
IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Revisiting 2D Convolutional Neural Networks for
Graph-based Applications

Yecheng Lyu, Student Member, IEEE, Xinming Huang, Senior Member, IEEE,
and Ziming Zhang, Member, IEEE

Abstract—Graph convolutional networks (GCNs) are widely used in graph-based applications such as graph classification and
segmentation. However, current GCNs have limitations on implementation such as network architectures due to their irregular inputs.
In contrast, convolutional neural networks (CNNs) are capable of extracting rich features from large-scale input data, but they do not
support general graph inputs. To bridge the gap between GCNs and CNNs, in this paper we study the problem of how to effectively and
efficiently map general graphs to 2D grids that CNNs can be directly applied to, while preserving graph topology as much as possible.
We therefore propose two novel graph-to-grid mapping schemes, namely, graph-preserving grid layout (GPGL) and its extension
Hierarchical GPGL (H-GPGL) for computational efficiency. We formulate the GPGL problem as integer programming and further
propose an approximate yet efficient solver based on a penalized Kamada-Kawai method, a well-known optimization algorithm in 2D
graph drawing. We propose a novel vertex separation penalty that encourages graph vertices to lay on the grid without any overlap.
Along with this image representation, even extra 2D maxpooling layers contribute to the PointNet, a widely applied point-based neural
network. We demonstrate the empirical success of GPGL on general graph classification with small graphs and H-GPGL on 3D point
cloud segmentation with large graphs, based on 2D CNNs including VGG16, ResNet50 and multi-scale maxout (MSM) CNN.

Index Terms—graph neural network, convolutional neural network, graph classification, 3D point cloud segmentation

F

1 INTRODUCTION

G RAPH data processing using neural networks has been
broadly attracting more and more research interests recently.

Graph convolutional networks (GCNs) [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39] are a family of graph-
based neural networks that extend convolutional neural networks
(CNNs) to extract local features in general graphs with irregular
input structures. The irregularity of a graph, including the order-
less nodes and connections, however, makes the GCNs difficult to
design as well as training from local patterns. In general, a GCN
has two key operations to compute feature representations for the
nodes in a graph, namely aggregation and transformation. That is,
the feature representation of a node is computed as an aggregate of
the feature representations of its neighbors before it is transformed
by applying the weights and activation functions. To deal with
graph irregularity the adjacency matrix is fed into the aggregation
function to encode the topology. The weights are shared by all the
nodes to perform convolutions to their neighborhood nodes.

CNNs, equipped with tens or hundreds of layers and millions
of parameters thanks to their well designed operators upon 2D grid
inputs, succeed in many research areas such as speech recognition
[40] and computer vision [41]. In the grid inputs such as images,
the highly ordered adjacency and unique layout bring the ability
of designing accurate, efficient and salable convolutional kernels

• Yecheng Lyu, Dr. Xinming Huang and Dr. Ziming Zhang are with the De-
partment of Electrical and Computer Engineering, Worcester Polytechnic
Institute, Worcester, MA 01609, USA.
Email: {ylyu,xhuang,zzhang15}@wpi.edu

• Part of this work was done when Lyu and Zhang worked at Mitsubishi
Electric Research Laboratories (MERL).

(a) graph (b) graph-preserving grid layout (c) image

Figure 1: Illustration of differences between (a) a graph, (b) a graph-
preserving grid layout (GPGL) of the graph, and (c) an image. The black
color in (b) denotes no correspondence to any vertex in (a), and other colors
denote non-zero features on the grid vertices.

and pooling operations over large-scale data. How to apply CNNs
to general graph inputs, however, still remains elusive.

Motivation. The key differences between graph convolution and
2D spatial convolution make CNNs much easier and richer in
deep architectures than GCNs as well as being trained much more
efficiently. Most of the previous works in the literature such as [9],
[13], [17] concentrate on handling the convolution weights based
on the node connections, leading to high computation. Intuitively
there also exists another way to process each graph by projecting
the graph nodes onto a 2D grid so that CNNs can be employed
directly. Such a method can easily benefit from CNNs in terms of
network design and training in large scale. However, there are few
existing works to explore this type of approach. As graph topology
can be richer and more flexible than grid for encoding important
messages of the graph, how to preserve graph topology on the grid
becomes a key challenge in algorithm development.

Therefore, in order to bridge the gap between GCNs and
CNNs, in contrast to previous works on generalizing the basic
operations in CNNs to graph inputs, in this paper we mainly focus
on studying the problem of how to use CNNs as backbone for
graph-based applications effectively and efficiently. We then
propose a principled method for projecting undirected graphs onto

ar
X

iv
:2

10
5.

11
01

6v
1

 [
cs

.C
V

]
 2

3
M

ay
 2

02
1

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

the 2D grid with graph topology preservation.
In fact, the visualization of graphs in 2D space has been well

studied in graph drawing, an area of mathematics and computer
sciences whose goal is to present the nodes and edges of a graph
on a plane with some specific properties (e.g. minimizing edge
crossings [42], [43], minimizing the graph-node distance between
graph domain and 2D domain [44], [45], showing possible clusters
among the nodes [46]). In the literature, the Kamada-Kawai (KK)
algorithm [44] is one of the most widely-used undirected graph
visualization techniques. In general, the KK algorithm defines an
objective function that measures the energy of each graph layout
w.r.t. some theoretical graph distance, and searches for the (local)
minimum that gives a reasonably good 2D visualization of the
graph regardless the distances among the nodes.

As described above, we can see that graph drawing algorithms
may play an important role in connecting graph applications with
CNNs for geometric deep learning (GDL), in general. To the
best of our knowledge, however, such graph drawing algorithms
have never been explored for GDL. One possible reason is that
graph drawing algorithms often work in continuous spaces, while
our case requires discrete spaces (i.e. grid) where CNNs can
be deployed. Overall, how to project graphs onto the grid with
topology preservation for GDL is still elusive in the literature.

