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Liquid Warping GAN with Attention: A Unified
Framework for Human Image Synthesis

Wen Liu, Zhixin Piao, Zhi Tu, Wenhan Luo, Lin Ma, and Shenghua Gao

Abstract—We tackle human image synthesis, including human motion imitation, appearance transfer, and novel view synthesis, within
a unified framework. It means that the model, once being trained, can be used to handle all these tasks. The existing task-specific
methods mainly use 2D keypoints (pose) to estimate the human body structure. However, they only express the position information
with no abilities to characterize the personalized shape of the person and model the limb rotations. In this paper, we propose to use a
3D body mesh recovery module to disentangle the pose and shape. It can not only model the joint location and rotation but also
characterize the personalized body shape. To preserve the source information, such as texture, style, color, and face identity, we
propose an Attentional Liquid Warping GAN with Attentional Liquid Warping Block (AttLWB) that propagates the source information in
both image and feature spaces to the synthesized reference. Specifically, the source features are extracted by a denoising
convolutional auto-encoder for characterizing the source identity well. Furthermore, our proposed method can support a more flexible
warping from multiple sources. To further improve the generalization ability of the unseen source images, a one/few-shot adversarial
learning is applied. In detail, it firstly trains a model in an extensive training set. Then, it finetunes the model by one/few-shot unseen
image(s) in a self-supervised way to generate high-resolution (512× 512 and 1024× 1024) results. Also, we build a new dataset,
namely Impersonator (iPER) dataset, for the evaluation of human motion imitation, appearance transfer, and novel view synthesis.
Extensive experiments demonstrate the effectiveness of our methods in terms of preserving face identity, shape consistency, and
clothes details. All codes and dataset are available on https://impersonator.org/work/impersonator-plus-plus.html.

Index Terms—Human Image Synthesis, Motion Imitation, Appearance Transfer, Novel View Synthesis, Generative Adversarial
Network, and One/Few-Shot Learning
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1 INTRODUCTION

H Uman image synthesis aims to make believable and photo-
realistic images of humans, including motion imitation [1],

[2], [3], appearance transfer [4], [5] and novel view synthesis [6],
[7]. It has vast potential applications in character animation, re-
enactment, virtual clothes try-on, movie or game making, etc.
Given a source human image and a human reference image, i) the
goal of motion imitation is to generate an image with the texture
from source human and pose from reference human, as depicted
in the top row of Fig. 1; ii) human novel view synthesis aims to
synthesize new images of the human body, captured from different
viewpoints, as illustrated in the middle row of Fig. 1; iii) the goal
of appearance transfer is to generate a human image preserving
the source face identity while wearing the clothes of the reference,
as shown in the bottom row of Fig. 1 where each garment (upper-
clothes or pants) might come from different people.

Taking human motion imitation as an example, existing meth-
ods can be roughly categorized into an image-to-image translation-
based [8], [9], [10] pipeline and a warping-based pipeline [1], [2],
[3], [11]. The image-to-image translation-based pipeline learns
a person-specific mapping function from the human conditions,
characterized by a skeleton, dense pose, and parsing result, to the
image from a video with paired sequences of conditions and im-
ages. Thus, everybody needs to train their model from scratch, and
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Fig. 1: Illustration of human motion imitation, novel view syn-
thesis and appearance transfer. The 1st row is the source image
and the 2nd row is reference condition, such as image or novel
viewpoint of camera. The 3rd row is the synthesized results.

a particular trained model cannot be applied to others. Besides, it
is not accessible to be extended to other tasks, such as appearance
transfer. To overcome this shortcoming, researchers have proposed
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Fig. 2: Three existing approaches to propagate the source informa-
tion into the target condition. (a) early concatenation, concatenates
the source image, the source condition, and the target condition
into the color channel. (b) and (c) are texture and feature warping,
respectively. The source image or its features are propagated into
the target condition under a fitted transformation flow.

the warping-based methods, which warp the input images into
the reference conditions (skeleton, dense pose, or parsing) and
generate the desired image. So a trained model in these methods
could be applied to other input images with different identities.
We summarize the recent warping-based approaches in Fig. 2. An
early work [2], shown in Fig. 2 (a), feeds the concatenated source
image (with its pose condition) with the target pose condition into
a network with an adversarial training to generate an image with
the desired pose. However, direct concatenation does not consider
the spatial layout, and it is ambiguous for the generator to place
the pixel from a source image into the right position. Thus, it
always results in a blurred image and loses the source identity.
Later, inspired by the spatial transformer networks (STN) [12], a
texture warping method [1], as shown in Fig. 2 (b), is proposed. It
firstly fits a rough affine transformation matrix from the source
and the reference key points, then uses an STN to warp the
source image into the reference pose, and after that generates the
final result based on the warped image. However, texture warping
could not preserve the source information as well, in terms of
the color, style, or face identity, because the generator might drop
out the source information after several downsampling operations,
such as stride convolution and pooling. Meanwhile, contemporary
work [3], [11], [13] proposes to warp the deep features of the
source images into the target poses rather than that in the image
space, as shown in Fig 2 (c), named as feature warping. However,
features extracted by an encoder in the feature warping cannot
guarantee to characterize the source identity accurately, which
consequently produces a blur or low-fidelity image inevitably.

The aforementioned existing methods encounter with chal-
lenges in generating realistic-looking images, due to three reasons:
1) diverse clothes in terms of texture, style, color, and high-
structure face identity are difficult to be captured and preserved in
their network architectures; 2) articulated and deformable human
bodies result in a large spatial layout and geometric changes
for arbitrary pose manipulations; 3) all these methods cannot
handle multiple source inputs, such as in appearance transfer,
different parts might come from different source people; 4) the
generalization is not good when the inputs are out of the domain
of training set because to synthesize photo-realistic images, all
these methods apply the adversarial constraints of discriminators,
which push the results similar to the distribution of training set.

In this paper, we follow the warping-based pipeline. To
preserve the source details of the clothes and face identity, we

propose a Liquid Warping Block (LWB) and an advanced version,
Attentional Liquid Warping Block (AttLWB), to address the loss
of the source information from three aspects: 1) a denoising
convolutional auto-encoder is used to extract useful features that
preserve the source information, including texture, color, style and
face identity; 2) the source features of each local part are blended
into a global feature stream by our proposed LWB and AttLWB, to
preserve the source details further; 3) it supports multiple-source
warping, such as in the appearance transfer that supports to warp
the features of a head (local identity) from one source and that
of a body from another, and aggregate them into a global feature
stream; 4) a one/few-shot learning strategy is utilized to improve
the generalization of the network.

In addition, existing approaches mainly rely on a 2D pose [1],
[2], [3], a dense pose [14] and body a parsing result [11]. These
methods only take care of the layout locations and ignore the
personalized shape and limb (joints) rotations, which are even
more essential than layout locations in human image synthesis.
For example, in an extreme case that a tall man imitates the actions
of a short person, if we the 2D skeleton, the dense pose and the
body parsing condition will unavoidably change the height and
the size of the tall one, as shown at the bottom of Fig. 9. To
overcome these issues, we use a parametric statistical human body
model, SMPL [15], [16], [17], [18], which disentangles a human
body into the pose (joint rotations) and the shape. It outputs a 3D
mesh (without clothes) rather than the layouts of joints and parts.
Further, transformation flows can be easily calculated by matching
the correspondences between two 3D triangulated meshes, which
is more accurate and results in fewer misalignments than previous
fitted affine matrix from keypoints [1], [3].

Based on the SMPL model and the Liquid Warping Block
(LWB) or the Attentional Liquid Warping Block (AttLWB), our
method can be further extended into other tasks, including human
appearance transfer and novel view synthesis for free and one
model can handle these three tasks. We summarize our contri-
butions as follows: 1) we propose an LWB and an AttLWB to
propagate and address the loss of the source information, such
as texture, style, color, and face identity, in both the image and
the feature space; 2) by taking advantages of both the LWB
(AttLWB) and the 3D parametric model, our method is a unified
framework for human motion imitation, appearance transfer, and
novel view synthesis; 3) since the previous datasets [19], [20] have
the limitation in the diversity of the poses, and can only be used
for motion imitation, we build a dataset for these tasks, especially
for human motion imitation in the video, and released all codes
and datasets for further research convenience in the community.

