Adobe FiveK dataset [2]. We show results of mapping from both

reconstructed (Rec.) CIE XYZ images and ground truth (GT) CIE XYZ images to the corresponding camera-rendered sRGB images. Highest
PSNR values are shown in bold.

(A) Input image (B) Standard rec. (C) Our rec. (D) GT CIE XYZ (E) Our re-rendering

Fig. 6. Qualitative comparisons for CIE XYZ reconstruction and rendering. (A) The input sRGB rendered image. (B) Standard display-referred CIE
XYZ reconstruction [22], [23]. (C) Our reconstruction. (D) The ground-truth scene-referred CIE XYZ image. (E) Our re-rendering result from the
reconstructed CIE XYZ image. To aid visualization, CIE XYZ images are scaled by a factor of two. Input images are taken from the MIT-Adobe
FiveK dataset [2].

version—namely, CBM3D [26]. For DnCNN, we used the
pre-trained model from [27], denoted as DnCNN-P. We also
re-trained DnCNN models on images processed with both
linearization methods, denoted as DnCNN-R.

The evaluation is based on the PSNR (dB) and struc-
tural similarity index (SSIM) [28], both in the sRGB color
space. The results are shown in Table 3. Both CBM3D and
DnCNN-P show significant denoising improvement when
applied to images unprocessed by our method into the CIE
XYZ space compared to linearized images obtained by the
standard XYZ linearization. DnCNN-R using our CIE XYZ
images gains more improvement in terms of SSIM, but is
still comparable to using standard XYZ images in terms of
PSNR. Also, we can see that denoising in our reconstructed
CIE XYZ space is better compared to denoising directly in
the sRGB color space.

4.2.2 Motion Deblurring
Traditionally, a motion blurred imageG is represented using
a linear image formation model as the convolution between
an underlying sharp image F , and a motion blur kernel
H [29]—namely, G = F ⊗ H , where ⊗ denotes the convo-
lution operation. The blur kernel H is the same across the
image.

However, this linear relationship between G and F does
not hold for blurred photo-finished sRGB images. Tai et
al. [30] showed that the blur kernel H varies spatially
across the image due to the non-linear stages of the camera
pipeline, making motion deblurring significantly more chal-
lenging. Therefore, it is advantageous to deblur the image
in a linear scene-referred space.

We select the statistics-based non-blind motion deblur-
ring method of Krishnan and Fergus [31], and evaluate its
performance in our linearized color space, as well as other
spaces, such as nonlinear sRGB and standard XYZ [22],
[23]. For this experiment, we chose the same 244 unseen

7

sRGB→ XYZ Rec. XYZ→ sRGBMethod Avg. Q1 Q2 Q3 Avg. Q1 Q2 Q3
U-Net 20.05 16.84 19.76 22.78 43.39 40.56 43.40 45.91
Ours 29.66 23.77 29.57 34.71 43.82 41.43 43.94 46.58

TABLE 2
Comparison between our network and two U-Net models trained in an end-to-end manner to map from sRGB to CIE XYZ and back. Both

networks, ours and the two U-Net models, have approximately the same number of learnable parameters and both were trained using the same
training settings. The best PSNR (dB) values are shown in bold.

CBM3D DnCNN-P DnCNN-RMethod PSNR SSIM PSNR SSIM PSNR SSIM
XYZ - Standard 33.84 0.8733 26.23 0.5936 33.92 0.7833
XYZ - Ours 35.49 0.9245 27.71 0.6623 33.00 0.8865
sRGB 34.44 0.9021 25.31 0.5578 30.72 0.7943

TABLE 3
Results of image denoising performed on the SIDD-Validation set [13] after unprocessing the images using our method compared to standard

linearization [22], [23]. The last row is the result of denoising directly in the sRGB space. All PSNR and SSIM values are calculated in the sRGB
space. CBM3D and DnCNN-P show significant improvement in denoising using images unprocessed by our method.

testing images from the MIT-Adobe FiveK dataset [2] used
earlier in Section 4.1. To generate motion blurred sRGB
images, we blur each ground-truth raw-RGB image with
a random kernel selected from one of the four kernels in
the widely used motion blur benchmark dataset of Lai et
al. [32]. The blurred raw-RGB images are then rendered to
sRGB using the camera pipeline simulator of [13]. Fig. 7
shows four representative deblurring results, one for each
motion kernel from the dataset of [32]. It can be clearly
observed from the zoomed-in regions that deblurring in the
sRGB and the standard CIE XYZ color spaces produces a
lot of ringing artifacts, particularly for larger blur kernels
(e.g., the examples in the last two rows). In comparison, our
results are sharper and less prone to ringing. Deblurring in
our linear space produced an average PSNR of 30.26 dB,
whereas sRGB and standard XYZ yielded only 29.41 dB and
28.68 dB, respectively—a clear demonstration of the utility
of our proposed framework for motion deblurring.

