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Uncalibrated, Two Source
Photo-Polarimetric Stereo

Silvia Tozza, Dizhong Zhu, William A. P. Smith,

Ravi Ramamoorthi, Fellow, IEEE and Edwin R. Hancock, Fellow, IEEE

Abstract—In this paper we present methods for estimating shape from polarisation and shading information, i.e. photo-polarimetric

shape estimation, under varying, but unknown, illumination, i.e. in an uncalibrated scenario. We propose several alternative

photo-polarimetric constraints that depend upon the partial derivatives of the surface and show how to express them in a unified

system of partial differential equations of which previous work is a special case. By careful combination and manipulation of the

constraints, we show how to eliminate non-linearities such that a discrete version of the problem can be solved using linear least

squares. We derive a minimal, combinatorial approach for two source illumination estimation which we use with RANSAC for robust

light direction and intensity estimation. We also introduce a new method for estimating a polarisation image from multichannel data and

provide methods for estimating albedo and refractive index. We evaluate lighting, shape, albedo and refractive index estimation

methods on both synthetic and real-world data showing improvements over existing state-of-the-art.

Index Terms—polarisation, shape-from-x, Bas-relief ambiguity, illumination estimation, differential approach, photometric stereo.

✦

1 INTRODUCTION

A Recent trend in photometric [1]–[6] and physics-based
[7]–[10] shape recovery has been to develop methods

that solve directly for surface height, rather than first es-
timating surface normals and then integrating them into
a height map. Such methods are attractive since: 1. they
only need solve for a single height value at each pixel (as
opposed to the two components of surface orientation),
2. integrability is guaranteed, 3. errors do not accumulate
through a two step pipeline of shape estimation and inte-
gration and 4. it enables combination with cues that provide
depth information directly [11]. In both photometric stereo
[2], [3], [5] and recently in shape-from-polarisation (SfP) [7],
[8], such a direct solution was made possible by deriving
equations that are linear in the unknown surface gradient.

In this paper, we explore the combination of SfP
constraints with photometric constraints (i.e. photo-
polarimetric shape estimation) provided by one or two
light sources. Photometric stereo with three or more light
sources is a very well studied problem with well-performing
solutions available under a range of different assumptions.
Two source photometric stereo is still considered a difficult
problem [12] even when the illumination is calibrated and
albedo is known. We show that various formulations of
one or two source photo-polarimetric stereo lead to the
same general problem (in terms of surface height), that
illumination can be estimated and that certain combinations
of constraints lead to an albedo and refractive index invari-
ant formulation. Hence, with only modest additional data
capture requirements (a polarisation image rather than an
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intensity image), we arrive at an approach for uncalibrated
two source photo-polarimetric stereo. We make the follow-
ing novel contributions:

• We show how to estimate a polarisation image from
multichannel data (Sec. 3.2).

• We show how polarisation and photometric con-
straints (Sec. 4) can be expressed in a unified for-
mulation (of which previous works [7]–[10] are spe-
cial cases) and that various combinations of these
constraints provide different practical advantages
(Sec. 5) including estimation of both the diffuse
albedo map and the refractive index.

• Degree and phase of polarisation do not vary with
wavelength. We therefore exploit the additional con-
straint provided by colour images both for polarisa-
tion image (Sec. 3.2) and shape estimation (Sec. 5.5).

• We show how to estimate the illumination directions
in two source photo-polarimetric data leading to an
uncalibrated solution (Sec. 7). Our approach is robust
and simultaneously estimates a diffuse mask that can
be used to exclude specular pixels.

The proposed methods can be combined into a complete
shape estimation pipeline as follows. First, estimate a po-
larisation image using the multichannel method in Sec. 3
and colour if available. Second, if illumination is uncali-
brated, estimate two source direction and intensity using the
method in Sec. 7. Third, make an initial shape estimate and
subsequently albedo and refractive index estimates using
the method in Sec. 5.2, again using colour if available.
Finally, refine the shape estimate using estimated albedo
and refractive index using the method in Sec. 5.3.

Paper organization We review related state-of-the-art
works in Sec. 2 then in Sec. 3 we introduce the notations, the
data, and the multichannel polarisation image estimation.
In Sec. 4, we illustrate the different constraints and their
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linearisation in order to arrive at a unified partial differential
system (Sec. 5), solved via linear least squares directly in
the unknown height (Sec. 6). In addition to the albedo and
refractive index estimation (Sec. 5), in Sec. 7 we propose
our two source lighting estimation, followed by experiments
(Sec. 8) and final comments (Sec. 9).

2 RELATED WORK

The polarisation state of light reflected by a surface provides
a cue to the material properties of the surface and, via a
relationship with surface orientation, the shape. Polarisation
has been used for a number of applications, including early
work on material segmentation [13] and diffuse/specular
reflectance separation [14]–[16]. However, there has been a
resurgent interest [7], [11], [17], [18] in using polarisation
information for shape estimation.

An earlier version of the work in this paper was origi-
nally presented in [19]. Here, we additionally show how to
estimate refractive index, reformulate the two light source
estimation problem to avoid assuming fixed light source
intensity and show how to make lighting estimation robust
via a RANSAC-based approach that also estimates a dif-
fuse mask. Concurrently and independently to [19], Mecca
et al. [9] also proposed a differential approach to photo-
polarimetric stereo. They use a different combination of
constraints which we also show here is a special case of
our general formulation and which we outperform.

Shape-from-polarisation The degree to which light is
linearly polarised and the orientation associated with max-
imum reflection are related to the two degrees of freedom
of surface orientation. In theory, this polarisation constraint
alone restricts the surface normal to two possible directions.

Both Atkinson and Hancock [20] and Miyazaki et al. [21]
solve the problem of disambiguating these polarisation nor-
mals via propagation from the boundary under an assump-
tion of global convexity. Huynh et al. [22] also disambiguate
polarisation normals with a global convexity assumption
but estimate refractive index in addition. These works all
used a diffuse polarisation model while Morel et al. [23]
use a specular polarisation model for metals. Taamazyan
et al. [17] introduced a mixed specular/diffuse polarisation
model. All of these methods estimate surface normals that
must be integrated into a height map and are extremely
sensitive to noise.

Photo-polarimetric methods There have been a number of
attempts to combine photometric constraints with polarisa-
tion cues. Mahmoud et al. [24] use a shape-from-shading
cue with assumptions of known light source direction,
known albedo and Lambertian reflectance to disambiguate
the polarisation normals. Atkinson and Hancock [25] use
calibrated, three source Lambertian photometric stereo for
disambiguation but avoiding an assumption of known
albedo. Smith et al. [7] show how to express polarisation
and shading constraints directly in terms of surface height,
leading to an efficient linear least squares solution. In [19]
and in this work we give an explanation for why the matrix
they consider is full-rank except in a unique case. They
also show how to estimate the illumination, up to a binary
ambiguity, making the method uncalibrated. However, they
require known or uniform albedo.