This paper is an extension of our previous work [21]. We
extend the framework in the following aspects:

i) our previous LWB [21] directly adds the warped multiple
source features into the global features, and it will enlarge the
magnitude of the features in the overlap area, thereby resulting
in artifacts. To address this, motivated by the attention archi-
tecture [22], we propose a more advanced Attentional Liquid
Warping Block (AttLWB). It firstly learns similarities of the
global features among all multiple sources features, and then it
fuses the multiple sources features by a linear combination of the
learned similarities and the multiple sources in the feature spaces.
Finally, to better propagate the source identity (style, color, and
texture) into the global stream, we warp the fused source features
to the global stream by the Spatially-Adaptive Normalization
(SPADE) [23], which could further improve the final result;
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ii) our previous network could not generalize well when the
input images are far away from the training domain, as the interra-
cial motion imitation. The reason might be that to generate images
with high fidelity, an adversarial (GAN) loss is essential [1], [2],
[3], [21], which pushes the generated images in the distribution of
the training set. Considering that the input images are diverse in
human races, face identities, and clothes styles, and it is infeasible
to collect a dataset containing all these individuals. In the testing
phase, once an individual is unique in face identity or clothes
style, the well-trained network might produce a high-fidelity result
similar to the training samples but does not preserve its own
source identity in terms of face and clothes. To improve the
generalization, inspired by the SinGAN [24] and the Few-Shot
Adversarial Learning [25], we apply a one/few-shot adversarial
learning to push the network to focus on the individual input with
several steps of adaptation, namely personalization.

iii): our previous method successfully achieves decent results
on 256×256 resolution, and in this version, based on the AttLWB
and personalization, we could further achieve the high-fidelity
results with a higher 512× 512 and 1024× 1024 resolution.

We organize the rest of this paper as follows: In Section 2,
we summarize the related work of the Human Image Synthesis,
including the motion imitation, the appearance transfer, and the
novel view synthesis. In Section 3, we firstly introduce the essen-
tial modules of our proposed Attentional Liquid Warping GAN.
The following are the training strategies, the loss functions, the
one/few-shot personalization, and the inference details. In Section
4, extensive experiments on different datasets and tasks validate
the effectiveness of our work. In Section 5, ablation studies
and analysis are conducted to evaluate the impacts of different
components. We conclude our work in Section 6.

2 RELATED WORK

2.1 Human Motion Imitation
We summarize the recent image-to-image translation-based and
the warping-based methods as follows.

Image-to-Image translation-based methods. Esser et al. [26]
use a Variational U-Net to learn a mapping function from a 2D
skeleton to an image. Chan et al. [9] learn a mapping function
from a 2D skeleton to an image by a pix2pixHD [27] with a
specialized Face GAN and temporally coherent GAN. Wang et al.
[28] propose a vid2vid framework and learn a mapping function
from 2D dense pose to image. Meanwhile, Shysheya et al. [29]
firstly build a full texture UV image of a person by multi-view
cameras, then learn a mapping function from a 3D skeleton to part
coordinates of the UV map and finally render a result based on
the coordinates and the UV image. Contemporarily, Liu et al. [30]
firstly use a monocular video to reconstruct a full 3D character
model of a person with a static pose, then render the texture of
each body parts and finally learn a mapping from synthetic to
real images. However, all these methods train a mapping from
keypoints or parts to each person’s image and everybody needs to
train their own model. This might limit its wide application.

Warping-based methods. Recent work is mainly based on
the conditioned generative adversarial networks (CGAN) [1], [2],
[14], [31], [32]. Their key technical idea is to combine the source
image along with the source pose (2D skeleton) as inputs and
generate a realistic image by GANs using a reference pose. The
differences among those approaches are merely in network archi-
tectures, warping strategies, and adversarial losses. In [2], Ma et

al. [2] directly concatenate the source image and the reference
pose, and then design a U-Net [33] generator with a coarse-to-fine
strategy to generate 256×256 images. Neverova et al. [14] replace
the sparse 2D key points with the dense correspondences between
the image and surface of the human body by the DensePose [34].
Si et al. [32] propose a multistage adversarial loss and separately
generate the foreground (or different body parts) and background.
Balakrishnan et al. [1] firstly fit an affine transformation matrix
based on the source and the target 2D key points and then use
a texture warping strategy to generate the foreground and the
background separately. These work [3], [11], [13], [35], focus on
the way of warping the source features into the target conditions,
like skeleton or parsing. Besides, Li et al. [36] propose to learn a
transformation flow from 2D key points and warp the deep features
based on the learned transformations.

2.2 Human Appearance Transfer
Human appearance modeling or transfer is a vast topic, especially
in the field of virtual try-on applications, from computer graph-
ics pipelines [37] to learning based pipelines [4], [5]. Graphics
based methods first estimate the detailed 3D human mesh with
clothes via garments and 3D scanners [38] or multiple camera
arrays [39], and then human appearance with clothes is capable
of being conducted from one person to another based on the
detailed 3D mesh. Although these methods can produce high-
fidelity results, their cost, size, and controlled environment are
unfriendly and inconvenient to customers. Recently, in the light of
deep generative models, SwapNet [4] firstly learns a pose-guided
clothing segmentation synthetic network, and then the clothing
parsing results with texture features from the source image are fed
into an encoder-decoder network to generate the image with the
desired garment. In [5], the authors leverage a geometric 3D shape
model combined with learning methods, swap the color of visible
vertices of the triangulated mesh, and train a model to infer that
of invisible vertices. Instead of estimating the 3D clothes by other
sensors, in the MGN [40], the authors, train a network with 3D
scans data and predict the body shape and clothing directly from
8 frames or a video. They apply the garment transfer based on the
estimated 3D body mesh with clothes.

2.3 Human Novel View Synthesis
Novel view synthesis aims to synthesize new images of the
same object or human body from arbitrary viewpoints. The core
step of existing methods is to fit a correspondence map from
the observable views to new views with convolutional neural
networks. In [41], the authors use CNNs to predict appearance
flow and synthesize new images of the same object by copying
the pixel from a source image based on the appearance flow and
they have achieved decent results of rigid objects like vehicles.
The following work [42] proposes to infer the invisible textures
based on appearance flow and adversarial generative network
(GAN) [43], while Zhu et al. [7] argue that appearance flow-based
method performs poorly on articulated and deformable objects,
such as human bodies. They propose an appearance-shape-flow
strategy to synthesize different views of human bodies – besides,
Zhao et al. [6] design a GAN based method to synthesize high-
resolution views in a coarse-to-fine way. Recently, in PiFu [44],
the authors learn an implicit function with multi-layer perceptrons
(MLPs) to digitize the human body and infer the 3D surfaces and
texture from a single or multiple frames. The fully digitalized
human body could synthesize a different view.
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Fig. 3: The training pipeline of our method. We randomly sample a pair of images from a video, denoting the source and the reference
image as Isi and Ir . (a) A body mesh recovery module will estimate the 3D mesh of each image and render their correspondence
map, Cs and Ct; (b) The flow composition module will first calculate the transformation flow T based on two correspondence maps
and their projected vertices in the image space. Then it will separate the source image Isi into a foreground image Iftsi and a masked
background Ibg . Finally it warps the source image based on the transformation flow T and produces a warped image Isyn; (c) In the
last GAN module, the generator consists of three streams, which separately generates the background image Îbg by GBG, reconstructs
the source image Îs by GSID and synthesizes the target image Ît under the reference condition by GTSF . To preserve the details of
the source image, we propose a novel LWB and AttLWB (shown in Fig. 4) which propagates the source features of GSID into GTSF

at several layers and preserve the source information, in terms of texture, style and color.

2.4 One/Few-shot Learning in Image Synthesize
Ding et al. [45] propose a generative adversarial one-shot face
recognizer to synthesize new face images. Shaham et al. [24]
introduce a SinGAN, an unconditional generative model from a
single image. Zakharov et al. [25] apply the few-shot adversarial
learning to generate the realistic talking head. In light of the suc-
cess of the Meta-Learning in classification, reinforcement learning
and network architecture search [46], [47], [48], Lee et al. [10]
propose a MetaPix for the few-shot motion imitation. Wang et
al. [49] extend the previous vid2vid [28] framework within a few-
shot setting and make it capable of synthesizing videos of unseen
subjects by leveraging few example images.

3 OUR APPROACH

In this section, we first introduce the whole models of our frame-
work. It contains three modules, a body mesh recovery, a flow
composition, and a GAN module with the Liquid Warping Block
(LWB) or the Attentional Liquid Warping Block (AttLWB). Then,
the following are the training details and loss functions. Further, to
improve the generalization, we introduce a one/few-shot learning
strategy. We illustrate the details of how to apply our model to
three tasks in the inference section (Sect. 3.6).