4.2.3 Defocus Blur Detection

Defocus detection is the problem of detecting the image
pixels that are out of focus. This problem is important to
many computer vision tasks, such as non-blind defocus
deblurring, image refocusing, depth estimation, and 3D
reconstruction. The methods targeting this problem are well
established [33], [34], [35], [36], [37], [38]. In particular,
defocus detection methods output a binary mask of a given
input image such that the out-of-focus pixels are zeros and
the rest are ones.

We examine the advantage of detecting out-of-focus
pixels in our linearized CIE XYZ color space compared
to other spaces—namely, non-linear sRGB and standard
linearized CIE XYZ. To this aim, we introduce a light UNet-
inspired architecture. We train three models using image
patches from three different color spaces following the same
training procedure. We use the well-known blur detection
dataset [34] to train and test the models. In the plot of
Fig. 8, we present the precision-recall comparison along
with the pixel binary classification accuracy. In addition to
the quantitative results, qualitative results are presented in

(E) GT(A) Blurred (B) sRGB (C) Standard (D) Ours

Fig. 7. Qualitative results for motion deblurring application. (A) The
blurred input image and the corresponding motion blur kernel. (B-D)
Deblurring results in sRGB, standard XYZ, and our proposed CIE XYZ
color space, respectively. The shown deblurring results are obtained by
the non-blind image deblurring algorithm of Krishnan and Fergus [31].
(E) The ground-truth sharp image. Images are taken from the MIT-Adobe
FiveK dataset [2], and the motion blur kernels are the four kernels used
in the benchmark motion blur dataset of Lai et al. [32].

Fig. 9. The results in Fig. 8 and Fig. 9 demonstrate that our
linearization is a better color space to perform defocus blur
detection compared to other color spaces.

8

Fig. 8. The precision-recall (PR) comparison of training light UNet on
data from three different color spaces: sRGB, standard linearized CIE
XYZ [22], [23], and our linearized CIE XYZ. The average accuracy for
each model is shown in the plot’s legend. Our linear space achieves the
best PR curve and the highest accuracy.

Non-linear sRGB Standard linearized CIE XYZ Our linearized CIE XYZ

Fig. 9. Qualitative results of three light UNets trained on three different
color spaces for the task of defocus map estimation. Training the light
UNet using our linearized CIE XYZ images gives better visual results
as shown in the third column. The CIE XYZ input images are gamma
corrected for better visualization.

4.2.4 Raw-RGB Image Reconstruction
One of the advantages of accurately reconstructing scene-
referred images is the ability to map the reconstructed
images further into a sensor raw-RGB space. Specifically,
we can synthetically generate raw-RGB images in any target
sensor space by capturing an image with a color rendition
calibration chart placed in the scene. The captured image
is saved in both the camera’s sensor raw-RGB space and
the camera-rendered sRGB color space. As the CIE XYZ
space is defined for correctly white-balanced colors, we first
correct the white balance of the raw-RGB image using the
color rendition chart. We then reconstruct the XYZ image
using our XYZ network and compute a 3×3 matrix to map
our reconstructed image into the sensor space. We refer
to this matrix as the XYZ→raw matrix. This calibration
matrix is then used to map any arbitrary image into this
sensor space by first reconstructing the corresponding XYZ
image, followed by mapping it into the sensor space. The
assumption here is that as our method achieves superior
linearization to the available solutions (see Table 1), this
calibration process would result in a better sRGB→raw-RGB
mapping.

To validate this assumption, we compare between the
raw-RGB reconstruction based on our reconstruction against
the raw-RGB reconstruction that is computed based on the
standard XYZ mapping method [22], [23]. We examine the
data augmentation task for the illuminant estimation prob-
lem. Scene illuminant estimation is a well-studied problem

(A) Canon 5D-rendered sRGB
image

(B) Our reconstructed CIE XYZ
image

(C) Mapped to Canon EOS-
1Ds Mark III’s sensor space

(D) Reconstructed raw-RGB versions of image in (C) with different
illuminant responses by Canon EOS-1Ds Mark III’s sensor

(E) Real Canon EOS-1Ds
Mark III’s raw-RGB image

Fig. 10. Sensor raw-RGB image reconstruction. (A) An sRGB image
rendered by Canon 5D from Gehler-Shi [39]. (B) Our reconstructed CIE
XYZ image. (C) Our reconstructed raw image in the raw-RGB space of
the Canon EOS-1Ds Mark III. (D) Two generated raw-RGB images with
different illuminant responses in the Canon EOS-1Ds Mark III’s sensor
space. (E) A real raw-RGB image captured by the Canon EOS-1Ds Mark
III taken from the eight-camera NUS dataset [40]. To aid visualization,
the shown images are scaled by a factor of two.