This requirement was subsequently relaxed [8] via a pro-
cedure to estimate albedo directly from a polarisation image,
though it requires known illumination and strong smooth-
ness assumptions. We explore variants of this method by
introducing additional constraints that arise when a second
light source is introduced, allowing us to relax the uniform
albedo assumption, even when lighting is unknown. Ngo
et al. [18] derive constraints that allow surface normals,
light directions and refractive index to be estimated from
polarisation images under varying lighting. However, this
approach requires at least 4 lights. Yu et al. [26] pose shape-
from-polarisation as an analysis-by-synthesis problem, di-
rectly optimising the recovered shape using nonlinear least
squares. While flexible, this approach is prone to converging
on poor local minima. Atkinson [27] combines polarisation
phase information with constraints from calibrated two
source photometric stereo via a region growing process.

Polarisation plus X Coarse geometry obtained by multi-
view space carving [28], [29] has been used to resolve po-
larisation ambiguities. Huynh et al. [30] extend their earlier
work to use multispectral measurements to estimate both
shape and refractive index. Drbohlav and Sara [31] show
how the Bas-relief ambiguity [32] in uncalibrated photomet-
ric stereo could be resolved using polarisation. However,
this approach requires a polarised light source. Kadambi
et al. [11], [33] combine a single polarisation image with
a depth map obtained by an RGBD camera. Zhu and Smith
[34] add an additional non-polarised camera giving a stereo
cue from which they can estimate a rough depth map. The
depth map is used to disambiguate the surface normals and
provide a base surface for integration.

Multiview Polarisation Early work used a stereo pair
of polarisation measurements to determine the orientation
of a plane [35]. Rahmann and Canterakis [36] combine
a specular polarisation model with stereo cues. Similarly,
Atkinson and Hancock [37] use polarisation normals to
segment an object into patches, simplifying stereo matching.
Stereo polarisation cues have also been used for transparent
surface modelling [38]. Berger et al. [39] use polarisation
stereo for depth estimation of specular scenes. Cui et al. [40]
incorporate a polarisation phase angle cue into multiview
stereo enabling recovery of surface shape in featureless
regions. Chen et al. [41] provide a theoretical treatment of
constraints arising from three view polarisation. Yang et
al. [42] propose a variant of monocular SLAM using polar-
isation video. Cui et al. [43] use polarisation constraints to
reduce the number of correspondences required for relative
pose estimation. While these methods all require multiple
polarisation cameras or a moving camera, we focus on a
single viewpoint but with varying illumination direction.
The two approaches are likely to be complimentary.

3 REPRESENTING POLARISATION INFORMATION

We place a camera at the origin of a three-dimensional coor-
dinate system (Oxyz) in such a way that Oxy coincides with
the image plane and Oz with the optical axis. In Sec. 5 we
propose a unified formulation for a variety of methods, all of
which assume orthographic projection. Other assumptions
will be given later on, depending on the specific problem
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Fig. 1: Multichannel polarisation image estimation. Left to right: an image from the input sequence; phase angle (φ) and
degree of polarisation (ρ) estimated from a single channel; phase angle (φ) and degree of polarisation (ρ) estimated from
three colour channels and two light source directions.

at hand. We denote by v ∈ R
3 the viewer direction, by

s ∈ R
3 a general light source direction with v 6= s. We only

require the third components of these unit column vectors
to be greater than zero (i.e. all the vectors belong to the
upper hemisphere). We will denote by t ∈ R

3 a second
light source where required. Note that the intensity of each
light source can be encoded in its magnitude, ‖s‖ and ‖t‖.
We parametrise the unknown surface height by the function
z(x), where x = [x, y]T is an image location, and the unit
normal to the surface at the point x is given by:

n(x) =
n̂(x)

|n̂(x)| =
[−zx,−zy, 1]

T

√

1 + |∇z(x)|2
, (1)

where n̂(x) is the outgoing normal vector and zx, zy denotes
the partial derivative of z(x) with respect to x and y,
respectively, so that ∇z(x) = [zx, zy]

T . We now introduce
relevant polarisation theory, describing how we can estimate
a polarisation image from multichannel data.

3.1 Polarisation image

When unpolarised light is reflected by a surface it becomes
partially polarised [44]. A polarisation image can be estimated
by capturing a sequence of images in which a linear polar-
ising filter in front of the camera lens is rotated through a
sequence of P ≥ 3 different angles ϑj , j ∈ {1, . . . , P}. The
measured intensity at a pixel varies sinusoidally with the
polariser angle:

iϑj
(x) = iun(x)

(

1 + ρ(x) cos(2ϑj − 2φ(x))
)

. (2)

The polarisation image is thus obtained by decomposing the
sinusoid at every pixel location into three quantities [44]:
the phase angle, φ(x), the degree of polarisation, ρ(x), and the
unpolarised intensity, iun(x). The parameters of the sinusoid
can be estimated from the captured image sequence using
non-linear least squares [20], linear methods [22] or via a
closed form solution [44] for the specific case of P = 3,
ϑ ∈ {0◦, 45◦, 90◦}.

3.2 Multichannel polarisation image estimation

A polarisation image is usually computed by fitting the
sinusoid in (2) to observed data in a least squares sense.
Hence, from P ≥ 3 measurements we estimate iun, ρ
and φ. In practice, we may have access to multichannel
measurements. For example, we may capture colour images
(3 channels), polarisation images with two different light
source directions (2 channels) or both (6 channels). Since
ρ and φ depend only on surface geometry (assuming that,

in the case of colour images, the refractive index does not
vary with wavelength), then we expect these quantities to be
constant over the channels. On the other hand, iun will vary
between channels either because of a shading change caused
by the different lighting or because the albedo or light source
intensity is different in the different colour channels. Hence,
in a multichannel setting with C channels, we have C+2 un-
knowns and CP observations. If we use information across
all channels simultaneously, the system is more constrained
and the solution will be more robust to noise. Moreover, we
do not need to make an arbitrary choice about the channel
from which we estimate the polarisation image. This idea
shares something in common with that of Narasimhan et
al. [45], though their material/shape separation was not in
the context of polarisation.