Once the model has been trained on one task, it can deal with
other tasks as well. Here, we use motion imitation as an example,
as shown in Fig. 3. Our framework supports multiple sources
of inputs, denoting the source images as {Is1 , Is2 , ..., Isn}, and
the reference image as Ir . Here, sn is the number of source
images. First, the body mesh recovery module will estimate the
3D mesh of Isi and Ir and render their correspondence maps,
Csi , and Ct. Next, the flow composition module will calculate the
transformation flow Tsi→t of each source image to the reference,
based on two correspondence maps and their projected mesh in
image space. Each source image Isi is thereby decomposed as the
foreground image Iftsi and the masked background Ibgsi . Since all

source images share the same background, we randomly choose
one of the masked backgrounds, denoted as Ibg . Simultaneously,
each source image contributes its visible textures to warp a
synthetic image Isynt , based on the transformation flow Tsi→t.
The last (Attentional) Liquid Warping GAN module consists of
three streams. It separately generates the background image by
GBG, reconstructs the source image Îsi by GSID and synthesizes
the final result Ît under the reference condition by GTSF . To
preserve the details of source image, we propose the novel Liquid
Warping Block (LWB) and Attentional Liquid Warping Block
(AttLWB) which propagate the source features of GSID into
GTSF at multiple layers.

3.1 Body Mesh Recovery Module

As shown in Fig. 3 (a), given the source image Isi and the
reference image Ir, the role of this stage is to predict the kinematic
pose (rotation of limbs) and shape parameters, as well as the 3D
mesh of each image. In this paper, we use the HMR [17], [18] as
the 3D pose and shape estimator due to its good trade-off between
accuracy and efficiency. In HMR, an image is firstly encoded into
a feature with R2048 by a ResNet-50 [50] and then followed by
an iterative 3D regression network that predicts the pose θ ∈ R72

and the shape β ∈ R10 of SMPL [16], as well as the weak-
perspective camera K ∈ R3. SMPL is a 3D body model that can
be defined as a differentiable function M(θ, β) ∈ RNv×3, and it
parameterizes a triangulated mesh by Nv = 6, 890 vertices and
Nf = 13, 776 faces with the parameters of a pose θ ∈ R72 and a
shape β ∈ R10. Here, the shape parameters β are the coefficients
of a low-dimensional shape space learned from thousands of
registered scans, and the pose parameters θ are the joint rotations
that articulate the bones via forwarding kinematics. With such
process, we will obtain the body reconstructive estimations of each
source image, {Ksi , θsi , βsi ,Msi} and those of reference image,
{Kr, θr, βr,Mr}, respectively.



5

3.2 Flow Composition Module
Based on previous estimations, we first render a correspondence
map and a weight index map for each source mesh Msi and
the reference mesh Mr under the camera view of Ksi and
Kr . Here, we denote the source weight index map, the source
and the target correspondence maps as Wsi , Csi and Ct, re-
spectively. In this paper, we use a fully differentiable renderer,
Neural Mesh Renderer (NMR) [51]. We thereby project vertices
of the source Vsi into a 2D image space by a weak-perspective
camera, vsi = π(Vsi ,Ksi). Here, π is the weak-perspective
projective function. Then, we calculate the barycentric coordinates
of each mesh face and obtain fsi ∈ RNf×2. Next, we calculate
the transformation flow Tsi→t ∈ RH×W×2 by matching the
correspondences between the source correspondence map with its
mesh face coordinates fsi . Here H ×W is the size of the image.
By the same means, we obtain the transformation flow Tr→t of
the reference correspondence map. We describe the procedure to
obtain the transformation flow in Algorithm 1. Consequently, a
foreground image Iftsi and a masked background image Ibgsi are
derived from masking the source image Isi based on Csi . We
randomly pick one of the masked backgrounds, denoted as Ibg ,
because all source images share the same background. Finally, we
warp the visible textures of each source image Isi to the desired
condition by the transformation flow Tsi→t and thereby obtain a
synthetic image Isynt , as depicted in Fig. 3.

Algorithm 1 The procedure of obtaining transformation Tsi→t.

Input: Wsi , Vsi , Fsi , Ksi , Csi , Ct.

• Ksi ∈ R3×1: source weak-perspective camera;
• Vsi ∈ RNv×3: Nv is the number of vertices;
• Fsi ∈ RNf×3: Nf is the number of faces;
• Wsi ∈ RH×W×3: the weight index map of source

mesh, the value of each pixel indicates the barycentric
weights of the triangulated faces in image space;

• Csi(Ct) ∈ RH×W×1: the correspondence map of
source and target mesh, and the value in each pixel
indicates the face index of the mesh.

Output: Tsi→t ∈ RH×W×2, the output transformation flow;
1: vsi = π(Vsi ,Ksi) # projecting vertices of source Vsi into

the 2D image space by the weak-perspective camera;
2: trisi = vsi [Fsi ] ∈ RNf×3×2 # the triangulated faces with

vertices in 2D image space;
3: V issi ∈ RNf×1 # the face visibility;
4: for f = 1 to Nf do
5: V issi(f) = 1 if f appears in Csi else 0;
6: end for
7: initializing Tsi→t ∈ RH×W×2;
8: for i = 1 to H do
9: for j = 1 to W do

10: f = Ct(i, j) # the face index in current pixel;
11: Tsi→t(i, j) =Wsi(i, j)× trisi(f), if V issi(f) is 1;
12: end for
13: end for
14: return Tsi→t.

3.3 Attentional Liquid Warping GAN
This stage synthesizes high-fidelity human images under the de-
sired condition. More specifically, it 1) synthesizes the background

image; 2) predicts the color of invisible parts based on the visible
parts; 3) generates pixels of clothes, hairs, and others out of the
reconstruction of SMPL.

Generator. Our generator works in a three-stream manner.
One stream, named GBG, works on the concatenation of the
masked background image Ibg and the mask obtained by the
binarization of Csi in the color channel to generate the re-
alistic background image Îbg , as shown in the top stream of
Fig. 3 (c). The other two streams are the source identity stream,
namely GSID and the transfer stream, namely GTSF . GSID is
a denoising convolutional auto-encoder that aims to guide the
encoder to extract the features that are capable of preserving the
source information. Together with the Îbg , it takes the masked
source foreground Iftsi and the correspondence map Csi as its
inputs and reconstructs source foreground image Îs.GTSF stream
synthesizes the final result, which receives the warped foreground
by a bilinear sampler and the correspondence map Ct as its
inputs. To preserve the source information, such as texture, style,
and color, we propose a novel Liquid Warping Block (LWB), as
well as its advanced version, Attentional Liquid Warping Block
(AttLWB), that links the source with the target streams. They
blend the source features from GSID and fuses them into the
transfer stream GTSF , as shown at the bottom of Fig. 3 (c).

GBG and GSID have similar architectures with separate
parameters and follow the structure of CycleGAN [52] with 6
residual blocks [53]. The details of kernel sizes and number of
filters are illustrated in Fig. 5. GTSF is a combination of a ResNet
and a U-Net [33], named ResUnet. For GBG, we directly regress
the final background image, Îbg , while for GSID and GTSF , we
concretely generate an attention map A and a color map P , as
shown in Fig. 5. The final image can be obtained as follows:

Îsi = Ps �Asi + Îbg � (1−Asi)

Ît = Pt �At + Îbg � (1−At).
(1)

Here, � represents an element-wise multiplication. The to-
tal trainable parameters in the generator are θG =
{θBG, θSID, θTSF , θAttLWB}, with respect to GBG, GSID ,
GTSF and AttLWB.

Discriminator. To push the discriminators to focus on differ-
ent aspects of the generated images, such as the clothes on the hu-
man body and the face identity, we utilize a global-local content-
orientation architecture. It consists of three sub-discriminators.
The first one is a global discriminator, DGlobal, which regularizes
the entire generated Ît to be more realistic-looking. The rest
two are a body discriminator DBody and a face discriminator
DHead, and they push the cropped body area and the head (face)
parts of the generated Ît to be realistic-looking. All of them are
conditional discriminators, and they take the generated images and
the correspondence mapCt as their inputs. We illustrate the details
of our discriminators in Fig. 5. The total trainable parameters in
the discriminators are θD = {φGlobal, φBody, φHead}.