(A) Input image (B) Dehazed
sRGB

(C) Our dehazed
CIE XYZ

(D) Our re-rendered
sRGB

Fig. 11. Dehazing is one of the potential applications that can benefit
from our image unprocessing method. (A) The input image taken from
Flickr (by Mike Rivera, CC BY-NC-SA 2.0). (B) Dehazing applied in the
sRGB space. (C) Dehazing applied to our CIE XYZ image. (D) Our final
result in the sRGB space. In this example, we used the dehazing method
from [41].

in computer vision literature. Briefly, we can describe the
illuminant estimation problem as follows. Given a linear
raw-RGB image Iraw captured by a specific camera sensor,
the goal is to determine a 3D vector `̀̀ that represents
the illuminant color in the captured scene. Recent work
achieves promising results using deep learning to estimate
the illuminant vector `̀̀ by training deep models that can be
later used in the inference phase to estimate illumination
colors of given testing images captured by the same sensor
used in the training stage [39].

There is currently a challenge in the available datasets
for the illuminant estimation task, which is the limited
number of available training images captured by the same
sensor—for example, the eight-camera NUS dataset [40],

(A) Input sRGB image (B) Standard rec. (C) Our rec.

RGB triplet: 47691 tonal values RGB triplet: 47691 tonal values RGB triplet: 194606 tonal values

Fig. 12. Our XYZ reconstruction provides a wider range of tonal values
compared to the standard CIE XYZ mapping [22], [23]. (A) The input
sRGB image. (B) Standard XYZ reconstruction [22], [23]. (C) Our XYZ
reconstruction. The input image is taken from [42].

9

(A) Input images (B) Adobe Photoshop
HDR

(D) HDR image
reconstruction

(E) Our enhanced
re-rendering

(F) Ground truth(C) Deep Photo Enhancer

Fig. 13. (A) The input sRGB rendered image. (B) Adobe Photoshop HDR results. (C) Deep Photo Enhancer results [43]. (D) HDR result of [44]. (E)
Our re-rendered images after photo-finishing enhancement. (F) Ground-truth images. Input images are taken from [44].

one of the common datasets used for illuminant estimation,
has 200 images on average for each camera sensor. In this
experiment, we examine our raw-like reconstructed images
to serve as a data augmenter to train deep learning models
for illuminant estimation. Specifically, we train a simple
deep learning model to estimate the scene illuminant of a
given raw-RGB image captured by Canon EOS-1Ds Mark III
[40]. There are only 256 original raw-RGB images captured
by Canon EOS-1Ds Mark III in the NUS dataset [40]. For
each image, there is a ground-truth scene illuminant vector
extracted from the color rendition chart. During training
and testing processes, the color chart is masked out in each
image to avoid any bias. To augment the data, we first
computed the 3×3 XYZ→raw calibration matrix as described
earlier for our XYZ reconstruction and the standard XYZ
mapping. This reconstruction process was performed us-
ing a single image captured by the Canon EOS-1Ds Mark
III camera with a color rendition chart. Afterwards, we
used 3,752 white-balanced camera-rendered sRGB images
captured by ten different camera models other than our
Canon EOS-1Ds Mark III. These images were taken from the
Rendered WB dataset [20]. Each sRGB image is converted to
the CIE XYZ space using our method and the standard XYZ
mapping, followed by mapping each reconstructed image
to the Canon EOS-1Ds Mark III sensor space using the
calibration matrix computed for each XYZ reconstruction
method, respectively.

As the calibration matrices map from the reconstructed
XYZ space to the white-balanced sensor raw-RGB space, we
can apply illuminant color casts, randomly selected from
the ground-truth illuminant vectors provided in the Canon
EOS-1Ds Mark III’s set, to synthetically generate additional

training data to train the deep model. Fig. 10 shows an
example. This process is inspired by previous work in
[45], [46], which randomly selected illuminant vectors from
the ground-truth set and applied chromatic adaptation to
augment the training set. These methods, however, use the
same images (256 images in the case of the Canon EOS-1Ds
Mark III’s set) without introducing new image content to
the trained model.

We randomly selected 50 testing images from the origi-
nal 256 images provided in the NUS dataset for the Canon
EOS-1Ds Mark III camera. We fixed this testing set over all
experiments and excluded these images from any training
processes. Table 4 shows the angular error of the trained
model using the following training sets: (i) real training
data, (ii) reconstructed raw-like images using the standard
XYZ mapping, (iii) real training data and reconstructed raw-
like images using the standard XYZ mapping, (iv) recon-
structed raw-like images using our XYZ reconstruction, and
(v) real training data and reconstructed raw-like images
using our XYZ reconstruction. As can be seen, the best
results were obtained by using our raw-like reconstruction
and real training data. Notice that training only on our raw-
like reconstruction gives better results compared with the
results obtained by training on real data or reconstructed
raw-like images using the standard XYZ mapping.

4.2.5 Dehazing
A hazy image is expressed using a linear model as I(x) =
J(x)t(x)+A(1−t(x)) [41], where I is the observed intensity,
J is the scene radiance, A is the global atmospheric light,
and t is the medium transmission describing the portion of
the light that is not scattered and reaches the camera. Just as
with motion deblurring, this linear relationship is broken by

10

(A) Input images (B) Our enhanced
rendering

(C) Expert raw rendering

Fig. 14. Example from the under-exposure testing set [47]. (A) The input
image. (B) Our enhanced rendered image. (C) The expert-retouched
image.

the camera’s photo-finishing stages. Therefore, it is desirable
to perform dehazing on linearized images. In Fig. 11, we
show the result of dehazing an sRGB image versus dehazing
our linear CIE XYZ image and then re-rendering to sRGB.
The improvement in visual quality can be clearly observed
from the zoomed-in regions.