Contributions. To address the problem above, in this paper we
propose a novel graph-preserving grid layout (GPGL), an integer
programming problem that minimizes the topological loss on the
2D grid so that CNNs can be used for GDL on undirected graphs.
Technically solving such a problem is very challenging because
potentially one needs to solve a highly nonconvex optimization
problem in a discrete space. We manage to do so effectively by
proposing a penalized KK method with a novel vertex separation
penalty, followed by the rounding technique. As a result, our
GPGL algorithm can approximately preserve the irregular struc-
tural information in a graph on the regular grid as graph layout,
as illustrated in Fig. 1. To further improve the computational
efficiency of GPGL, we also propose a hierarchical GPGL (H-
GPGL) algorithm as an extension to handle large graphs.

In summary, our key contributions of this paper are as follows:
• We are the first, to the best of our knowledge, to explicitly

explore the usage of graph drawing algorithms in the context
of GDL, and accordingly propose a novel GPGL algorithm and
its variance H-GPGL to project graphs onto the 2D grid with
minimum loss in topological information.

• We demonstrate the empirical success of GPGL on graph
classification with small graphs, and H-GPGL on 3D point cloud
segmentation with large graphs. In the experiment, we clearly
shows that PointNet with 2D max-pooling layers and 2D CNNs
including VGG16, ResNet50 and multi-scale maxout(MSM)
CNN benefit from the GPGL image representation and gain a
large improvement over PointNet, a point-wised neural network.

2 RELATED WORK

Graph Drawing & Network Embedding. Graph drawing can be
considered as a subdiscipline of network embedding [47], [48],
[49] whose goal is to find a low dimensional representation of the
network nodes in some metric space so that the given similarity (or
distance) function is preserved as much as possible. In summary,
graph drawing focuses on the 2D/3D visualization of graphs [50],
[51], [52], [53], [54], while network embedding emphasizes the

learning of low dimensional graph representations. Despite the
research goal, similar methodology has been applied to both areas.
For instance, the KK algorithm [44] was proposed for graph
visualization as a force-based layout system with advantages such
as good-quality results and strong theoretical foundations, but
suffering from high computational cost and poor local minima.
Similarly [55] proposed a global geometric framework for network
embedding to preserve the intrinsic geometry of the data as
captured in the geodesic manifold distances between all pairs of
data points. There are also some works on drawing graphs on
lattice, e.g. [56].

In contrast to graph drawing, our focus is to project an existing
graph onto the grid with minimum topological loss so that CNNs
can be deployed efficiently and effectively to handle graph data.
In such a context, we are not aware of any work in the literature
that utilizes the graph drawing algorithms to facilitate GDL, to the
best of our knowledge.

Graph Synthesis & Generation. Methods in this field, e.g. [57],
[58], [59], [60], often aim to learn a (sophisticated) generative
model that reflects the properties of the training graphs. Re-
cently, [61] proposed learning an encoder-decoder for the graph
layout generation problem to systematically visualize a graph
in diverse layouts using deep generative model. [62] proposed
jointly learning the graph structure and the parameters of GCNs
by approximately solving a bilevel program that learns a discrete
probability distribution on the edges of the graph for classification
problems.

In contrast to such methods above, our algorithm for GPGL is
essentially a self-supervised learning algorithm that is performed
for each individual graph and requires no training at all. Moreover,
we focus on re-deploying each graph onto the grid as layout
while preserving its topology. This procedure is separate from the
training of CNNs later.

Geometric Deep Learning. In general GDL studies the extension
of deep learning techniques to graph and manifold structured data
(e.g. [2], [4], [63], [64]). In particular in this paper we focus on
graph data only. Broadly GDL methods can be categorized into
spatial methods (e.g. [63], [65], [66]) and spectral methods (e.g.
[1], [67], [68]). Some nice survey on this topic can be found in
[4], [8], [47], [69].

[13] proposed a framework for learning convolutional neural
networks by applying the convolution operations to the locally
connected regions from graphs. We are different from such work
by applying CNNs to the grids where graphs are projected to with
topology preservation. [19] proposed an ad-hoc method to project
graphs onto 2D grid and utilized CNNs for graph classification.
Specifically each node is embedded into a high dimensional space,
then mapped to 2D space by PCA, and finally quantized into a
grid. In [70], graphs were represented in 2D by approximating
the Laplacian kernel mean map. In [36], spanning trees were
utilized to project a graph onto the image domain. Ho et al.
[71] converted adjacency matrices into more Column Ordering
Free (COF) matrices and then built a deep network to learn high
level representations from these matrices for graph classification.
In contrast, we propose a principled and systematic way based on
graph drawing, i.e. a nonconvex integer programming formulation,
for mapping graphs onto 2D grid. Besides, our graph classification
performance is much better than both works. On MUTAG and
IMDB-B datasets we can achieve 94.18% and 74.9% test accuracy
with 5.23% improvement over [13] and 4.5% improvement over

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

(a) Original graph (b) KK before rounding (c) KK after rounding (d) Ours before rounding (e) Ours after rounding

Figure 2: Illustration of layout comparison between the KK algorithm and our proposed penalized KK algorithm before and after rounding based on a
fully-connected graph with 32 vertices.

[19], respectively.

3D Point Cloud Processing. Point clouds can be treated as graphs
with undetermined connections. In point cloud processing, several
existing works such as [72] built the adjacency matrix using the K-
nearest-neighbor search and then applied GCNs to the generated
graph. Some other works like [73] used adaptive search ranges
to generate the adjacency matrix and then applied GCNs to it.
Point cloud processing, same as graph processing, suffers from
the limited size and efficiency of GCN operators.

3D point cloud segmentation, as one of the key applications
using point clouds, has attracted increasing research attention
in the recent past. The existing works can be summarized into
two major groups: point-based approaches and graph-based ap-
proaches. In point-based approaches, the pioneering work Point-
Net [74] applied fully connected layers to each single point and
then extracted the global features by aggregating all the point-
wise features. By its design, PointNet effectively gathers the global
features from all points and broadcasts them back to all point for
point-wise semantic prediction. However, the accuracy is limited
due to the lack of local feature extraction. Later on, some other
solutions are proposed to introduce the local feature extractions.
PointNet++ [75], the succeeding work of PointNet, hierarchically
grouped the points in local regions and extracted the local features
along the hierarchy. PointCNN [76], SpiderCNN [77], So-Net
[78], RS-CNN [79], PointConv [80], ψ-CNN [81], A-CNN [82],
ShellNet [83], DensePoint [84],SPLATNet3D [85] proposed their
local point grouping and feature extraction operators, resulting in
high accuracy.