Attentional Liquid Warping Block. One advantage of our
proposed Liquid Warping Block (LWB) and Attentional Liquid
Warping Block (AttLWB) is that it addresses the issue of multiple
sources. For instance, in human motion imitation, the source
images are multi-view inputs, and in the appearance transfer, dif-
ferent parts of garments come from different people. The different
parts of features are aggregated intoGTSF by their transformation
flow independently. As shown in Fig. 4, we denoteX l

s1 andX l
s2 as

the feature maps extracted by GSID of different sources at the lth
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(a) Add Warping Block (LWB)

Fig. 4: Illustration of our LWB and AttLWB. They have the same structure illustrated in (b) but with separate AddWB (illustrated in
(a)) or AttWB (illustrated in (b)). (a) is the structure of AddWB. Through AddWB, X̂ l

t is obtained by aggregation of warped source
features and features from GTSF . (b) is the shared structure of (Attentional) Liquid Warping Block. {X l

s1 , X
l
s2 , ..., X

l
sn} are the

feature maps of different sources extracted by GSID at the lth layer. {Ts1→t, Ts2→t, ..., Tsn→t} are the transformation flows from
different sources to the target. X l

t is the feature map of GTSF at the lth layer. (c) is the architecture of AttWB. Through AttWB, final
output features X̂ l

t is obtained with SPADE by denormalizing feature map from GTSF with weighted combination of warped source
features by a bilinear sampler (BS) with respect to corresponding flow Tsi→t.

layer andX l
t is the feature map ofGTSF at the lth layer. Each part

of the source feature is warped by their transformation flow and
aggregated into the features of GTSF . We use a bilinear sampler
(BS) to warp the source features X l

s1 and X l
s2 with respect to

corresponding transformation flows, Ts1→t and Ts2→t. The way
to aggregate the warped source features into the global stream is
the main difference between LWB and AttLWB.

LWB, as illustrated in Fig. 4 (a), directly uses an element-wise
addition among all features and the fuses the global features as:

X l
si→t = BS(X l

si , Ti)

X̂ l
t =

sn∑
i=1

X l
si→t +X l

t.
(2)

However, LWB will enlarge the magnitude of the features
in the overlap area, and thereby result in artifacts. To address
this, motivated by the attention architecture [22], we propose a
more advanced Attentional Liquid Warping Block (AttLWB), as
shown in Fig. 4 (c). It firstly learns similarities of the global
features among all multiple source features, and then it fuses the
multiple source features by the linear combination of the learned
similarities and the multiple sources in feature space. Finally, to
better propagate the source identity (style, color, and texture) into
the global stream, we use the SPADE [23] to denormalize the
feature map of GTSF with the fused source features to obtain the
global stream, which could further improve the final result. We
describe the entire procedures of AttLWB in Algorithm 2.

3.4 Training Details and Loss Functions
In this part, we will introduce the loss functions and how to train
the whole system. For the body recovery module, we follow the
network architecture and loss functions of HMR [17], [18]. Here,
we use a pre-trained (off-the-shelf) SMPL estimator.

Note that our proposed Attentional Liquid Warping GAN is a
unified framework for motion imitation, appearance transfer, and
novel view synthesis. Therefore once we have trained the model
on one task, it is capable of being applied to other tasks. These

Algorithm 2 The procedure of our AttLWB.

Input: {Ts1→t, ..., Tsn→t}, {X l
s1 , ..., X

l
sn}, and X l

t .

• {Ts1→t, ..., Tsn→t}: the transformation flows from
different sources to the target;

• {X l
s1 , ..., X

l
sn}: the feature maps extracted by GSID

of different sources at the lth layer;
• X l

t : the feature map of GTSF at the lth layer;

Output: X̂ l
t , the output features;

1: X l
si→t = BS(X l

si , Tsi→t) # warping each source feature;
2: Q = fQ(X

l
t) # query embeddings;

3: K = [fK(X l
s1→t), ..., fK(X l

sn→t)] # key embeddings;
4: V = [fV (X

l
s1→t), ..., fV (X

l
sn→t)] # value embeddings;

5: x̃s = Attention(Q,K, V ) = Softmax(QKT
√
dk

)V # fused
source features, dk is the number of channels of K;

6: X̂ l
t = SPADE(X l

t, x̃s) # conditioned on x̃s;
7: return X̂ l

t ;

three tasks share the same training pipeline in our method, except
for the way to sample the source the reference images. In motion
imitation, we randomly sample sn + 1 images from each video
with difference poses and set the first sn ones as the source images
{Is1 , ..., Isn} and the other one as the reference Ir. In appearance
transfer, we need to sample sn + 1 images with the same person
identity wearing different clothes, while in novel view synthesis,
we need to sample sn + 1 images of the same person under the
different camera of views. In our experiments, we train a model
for motion imitation and then apply it to appearance transfer and
novel view synthesis.

The whole loss function of the generator contains four terms,
which are perceptual loss [54], face identity loss, attention regu-
larization loss, and adversarial loss.

Perceptual Loss. It regularizes the reconstructed source image
Îsi to the ground truth Isi and pushes the generated target image
Ît and the reference image Ir to be closer in a VGG [55] feature
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Fig. 5: The details of network architectures of our Attentional Liquid Warping GAN, including the generator and the discriminator.
Here s represents the stride size in convolution and transposed convolution.

subspace. Its formulation is given as follows:

Lp =
1

sn

sn∑
i=1

‖Îsi − Isi‖1 + ‖f(Ît)− f(Ir)‖1. (3)

Here, f is a pre-trained VGG-19 [55] on ImageNet [56].
Face Identity Loss. It regularizes the cropped face from the

synthesized target image Ît to be similar to that from the image of
ground truth Ir, which pushes the generator to preserve the face
identity. It is shown as follows:

Lf = ‖g(Ît)− g(Ir)‖1. (4)

Here, g is a pre-trained SphereFaceNet [57].
Adversarial Loss. It pushes the distribution of synthe-

sized images to the distribution of real images. We use a
LSGAN−110 [58] loss in a way like PatchGAN over all dis-
criminators, DGlobal, DBody and DHead. They push the entire
generated images, cropped body area, and head (face) parts to be
realistic-looking. We denote the bounding box of head and body as
headxy and bodyxy in the ground-truth Ir, respectively, and we
calculate them by the projected vertices in the image space. Îbt ,
Ibr and Cb

t are the cropped bodies from the generated image, the
reference image and the correspondence map, based on bounding
box of body, bodyxy . Îht , Ihr and Ch

t are the corresponding
cropped heads with respect to the bounding box of head, headxy .
We arrive at the total adversarial loss as follows:

LG
adv =

∑
DGlobal(Ît, Ct)

2 +
∑

DBody(Î
b
t , , C

b
t )

2

+
∑

DHead(Î
h
t , C

h
t )

2
(5)

Attention Regularization Loss. It regularizes the attention
map At and Asi to be smooth and prevents them from saturating.
Considering that there is no ground truth of attention map A or
color map P , they are learned from the resulting gradients of
above losses. However, the attention masks can easily saturate to
1 which prevents the generator from working. To alleviate this
situation, we regularize the mask to be closer to the silhouettes S
rendered from a 3D body mesh. Since the silhouettes is a rough
map and it contains the body mask without clothes and hair, we

addtionaly introduce a Total Variation Regularization [59] over A
to compensate the shortcomings of silhouettes. It is shown as:

La = ‖As − Ss‖22 + ‖At − St‖22 + TV (As) + TV (At)

TV (A) =
∑
i,j

[A(i, j)−A(i− 1, j)]2 + [A(i, j)−A(i, j − 1)]2.

(6)
For the generator, the full objective function is shown as follows,
and λp, λf and λa are the weights of perceptual, face identity and
attention losses, respectively.

LG = λpLp + λfLf + λaLa + LG
adv. (7)

For discriminator, the full objective function is

LD =
∑

[DGlobal(Ît, Ct) + 1]2 +
∑

[DGlobal(Ir, Ct)− 1]2

+
∑

[DBody(Î
b
t ), C

b
t ) + 1]2 +

∑
[DBody(I

b
r , C

b
t )− 1]2

+
∑

[DHead(Î
h
t , C

h
t ) + 1]2 +

∑
[DHead(I

h
r , C

h
t )− 1]2.