4.3 Photo-Finishing Applications
Many photographers prefer to edit photographs in the linear
raw-RGB sensor space rather than the nonlinear 8-bit sRGB
space, due to the fact that raw-RGB images provide higher
tonal values compared to sRGB camera-rendered images
[48]. Similar to the raw-RGB space, the CIE XYZ space is
linear scene-referred with higher tonal values compared to
the final sRGB space. Thus, we can also benefit from our
linear CIE XYZ space for image enhancement tasks.

4.3.1 Low-Light Image Enhancement
In this set of experiments, we present a set of simple oper-
ations that can achieve results on par with recent methods
designed for low-light image enhancement. Specifically, we
apply the following set of heuristic operations to perform
low-light image enhancement. As our reconstructed XYZ
image has a wider range of tonal values (see Fig. 12), we
apply a set of synthetic digital gains to simulate multi-
exposure settings. This simulation does not introduce any
new information that did not exist in the original image;
however, it allows us to better explore the range of tonal
values provided in our reconstructed image—we can think
of this operation as an ISO gain that is applied on board
cameras to amplify the captured image signal. To that
end, we multiply the reconstructed image by four different
factors. These factors can be tuned in an interactive man-
ner based on each image, but we preferred to fix these
hyperparameters over all experiments. In particular, we
multiplied our reconstructed XYZ image by (0.1, 1.4, 2.7, 4.0)
to generate four different versions of our reconstructed XYZ
image. Following this, we apply an off-the-shelf exposure-
fusion algorithm [49] to create the modified XYZ layer. To
enhance the local details, we apply a local details enhance-
ment method [50] on our forward local sRGB reconstructed
layer. Fig. 13 shows examples of our results. As can be
seen, we achieve on par results with state-of-the-art methods
designed specifically for the given image enhancement task.

We further evaluated this simple pipeline on 500 under-
exposed images taken from [47]. Fig. 14 shows a qualitative
example. We show a quantitative comparison in Table 5.

Training data Mean Median Best 25% Worst 25%
Real 4.15 3.89 1.13 7.85
Rec. (standard) 3.37 3.03 1.05 6.68
Real and rec. (standard) 2.72 2.60 0.72 4.99
Rec. (ours) 3.00 2.61 0.83 5.37
Real and rec. (ours) 2.41 2.03 0.65 4.66

TABLE 4
Angular error of illuminant estimating using the image set captured by
the Canon EOS-1Ds Mark III in the NUS dataset [40]. We compare the

results obtained by training a deep neural network on real raw-RGB
training images, reconstructed (rec.) raw-RGB training images based
on the standard XYZ reconstruction, and our CIE XYZ reconstruction.

The best results are shown in bold.

Method PSNR
White-Box [51] 18.57

Distort-and-Recover [52] 20.97
HDRNet [53] 21.96

Deep photo enhancer [43] 22.150
DeepUPE [47] 23.04

Enhanced in sRGB 16.92
Enhanced in rec. standard XYZ 18.41

Our enhanced re-rendering 21.03

TABLE 5
Quantitative results of the photo-finishing enhancement application

using 500 under-exposure images provided in [47].

Applying digital gain to our reconstructed space provides
better results compared to using the standard XYZ recon-
struction or the nonlinear sRGB space. This is due to the
fact that our reconstructed images have a better linearization
with a high tonal range; see Fig. 15. We provide additional
results in Figs. 16 and 17.

5 CONCLUDING REMARKS

We have proposed a method and DNN model that can
map back and forth between non-linear sRGB and linear
CIE XYZ images more accurately compared to alternative
approaches. Our method is based on learning a decomposi-
tion of sRGB images into a globally processed and locally
processed image layers. The learned globally processed
image layer is then used to learn a mapping to the device
independent CIE XYZ color space. We have provided exten-
sive experiments targeting image restoration tasks including
image denoising, deblurring, and defocus detection to show
that our proposed model provides the performance boost
anticipated from using linear images. In addition, utilizing
the decomposed image layers, we show that our model
can be used to perform various image enhancement and
photo-finish tasks. Code and dataset are publicly available
at https://github.com/mahmoudnafifi/CIE XYZ NET.

APPENDIX

ADDITIONAL DETAILS

Defocus Blur Detection
In Sec. 4.2.3, we used a light-weight U-Net-like architecture
for the defocus blur detection task. Fig. 18 shows the details
of the used architecture. We trained the model with image
patches of size 256 × 256. We adopted He’s weight initial-
ization [54] and used the Adam optimizer [21] to train our
model.

https://github.com/mahmoudnafifi/CIE_XYZ_NET

11

(A) Input sRGB image (B) Image enhancement in sRGB (C) Image enhancement in st. XYZ (D) Our enhanced re-rendering (E) Expert rendering

Fig. 15. (A) The input image. (B) Image enhancement in sRGB. (C) Image enhancement in standard XYZ reconstruction. (D) Our enhanced re-
rendering. (E) Expert enhancement. The enhancement is based on fusion of “multi-exposed” images [49] and local details enhancement [50]. The
image is from the under-exposure testing set [47].