Specifically, we can express the multichannel observa-
tions in channel c with polariser angle ϑj as

icϑj
(x) = icun(x)(1 + ρ(x) cos(2ϑj − 2φ(x))). (3)

The system of equations is linear in the unpolarised intensi-
ties and, by a change of variables, can be made linear in ρ
and φ [22]. Hence, we wish to solve a bilinear system and
do so in a least squares sense using interleaved alternating
minimisation. In detail, we:

1) fix ρ and φ and then solve linearly for the unpo-
larised intensity in each channel,

2) then fix the unpolarised intensities and solve lin-
early for ρ and φ using all channels simultaneously.

Concretely, for a single pixel, we obtain the unpolarised
intensities across channels by solving:

min
i1un(x),...,i

C
un(x)

∥

∥

∥

∥

CI

[

i1un(x), . . . , i
C
un(x)

]T

− dI

∥

∥

∥

∥

2

, (4)

where CI ∈ R
CP×C is given by

CI =







(1 + ρ(x) cos(2ϑ1 − 2φ(x)))IC
...

(1 + ρ(x) cos(2ϑP − 2φ(x)))IC






, (5)

with IC denoting the C × C identity matrix, and dI ∈ R
CP

is given by

dI =
[

i1ϑ1
(x), . . . , iCϑ1

(x), i1ϑ2
(x), . . . , iCϑP

(x)
]T

. (6)

Then, with the unpolarised intensities fixed, we solve for ρ
and φ using the following linearisation:

min
a,b

∥

∥

∥

∥

Cρφ

[

a
b

]

− dρφ

∥

∥

∥

∥

2

, (7)
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where [a, b]T = [ρ(x) cos(2φ(x)), ρ(x) sin(2φ(x))]T , and
Cρφ ∈ R

CP×2 is given by

Cρφ =





















i1un(x) cos(2ϑ1) i1un(x) sin(2ϑ1)
...

...
i1un(x) cos(2ϑP ) i1un(x) sin(2ϑP )
i2un(x) cos(2ϑ1) i2un(x) sin(2ϑ1)

...
...

iCun(x) cos(2ϑP ) iCun(x) sin(2ϑP )





















, (8)

and dρφ ∈ R
CP is given by:

dρφ =





















i1ϑ1
(x)− i1un(x)

...
i1ϑP

(x)− i1un(x)
i2ϑ1

(x)− i2un(x)
...

iCϑP
(x)− iCun(x)





















. (9)

We estimate ρ and φ from the linear parameters using
φ(x) = 1

2atan2(b, a) and ρ(x) =
√
a2 + b2.

We initialise by computing a polarisation image from one
channel using linear least squares, as in [22], and then use
the estimated ρ and φ to begin alternating interleaved op-
timisation by solving for the unpolarised intensities across
channels. We interleave and alternate the two steps until
convergence. In practice, we find that this approach not
only dramatically reduces noise in the polarisation images
but also removes the ad hoc step of choosing an arbitrary
channel to process. We show an example of the results
obtained in Fig. 1. The multichannel result is visibly less
noisy than the single channel performance. We show an
additional result with ground truth in Fig. 2 where we use
three colour channels and two light source directions. The
left column shows the estimated degree of polarisation and
the right one shows the estimated phase angle. It is clear
that the multichannel result is closer to ground truth than
using either light source alone.

4 PHOTO-POLARIMETRIC HEIGHT CONSTRAINTS

In this section we describe constraints provided by photo-
polarimetric information and show how to combine them to
arrive at linear equations in the unknown surface height.

4.1 Degree of polarisation constraint

A polarisation image provides a constraint on the surface
normal direction at each pixel. The exact nature of the
constraint depends on the polarisation model used. In this
paper we will consider diffuse polarisation, due to subsur-
face scattering (see [20] for more details). The degree of
diffuse polarisation ρd(x) at each point x can be expressed
in terms of the refractive index η and the surface zenith
angle θ ∈ [0, π

2 ] as follows (Cf. [20]):

ρd(x) =
(η − 1/η)2 sin2(θ)

2+2η2−(η+1/η)2 sin2(θ)+4 cos(θ)
√

η2− sin2(θ)
.

(10)
Recall that the zenith angle is the angle between the unit
surface normal vector n(x) and the viewing direction v. If
we know the degree of polarisation ρd(x) and the refractive

Input light 1 Input light 2

Estimate from light 1

Estimate from light 2

Estimate from two lights simultaneously

Ground truth

Fig. 2: Multichannel polarisation image estimation with
two light sources. Row 1: input images with two different
light sources. Row 2/3: Polarisation image estimation from
first/second light. Row 4: Polarisation image estimation
from both lights. Row 5: ground truth polarisation image.

index η (or have good estimates of them at hand), equation
(10) can be rewritten with respect to the cosine of the zenith
angle, and expressed in terms of the function, f(ρd(x), η),
that depends on the measured degree of polarisation and
the refractive index as follows:

cos(θ) = n(x) · v = f(ρd(x), η) = (11)
√

η4(1−ρ2d)+2η2(2ρ2d+ρd−1)+ρ2d+2ρd−4η3ρd
√

1−ρ2d+1

(ρd + 1)2 (η4 + 1) + 2η2(3ρ2d + 2ρd − 1)

where we drop the dependency of ρd on (x) for brevity.
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4.2 Shading constraint

The unpolarised intensity provides an additional constraint
on the surface normal direction via an appropriate re-
flectance model. We assume that pixels have been labelled
as diffuse or specular dominant and restrict consideration
to diffuse shading. In practice, we deal with specular pixels
in the same way as [7] and simply assume that they point
in the direction of the halfway vector between s and v. For
the diffuse pixels, we therefore assume that light is reflected
according to the Lambert’s law. Hence, the unpolarised
intensity is related to the surface normal by:

iun(x) = γ(x) cos(θi) = γ(x)n(x) · s, (12)

where γ(x) is the albedo. Writing n(x) in terms of the
gradient of z as reported in (1), (12) can be rewritten as
follows:

iun(x) = γ(x)
−∇z(x) · s̃+ s3
√

1 + |∇z(x)|2
, (13)

with s̃ = [s1, s2]
T . This is a non-linear equation, but we

will see in Sec. 4.4 and 4.5 how it is possible to remove the
non-linearity by using the ratios technique.

4.3 Phase angle constraint

An additional constraint comes from the phase angle, which
determines the azimuth angle of the surface normal α(x) ∈
[0, 2π] up to a π ambiguity. This constraint can be rewritten
as a collinearity condition [7], that is satisfied by either of
the two possible azimuth angles implied by the phase angle
measurement. Specifically, for diffuse pixels we require the
projection of the surface normal into the x-y plane, [nx ny]

T ,
and a vector in the image plane pointing in the phase angle
direction, [sin(φ) cos(φ)]T , to be collinear. This corresponds
to requiring

n(x) · [cos(φ(x)) − sin(φ(x)) 0]T = 0. (14)

In terms of the surface gradient, using (1), it is equivalent to

[− cosφ, sinφ]T · ∇z = 0. (15)

A similar expression can be obtained for specular pixels,
substituting in the π

2 -shifted phase angles. The advantage of
doing this will become clear in Sec. 5.2.