(8)

3.5 One/Few-shot Personalization by Fine-tunning
Though we can train our model on a large dataset, to a certain
degree, with diverse people and clothes, however, such a generator
is still hard to be well-generalized to the inputs out of the domain
of training set. After all, it is infeasible to build a universal
dataset and generator to handle the diverse face identities, styles of
clothes, and backgrounds. To improve the generalization, inspired
by the SinGAN [24] and the Meta-learning [10], [25], [46], [49],
we apply the one/few-shot adversarial learning to push the network
to focus on each individual by several steps of fast personal
adaptation. In real application scenarios, the user might only
provide a little number (sn) of their photos with different views or
poses, and in an extreme case, there is only one image accessible.
In this paper, we focus on the setting where there are no more than
eight images (sn ≤ 8) [25] available in the testing phase.

Specifically, we first train our model, including a generator
and a discriminator, on a combined large dataset, and conse-
quently obtain the generator’s pre-trained parameters, θMG , and
the discriminator’s pre-trained parameters, θMD . Then, for each
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Fig. 6: Illustration of calculating the transformation flows of different tasks during the testing phase. The left is the disentangled body
parameters by the Body Recovery module of both source and reference images. The right is the different implementations to calculate
the transformation flow in different tasks.

specific person Pi with sn images, we learn the person-specific
generator θPi

G and discriminator θPi

D from the sn images by fine-
tuning the pre-trained model. This process is called one/few-
shot personalization. To further push the generator from the pre-
trained θMG to the person-specific θPi

G , we discard the pre-trained
parameters of the discriminator θMD , and we train the person-
specific discriminator θPi

D from scratch. The overall loss functions
in the personalization phase are similar to that in the training
phase, except for the adversarial loss. Since there are only a
few images (sn ≤ 8), to avoid overfitting and reduce the time
consumption of each iteration in personalization, we only use the
global discriminator.

3.6 Inference
After we conduct personalization, the person-specific generator
can be applied to all three tasks. The difference lies in the
transformation flow computation, due to the different conditions
of various tasks. The remaining modules, Body Mesh Recovery
and Liquid Warping GAN (Attentional Liquid Warping GAN) are
all the same. The followings are the details of each task of the
Flow Composition module in the testing phase.

Motion Imitation. We firstly copy the value of pose parame-
ters of the reference θr into that of the source and get the synthetic
parameters of SMPL, as well as the 3D mesh, Mt = M(θr, βs).
Next, we render a correspondence map of the source mesh Ms

and that of the synthetic mesh Mt under a camera view Ks. Here,
we denote the source and the synthetic correspondence map as Cs

and Ct, respectively. Then, we project the source vertices into the
2D image space by a weak-perspective camera, vs = π(Vs,Ks).
Here, π is the weak-perspective projective function. Next, we
calculate the barycentric coordinates of each mesh face and have
fs ∈ RNf×2. Finally, we calculate the transformation flow
T ∈ RH×W×2 by matching the correspondences between the
source correspondence map with its mesh face coordinates fs and
the synthetic correspondence map. It is shown in Fig. 6 (a).

Novel View Synthesis. Given a new camera view, in terms
of a rotation R and a translation t. We firstly calculate the 3D
mesh under the novel view, Mt = MsR + t. The consequential
operations are similar to that of motion imitation. We render a
correspondence map of the source mesh Ms and that of the novel
mesh Mt under a weak-perspective camera Ks and calculate the
transformation flow T ∈ RH×W×2, as depicted in Fig. 6 (b).

Appearance Transfer. We need to “copy” the clothes on the
body from the reference image while keeping the head (face, eye,
hair and so on) identity of the source. We split the transformation

flow T into two sub-transformation flows, source flow T1 and
referent flow T2. We denote the head mesh as Mh = (V h, Fh)
and the body mesh as M b = (V b, F b). Here, M = Mh ∪M b.
For T1, We firstly project the head mesh Mh

s of source into the
image space and thereby obtain the silhouettes, Sh

s . Then, we
create a mesh grid, G ∈ RH×W×2. Next, we mask G by Sh

and derive T1 = G � Sh. Here, � represents an element-wise
multiplication. For T2, it is similar to that in motion imitation. We
render the correspondence map of the source body M b

s and that of
the reference M b

t , denoted as Cb
s and Cb

t , respectively. Finally, we
calculate the transformation flow T2 based on the correspondences
between Cb

s and Cb
t . We illustrate it in Fig. 6 (c).
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Fig. 7: The statistic information of iPER dataset, including the
action, clothes, height and weight distribution of the actors.

4 EXPERIMENTS

4.1 Dataset

iPER. To evaluate the performance of our proposed method of
motion imitation, appearance transfer, and novel view synthesis,
we build a new dataset with diverse styles of clothes in videos,
named Impersonator (iPER) dataset. There are 30 subjects of
different conditions of shape, height, and gender. Each subject
wears different clothes and performs an A-pose video and a video
with random actions. There are 103 clothes in total. The whole
dataset contains 206 video sequences with 241,564 frames. We
split it into training/testing set at a ratio of 8:2 according to the
different clothes. All the clothes and 29% of the actors in the
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testing set do not appear in the training set. We illustrate the details
of the iPER dataset in classes of actions, styles of clothes, weight,
and height distributions of actors in Fig. 7. We show some samples
in the first two rows of Fig. 8.

Fig. 8: The samples of four datasets. The first two rows are
the samples from iPER dataset. The third row is the samples
from the MotionSynthetic dataset and the fourth row is that from
FashionVideo dataset. The last row is the samples from Youtube-
Dancer-18 dataset.

MotionSynthetic. We also make up a synthetic dataset, named
MotionSynthetic, for the convenience of evaluation, especially for
human appearance transfer and novel view synthesis, because we
can synthesize the ground truth images with different views and
wearing garments by the modification of meshes. This dataset
borrows 24 human meshes from people snapshot [60] and 96
human meshes from MultiGarments [40]; thus, 120 meshes in
total. All of these meshes with UV texture images have been
registered in SMPL [16]. For each mesh, we choose a pose
sequence from Mixamo and a background image from the Internet.
Based on these materials (mesh, UV image, pose sequence, and
background image), we render the synthetic images by NMR [51],
resulting in 39,529 frames in total. We split it into training/testing
set at a ratio of 8:2 according to the different meshes and illustrate
some synthetic images in the 3rd rows of Fig. 8.

FashionVideo. It contains 500 training and 100 testing videos
with a single female model wearing fashionable clothes [20].
Each video has around 350 frames. The clothes and textures are
diverse, while there are few types of gestures, with only a few
standard poses for the models. Also, this dataset lacks diversity in
background, and all the backgrounds are black. We display some
samples in the 4th row of Fig 8.

Youtube-Dancer-18. To further validate the effectiveness and
generalization of our method, we evaluate our method on the in-
the-wild internet videos, Youtube-Dancer-18 [10]. It consists of 18
videos, with people dancing, downloaded from Youtube, and each
of them lasts from 4 to 12 minutes. We follow the setting with
MetaPix [10] that we sample frames with 30 FPS and only use
sn ≤ 8 frames from training sequences for personalization and
then apply the evaluation on the testing sequences. Some samples
are shown at the bottom of Fig. 8. It needs to be mentioned that we
do not train the model in this dataset. We only sample sn frames
for personalization and directly test on this dataset to evaluate the
generalization over all methods.

4.2 Implementation Details
We train our Attentional Liquid Warping GAN on a combined
dataset consisting of the iPER, MotionSynthetic, and Fashion-
Video dataset and perform evaluations among these three datasets.
To evaluate our methods’ generalization, we also perform tests
on an additional Youtube-Dancer-18 dataset without training on
it. We crop all images based on the bounding box of the human
body, rescale the cropped images with keeping the original ratio of
height and width, and then pad them into a 512× 512 resolution.
We normalize the color space of all images to [-1, 1]. In our
experiments, including the training and personalization phase, we
use the Adam [61] based Stochastic Gradient Descent optimizer
for both generators and discriminators. λp, λf and λa are 10.0,
5.0 and 2.5, respectively.

i): In the training phase, we randomly sample sn + 1 images
from each video and set the first sn ones as the source images
{Is1 , ..., Isn}, and the other one as the reference Ir . We fix sn =
2 and the mini-batch size to be 2. There are two training epochs.
We fix the first quarter training session with a learning rate as
0.0001 and gradually decrease it to 0.00001 in the end.

ii): In the personalization and testing phase, sn could be
flexible, and because of the memory limitation of the GPU devices,
in our experiments, we set sn ∈ {1, 2, 4, 8}. Besides, Ir lies in
the set of source images {Is1 , ..., Isn}. We fix the learning rate as
0.0001 and take T = 100 steps for personalization.