(A) Input images (B) Adobe Photoshop
HDR

(D) HDR image
reconstruction

(E) Our enhanced rendering (F) Ground truth(C) Deep Photo
Enhancer

Fig. 16. Low-light image enhancement application. (A) Input sRGB rendered image. (B) Adobe Photoshop HDR results. (C) Deep Photo Enhancer
results [43]. (D) HDR result of [44]. (E) Our re-rendered images after photo-finishing enhancement. (F) Ground truth images. Input images are
taken from [44].

The initial learning rate is set to 10−4, which is decreased
by half every 30 epochs. We train the model with mini-
batches of size 12 using the mean squared error (MSE)
loss between the output and the ground truth. During the
training phase, we set the dropout rate to 0.5. We found that
the model converges after 60 epochs. In Fig. 19, the training
and validation curves of different color spaces are shown.
Compared to other spaces, our reconstructed CIE XYZ space
has a smooth validation convergence and is able to achieve
faster convergence with the smallest MSE.

Raw-RGB Image Reconstruction

We discussed the raw-RGB reconstruction as it is one of the
potential applications of the proposed XYZ reconstruction
in Sec. 4.2.4. In our experiments, we chose the scene illumi-
nant estimation task to validate our raw-RGB reconstruction
against the raw reconstruction based on the standard XYZ
mapping [22], [23]. We trained a deep model to estimate

the scene illuminant from the given raw-RGB image. In this
section, we provide the details of the model’s architecture
used in these experiments and the training details.

The model is designed to accept a 150×150 raw-RGB
image (similar to prior work that proposed to use thumbnail
images for the illuminant estimation task [11], [55]). The
model includes a sequence of conv, leaky ReLU (LReLU),
batch normalization (BN), and fully connected (FC) layers.
In particular, the model consists of two conv–LReLU–conv–
BN–LReLU blocks, followed by a conv–LReLU–FC–LReLU–
dropout–FC–LReLU–FC block. All conv layers have 3× 3
filters with a different number of output channels and stride
steps. The first, second, and third conv layers have 64 output
channels, while the fourth and fifth conv layers have 128 and
256 output channels, respectively. The stride steps were set
to 2 for the first three conv layers. For the last two conv lay-
ers, we used a stride step of 3. The first two FC layers have
256 output neurons, while the last FC layer has 3 output

12

(A) Input images (B) Adobe Photoshop HDR (C) Deep Photo Enhancer (D) Our enhanced rendering (E) Expert raw rendering

Fig. 17. Qualitative comparison for low-light image enhancement task. Images are taken from the under-exposure testing set [47]. (A) Input image.
(B) Adobe Photoshop HDR results. (C) Results of deep photo enhancer [43]. (D) Our enhanced rendered image. (E) Expert-retouched image.

3 × 3 ,ݒ݊݋ܥ ReLU 2 × ݔܽܯ2 ݈݋݋݌ 2 × 2 ݌ܷ − ݌S݇݅ݒ݊݋ܿ ݊݋݅ݐܿ݁݊݊݋ܿ ݐݑ݋݌݋ݎܦ ݎ݁ݕ݈ܽ 1 × 1 ,ݒ݊݋ܥ sigmoid8 16 32 64 32 16 8 1
256 × 256 ×3 256 × 256 ×1

1
Fig. 18. We used a light-weight U-Net-like architecture for the task of defocus blur detection. The size of the input and output layers is shown above
the image patches. The number of output filters is shown under the convolution operations.

neurons. We trained each model for 50 epochs to minimize
the angular error between the estimated illuminant vector
and the ground truth illuminant. The training process was
performed with a learning rate of 10−4 and mini-batch of 32
using the Adam optimizer [21] with a decay rate of gradient
moving average 0.9 and a decay rate of squared gradient
moving average 0.999.

Image Enhancement

One of the potential applications of our method is low-light
image enhancement. We exploited the higher tonal range in
the reconstructed CIE XYZ image and proposed a simple set
of heuristic operations to perform low-light image enhance-
ment. In our experiments, we used the bilateral guided
upsampling method [56] to speed up the running time
required to apply the local details enhancement method [50]
on the forward local sRGB reconstructed layer. Specifically,
we apply the local details enhancement to a downsized

version (150× 150) of the local layer, then we apply the
bilateral guided upsampling to reconstruct the processed
local layer in the original image’s size.

ADDITIONAL APPLICATIONS

When we work in our reconstructed space (i.e., XYZ), we
have a sound interpretation of post-capture white-balance
editing using standard white points (e.g., D65, D50) and
standard chromatic adaptation transforms (e.g., Bradford
CAT [57], Sharp CAT [58]), which are originally designed
to work in the camera CIE XYZ space. Fig. 20 shows ex-
amples of our enhanced rendering with applying chromatic
adaptation [58] in our reconstructed XYZ space.