The graph-based approaches, on the other hand, construct a
connected graph from each point cloud and then apply GCNs
to it. Kd-Net [86], RGCNN [73], FeaStNet [87], KC-Net [88],
DGCNN [89], LDGCNN [72] are some good works in this branch.
However, the complexity of graph neural convolution kernels
limits their capability of achieving outstanding accuracy.

Besides, there are several works trying to project the point
clouds into 2D grid maps and apply 2D convolution to it. SFCNN
[90] projected each point cloud into a spherical surface and applied
a fractal convolution operation to it. InterpConv [91] creatively
interpolated the graph convolution into a 2D convolution upon
the adjacent grid cells. Our recent work [92] solves the point
cloud segmentation problem by transferring the point cloud into
image space and applying U-Net on it. Those three approaches
make good effort to introduce the 2D convolution into point
cloud processing. However, they yield customized 2D convolution
kernels that do not support commonly used feature extraction
backbones such as VGG [93], ResNet [41] and Xception [94].

In our approach, we follow the graph-based approaches to

construct a connected graph upon each point cloud. In contrast,
we further project the graph nodes onto a 2D grid map using H-
GPGL. In this way each point in the point cloud is assigned to one
of the nodes in the 2D grid and we can now apply CNNs to the
2D graph layouts as we do on images.

3 GRAPH-PRESERVING GRID LAYOUT (GPGL)
3.1 Problem Setup
Let G = (V, E) be an undirected graph with a vertex set V and an
edge set E ⊆ V × V , and sij ≥ 1,∀i 6= j be the graph-theoretic
distance such as shortest-path between two vertices vi, vj ∈ V on
the graph that encodes the graph topology.

Now we would like to learn a function f : V → Z2 to map
the graph vertex set to a set of 2D integer coordinates on the grid
so that the graph topology can be preserved as much as possible
given a metric d : R2 ×R2 → R and a loss ` : R×R→ R. As a
result, we are seeking for f to minimize the following objective:

min
f

∑
i 6=j

`(d(f(vi), f(vj)), sij). (1)

Now letting xi = f(vi) ∈ Z2 as reparametrization, we can
rewrite Eq. 1 as the following integer programming problem:

min
X⊆Z2

∑
i 6=j

`(d(xi,xj), sij), (2)

where the set X = {xi} denotes the 2D grid layout of the graph,
i.e. all the vertex coordinates on the 2D grid.

Self-Supervision. Note that the problem in Eq. 2 needs to
be solved for each individual graph, which is related to self-
supervision as a form of unsupervised learning where the data
itself provides the supervision [95]. This property is beneficial for
data augmentation, as every local minimum will lead to a grid
layout for the same graph.

2D Grid Layout. In this paper we are interested in learning
only 2D grid layouts for graphs, rather than higher dimensional
grids (even 3D) where we expect that the layouts would be more
compact in volume and would have larger variance in configura-
tion, both bringing more challenges into training CNNs properly
later. We confirm our hypothesis based on empirical observations.
Besides, the implementation of 3D basic operations in CNNs such
as convolution and pooling are often slower than 2D counterparts,
and the operations beyond 3D are not available publicly.

Relaxation & Rounding for Integer Programming. Integer
programming is NP-complete and thus finding exact solutions
is challenging, in general [96]. Relaxation and rounding is a
widely used heuristic for solving integer programming due to

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

its efficiency [97], where the rounding operator is applied to the
solution from the real-number relaxed problem as the solution for
the integer programming. In this paper we employ this heuristic
to learn 2D grid layouts. For simplicity, in the sequel we will only
discuss how to solve the relaxation problem (i.e. before rounding).

3.2 Penalized Kamada-Kawai Algorithm for GPGL
In this paper we set ` and d in Eq. 2 to the least-square loss and
Euclidean distance to preserve topology, respectively, so that we
can develop new algorithms based on the classic KK algorithm.

3.2.1 Preliminary: Kamada-Kawai Algorithm
The KK graph drawing algorithm [44] was designed for a (relaxed)
problem in Eq. 2 with a specific objective function as follows:

min
X⊆R2

LKK =
∑
i 6=j

1

2

(
dij
sij
− 1

)2

, (3)

where dij = ‖xi − xj‖,∀(i, j) denotes the Euclidean distance
between vertices vi and vj . Note that there is no regulariza-
tion/penalty to control the distribution of nodes in 2D visualiza-
tion.

Fig. 2 illustrates the problems using the KK algorithm when
projecting the fully-connected graph onto 2D grid. Eventually
KK learns a circular distribution with equal space among the
vertices as in Fig. 2(a) to minimize the topology preserving loss
in Eq. 3. When taking a close look at these 2D locations we find
that after transformation all these locations are within the square
area [0, 1]× [0, 1], leading to the square pattern in Fig. 2(b) after
rounding. Such behavior totally makes sense to KK because it does
not care about the grid layout but only the topology preserving
loss. However, our goal is not only to preserve the topology but
also to make graphs visible on the 2D grid in terms of vertices.