4.4 Degree of polarisation ratio constraint

Combining the two constraints illustrated in Sec. 4.1 and
4.2, we can arrive at a linear equation, that we refer to as the
DOP ratio constraint. Recall that cos(θ) = n(x) · v and that
we can express n in terms of the gradient of z by using (1),
then isolating the non-linear term in (11) we obtain

√

1 + |∇z(x)|2 =
−∇z(x) · ṽ + v3

f(ρd(x), η)
, (16)

where ṽ = [v1, v2]
T . On the other hand, considering the

shading information contained in (13) and again isolating
the non-linearity, we arrive at the following

√

1 + |∇z(x)|2 = γ(x)
−∇z(x) · s̃+ s3

iun(x)
. (17)

Note that we are supposing s 6= v, and iun(x) 6= 0,
f(ρd(x), η) 6= 0. Inspecting Eqs. (16) and (17) we obtain

−∇z(x) · ṽ + v3
f(ρd(x), η)

= γ(x)
−∇z(x) · s̃+ s3

iun(x)
. (18)

We thus arrive at the following partial differential equation
(PDE):

b(x) · ∇z(x) = h(x), (19)

where

b(x) := b(f,iun) = iun(x)ṽ − γ(x)f(ρd(x), η) s̃, (20)

and

h(x) := h(f,iun) = iun(x)v3 − γ(x)f(ρd(x), η) s3. (21)

4.5 Intensity ratio constraint

We construct an intensity ratio constraint by considering
two unpolarised images, iun,1, iun,2, taken from two different
light source directions, s, t. We construct our constraint
equation by applying (12) twice, once for each light source.
We can remove the non-linearity as before and take a ratio,
arriving at the following equation:

iun,2(x)(−∇z(x) · s̃+ s3) = iun,1(x)(−∇z(x) · t̃+ t3). (22)

The above equation is independent of albedo and the non-
linear normalisation term. It is also invariant to the absolute
light source intensities ‖s‖ and ‖t‖ but does depend on their
relative intensities, i.e. the ratio ‖s‖/‖t‖. Again as before, we
can rewrite (22) as a PDE in the form of (19) with

b(x) := b(iun,1,iun,2) = iun,2(x)s̃− iun,1(x) t̃, (23)

where t̃ = [t1, t2]
T , and

h(x) := h(iun,1,iun,2) = iun,2(x)s3 − iun,1(x) t3. (24)

4.6 Polariser angle ratio

Mecca et al. [9], [10] propose taking a ratio between obser-
vations (i.e. (2)) for polariser angles ϑ = 0 and ϑ = π

4 . This
leads to the following constraint:

zx(−iπ
4
(x) + iun(x)) + zy(i0(x)− iun(x) + iun(x)ρ(x)) = 0.

(25)
We now re-express this in our formulation allowing compar-
ison to be drawn to our other constraints. By substituting (2)
with the appropriate angles, we obtain:

−iπ
4
(x) = −iun(x)(1 + ρ(x) cos(2

π

4
− 2φ(x)) (26)

= −iun(x)(1 + ρ(x) sin(2φ(x))),

and

i0(x)− iun(x) + iun(x)ρ(x) (27)

=iun(x)(1 + ρ(x) cos(−2φ(x)))− iun(x) + iun(x)ρ(x)

=iun(x)ρ(x)(1 + cos(2φ(x))).

Substituting these into (25) we obtain:
[

−iun(x)ρ(x) sin(2φ(x))
iun(x)ρ(x)(1 + cos(2φ(x)))

]

· ∇z(x) = 0. (28)
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Again, we can write (28) as a PDE in the form of (19) with:

b(x) := b(iun,ρ,φ) =

[

−iun(x)ρ(x) sin(2φ(x))
iun(x)ρ(x)(1 + cos(2φ(x)))

]

(29)

and h = 0. We now show that this constraint is equivalent
to the phase angle constraint but weighted by iun(x)ρ(x).
Expanding sin(2φ) and cos(2φ) by trigonometric identity
we obtain:

2iun(x)ρ(x) ·
[

− sin(φ) cos(φ)
cos2(φ)

]

· ∇z(x) = 0, (30)

and removing the scale and common factor cos(φ) we obtain
a weighted version of (15):

iun(x)ρ(x) ·
[

− sin(φ)
cos(φ)

]

· ∇z(x) = 0. (31)

Relative to the unweighted (15), we speculate that this
weighting is not helpful. When the degree of polarisation is
small, the surface normal is close to the viewer direction and
the elements of the gradient vector are already small. This
already introduces a weighting that places more importance
on pixels with high degree of polarisation (where the signal
for estimating phase angle is stronger). On the other hand,
weighting by iun may give low weight to pixels near the
occluding boundary (if the light source is close to frontal)
where the azimuth cue provided by the phase angle is very
important and, since the degree of polarisation is large in
those regions, the phase estimate is reliable.

5 A UNIFIED PDE FORMULATION

Starting from the constraints introduced in Sec. 4, in this
section we show how to solve several different problems in
photo-polarimetric shape estimation. The common feature
is that these are all linear in the unknown height, and are
expressed in a unified formulation in terms of a system of
PDEs in the same general form:

B(x)∇z(x) = h(x), (32)

where B : Ω̄ → R
J×2, h : Ω̄ → R

J×1, denoting by Ω the
reconstruction domain and being J = 2 or J = 4 depending
on the cases. Note that (32) does not depend on a specific
camera setup or a chosen reflectance model. It is both a
very compact and general equation, suitable for describing
several cases in a unified differential formulation that solves
directly for surface height.

Different combinations of the constraints described in
Sec. 4 that are linear in the surface gradient can be combined
in the formulation of (32). Each corresponds to different
assumptions and have different pros and cons. We explore
two new variants and show that [7] and [9], [10] are special
cases. We summarise the methods considered in Tab. 1.