Additional potential applications are shown in Fig. 21.
In the first row of Fig. 21, we show super-resolution results
obtained directly by working in the sRGB space and in our
reconstructed CIE XYZ space followed by applying our re-
rendering process. The last row of Fig. 21 shows an arguably

13

Fig. 19. Training and validation curves of different color spaces. The validation curve of our color space shows a better performance over time and
achieves the smallest MSE compared to other curves.

(A) Input image (B) Our re-rendered images with three different white points

Fig. 20. (A) Input sRGB rendered image. (B) Our re-rendered images after enhancement. In this example, we applied chromatic adaptation to three
different reference white points. Input image is taken from the under-exposure set [47] of the MIT-Adobe FiveK dataset [2].

better color transfer result by applying the color transfer
process in our reconstructed space.

Lastly, our rendering network can be used as an alterna-
tive way to produce aesthetic photographs from raw-RGB
DNG files, as shown in Fig. 22. In this example, we first
used the DNG metadata to map the raw-RGB values into
the CIE XYZ space. Then, we used our rendering network
and a local Laplacian filter to generate the shown output
images.

REFERENCES

[1] H. C. Karaimer and M. S. Brown, “A software platform for
manipulating the camera imaging pipeline,” in ECCV, 2016.

[2] V. Bychkovsky, S. Paris, E. Chan, and F. Durand, “Learning photo-
graphic global tonal adjustment with a database of input / output
image pairs,” in CVPR, 2011.

[3] Y.-W. Tai, X. Chen, S. Kim, S. J. Kim, F. Li, J. Yang, J. Yu, Y. Mat-
sushita, and M. S. Brown, “Nonlinear camera response functions
and image deblurring: Theoretical analysis and practice,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35,
no. 10, pp. 2498–2512, 2013.

[4] R. M. Nguyen and M. S. Brown, “Raw image reconstruction using
a self-contained sRGB-JPEG image with only 64 KB overhead,” in
CVPR, 2016.

[5] T. Brooks, B. Mildenhall, T. Xue, J. Chen, D. Sharlet, and J. T.
Barron, “Unprocessing images for learned raw denoising,” in
CVPR, 2019.

[6] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang,
and L. Shao, “CycleISP: Real image restoration via improved data
synthesis,” arXiv preprint arXiv:2003.07761, 2020.

[7] R. M. H. Nguyen, D. K. Prasad, and M. S. Brown, “Raw-to-raw:
Mapping between image sensor color responses,” in CVPR, 2014.

[8] S. Diamond, V. Sitzmann, S. Boyd, G. Wetzstein, and F. Heide,
“Dirty pixels: Optimizing image classification architectures for
raw sensor data,” arXiv preprint arXiv:1701.06487, 2017.

[9] S. Nam and S. Joo Kim, “Modelling the scene dependent imaging
in cameras with a deep neural network,” in ICCV, 2017.

[10] Y. Hu, B. Wang, and S. Lin, “FC4: Fully convolutional color
constancy with confidence-weighted pooling,” in CVPR, 2017.

[11] M. Afifi and M. S. Brown, “Sensor-independent illumination esti-
mation for dnn models,” arXiv preprint arXiv:1912.06888, 2019.

[12] S. J. Kim, H. T. Lin, Z. Lu, S. Süsstrunk, S. Lin, and M. S. Brown,
“A new in-camera imaging model for color computer vision and
its application,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 12, pp. 2289–2302, 2012.

[13] A. Abdelhamed, S. Lin, and M. S. Brown, “A high-quality denois-
ing dataset for smartphone cameras,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
1692–1700.

[14] R. D. Gow, D. Renshaw, K. Findlater, L. Grant, S. J. McLeod, J. Hart,
and R. L. Nicol, “A comprehensive tool for modeling cmos image-
sensor-noise performance,” IEEE Transactions on Electron Devices,
vol. 54, no. 6, pp. 1321–1329, 2007.

[15] C. Liu, R. Szeliski, S. B. Kang, C. L. Zitnick, and W. T. Freeman,
“Automatic estimation and removal of noise from a single im-
age,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 30, no. 2, pp. 299–314, 2007.

[16] S. W. Hasinoff, F. Durand, and W. T. Freeman, “Noise-optimal
capture for high dynamic range photography,” in CVPR, 2010, pp.
553–560.

[17] H. Lin, S. J. Kim, S. Süsstrunk, and M. S. Brown, “Revisiting
radiometric calibration for color computer vision,” in ICCV, 2011.

[18] A. Chakrabarti, Y. Xiong, B. Sun, T. Darrell, D. Scharstein, T. Zick-
ler, and K. Saenko, “Modeling radiometric uncertainty for vision
with tone-mapped color images,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 36, no. 11, pp. 2185–2198,
2014.

[19] S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron,
F. Kainz, J. Chen, and M. Levoy, “Burst photography for high
dynamic range and low-light imaging on mobile cameras,” ACM
Transactions on Graphics (TOG), vol. 35, no. 6, pp. 192:1–192:12,
2016.