3.2.2 Our Algorithm
To this end, we propose a penalized KK algorithm as listed in
Alg. 1, which tries to minimize the following penalized KK loss:

min
X⊆Z2

LGPGL = LKK + Lsep. (4)

Vertex Separation Penalty. We propose a novel vertex separation
penalty to regularize the vertex distribution on the grid. The
intuition behind it is that when the minimum distance among all
the vertex pairs is larger than a threshold, say 1, it will guarantee
that after rounding every vertex will be mapped to a unique 2D
location with no overlap. But when any distance is smaller than
the threshold, it should be considered to enlarge the distance,
otherwise, no penalty. Moreover, we expect that the penalties
will grow faster than the change of distances and in such a way
the vertices can be re-distributed more rapidly. Based on these
considerations we propose the following penalty:

Lsep = λ
∑
i 6=j

max

{
0,

α

dij
− 1

}
, (5)

where α ≥ 0, λ ≥ 0 are two predefined constants. From the
gradient of Lsep w.r.t. an arbitrary 2D variable xi, that is,

∂Lsep
∂xi

= −λ
∑
i 6=j

xi − xj
d3ij

1{dij<α} (6)

where 1{·} denotes the indicator function returning 1 if the
condition is true, otherwise 0, we can clearly see that α as a

Algorithm 1 Penalized Kamada-Kawai Algorithm for GPGL
Input : undirected graph G = (V, E), parameters α, λ
Output: 2D grid layout X ∗

Compute graph distance {sij};
X̃ ← argminX LKK with a (randomly shuffled) circular layout;
X ∗ ← argminX⊆R2 LGPGL with set X̃ as initialization;
X ∗ ← round(X ∗);
return X ∗;

threshold controls when penalties occur, and λ controls the trade-
off between the two losses, leading to different step sizes in
gradient based optimization.

Initialization. Note that both KK and our algorithms are highly
nonconvex, and thus good initialization is need to make both work
well, i.e. convergence to good local minima.

To this end, we first utilize the KK algorithm to generate a
vertex distribution. To do so, we employ the implementation in the
Python library NETWORKX [98] which uses a circular layout as
initialization by default. By default setting, L-BFGS-B Nonlinear
Optimization is implemented to optimize Eqn. 4. As discussed
above, KK has no control on the vertex distribution. This may
lead to serious vertex loss problems in the 2D grid layout where
some of vertices in the original graph merge together as a single
vertex on the grid after rounding due to small distances (see our
experiments).

Topology Preservation with Penalty. As we observe, the key
challenge in topology preservation comes from the node degree,
and the lower degree the easier for preservation. Since there are
only 8 neighbors at most in the 2D grid layout, it will induce
a penalty for a graph vertex whose degree is higher than 8.
Fig. 2 illustrates such a case where the original graph is full-
connected with 32 vertices. With the help of our proposed penalty,
we manage to map this graph to a ball-like grid layout, as shown
in Fig. 2(c) and (d). Besides we have the following proposition to
support such observations:

Proposition 1. An ideal 2D grid layout with no vertex loss
for a full-connected graph with |V| vertices is a ball-like shape
with radius of d(|V|π)

1
2 e that minimizes Eq. 2 with relaxation of

the penalized Kamada-Kawai loss. Here d·e denotes the ceiling
operation.

Proof. Given the conditions in the proposition above, we have
sij = 1, dij ≥ 1,∀i 6= j and Lsep = 0. Without loss of
generalization, we uniformly deploy the graph vertices in a circle
and set the circular center A to a node on the 2D grid. Now
imagine the gradient field over all the vertices as a sandglass
centered at A where each vertex is a ball with a unit diameter.
Then it is easy to see that by the “gravity” (i.e. gradient) all the
vertices move towards the center A, and eventually are stabilized
(as a local minimum) within an r-radius circle whose covering
area should satisfy |V| ≤ πr2, i.e. r = d(|V|π)

1
2 e as the smallest

sufficient radius to cover all the vertices with guarantee. We now
complete our proof.

Note that Fig. 2(d) exactly verifies Prop. 1 with a radius r =
d(32π)

1
2 e = 4. In summary, our algorithm can (approximately)

manage to preserve graph topology on the 2D grid even when the
node degree is higher than 8.

Computational Complexity. The KK algorithm has the com-

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

plexity of, at least, O(|V|2) [45] that limits the usage of KK to
medium-size graphs (e.g. 50-500 vertices). Since our algorithm
in Alg. 1 is based on KK, it unfortunately inherits this limitation
as well. To accelerate the computation for large-scale graphs, we
potentially can adopt the strategy in multi-scale graph drawing
algorithms such as [99]. However, such an extension is out of
scope of this paper, and we will consider it in our future work.

3.3 Experiments: Small Graph Classification
3.3.1 Data Sets & Data Augmentation
We evaluate our method, i.e. GPGL + (multi-scale maxout) CNNs,
on four medium-size benchmark data sets for graph classification,
namely MUTAG, IMDB-B, IMDB-M and PROTEINS. Table 1
summarizes some statistics of each data set. Note that the max
node degree on each data set is at least 8, indicating that ball-like
patterns as discussed in Prop. 1 may occur, especially for IMDB-B
and IMDB-M.

As mentioned in self-supervision, each local minimum from
our penalized KK algorithm in Alg. 1 will lead to a grid layout
for the graph, while each minimum depends on its initialization.
Therefore, to augment grid layout data from graphs, we do a
random shuffle on the circular layout when applying Alg. 1
to an individual graph. Fig. 3 illustrates two augmented image
representations from a graph sample in MUTAG dataset.

(a) Input graph (b) Output image 1 (c) Output image 2

Figure 3: Illustration of augmented representations from a graph using GPGL

3.3.2 Grid-Layout based 3D Representation
Once a grid layout is generated, we first crop the layout with
a sufficiently large fixed-size window (e.g. 32 × 32), and then
associate each vertex feature vector from the graph with the
projected node within the window. All the layouts are aligned to
the top-left corner of the window. The rest of nodes in the window
with no association of feature vectors are assigned to zero vectors.

Once vertex loss occurs, we take an average, by default, of all
the vertex feature vectors (i.e. average-pooling) and assign it to the
grid node. We also compare average-pooling with max-pooling for
merging vertices, and observe similar performance empirically in
terms of classification.

3.3.3 Classifier: Multi-Scale Maxout CNNs (MSM-CNNs)
We apply CNNs to the 3D representations of graphs for classifica-
tion. As we discussed above, once the node degree is higher than 8,
the grid layout cannot fully preserve the topology, but rather tends
to form a ball-like compact pattern with larger neighborhood.
To capture such neighborhood information effectively, the kernel
sizes in the 2D convolution need to vary. Therefore, the problem
now boils down to a feature selection problem with convolutional
kernels.