5.1 Single light and polarisation formulation

This case has been studied in [7]. It uses a single po-
larisation image, requires known illumination (though [7]
show how this can be estimated if unknown) and assumes
that albedo is known or uniform. This last assumption is
quite restrictive, since it can only be applied to objects
with homogeneous surfaces. With just a single illumination
condition, only the phase angle and DOP ratio constraints

Phase DOP Intensity Pol. ang.
Method angle ratio ratio ratio

Smith et al. [7] X X

Ours (invariant) X X

Ours (alternating) X X X

Mecca et al. [9], [10] X X

TABLE 1: Summary of the combinations of constraints used
by the different methods. All can be expressed in the same
unified PDE formulation.

are available. This thus becomes a special case of our general
unified formulation (32), where B and h are defined as

B(x) =

[

b
(f,iun)
1 b

(f,iun)
2

− cosφ sinφ

]

, h(x) = [h(f,iun), 0]T , (33)

with b(f,iun) and h(f,iun) defined by (20) and (21), with
uniform γ(x) and v = [0, 0, 1]T .

5.2 Albedo and refractive index invariant formulation

Our first proposed method uses the phase angle constraint
(15) and two unpolarised images, taken from two different
light source directions, obtained through (13) and combined
as in (22). In this case the problem studied is described by
the system of PDEs (32) with

B(x) =

[

b
(iun,1,iun,2)

1 b
(iun,1,iun,2)

2

− cosφ sinφ

]

,h(x) =

[

h(iun,1,iun,2)

0

]

, (34)

where b(iun,1,iun,2) and h(iun,1,iun,2) are defined as in (23) and
(24). The phase angle does not depend on albedo and the
intensity ratio constraint is invariant to albedo. As a result,
this formulation is particularly powerful because it allows
albedo invariant height estimation. In addition, there is no
dependence on refractive index. We now describe how both
albedo and refractive index can be estimated after using this
combination of constraints for height estimation.

Albedo estimation Going further, this method can be used
to allow estimation of an albedo map. Once surface height
has been estimated, we can compute the surface normal
at each pixel and it is then straightforward to estimate
an albedo map using (12). Where we have two diffuse
observations, we can compute albedo from two equations
of the form of (12) in a least squares sense. In real data,
where we have specular pixel labels, we use only the diffuse
observations at each pixel. To avoid artifacts at the boundary
of specular regions, we introduce a gradient consistency
term into the albedo estimation. We encourage the gradient
of the albedo map to match the gradient of the intensity
image for diffuse pixels. Relative to the albedo estimation
method in [8], our approach is more robust, offers improved
performance and does not require known lighting.

Refractive index estimation A further advantage of this
formulation is that it does not depend upon the degree of
polarisation and therefore does not use a polarisation model
with refractive index as a parameter. For this reason, it also
provides a route to refractive index estimation. Again, we
first estimate surface height in a refractive index invariant
manner. Then, with (1), we can retrieve the zenith angle
value from the surface height as θ(x) = arccos(nz(x)).
We also have an observed degree of polarisation, ρobs, as
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computed by the method described in Sec. 3.2. The DOP
equation (10) models the relationship between zenith angle
θ and refractive index η. Hence, with the observed degree of
polarisation and zenith angle computed from the estimated
surface, an optimal refractive index can be estimated by
solving the following nonlinear least squares problem:

min
η

∑

x

‖ρobs(x)− ρd(θ(x), η)||22, (35)

where we assume the refractive index is uniform over the
target object.

5.3 Alternating formulation

We now propose a second formulation that combines the
three previous constraints described in Sections 4.3, 4.4 and
4.5, leading to a problem of the form (32) with

B =











b
(f,iun,1)
1 b

(f,iun,1)
2

b
(f,iun,2)
1 b

(f,iun,2)
2

b
(iun,1,iun,2)
1 b

(iun,1,iun,2)
2

− cosφ sinφ











, h =









h(f,iun,1)

h(f,iun,2)

h(iun,1,iun,2)

0









. (36)

This formulation provides maximum constraint and exploits
all parameters of the fitted sinusoid so is potentially more
robust than the previous invariant method. However, it
requires known albedo and refractive index in order to use
the DOP ratio constraint. Nevertheless, it is possible to first
apply the invariant formulation, estimate the albedo and
refractive index and then re-estimate surface height using
the maximally constrained formulation and the estimated
albedo map. In fact, the best performance is obtained by
iterating these two steps, alternately using the surface height
estimate to compute albedo and then using the updated
albedo to re-compute surface height until convergence. This
iterative approach, initialised by the invariant method, is the
method that we evaluate in our experiments.

5.4 Angular and intensity ratios formulation

This case has been studied by Mecca et al. [9], [10] and
combines the intensity ratio constraint in (22) with the po-
lariser angle ratio in (28), repeated for the two unpolarised
intensity measurements from the two images, arriving to a
PDE system of the form (32) with

B(x) =







b
(iun,1,iun,2)

1 b
(iun,1,iun,2)

2

b
(iun,1,ρ,φ)

1 b
(iun,1,ρ,φ)

2

b
(iun,2,ρ,φ)

1 b
(iun,2,ρ,φ)

2






, h(x) =





h(iun,1,iun,2)

0
0



 ,

(37)

where b(iun,1,iun,2) and h(iun,1,iun,2) are defined as in (23) and
(24) and b(iun,ρ,φ) is defined as in (29).

5.5 Extension to colour images

We now consider how to extend the above systems of equa-
tions when colour information is available. If a surface is lit
by a coloured point source, then each pixel provides three
equations of the form in (12). In principle, this provides
no more information than a grayscale observation since the
surface normal and light source direction are fixed across
colour channels. However, in the presence of noise using all
three observations improves robustness. In particular, if the
albedo value at a pixel is lower in one colour channel, the

signal to noise ratio will be worse in that channel than the
others. For a multicoloured object, it is impossible to choose
a single colour channel that provides the best signal to noise
ratio across the whole object. For this reason, we propose to
use information from all colour channels where available.

We already exploit colour information in the estimation
of the polarisation image in Sec. 3.2. Hence, the phase angle
estimates have already benefited from the improved robust-
ness. Both the DOP ratio and intensity ratio constraints can
also exploit colour information by repeating each constraint
three times, once for each colour channel. In the case of the
intensity ratio, the colour albedo once again cancels if ratios
are taken between the same colour channels under different
light source directions.