4.3 Results of Human Motion Imitation
Evaluation Metrics. We propose an evaluation protocol of the
testing set of the iPER, MotionSynthetic, FashionVideo, and
Youtube-Dancer-18 datasets, and it can indicate the performance
of different methods in terms of different aspects. The details are
listed in followings:

1): In each video with actor Pi, {IPi
1 , ..., IPi

t , ..., IPi

L }, we
select eight images as candidate images with different views, such
as frontal, sideways or back. Here, L is the number of frames.

2): We choose sn ≤ 8 images as sources, {IPi
s1 , ..., I

Pi
sn},

from the eight candidate images for personalization. For a fair
comparison with other methods [1], [2], [3], [35], [36], which
only use a single source image, we separately report the results on
sn = 1 (one-shot setting) and 2 ≤ sn ≤ 8(few-shot setting).

3): After personalization, we perform self-imitation that each
actor Pi imitates actions from images of themselves, with IPi

t

as the reference image. We denote ÎPi→Pi
t as the synthesized

image referring to IPi
t . As for criterion, we use PSNR, SSIM [62],

Learned Perceptual Similarity (LPIPS) [63], Body-CS and Face-
CS to measure the similarities between ÎPi→Pi

t and IPi
t .

Body-Cosine-Similarity (Body-CS): is the distance between
the cropped person region of the synthesized image and that of the
ground-truth image. In particular, it firstly uses a YOLOv3 [64]
detector to get the person bounding box of the synthesized and
ground-truth image. Then, we crop the person patches according
to the bounding boxes. Finally, we use a pre-trained Person re-
identification (ReID) model, OS-Net [65], to get the embedding
features of the cropped person patches, and then we normalize the
features and calculate the cosine similarity between the features to
acquire the Body-CS.

Face-Cosine-Similarity (Face-CS): similar to Body-CS, it is
the distance between the cropped face region of the synthesized
image and that of the ground-truth image. Specifically, we firstly
use an MTCNN [66] face detector to get the face bounding boxes
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Source Reference DIAFDSCpG2 SHUP Our-AttLWB

Better clothes 
and face details

Preserve shape 
and face details

Better face, 
arms and legs 
details

Fig. 9: Comparison of our method with others of motion imitation on the iPER and FashionVideo dataset (zoom-in for the best of
view). All results are in 512 × 512 resolution. 2D pose-guided methods pG2 [2], DSC [3] SHUP [1] and DIAF cannot preserve the
clothes details, face identity and shape consistency of source images. We highlight the details by red and blue rectangles.
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Fig. 10: Examples of motion imitation from our proposed methods (zoom-in for the best of view). All results are in 512 × 512
resolution. Our method could produce high-fidelity images that preserve the face identity, shape consistency and clothes details of
source. We recommend accessing the supplementary material for more results in videos.

of the synthesized and ground-truth images. Then, we crop the
face regions according to the bounding boxes. Finally, we uses
a pre-trained face recognition model [67], to get the embedding
features of the cropped face patches, and then we normalize the
features and calculate the cosine similarity between the normalized
features to obtain the Face-CS.

4): We also conduct cross-imitation that an actor Pi imitates
actions from others, such as Pj . We denote {ÎPi→Pj

1 , ..., Î
Pi→Pj

L }
as a sequence of synthesized images referring to {IPj

1 , ..., I
Pj

L }
and {IPi

s1 , ..., I
Pi
sn} as the sequence of real images. Since there is

no ground-truth of synthesized images for the similarities metrics
as mentioned above, here, we use a Fréchet Inception Distance
(FID) [68] to measure perceptual realism. It calculates the distance
between the set of synthesized images and that of real images. We
further propose the Fréchet Distance of a pre-trained ReID model,
OS-Net [65], namely Body-FD and that of a face recognition
model, namely Face-FD. We also collect L consecutive frames
from the actor P i, denoted as {IPi

1 , ..., IPi

L }, then calculate the
Body-CS and Face-CS as aforementioned.

Quantitative Comparison with Other Methods under One-
shot Setting. We compare the performance of our method with
that of existing methods, including PG2 [2], SHUP [1], DSC [3],
DIAF [36] and PATB [35]. We train all these methods on a
combined dataset with the iPER, MotionSynthetic, and Fashion-
Video dataset and apply the evaluation protocol with the one-
shot setting mentioned above to these methods. We report the
results in Table 1, and our method outperforms others on all the
metrics except SSIM, for which a higher numerical value does not
necessarily mean a better quality of an image as reported in [63].

Quantitative Comparison with Other Methods under Few-
shot Setting. We compare the performance of our method with
pix2pixHD [27], SPADE [23], MetaPix pix2pixHD and MetaPix
SHUP [10] under this setting. Here, we report the results on the
Youtube-Dancer-18 dataset with the number of source images sn
being 2 in Table 2 and our method outperforms others.

Qualitative Comparison. Besides, we also analyze the gen-
erated images and make comparisons between ours and the above
methods. From Fig. 9, we find that 1) the above methods that
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TABLE 1: One-shot average results for human motion imitation of different methods on the iPER, MotionSynthetic and FashionVidieo
dataset. ↑ means the larger the better, and ↓ is on the contrary. A higher SSIM may not mean a better quality of an image [63].

Self-Imitation Cross-Imitation
PSNR↑ SSIM↑ LPIPS↓ Body-CS↑ Face-CS↑ Face-CS↑ Face-FD↓ Body-CS↑ Body-FD↓ FID↓

PG2 [2] 23.699 0.876 0.130 0.744 0.085 0.148 429.142 0.709 240.429 119.378
SHUP [1] 23.979 0.881 0.080 0.855 0.288 0.297 243.599 0.820 80.973 51.823
DSC [3] 20.782 0.732 0.331 0.695 0.139 0.204 407.070 0.673 273.103 150.082

DIAF [36] 22.753 0.829 0.108 0.851 0.390 0.364 166.560 0.808 102.807 63.528
PATB [35] 20.387 0.798 0.169 0.738 0.129 0.363 218.333 0.731 259.135 136.911
Our-LWB 23.932 0.843 0.089 0.901 0.560 0.538 99.258 0.862 48.619 32.370

Our-AttLWB 24.513 0.856 0.074 0.911 0.591 0.564 73.217 0.869 44.022 30.503

TABLE 2: Few-shot results for human motion imitation of different methods on the Youtube-Dancer-18 dataset. The number of source
images sn is 2. ↑ means the larger the better, and ↓ represents the smaller the better.

Self-Imitation Cross-Imitation
PSNR↑ SSIM↑ LPIPS↓ Body-CS↑ Face-CS↑ Face-CS↑ Face-FD↓ Body-CS↑ Body-FD↓ FID↓

pix2pixHD [27] 11.134 0.196 0.633 0.616 0.106 0.136 221.661 0.565 266.552 175.574
SPADE [23] 8.984 0.120 0.780 0.535 0.106 0.131 294.672 0.513 431.670 304.698

MetaPix Pix2PixHD [10] 14.052 0.385 0.550 0.549 0.134 0.187 277.555 0.523 441.495 257.457
MetaPix SHUP [10] 18.857 0.649 0.269 0.765 0.234 0.191 185.363 0.693 160.485 83.501

Our-LWB 19.485 0.642 0.245 0.830 0.413 0.355 96.280 0.738 102.075 70.743
Our-AttLWB 19.691 0.649 0.232 0.831 0.437 0.380 82.053 0.743 99.575 65.454

use 2D pose-guided inputs change the body shape of the source.
For example, in the 2nd row of Fig. 9, the scenario is a tall
person imitating motion from a short person, and baseline methods
change the height of the source body. However, our method is
capable of keeping the body shape unchanged because our method
disentangles the pose and the personalized shape of each actor. 2)
In the light of our proposed AttLWB (LWB) and face identity
loss, our method is more powerful in terms of preserving source
identities, such as the face identity and cloth details of source than
other methods, as shown in the 1st and 2nd row of Fig. 9. 3) Our
method also produces high-fidelity images in the cross-imitation
setting (imitating actions from others), which we illustrate in
Fig. 10. As we can see in Fig. 10, the face identity, and clothes
details, in terms of texture color and style, are preserved well. It
shows that our method can achieve decent results in cross imitation
even when the reference image comes from the Internet, which is
out of the domain of our training dataset.