[20] M. Afifi, B. Price, S. Cohen, and M. S. Brown, “When color
constancy goes wrong: Correcting improperly white-balanced im-
ages,” in CVPR, 2019.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[22] M. Anderson, R. Motta, S. Chandrasekar, and M. Stokes, “Proposal
for a standard default color space for the internet - srgb,” in Color
and Imaging Conference, 1996, pp. 238–245.

[23] M. Ebner, Color Constancy. John Wiley & Sons, 2007, vol. 6.

http://arxiv.org/abs/2003.07761
http://arxiv.org/abs/1701.06487
http://arxiv.org/abs/1912.06888
http://arxiv.org/abs/1412.6980

14

(A) Input sRGB image(s) (B) Operation applied in the sRGB
space

(C) Applied to XYZ and re-
rendered

Super-resolution

Color transfer

Low-res

Target

Source

Fig. 21. Another potential application of our method. (A) The input sRGB image. (B) Super-resolution and color transfer applied in the sRGB space.
(C) Super-resolution and color transfer applied in our reconstructed CIE XYZ space followed by re-rendering. In this example, we used the deep
learning super-resolution model proposed in [59] and the color transfer method in [60]. The input image in the first row is taken from the DIV2K
dataset [61], [62], while the second input image is taken from Flickr–CC BY-NC 2.0 (by Chris Ford and Giuseppe Moscato, respectively).

(A) Mobile Camera CIE XYZ (B) Standard rendering (C) Our rendering (D) Our enhanced rendering (E) Adobe Lightroom

Fig. 22. Our rendering network generalizes well for unseen CIE XYZ input images and produces pleasing results that are close to Adobe Lightroom’s
quality. (A) Input smartphone camera CIE XYZ image. (B) Standard rendering [22], [23]. (C) Our rendering. (D) Our rendering after enhancing the
local layer using the local Laplacian filter [50]. (E) Adobe Lightroom rendering. To aid visualization, CIE XYZ images are scaled by a factor of two.
Input image is taken from the HDR+ burst photography dataset [19].

[24] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical Image Computing and Computer-Assisted In-
tervention, 2015.

[25] T. Plotz and S. Roth, “Benchmarking denoising algorithms with
real photographs,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 1586–1595.

[26] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denois-
ing by sparse 3-d transform-domain collaborative filtering,” IEEE
Transactions on image processing, vol. 16, no. 8, pp. 2080–2095, 2007.

[27] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond
a gaussian denoiser: Residual learning of deep cnn for image
denoising,” IEEE Transactions on Image Processing, vol. 26, no. 7,
pp. 3142–3155, 2017.

[28] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612,
2004.

[29] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T.
Freeman, “Removing camera shake from a single photograph,”
ACM Trans. Graph, vol. 25, pp. 787–794, 2006.

[30] Y. Tai, X. Chen, S. Kim, S. J. Kim, F. Li, J. Yang, J. Yu, Y. Mat-
sushita, and M. S. Brown, “Nonlinear camera response functions
and image deblurring: Theoretical analysis and practice,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35,

no. 10, pp. 2498–2512, Oct 2013.
[31] D. Krishnan and R. Fergus, “Fast image deconvolution using

hyper-laplacian priors,” in Proceedings of the 22nd International
Conference on Neural Information Processing Systems, ser. NIPS09.
Red Hook, NY, USA: Curran Associates Inc., 2009, p. 10331041.

[32] W. Lai, J. Huang, Z. Hu, N. Ahuja, and M. Yang, “A comparative
study for single image blind deblurring,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2016, pp.
1701–1709.

[33] S. A. Golestaneh and L. J. Karam, “Spatially-varying blur detection
based on multiscale fused and sorted transform coefficients of
gradient magnitudes.” in CVPR, 2017.

[34] J. Shi, L. Xu, and J. Jia, “Discriminative blur detection features,” in
CVPR, 2014.

[35] C. Tang, X. Zhu, X. Liu, L. Wang, and A. Zomaya, “Defusionnet:
Defocus blur detection via recurrently fusing and refining multi-
scale deep features,” in CVPR, 2019.

[36] X. Yi and M. Eramian, “Lbp-based segmentation of defocus blur,”
TIP, vol. 25, no. 4, pp. 1626–1638, 2016.

[37] W. Zhao, F. Zhao, D. Wang, and H. Lu, “Defocus blur detection via
multi-stream bottom-top-bottom fully convolutional network,” in
CVPR, 2018.

[38] W. Zhao, B. Zheng, Q. Lin, and H. Lu, “Enhancing diversity of
defocus blur detectors via cross-ensemble network,” in CVPR,
2019.

15

[39] P. V. Gehler, C. Rother, A. Blake, T. Minka, and T. Sharp, “Bayesian
color constancy revisited,” in CVPR, 2008.

[40] D. Cheng, D. K. Prasad, and M. S. Brown, “Illuminant estimation
for color constancy: Why spatial-domain methods work and the
role of the color distribution,” Journal of the Optical Society of
America A (JOSA A), vol. 31, no. 5, pp. 1049–1058, 2014.