Considering these, here we propose using a multi-scale maxout
CNN as illustrated in Fig. 6. We use consecutive convolutions
with smaller kernels to approximate the convolutions with larger
kernels. For instance, we use three 3× 3 kernels to approximate a
7× 7 kernel. The maxout [100] operation selects which scale per

Table 1: Statistics of benchmark data sets for graph classification.

Data Set Num. of
Graph

Num. of
Class

Avg.
Node

Avg.
Edge

Avg.
Degree

Max
Degree

Feat.
Dim.

MUTAG 188 2 17.93 19.79 1.10 8 7
IMDB-B 1000 2 19.77 96.53 4.88 270 136
IMDB-M 1500 3 13.00 65.94 5.07 176 89

PROTEINS 1113 2 39.06 72.82 1.86 50 3

grid node is good for classification and outputs the corresponding
features. Together with other CNN operations such as max-
pooling, we can design deep networks, if necessary.

Input feature map 2D convolution

Multi-Scale Maxout
Convolution

2D convolution 2D convolution

maxout

Output feature map

Figure 6: Multi-scale maxout convolution (MSM-Conv).

3.3.4 Implementation

By default, we set the parameters in Alg. 1 as
α = 1.25, λ = 1000. We crop all the grid layouts to a fixed-size
32× 32 window. Also by default, for the MSM-CNNs we utilize
three consecutive 3 × 3 kernels in the MSM-Conv, and design a
simple network of “MSM-Conv(64)→max-pooling→MSM-
Conv(128)→max-pooling→MSM-Conv(256)→global-
pooling→FC(256)→FC(128)” as hidden layers with ReLU
activations, where FC denotes a fully connected layer and the
numbers in the brackets denote the numbers of channels in each
layer. We employ Adam [101] as our optimizer, and set batch
size, learning rate, and dropout ratio to 10, 0.0001, and 0.3,
respectively.

3.3.5 Ablation Study

Effects of α, λ on Grid Layout and Classification. To under-
stand their effects on the 2D grid layout generation, we visualize
some results in Fig. 4 using different combinations of α, λ. We
can see that:

• From Fig. 4(a)-(c), the diameters of grid layouts are 5 × 5,
6×6, 7×7 for α = 1.00, 1.25, 1.50, respectively. This strongly
indicates that a smaller α tends to lead to a more compact layout
at the risk of losing vertices.

• From Fig. 4(c)-(e), similarly the diameters of grid layouts are
5× 5, 6× 6, 6× 6 for λ = 200, 1000, 5000, respectively. This
indicates that a smaller λ tends to lead to a more compact layout
at the risk of losing vertices as well. In fact in Fig. 4(d) node
1 and node 5 are merged together. When λ is sufficiently large,
the layout tends to be stable.

Such observations follow our intuition in designing Alg. 1, and
occur across all the four benchmark data sets.

We also test the effects on classification performance. For
instance, we generate 21x grid layouts using data augmentation on
MUTAG, and list our results in Table 2. Clearly our default setting
achieves the best test accuracy. We also observe that in case λ = 0
where Lsep = 0 and the KK algorithm works without vertex
separation penalty, the classification accuracy is much worse than
those with vertex separation penalty.

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

(a) α = 1.00, λ = 1000 (b) α = 1.50, λ = 1000 (c) α = 1.25, λ = 1000 (d) α = 1.25, λ = 200 (e) α = 1.25, λ = 5000

Figure 4: Illustration of effects of different combinations of α, λ on grid layout generation (IMDB-B)

(a) MUTAG (b) IMDB-B (c) PROTEINS

Figure 5: Illustration of vertex loss on different data sets: In each subfigure, (left) before rounding and (right) after rounding.

Table 2: Mean accuracy (%) using different combinations of α, λ.

Data Set α = 1.00
λ = 0

α = 1.00
λ = 1000

α = 1.50
λ = 1000

α = 1.25
λ = 1000

α = 1.25
λ = 200

α = 1.25
λ = 5000

MUTAG
(21×) 80.51 85.14 83.04 86.31 85.26 85.26

Table 3: Vertex loss ratio (%) on each data set using different initialization
methods. Vertex loss ratio is the percentage between the number of overlapped
vertices and the total number of vertices on average of each graph in the
dataset.

Initialization MUTAG IMDB-B IMDB-M PROTEINS

Circular 1.06 0.99 0.40 0.90
Spectral 10.09 9.30 12.50 18.99
Random 1.88 1.48 1.04 1.07

Vertex Loss, Graph Topology & Misclassification. To better
understand the problem of vertex loss, we visualize some cases in
Fig. 5. The reason for this behavior is due to the small distances
among the vertices returned by Alg. 1 that cannot survive from
rounding. Unfortunately we do not observe a pattern on when
such loss will happen. Note that our Alg. 1 cannot avoid vertex
loss with guarantee, and in fact the vertex loss ratio on each data
set is very low, as shown in Table 3.

Further we test the relationship between vertex loss and mis-
classification, and list our results in Table 4 where Gv.l., Gn.v.l.,
and Gmis. denote the sets of graphs with vertex loss, no vertex
loss, and misclassification, respectively, ∩ denotes the intersection
of two sets, | · | denotes the cardinality of the set, and the numbers
in the brackets denote the numbers of grid layouts per graph in
data augmentation. From this table, we can deduce that vertex loss
cannot be the key reason for misclassification, because it takes
only tiny portion in misclassification and the ratios of misclassified
graphs with/without vertex loss are very similar, indicating that
misclassification more depends on the classifier rather than vertex
loss.

As discussed before, a larger node degree is more difficult for

Table 4: Ratios (%) between vertex loss and misclassification.