4.4 Results of Human Appearance Transfer
It is worth emphasizing that once the model has been trained, it
can directly be applied in three tasks, including motion imitation,
appearance transfer, and novel view synthesis. We conduct the
experiments on the iPER dataset.

Evaluation Metrics. In the iPER dataset, subjects might wear
different clothes, and we sample the same person’s images with
different clothes as the source and the reference image. We use
aforementioned PSNR, SSIM [62], LPIPS [63], Body-CS and
Face-CS as the metrics.

Quantitative Results. We report the results of our methods
with LWB and AttWLB on the iPER dataset in Table 3. The results
show that Attentional Liquid Warping Block (AttLWB) is slightly
better than the LWB.

Qualitative Results. We randomly pick some examples dis-
played in Fig. 11. The face identity and clothes details, in terms
of texture, color, and style, are preserved well by our method.
It demonstrates that our method can achieve decent results in
appearance transfer, even when the reference image comes from
the Internet and is out of the domain of the iPER dataset, such as
the last five columns in Fig. 11.

TABLE 3: Results for human appearance transfer of our LWB and
AttLWB, on the iPER dataset. Here, we report the PSNR, SSIM,
LPIPS, Body-CS and Face-CS. ↑ means the larger the better. A
higher SSIM may not mean a better quality of an image [63].

PSRN↑ SSIM↑ LPIPS↓ Body-CS↑ Face-CS↑
Our-LWB 17.707 0.734 0.225 0.891 0.642

Our-AttLWB 17.783 0.726 0.220 0.896 0.706

4.5 Results of Human Novel View Synthesis

Evaluation Metrics. As for data in the iPER dataset, we have
videos containing different views of a certain subject performing
A-pose, and in the MotionSynthetic dataset, we render A-pose im-
ages with 3D meshes from different viewpoints. Thus, we obtain
images of the same person in different views. For evaluation, we
use PSNR, SSIM [62] and LPIPS [63] as the metrics.

TABLE 4: Results for human novel view synthesis of different
methods, including AppFlow [41], MV2NV [69], ours LWB and
AttLWB, on iPER and MotionSynthetic dataset. Here, we report
the PSNR, SSIM and LPIPS [63]. ↑ means the larger the better. A
higher SSIM may not mean a better quality of an image [63].

iPER MotionSynthetic
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

AppFlow 23.342 0.849 0.133 25.575 0.896 0.083
MV2NV 24.950 0.883 0.125 25.951 0.837 0.097
LWB 24.518 0.862 0.090 25.055 0.779 0.106

AttLWB 25.246 0.867 0.078 28.625 0.934 0.037

Quantitative Results. In Table 4, we report the results of
our methods AttLWB and that of other state-of-the-art methods,
including AppFlow [41] and MV2NV [69], on the iPER and
MotionSynthetic datasets based on the above evaluation metrics.
The results show that our method outperforms other methods.

Qualitative Results. We randomly sample source images from
the testing set of the iPER dataset and change the views from
30◦ to 330◦. The results are illustrated in Fig. 12. Our method
is capable of predicting reasonable content of invisible parts when
switching to other views and keep the source information, in terms
of face identity and clothes details, even in the self-occlusion case,
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Fig. 11: Examples of our proposed AttLWB of human appearance transfer in the testing set of iPER (zoom-in for the best of view).
All results are in 512× 512 resolution. Our method could produce high-fidelity and decent images that preserve the face identity and
shape consistency of the source image and keep the clothes details of reference image.

Source 45° 90° 135° 180° 225° 270° 315° 360°

Fig. 12: Examples of our proposed AttLWB of human novel view synthesis. It is capable of preserving the source information, in terms
of face identity and logo details of cloths, even the person wearing the long dress with fluffy hair.

such as the middle and bottom rows in Fig. 12. Through Fig. 12,
we can see that 1) even when the subjects have large motion
deformation, such as the case in the 1st row of Fig. 12, results
of our method can keep the logo details of clothes. 2) The 2nd

row shows the results when the subjects have self-occlusion. 3)
Our method can also handle cases with complex background as
the 3rd row in Fig. 12 shows. 4) The 4th row of Fig. 12 shows
cases in which subjects wear a long dress and have fluffy hair. 5)
The 5th row of Fig. 12 is the case with complex clothes texture.

5 ABLATION STUDIES AND ANALYSIS

In this section, we perform experiments to analyze the impacts
of factors in our system, including with/without personalization,
ablation studies of different loss functions and the comparison of
our proposed LWB or AttLWB with other warping strategies, such
as input concatenation, texture warping and feature warping. We
further report the running time and analyze the failure cases.

5.1 Impact of Personalization
We perform the ablation studies of with/without personalization
to verify the effectiveness of personalization. Besides, we also
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Sources Reference w/o Personalization with Personalization Sources Reference w/o Personalization with Personalization

Fig. 13: Comparison of our proposed AttLWB with and without personalization (zoom-in for the best of view). The two roles in the left
column are the source images from the Youtube-Dancer-18 dataset, and that in the right column are cartoon images from the Internet.
From the top left segment, we can see that our method could preserve the color style of the source background with personalization.
From the bottom-left segment, we find that our method without personalization might lose the details of the logo structure in the source
images, while our method with personalization could preserve the logo details. The roles in the right column demonstrate that with
personalization, our method has more capability of generalization; the results show that our model can deal with scenarios in which the
source images are out of the domain of training set and even when the source images are in cartoon style from the Internet.

analyze the effect of hyper-parameters, including the number of
source images 1 ≤ sn ≤ 8 and that of steps T for personal-
ization. Since we only use the Youtube-Dancer-18 dataset in the
testing phase, it is reasonable to evaluate the generalization of our
methods of with/without personalization on this dataset. Here, we
use self-imitation evaluation metrics, as mentioned above.

TABLE 5: Comparison of our proposed AttLWB with and without
personalization on the Youtube-Dancer-18 dataset. ↑ means the
larger the better and ↓ means the smaller the better.

PSRN↑ SSIM↑ LPIPS↓ Body-
CS↑

Face-
CS↑ FID↓

w/o 16.932 0.519 0.302 0.792 0.335 79.321
with 17.974 0.579 0.263 0.834 0.413 59.832

With/Without Personalization. We conduct comparative ex-
periments with and without personalization in our methods. Here,
we fix the sn = 2 and T = 100 in the phase of personalization.
Table 5 shows that our method with personalization could achieve
1.0421 higher in PSNR, 0.0599 higher in SSIM, and 0.039
lower in LPIPS than that without personalization on the Youtube-
Dancer-18 dataset. Furthermore, we display some example results
in Fig. 13, where the left-column two roles are the source images
from the Youtube-Dancer-18 dataset, and the right-column two
roles are the cartoon images from the Internet. We find that with
personalization, 1) our method could keep the color style of the
background unchanged, as shown in the 1st top left of Fig. 13;
2) our method is capable of preserving the logo details in the
source clothes, as depicted in the 2nd bottom left of Fig. 13; 3)
our method is more powerful in the generalization, even when the
source images are cartoon style, as illustrated in the right column
of Fig. 13. These demonstrate that personalization indeed plays a
significant role in improving the generalization of our system.

Number of Source Images sn. In our system, we adopt a
few source images 1 ≤ sn ≤ 8 for personalization, and we
will analyze the impacts of sn to the final results. Here, we
fix the number of steps to T = t ∈ {10, 50, 100, 150, 200}
respectively for personalization and list the PSNR with different
sn ∈ {1, 2, 4, 8} in Fig. 14. It shows that the performance grows
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Fig. 14: Comparison of different number of source images sn and
number of steps T for personalization. The performance grows
with the increase of sn, when T is large enough. When T is small
with respective to a large sn, in this case of T = 10 and sn = 8,
the performance would decrease.

with an increase of sn when T is large enough. The reason for
the performance increase is due to the increase of the invisible
textures. However, it is worth noticing that when T is small with
respect to a large sn, in the case of T = 10 and sn = 8, the
performance decreases. The reason might be that when T is small,
it is too hard for the network to fit those too many source images.

Number of Steps T for Personalization. In the real appli-
cation, we should take the number of steps T into consideration
because more steps will take more time. It is necessary to consider
the trade-off between performance and overhead time for person-
alization. We set sn ∈ {1, 2, 4, 8} and list the performance with
different T for personalization in Fig. 14. From Fig. 14, we can
see that the performance saturates at around 150 steps.