6 LINEAR LEAST SQUARES HEIGHT ESTIMATION

We have seen that each of the variants illustrated in the
previous section, each with different advantages, can be
written as a PDE system (32). Denoting by M the number of
pixels, we discretise the gradient in (32) using the method
of [46] arriving at the following linear system in z

Az = h̄, (38)

where A = B̄G, with G ∈ R
2M×M the matrix of finite

difference gradients. B̄ ∈ R
JM×2M is the discrete per-pixel

version of the matrix B(x), hence A ∈ R
JM×M , where J

depends on the various proposed cases reported in Sec. 5
(J = 2 for (33) and (34), J = 3 for (37) and J = 4 for
(36)). h̄ is the discrete per-pixel version of the function h(x),
h̄ ∈ R

JM×1, and z ∈ R
M×1 is the vector of the unknown

height values. The resulting discrete system is large, since
we have JM linear equations in M unknowns, but sparse,
since A has few non-zero values for each row, and has
as unknowns the height values. The per-pixel matrix A is
a full-rank matrix, for each choice of B̄ that comes from
the proposed formulations in Sec. 5, under the different
assumptions specified for each case. The per-pixel matrix
A related to [7] is full-rank except in one case: when the
first two components of the light vector s are non-zero and
s1 = −s2 and it happens that the phase angle is φ = π/4
at least in one pixel. In that case, the matrix has a rank-
deficiency (though in practice φ assuming a value of exactly
π/4, up to numerical tolerance, is unlikely).

We want to find a solution of (38) in the least-squares
sense, i.e. find a vector z ∈ R

M such that

||Az− h̄||22 ≤ ||Ay − h̄||22, ∀y ∈ R
M . (39)

Considering the associated system of normal equations

AT (Az− h̄) = 0, (40)

it is well-known that if there exists z ∈ R
M that satisfies (40),

then z is also solution of the least-squares problem, i.e. z
satisfies (39). Since A is a full-rank matrix, then the matrix
ATA is not singular, hence there exists a unique solution z

of (40) for each data term h̄. Since neither B nor h depend
on z in (32), the solution can be computed only up to an
additive constant (which is consistent with the orthographic
projection assumption). To resolve the unknown constant,
knowledge of z at just one pixel is sufficient. In our im-
plementation, we remove the height of one pixel from the
variables and substitute its zero value elsewhere.
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7 TWO SOURCE LIGHTING ESTIMATION

All of the shape-from-polarisation methods in Table 1 re-
quire knowledge of the illumination (in the case of our
proposed methods and that of Mecca et al. [9], [10], this
amounts to two point light source directions).

Previously, Smith et al. [7] showed that a single polar-
isation image can be used for illumination estimation up
to a binary ambiguity. However, the approach has three im-
portant weaknesses. First, they assumed that the albedo was
known or uniform which is a significant practical limitation.
Second, they used a least squares solution over all pixels
meaning the method is not robust to outliers. Third, they
assumed that a specular mask was provided.

In a two source setting, we show that it is possible to
estimate both light source directions simultaneously, and do
so in an albedo invariant manner. Moreover, we solve the
problem using Random Sample Consensus (RANSAC) [47]
meaning the approach is robust to outliers, specifically spec-
ular pixels, so that we can automatically estimate a diffuse
mask. Using this approach, two source photo-polarimetric
stereo can be applied in an uncalibrated scenario.

7.1 Homogeneous system of linear equations

Suppose that we capture two images with different, un-
known light directions and have noisy estimates of the sur-
face gradient to hand. The intensity ratio (22) provides one
equation per pixel relating unpolarised intensities, surface
gradient and light source directions. Hence, we can form
a system of linear equations in the unknown light source
vectors s and t:

R

[

s

t

]

= 0 , (41)

where each row of R is of the form:

[−zxiun,2,−zyiun,2, iun,2, zxiun,1, zyiun,1,−iun,1]. (42)

Note that this system is homogeneous and so has a trivial
solution s = t = [0, 0, 0]T . In our earlier work [19] we
reformulated this in spherical coordinates, assuming that
the light sources had the same intensity and solved using
nonlinear least squares. Here, we instead solve it as a
homogeneous linear least squares problem:

min
s,t∈R3

∥

∥

∥

∥

R

[

s

t

]
∥

∥

∥

∥

2

2

, s.t.

∥

∥

∥

∥

[

s

t

]
∥

∥

∥

∥

2

= 1. (43)

This has a closed form solution by taking the SVD of R =
USVT with the solution given by the last column of V.
Note that there is an overall scale ambiguity between the
diffuse albedo and the intensity of the light sources. The
unit norm constraint here arbitrarily resolves this but does
not require that the two light sources are of equal intensity.
Moreover, using the SVD we guarantee to obtain the global
optimum which was not the case for the optimisation in
[19]. Note that there is also a sign ambiguity since:

∥

∥

∥

∥

R

[

s

t

]∥

∥

∥

∥

=

∥

∥

∥

∥

−R

[

s

t

]∥

∥

∥

∥

. (44)

This is easily resolved since we know intensities must be
positive and therefore Lambertian shading must be positive.
The two unknown light vectors have six degrees of freedom,
though this is reduced to five by the unit norm constraint.

Algorithm 1 Minimal, brute force solution for lighting

Input: Six pixel locations, x1, . . . ,x6

Output: Estimated light source directions, s, t ∈ R
3

1: // Generate all binary strings1 of length 6
2: P := binaryStrings(6)
3: // Pi,j is the jth digit of the ith string
4: β = ∞
5: for i := 1 to 26 do
6: // Generate ith possible system of equations
7: for j := 1 to 6 do

8: zx :=

{

cosφ(xj) tan θ(xj) if Pi,j = 0

− cosφ(xj) tan θ(xj) otherwise

9: zy :=

{

sinφ(xj) tan θ(xj) if Pi,j = 0

− sinφ(xj) tan θ(xj) otherwise

10: Rj := [iun,2(xj)[−zx,−zy, 1], iun,1(xj)[zx, zy,−1]]
11: end for
12: (U,S,V) := svd(R)
13: // Minimum norm solution given by last column of V
14: (s, t) := V6

15: r :=

∥

∥

∥

∥

R

[

s

t

]
∥

∥

∥

∥

2

2
16: if r < β then
17: β := r
18: (sbest, tbest) := (s, t)
19: end if
20: end for
21: return sbest, tbest

7.2 Brute force minimal solution

Estimating light source direction using (43) requires esti-
mates of the surface gradient for each pixel in the system
of equations. In practice, the polarisation images do not
provide estimates of the surface gradient directly. Instead,
the phase angle and the zenith angle, estimated from the
degree of polarisation using (11), define two possible surface
normal directions at each pixel and therefore two possible
surface gradients. We take a combinatorial approach by con-
sidering all 2M possible disambiguations of the polarisation
measurements for a given set of M pixels. While this has
exponential complexity in the number of pixels, it is feasible
for a minimal solution of M = 6 pixels. In Algorithm 1 we
sketch this brute force minimal solution. We consider all 26

disambiguations, solve for the two light source directions
for each and keep track of the solution with lowest residual.