[41] K. He, J. Sun, and X. Tang, “Single image haze removal using dark
channel prior,” IEEE transactions on pattern analysis and machine
intelligence, vol. 33, no. 12, pp. 2341–2353, 2010.

[42] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
Caltech-UCSD Birds-200-2011 Dataset,” Tech. Rep., 2011.

[43] Y.-S. Chen, Y.-C. Wang, M.-H. Kao, and Y.-Y. Chuang, “Deep
photo enhancer: Unpaired learning for image enhancement from
photographs with gans,” in CVPR, 2018.

[44] G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and J. Unger,
“HDR image reconstruction from a single exposure using deep
CNNs,” ACM Transactions on Graphics (TOG), vol. 36, no. 6, pp.
178:1–178:15, 2017.

[45] Z. Lou, T. Gevers, N. Hu, M. P. Lucassen et al., “Color constancy
by deep learning.” in BMVC, 2015.

[46] D. Fourure, R. Emonet, E. Fromont, D. Muselet, A. Trémeau, and
C. Wolf, “Mixed pooling neural networks for color constancy,” in
ICIP, 2016.

[47] R. Wang, Q. Zhang, C.-W. Fu, X. Shen, W.-S. Zheng, and J. Jia,
“Underexposed photo enhancement using deep illumination esti-
mation,” in CVPR, 2019.

[48] J. Schewe, The digital negative: Raw image processing in Lightroom,
Camera Raw, and Photoshop. Peachpit Press, 2015.

[49] T. Mertens, J. Kautz, and F. Van Reeth, “Exposure fusion,” in Pacific
Conference on Computer Graphics and Applications, 2007.

[50] S. Paris, S. W. Hasinoff, and J. Kautz, “Local laplacian filters:
Edge-aware image processing with a laplacian pyramid.” ACM
Transactions on Graphics (TOG), vol. 30, no. 4, pp. 68:1–68:12, 2011.

[51] Y. Hu, H. He, C. Xu, B. Wang, and S. Lin, “Exposure: A white-box
photo post-processing framework,” ACM Transactions on Graphics
(TOG), vol. 37, no. 2, pp. 26:1–26:17, 2018.

[52] J. Park, J.-Y. Lee, D. Yoo, and I. So Kweon, “Distort-and-recover:
Color enhancement using deep reinforcement learning,” in CVPR,
2018.

[53] M. Gharbi, J. Chen, J. T. Barron, S. W. Hasinoff, and F. Durand,
“Deep bilateral learning for real-time image enhancement,” ACM
Transactions on Graphics (TOG), vol. 36, no. 4, pp. 118:1–118:12,
2017.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,”
in ICCV, 2015.

[55] J. T. Barron and Y.-T. Tsai, “Fast fourier color constancy,” in CVPR,
2017.

[56] J. Chen, A. Adams, N. Wadhwa, and S. W. Hasinoff, “Bilateral
guided upsampling,” ACM Transactions on Graphics (TOG), vol. 35,
no. 6, pp. 1–8, 2016.

[57] K. M. Lam, “Metamerism and colour constancy,” Ph. D. Thesis,
University of Bradford, 1985.

[58] G. D. Finlayson, M. S. Drew, and B. V. Funt, “Spectral sharpening:
sensor transformations for improved color constancy,” Journal of
the Optical Society of America A (JOSA A), vol. 11, no. 5, pp. 1553–
1563, 1994.

[59] K. Zhang, W. Zuo, and L. Zhang, “Learning a single convolutional
super-resolution network for multiple degradations,” in CVPR,
2018.

[60] F. Pitie and A. Kokaram, “The linear monge-kantorovitch linear
colour mapping for example-based colour transfer,” in European
Conference on Visual Media Production.

[61] E. Agustsson and R. Timofte, “NTIRE 2017 challenge on single
image super-resolution: Dataset and study,” in CVPR Workshops,
2017.

[62] R. Timofte, S. Gu, J. Wu, L. Van Gool, L. Zhang, M.-H. Yang,
M. Haris et al., “NTIRE 2018 challenge on single image super-
resolution: Methods and results,” in CVPR Workshops, 2018.

	1 Introduction
	2 Related Work
	2.1 Camera Imaging Pipeline
	2.2 Camera-Rendered Image Linearization

	3 Our Framework
	3.1 Formulation
	3.2 Network Design
	3.3 Loss Function
	3.4 Sub-Networks Architecture
	3.5 Dataset
	3.6 Training

	4 Experimental Results
	4.1 From Camera-Rendered sRGB to CIE XYZ, and Back
	4.2 Image Restoration Applications
	4.2.1 Image Denoising
	4.2.2 Motion Deblurring
	4.2.3 Defocus Blur Detection
	4.2.4 Raw-RGB Image Reconstruction
	4.2.5 Dehazing

	4.3 Photo-Finishing Applications
	4.3.1 Low-Light Image Enhancement

	5 Concluding remarks
	Appendix
	References