Data Set
|Gv.l.|
|Gmis.|

|Gv.l. ∩ Gmis.|
|Gv.l.|

|Gn.v.l. ∩ Gmis.|
|Gn.v.l.|

MUTAG (21x) 1.06 20.00 16.70
IMDB-B (3x) 0.99 16.18 37.41

PROTEINS (3x) 0.90 24.32 29.89

preserving topology. In this test we would like to verify whether
such topology loss introduces misclassification. Compared with
the statistics in Table 1, it seems that topology loss does cause
trouble in classification. One of the reasons may be that the
variance of the grid layout for a vertex with larger node degree
will be higher due to perturbation. Designing better CNNs will be
one of our future works to improve the performance.

CNN based Classifier Comparison. We test the effectiveness
of our GPGL algorithm on MUTAG dataset with PointNet [76],
PointNet with 2D max-pooling, VGG16 [93], ResNet50 [41], and
our MSM-CNN. In those networks, PointNet is a point-based
network that has no 2D convolution or pooling except for a global
max-pooling at last; by applying an image representation, we
add a 2D max-pooling after each point-wise convolution layer
to introduce 2D integration to image pixels. VGG16, ResNet50
are widely used 2D CNNs for image classification. Our MSM-
CNN is also a 2D CNN for image classification. In all tests we
use the same augmented data. From Table 5 we observe that 2D
CNNs are significantly better than the PointNet with large margins
of 21.66%, and PointNet improves 19.68% in accuracy by simply
adding 2D max-pooling layers. The observation clearly shows that
2D CNNs benefit from our GPGL algorithm.

Table 5: Mean accuracy (%) using different CNN classifiers. In Network
parameters, K denotes thousand and M denotes million.

Network PointNet PointNet with
2D pooling VGG16 ResNet50 MSM

MUTAG (101×) 66.55 86.23 88.21 91.02 94.18

Network Parameters 86.0K 86.0K 23.7M 32.6M 1.2M

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Figure 7: Running time at inference
for GPGL and MSM-CNN.

Figure 8: Illustration of data augmen-
tation on classification.

Effect of Data Augmentation using Grid Layouts on Classi-
fication. In order to train the deep classifiers well, the amount
of training data is crucial. As shown in Alg. 1, our method
can easily generate tons of grid layouts that effectively capture
different characteristics in the graph. Given the memory limit, we
demonstrate the test performance for data augmentation in Fig. 8,
ranging from 1x to 101x with step 10x. As we see clearly, data
augmentation can significantly boost the classification accuracy on
MUTAG, and similar observations have been made for the other
data sets.

3.3.6 State-of-the-Art Comparison
To do a fair comparison for graph classification, we follow
the standard routine, i.e. 10-fold cross-validation with random
split. In the comparisons we compare our proposed method with
existing works including graph convolution based methods and
geometric deep learning based methods. All the comparisons are
summarized in Fig. 9. We generate 101x, 21x, 11x, 11x of the
original size of MUTAG, IMDB-B, IMDB-M, and PROTEINS
for data augmentation, and achieves 94.18%± 4.61%, 74.90%±
4.01%, 68.67% ± 1.22%, 79.52% ± 1.72% in terms of test
accuracy, respectively. Among the tests, we achieve the state-of-
the-art accuracy in IMDB-M and PROTEINS dataset. In MUTAG
and IMDB-B datasets, Zhao et al. [10] achieves the state-of-the-art
accuracy and ours is 0.82% and 5.00% behind.

4 HIERARCHICAL GPGL (H-GPGL)
As we discussed before, the computational complexity of the KK
algorithm is at least O(|V|2) where |V| denotes the number of
nodes in a graph. Also empirically from Fig. 7 we verify that
even for small graphs the computational bottleneck of our method
from GPGL (even this procedure can be offline) is significant
that prevents ours from large-graph applications. For instance,
the running time of GPGL on a simple graph (low node degree)
with 2048 nodes takes about 90s. Therefore, in order to apply our
method to large graphs we need to overcome this computational
challenge. This motivates our hierarchical GPGL algorithm.

4.1 Algorithm Overview
Our basic idea is to partition each graph into a set of subgraphs
that can be organized in a hierarchy such as (complete) m-way
tree where each node presents a subgraph and each level preserves
the original graph connectivity among the subgraphs at the level.
In this way we can preserve the original graph information as
much as possible. To do so, an intuitive way is to partition a graph

Algorithm 2 H-GPGL Algorithm
Input : number of nodes for GPGL N , undirected graph G =

(V, E), parent spatial location ap, parent grid size sp,
child grid size sc, 2D grid layout X ∗

Output: X ∗

T ← round(logN |V|);
if T = 1 then

(X ,Ac)← GPGL(G,ap, sc);
X ∗ ← FitIntoGrid(X ∗,X ,Ac);

else
H ← partition(G, N);
Construct a connectivity graph GH based on H;
(XH ,AH)← GPGL(GH ,ap, sp);
for i = 1, · · · , N do
X ∗ ← H-GPGL(Ni,Hi,AHi , sp, sc,X ∗);

end
end
return X ∗;

recursively, as listed in Alg. 2. We also illustrate an example of
two-level GPGL generation procedure in Fig. 10. Here we first
partition the graph with 2048 nodes into 32 subgraphs and map the
connectivity graph of these subgraphs onto a 16 × 16 grid using
the GPGL algorithm in Alg. 1. Then we project each subgraph
again onto a 16 × 16 grid, leading to a 256 × 256 grid layout
shown on the right side.
Notations. We define N ∈ R (resp. Ni,∀i) as the number of
nodes that GPGL can easily deal with. In the hierarchy, ap ∈ R2

denotes the 2D spatial location of a parent node in the grid
X ∗ ⊆ R2 and Ac ⊆ R2 denotes the set of 2D spatial locations of
the child nodes of the parent node.H denotes the set of partitioned
subgraphs satisfying

⋃
H = G, and XH ⊆ R2,AH ⊆ R2

denote the grid layout and the spatial location set for subgraph
connectivity graph GH ofH.Hi ⊆ R2,AHi ⊆ R2,∀i denote the
i-th subgraph in H and its spatial location, respectively. Note that
there is one more output of GPGL in Alg. 2 than Alg. 1, which
is the 2D location set for the input nodes. This operation can be
easily implemented by adding an extra traversal on the grid.
Fitting a Graph Node into the Grid Layout. Let Pv denote
the path from a leaf v (i.e. a graph node) to the root in the tree
hierarchy through M internal nodes. Then the 2D location of v,
av , on the grid layout X ∗ can be easily computed as follows:

av = ãP(0)
v

+ sc

M∑
m=1

ãP(m)
v
× (sp)

m
, (7)

where ãP(m)
v

,∀m denotes the relative location of the child node in
the parent grid layout at the m-th level, and all the operators here
are entry-wise. Note that in Alg. 2 such localization calculation is
done in a recursive way for the function FitIntoGrid.