7.3 Robust lighting estimation with RANSAC

We now employ the brute force minimal solution within
the RANSAC algorithm in order to robustly estimate light
source direction while simultaneously identifying outlier
pixels. Besides random noise, we also expect that pixels in
which one or both of the two intensity observations are a
specular reflection will be outliers since the observed inten-
sity and polarisation will deviate from our diffuse shading
and polarisation models. Hence, we refer to the inlier mask

1. The function binaryStrings(K) returns a 2K×K matrix containing
all binary strings of length K such that each element of the matrix
contains 0 or 1 and the ith row of the matrix contains the ith string.
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Input 1 Input 2 Diffuse mask Albedo map Normal map Normal error

Fig. 3: An illustration of the RANSAC two source light estimation. From left to right: the input images under light source
direction 1 and 2, the estimated diffuse mask, albedo map and normal map, and normal direction error map. Light
estimation results are shown in Tab. 2.

as a diffuse mask, where we expect such pixels are diffuse
dominant for both light source directions.

Following the RANSAC algorithm, we select a ran-
dom minimal subset of 6 pixels and apply Algorithm 1
to obtain an estimate of the two light source directions.
We then find the consensus set for this solution. For all
pixels we compute the residual using the estimated light
source directions and the disambiguation that minimises the
residual. Specifically, for each pixel we define r(x) using (42)
with the surface gradient arbitrarily resolved to one of the
two possible disambiguations: zx(x) = cosφ(x) tan θ(x)
and zy(x) = sinφ(x) tan θ(x). Transformation to the other
possible disambiguation is achieved by r(x)T where T =
diag(−1,−1, 1,−1,−1, 1). Hence the residual is given by:

r(x, s, t) = min

(

∥

∥

∥

∥

r(x)

[

s

t

]∥

∥

∥

∥

2

2

,

∥

∥

∥

∥

r(x)T

[

s

t

]
∥

∥

∥

∥

2

2

)

(45)

We now define the consensus set of inliers as those pixels
whose residual is below a chosen threshold τ :

Cs,t = {i|r(xi, s, t) < τ}. (46)

We repeat this process, keeping track of the largest inlier
set observed. Finally, we use the (s, t) associated with the
largest inlier set to disambiguate the polarisation normals
for each inlier pixel and then solve least squares for the
final light source estimate, (s∗, t∗), using all inlier pixels by
solving (43). The diffuse mask is defined as D = Cs∗,t∗ .

As in [7], the solution is still subject to a binary ambi-
guity, in that if [sT , tT ] is a solution then T[sT , tT ] is also
a solution, corresponding to the convex/concave ambiguity.
We resolve this simply by choosing the maximal solution
when surface height is later recovered.

8 EXPERIMENTS

Data We now evaluate our light source, albedo, refractive
index and shape estimation methods on both synthetic
and real data. There are no existing benchmarks for these
estimation tasks on polarisation images. For this reason, we
propose to use synthetic data for which ground truth is
known and real data for which ground truth can be inferred
(in the case of a sphere) or measured (in the case of light
source direction) or provides only a qualitative evaluation
(in the case of albedo and shape on complex objects).

For synthetic data we use the 3DRFE dataset [48] com-
prising high quality surface normal and albedo maps cap-
tured from real faces using a lightstage. We render syn-
thetic polarisation images from these measured normal and

Dataset
Ours Smith et al. [8] SIRFS [49]

Light est. AE (◦) Light est. AE (◦) Light est. AE (◦)

Snooker 1
−0.42
−0.07
0.91

7.1
−0.40
−0.03
0.92

7.4
−0.84
−0.23
0.48

37.2

Snooker 2
−0.05
−0.44
0.90

5.4
−0.06
−0.37
0.93

9.6
−0.67
−0.03
0.74

48.1

3DRFE 1
−0.41
−0.13
0.90

9.7
−0.48
−0.19
0.86

11.0
−0.87
−0.08
0.49

35.3

3DRFE 2
−0.04
−0.50
0.87

4.8
−0.02
−0.57
0.82

9.2
−0.63
−0.71
0.30

54.3

TABLE 2: Light estimation on the real snooker ball and one
of the 3DRFE datasets (row 2 in Fig. 4). Ground truth direc-
tions are [−0.51, 0, 0.86]T and [0,−0.51, 0.86]T , respectively,
and we show angular error in degrees.

albedo maps. With a chosen light source direction, we first
compute unpolarised intensities using (12). We simulate the
effect of polarisation according to (2), varying the polariser
angle between 0◦ and 180◦ in 30◦ increments. Next, we
corrupt this data by adding zero mean Gaussian noise,
saturate (i.e. clamp to 1) and quantise to 8 bits. This noisy
data provides synthetic input. Our real data are collected
in a dark room using a Canon 7D placed approximately
2m from the object with a 50mm lens and lens-mounted
rotating linear polarising filter which is rotated to the same
set of angles as the synthetic data. We use a collimated 200-
W tungsten lamp, placed approximately 2m from the object.
In order to avoid radiometric instability of lighting output
over time, we were careful to allow the light sources a warm
up period and verified that the variation in their output
was much smaller than other uncertainties in the acquisition
process. For both synthetic and real input data we estimate
a polarisation image using the technique in Sec. 3.2 and
provide this as input for each method. Note that for all
experiments there are two polarimetric input images with
different light source directions but, for the sake of space,
we only show one of the two.

Light direction estimation We begin by evaluating estima-
tion of the light source direction. We capture a snooker ball
and render a synthetic 3DRFE dataset under light source
directions s = [−0.51, 0, 0.86]T and t = [0,−0.51, 0.86]T .
We show the input images for the snooker ball under these
two light source directions in the first two columns of Fig. 3
along with the estimated diffuse mask in the third column.
Note that pixels that contain specularities in either image
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Input Normal map Normal error Surface

Fig. 4: Shape estimation evaluation on synthetic data from
the 3DRFE dataset [48]. Left to right: one of the input
lighting conditions, estimated normal map, normal map
errors and shaded surface.

are correctly excluded by the mask. Estimated light source
directions and errors for our method and two comparison
methods are shown in Tab. 2. Smith et al. [8] is the only
other method we are aware of for light estimation from
polarisation images while SIRFS [49] is a baseline method
that does not use polarisation information. Our approach
provides the lowest error across all images. Averaged over
the two light source directions and all 3DRFE images the
angular errors are 7.7◦ (ours), 9.3◦ for [8] and 56.2◦ for [49].