In summary, based on the above analysis, we recommend that
in the stage of personalization, finetuning around 100 steps should
be enough, and if the time for personalization is limited, it would
be better to use fewer source images.
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5.2 Impact of Different Loss Functions

In our methods, we apply a perceptual loss Lp, a face identity
loss Lf , an attention regularization loss La, and an adversarial
loss LG

adv (with global, body and head adversarial loss in details)
to the full training loss functions. To validate the effectiveness of
each term, we perform the ablation studies of the different loss
functions. From Table 6, we can see that the model with the full
loss would have the best performance. Besides, with the addition
of Lf and LG

adv , the performance increases compared with that of
the trial with only Lp.

TABLE 6: Comparison between results with different loss func-
tions on the Youtube-Dancer-18 dataset.↑ means the larger the
better and ↓ means the smaller the better.

PSNR↑ SSIM↑ LPIPS↓ Body-
CS↑

Face-
CS↑

Lp 18.204 0.575 0.274 0.791 0.314
Lp + LG

adv 19.656 0.638 0.231 0.810 0.334
Lp + LG

adv + Lf 19.542 0.629 0.247 0.809 0.351
Lfull 20.038 0.656 0.212 0.826 0.421

5.3 Impact of Different Warping Strategies

To verify the impact of our proposed Attentional Liquid Warping
Block (AttLWB), we design some baselines with the ways men-
tioned above to propagate the source information, including input
concatenation, texture warping, and feature warping. The body
recovery, flow composition modules, the basic network architec-
tures, and all loss functions are the same except for the propagating
strategies among our method and other warping baselines. Here,
we denote early concatenation, texture warping, and feature warp-
ing, as WC , WT , and WF , respectively. Also, we denote the sn
source images as {Is1 , ..., Isn}, their corresponding conditional
inputs as {Cs1 , ..., Csn} and their corresponding feature maps
as {X l

s1 , ..., X
l
sn} at the lth layer, respectively. The reference

conditional inputs are Ct. The transformation flow of each source
image to the reference is Tsi→t. We list the details of all warping
baselines in followings:

Input Concatenation WC . It directly concatenates all source
images, their corresponding conditional inputs, as well as the
reference conditional inputs, and then feeds them into the GTSF

network, as shown in Fig. 2 (a).
Texture Warping WT . Based on each transformation flow

Tsi→t, we warp each source image si to the reference condition,
average the pixels of overlap regions, and synthesize an initial
image. Then, we feed it into the GTSF network and generate the
final image, as shown in Fig. 2 (b).

Feature Warping WF . Instead of warping the source infor-
mation in the image space, it propagates the source information in
the feature space, based on the transformation flow. As mentioned
above, we firstly obtain the warped featureX l

si→t by using a bilin-
ear sampler (BS) to warp each source feature X l

si concerning the
corresponding transformation flow Tsi→t. According to the ways
to aggregate the global feature X l

t from multiple warped source
features {X l

s1→t, ..., X
l
sn→t}, we can specifically subdivide them

into the followings:

1) Attention WAtt
F (ours) is shown in Algorithm 2.

2) Add-AggregationWA
F (ours). It is the first version of our

proposed Liquid Warping Block(LWB) [21], as shown in
the Fig. 4 (a) and Equation (2).

3) Mean-Aggregation WM
F . Directly adding the warped

features will enlarge the magnitude of the features in the
overlap area and thereby results in artifacts. A naive way
is to average all the warped features, shown as follows.

X̂ l
t =

1

sn

sn∑
i=1

X l
si→t +X l

t. (9)

4) Add-Soft-Gate WA�
F . The warped feature might in-

troduce the misalignment problem, and to address it,
Dong et al. [11] utilizes a gated convolution to control
the transformation degree. We firstly add all the warped
features, then utilize a gated convolution, as shown in
Equation (10). Here, g is a function with two-convolution
layers followed by a Sigmoid activation and g(X l

t) ∈
[0, 1]. � represents the element-wise multiplication.

X̂ l
t = g(X l

t)�
sn∑
i=1

X l
si→t +X l

t. (10)

5) Mean-Soft-GateWM�
F . It firstly averages all the warped

features and following steps are the same withWA�
F . The

formulation is shown as follows:

X̂ l
t = g(X l

t)�
1

sn

sn∑
i=1

X l
si→t +X l

t. (11)

We conduct a user study, with 64 volunteers, to assess the
quality of the generated videos and compare the performance of
the warping strategies mentioned above. Participants are shown 17
groups of videos with 7 videos generated by 7 warping strategies
respectively in random order in each group. Besides, the shared
source image and reference video of each group is also shown
to the participants for reference. Participants are asked to choose
the best video considering the quality of the face, clothes texture,
figure pose, and background. Finally, 64 responses are collected,
and the results are shown in Fig. 15. As we can see that our
proposed AttLWB and AddLWB have the best appraise, scoring
41.73% and 20.04%, respectively, far higher than others.

Our AttLWB, 
41.73%

Our AddLWB, 20.04%

SoftGateAvgLWB, 
11.40%

TextureWarping, 
10.48%

SoftGateAddLWB, 
8.73%

AvgLWB, 6.53% InputConcat, 1.10%

Fig. 15: Results of the user study (%). The user preference of
the videos with best quality regarding to the quality of face, the
quality of clothes texture and background.

5.4 Running Time
Our method could produce the results with different image res-
olutions, ranging from 256 × 256, 512 × 512, 1024 × 1024 to
1920×1920. Here, we benchmark the running time of our system
in different image resolutions. Since a high resolution needs more
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memory allocation of the GPUs device, we perform all the tests
on a Tesla V100S-PCIe-32G GPU with the Intel Xeon(R) E5-
2620 2.10GHz CPUs. The image resolution of the source images
is 4032×3024, and that of the reference video with 165 frames is
1920× 1080. In Fig.16, we separately report the running time of
preprocessing, personalization and inference, when synthesizing
different resolutions, respectively. From Fig.16, we can see that
the higher resolution consumes more running time, especially in
the personalization and inference.
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Fig. 16: Running time when producing images with different
resolutions. The I/O consumption has been taken into count. The
larger resolution, the more consuming time is, particularly in the
stages of personalization and inference.

5.5 Failure Cases and Limitations
There are three main types of failure cases of our methods. The
first one, as shown in the 1st row of Fig. 17, is that source image
contains a large area of self-occlusion, which introduces an ambi-
guity in textures and thereby results in a bad synthesized image.
The second occurs when the Body Recovery Module fails and
could not accurately estimate the pose parameters, as illustrated in
the 2nd row of Fig. 17. The rest is when the background inpaintor
GBG fails, as shown in the 3rd row of Fig. 17.

Source Reference OURS (failure)

Self-occlusion 
introduces 
ambiguity

Failure on Body 
Recovery Module

Failure on
background 
inpainting

Fig. 17: The failure cases of our system. It mainly contains
three types of failure cases. One occurs when the source images
introduce a large self-occlusion area, as shown in the top row. The
second row is when the body recovery module fails. The third row
shows the artifacts when the background inpainting network fails.

In addition, there are still some limitations of our system, 1)
it cannot imitate the motions of hands and facial expressions from

the reference images, since the 3D body parametric SMPL [16]
used in our system does not contain the articulated hands and
expressive face; 2) also, it cannot animate the large-motion body
with too loose clothing like the skirt or evening dress; 3) it is
affected by the different lighting environments among sources.

Therefore, for a better result, the input source images need to
follow these guidelines:

• They share the same static background without too com-
plex scene structures. If possible, we recommend using the
actual background.

• The person in the source images holds an A-pose for
introducing the most visible textures.

• It is recommended to capture the source images in an envi-
ronment without too much contrast in lighting conditions
and lock auto-exposure and auto-focus of the camera.

6 CONCLUSION

We propose a unified framework to handle human motion imi-
tation, appearance transfer, and novel view synthesis. It employs
a body recovery module to estimate the 3D body mesh, which
is more powerful than the 2D poses. In order to preserve the
source information, we further design a novel warping strategy,
Attentional Liquid Warping Block (AttLWB), which propagates
the source information in both image and feature spaces and
supports a more flexible warping from multiple sources. Besides,
with a fast personalization, our method could be generalized well
when the input images are out of the domain of training set and
synthesize higher resolution (512×512 and 1024×1024) results.
Extensive experiments show that our framework outperforms
others and produce decent results.
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