We illustrate this fitting procedure on the right side of Fig. 10.
Constructing Undirected Connectivity Graph of Subgraphs.
To build the connectivity graph GH in Alg. 2, we first take each
subgraph as one node in GH . Next we verify in the original graph
whether there exists any edge that connects two subgraphs. If so,
we add an edge between the two nodes in GH , otherwise, no edge.

We illustrate this fitting procedure on the right side of Fig. 10.
Firstly, we separated the 2048 points from the input point cloud
into 32 clusters, and applied the GPGL algorithm to the cluster
centers to create the high level layout. As shown in Fig. 10, the

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

(a) MUTAG (b) IMDB-B (c) IMDB-M (d) PROTEINS

Figure 9: State-of-the-art result comparison. Numbers are cited from the leaderboard at https://paperswithcode.com/task/graph-classification

Figure 10: Illustration of two-level H-GPGL algorithm on a 2048-node graph, leading to a 256× 256 grid layout.

clusters labeled from 0 to 31 are projected to a 16× 16 grid cell.
For each cluster e.g. cluster 8, we apply the GPGL algorithm to the
cluster nodes and generate a low level image representation with
size 16 × 16, which is shown as the purple graph in the figure.
Finally, we embedded the low level image into the cell in the high
level grid, e.g. embedded the low level image of cluster 8 to the
cell of cluster 8 in the high level grid. The grid cell without any
cluster will be embedded with an empty 16 × 16 image. In that
way we convert the 2048-node point cloud to a 256× 256 image
representation as illustrated on the right of Fig. 10.

4.2 Normalized Cuts [102] for Graph Partitioning

Improving the computational efficiency of GPGL is our concern
in developing H-GPGL, where the partition function is the key.
Recall that the computational complexity of GPGL is (at least)
proportional to the square of the number of nodes in the graph.
Now given an undirected graph G = (V, E), the partition function
should generate a set of J subgraphs {Gj = (Vj , Ej)}j=1,··· ,J
that minimize the following problem:

min
{Gj}

J∑
j=1

‖|Vi|‖2, s.t.
⋃
Vj = V. (8)

The solution of the optimization problem above suggests that
ideally the sizes of subgraphs should be equal.

Figure 11: Running speed com-
parison on a 2048-node graph with
two-level H-GPGL. See our exper-
imental section later for more de-
tails.

This motivates us to employ
the normalized graph cut algo-
rithm as our partition function,
because the algorithm aims to
produce the subgraphs (given
the number of subgraphs) with
minimum cost as well as ap-
proximately equal sizes. Locat-
ing normalized cuts need to
solve a generalized eigenvalue
problem, whose computational
complexity is essentially super-linear to the size of adjacency
matrix of the graph [103]. Theoretically this complexity is no
better than that of GPGL. Empirically, however, we do find that
using normalized cut our H-GPGL performs much faster than
GPGL alone. Fig. 11 illustrates our running speed comparison
result. With a proper number of cuts like 16 or 32 in our case,
H-GPGL can process the graph within 5.5s, while GPGL needs
about 90s. With more cuts, the running time of normalized cutting
is longer and starts to dominate that of H-GPGL, leading to slower
running speed.

4.3 Experiment: Point Cloud Semantic Segmentation
Consider a point cloud P ⊆ R3 that contains a set of 3D points
scanned from a single object. Each point p ∈ P contains three
geometry attributes x, y, z representing its location in the 3D

https://paperswithcode.com/task/graph-classification

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Table 6: Running time (ms) comparison on a 2048 point cloud with 5-NN
and Delaunay triangulation, followed by our H-GPGL.

Method Graph
construction

Normalized
cut GPGL Total

5-NN 74.02 2036.37 3621.70 5732.09
Delaunay 1918.77 1703.07 1792.52 5414.36

space, and a part label c ∈ C that the point p belongs to. Fig. 13(a)
shows a point cloud with 2048 points scanned from a skateboard.
The problem of point cloud semantic segmentation is defined as
predicting the part labels for all the 3D points in a point cloud.

In this section we will show how to apply our H-GPGL
algorithm to the point cloud semantic segmentation problem. To
do so, we first construct a graph for each point cloud, then map
each graph onto a grid using H-GPGL, and finally utilize a variant
of multi-scale maxout CNN to conduct the segmentation.

Data Set. For demonstration we use the ShapeNet [104] part
segmentation benchmark, which contains 16881 object samples
and each object sample has 2048 point scans associated to one of
the 50 part categories. The benchmark is split into an 14007-object
training set and a 2874-object testing set.

4.3.1 Graph Construction from Point Cloud
Graph construction from point cloud is the first step in graph-based
approaches for point cloud applications. The graph in the literature
is usually generated by connecting the K nearest neighbors (K-
NN). However, the graph generation by K-NN often comes with
difficulties in selecting a suitable K . On one hand, when K is too
small, the points are intended to form small subgraphs (clusters)
with no guarantee of connectivity among the subgraphs. This
makes graph-convolution fail to pass through all graph nodes. On
the other hand, when K is large, points are densely connected,
leading to high processing load using graph kernels and large noise
in local feature extraction.