Shape estimation For shape estimation we use the al-
ternating variant of our method described in Section 5.3,
initialised by the invariant method. We show shape estima-
tion results for which we have ground truth in columns 5
(normal map) and 6 (normal map errors) of Fig. 3 for the
snooker ball and in Fig. 4 for synthetic images from the
3DRFE dataset. We provide a comparison against state of
the art shape-from-polarisation methods of Smith et al. [8]
and Mecca et al. [9] as well as image-based baseline method
SIRFS [49] in Fig. 5. For our method, [8] and [9] we compute
normal maps by differentiating the estimated height maps.
In all figures, error colour bars show angular errors in
radians. We show quantitative results in Tab. 3. We compute
the mean angular error in degrees, averaged over pixels,
and the standard deviation for both datasets where we have
ground truth. For methods requiring a light source estimate
we provide results with both ground truth and with our
estimated illumination (labelled “est. light”). Our method
achieves the lowest error and also the smallest variance
whilst also providing surfaces that are globally coherent, de-
void of spike artefacts and retain fine detail. Using estimated
illumination slightly degrades performance (except for the

Proposed Mecca et al. [9] SIRFS [49] Smith et al. [8]

Fig. 5: Surface reconstruction and surface normal error
obtained by our proposed method, Mecca et al. [9], SIRFS
[49] and Smith et al. [8]. The corresponding light source
estimations are reported in Tab. 2.

Method
Snooker ball 3DRFE

Albedo Normals Albedo Normals
MAbsE STD MAngE STD MAbsE STD MAngE STD

Ours 0.114 0.097 0.094 0.057 0.037 0.045 0.222 0.151
Ours (est. light) 0.058 0.057 0.103 0.088 0.114 0.212 0.678 0.582
Mecca et al. [9] N/A N/A 0.133 0.143 N/A N/A 0.253 0.309

Mecca et al. [9] (est. light) N/A N/A 0.151 0.156 N/A N/A 0.756 0.585
SIRFS 0.119 0.090 0.500 0.425 0.207 0.198 0.846 0.467

Smith et al. [8] 0.258 0.199 0.209 0.183 0.108 0.127 0.850 0.501
Smith et al. [8] (est. light) 0.230 0.178 0.182 0.133 0.115 0.138 0.860 0.497

TABLE 3: Quantitative shape and albedo estimation results.
We show mean absolute error (MAbsE) for albedo and
mean angular error (MAngE) in degrees for surface normals,
related to the results reported in Fig. 5 and Fig. 7.

snooker ball where “ground truth” is only approximate), but
still improves significantly on SIRFS which also estimates
illumination. Finally, in Fig. 6 we show qualitative shape
estimation results for more challenging real objects with
albedo variations. Column 2 shows the estimated normal
maps and column 4 a rotated view of the height maps.

Albedo estimation In Fig. 7 we show estimated albedo
maps for which ground truth is available for our method,
Smith et al. [8] and SIRFS [49]. The corresponding quanti-
tative evaluation is in Tab. 3 where we achieve the lowest
mean absolute error for both datasets. Using the estimated
albedo and normal maps, in column 3 of Fig. 6 we show reil-
lumination results under novel lighting with Blinn-Phong
reflectance [50]. In Fig. 8 we show albedo estimation results
on more challenging real objects for our method and the
comparison methods. In all cases, our method disentangles
shading from albedo while avoiding introducing artefacts
or transferring albedo texture into the shape estimation.
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Input Normal map Reillumination Surface

Fig. 6: Qualitative shape estimation and reillumination re-
sults on real objects with varying albedo.

Snooker Bear Hand Cup Teapot 3DRFE
Ours 1.591 1.543 1.423 1.522 1.602 1.583

Ground Truth 1.63 1.504 1.5

TABLE 4: Refractive index estimates for various real objects
and synthetic renderings of 3DRFE face data.

Refractive index estimation Finally, we evaluate perfor-
mance on refractive index estimation. The synthetic 3DRFE
data are rendered with a chosen refractive index of η = 1.5.
The real objects are either made of porcelain (ground truth
refractive index reported in [51]) or phenol formaldehyde
resin (ground truth refractive index reported in [52]). We
show our estimates and the ground truth values in Tab. 4.
In Fig. 9 we show refractive index estimates as a function
of the actual refractive index and for varying degrees of
additive Gaussian noise. In all cases we initialised the
nonlinear optimisation with η = 1.5. Note that there is
a good agreement between estimated and actual but that
as noise increases there is a bias towards overestimates.
This is because noise causes the estimated surface to flatten,
leading to underestimates of the zenith angle which causes
overestimation of the refractive index when solving (35).

9 CONCLUSIONS

In this paper we have introduced a unifying formulation
for recovering height from photo-polarimetric data and
proposed a variety of methods that use different combi-
nations of linear constraints. We proposed a more robust
way to estimate a polarisation image from multichannel
data and showed how to estimate lighting from two source
photo-polarimetric images. Together, our methods provide
uncalibrated, albedo and refractive index invariant shape
estimation with only two light sources. The main conclu-
sion from this work is that the highly challenging case
of two source photometric stereo becomes practical, even
in an uncalibrated setting, when polarimetric images are
available. We envisage our approach will find application
either in industrial inspection, where the relatively modest

Input Ground truth Proposed SIRFS [49] Smith et al. [8]

Fig. 7: Albedo estimation versus ground truth. Left to right:
input, ground truth, our result and the results of SIRFS [49]
and Smith et al. [8]. Quantitative results in Tab. 3.

Input Proposed SIRFS [49] Smith et al. [8]

Fig. 8: Qualitative albedo estimation on real data. Left to
right: input, our result, SIRFS [49] and Smith et al. [8].

data capture requirements and ability to estimate material
properties (albedo and refractive index) will be of value,
or for 3D scanning where the placement of light sources
need not be calibrated (e.g. two arbitrarily placed flashes in
a studio setup).

Since our unified differential formulation does not de-
pend on a specific camera setup or a chosen reflectance
model, the most obvious target for future work is to move
to a perspective projection, considering more complex re-
flectance models, exploiting better the information available
in specular reflection and polarisation. In addition, since
our methods directly estimate surface height, it would be
straightforward to incorporate positional constraints, for
example provided by binocular or multiview stereo. To be
applicable outside the lab, we would also like to develop
methods that work with more general lighting conditions.
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Fig. 9: Actual versus estimated refractive index for synthetic
data with Gaussian noise of standard deviation σ.

This includes moving beyond the point source assump-
tion but also considering the case of polarised or par-
tially polarised illumination. Finally, we have ignored inter-
reflections which would violate some of our assumptions
and complicate modelling of polarised reflectance. This
phenomenon could be significant for concave objects and
is another avenue for future work.
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