In contrast to the K-NN based graph construction, our work
employs the Delaunay triangulation [105], a widely-used trian-
gulation method in computational geometry, to create graphs
based on the positions of points. The triangulation graph has
three advantages: (1) The connection of all the nodes in the
graph is guaranteed, which makes graph-based network feasible
on all constructed graphs from the point clouds; (2) All the
local nodes are directly connected, which helps the local feature
extraction; (3) The total number of graph connections is relatively
low comparing to the graphs built by K-NN with a large K .
Delaunay triangulation also returns better graphs that leads to
better segmentation results (mcIoU & miIoU: 83.8%, 85.7%) than
5-NN (mcIoU & miIoU: 82.5%, 84.3%) using our MSM-CNN.

The worst-case computational complexity of Delaunay trian-
gulation is well-known to be O(nd

d
2 e) [106], which in the 3D

space is O(n2). Table 6 lists the running time of graph con-
struction algorithms followed by each key component in H-GPGL.
Although Delaunay triangulation indeed needs significantly longer
time, the overall running time is essentially better than 5-NN,
because of better generated graphs.

4.3.2 Implementation Details

H-GPGL. The 2048 points in each object sample is first mapped
to a graph using Delaunay triangulation. Then we conduct two-
level H-GPGL to generate 32 subgraphs using normalized cut at

Figure 12: Architecture of PointNet with 2D max-pooling and upsampling
for point cloud segmentation.

(a) Ground Truth (b) Ours (c) PointNet

Figure 13: Visualization comparison of skateboard part segmentation results
from (a) ground truth, (b) our H-GPGL, and (c) PointNet.

the parent level whose connectivity graph is mapped to a 16× 16
grid. Each subgraph is mapped to a 16×16 grid as well, leading to
a 256× 256 grid layout for each point cloud. Finally we generate
14007 training samples and 2874 test samples for further usage.
Note that for this task we do not use data augmentation, due to the
computational bottleneck.

CNN for Segmentation. In the experiment, we implement the
following neural networks: (1) PointNet, (2) PointNet with 2D
max-pooling and upsampling, (3) U-Net with VGG16 backbone,
(4) U-Net with ResNet50 backbone, and (5) U-Net with MSM
backbone. The architecture of PointNet with 2D max-pooing and
upsampling is presented in Fig 12 The U-Net based networks
are implemented using the segmentation-models package [107].
At the end of the network, a mask filter is applied to label the
void pixels as ignored category, which do not participate in loss
calculation and gradient backpropagation.

We train the network for 30 epochs using Adam [101] with
learning rate 0.0001 and batch-size 1. The training takes 15
hours for each neural network model on an NVidia 2080Ti GPU
machine. We use two common metrics to evaluate the accuracy,
mean instance intersection over union (miIoU) and mean class
intersection over union (mcIoU).

Segmentation on overlapped points. The H-GPGL on a point
cloud may lead to part of the points overlapped in the same grid
cell. Once overlapped points occur, we take an average, by default,
of all the points and assign it to the grid cell. After network infer-
ence, the grid cell is labeled with a predicted semantic category,
which is then assigned to all the overlapped points associated to
that cell. In that way, we fuse the features of overlapped points
and distribute the grid cell labels to those points.

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Figure 14: State-of-the-art segmentation result comparison on ShapeNet.

4.3.3 Results

Table 7 presents the mcIoU and miIoU of all the neural network
models on ShapeNet point cloud segmentation task. From the table
we observe that the PointNet model achieves similar performance
as in [74], while PointNet with 2D max-pooling and upsampling
gains an improved performance with a large margin of 1.9% on
mcIoU and 1.9% on miIoU. We also observe that all U-Net based
models achieve an improved performance against the PointNet
model, which indicates that 2D CNNs benefit from the GPGL
image representations in point cloud feature learning.

Table 7: Results of ShapeNet point cloud segmentation using different CNN
models. The mcIoU denotes mean class intersection over union, and the miIoU
denotes mean instance intersection over union.

Network PointNet PointNet with
2D pooling VGG16 ResNet50 MSM

mcIoU 80.1 82.0 82.6 83.1 84.2

miIoU 80.4 82.3 82.8 84.0 86.0

We visualize our segmentation result in Fig. 13 comparing
with the ground truth as well as the one using PointNet. As we
see, our result is much closer to the ground truth, especially
on the top-left wheel and the axis between the two bottom-
wheels. Although we have some wrong predictions among the
points between the two top-wheels, we think that these mistakes
are acceptable because the shape is symmetric that makes the
prediction harder to differentiate the top and bottom parts.

We then summarize the state-of-the-art segmentation results
on ShapeNet in Fig. 14. Clearly our results using MSM-CNN,
both mcIoU and miIoU, are comparable to the literature. Further
we list the ShapeNet part segmentation IoU of each object class in
Table 8 for more detail comparison, and ours are the best among
8 of the 16 classes.

Impact of overlapped points. To understand the impact of
overlapped points in point cloud segmentation, we analyze the
segmentation accuracy of all points and overlapped points on the
ShapeNet test set. Among the 2874 test samples with 5,885,952
points, 17616 points are overlapped to the same grid cell, which
covers 0.299% of the points. In the test, 62.7% of the overlapped

points are mislabeled, which leads to a 0.22% decrease in mcIoU
and 0.21% in miIoU. This observation shows that the MSM-CNN
have difficulty in segmenting the overlapped points, which needs
further study to overcome. However, since the overlapped points
take only a tiny portion of the point cloud, they have a minor
impact on the accuracy of point cloud segmentation.

5 CONCLUSION

In this paper we answer the question positively that CNNs can
be used directly for graph applications by projecting graphs on
grids properly. To this end, we propose a novel graph drawing
problem, namely graph-preserving grid layout (GPGL), which is
an integer programming to learn 2D grid layouts by minimizing
topology loss. We propose a penalized Kamada-Kawai algorithm
to solve the integer programming and a multi-scale maxout CNN
to work with GPGL. We manage to demonstrate the success of
GPGL on small graph classification. To improve the computational
efficiency of GPGL, we propose hierarchical GPGL (H-GPGL)
that utilizes graph partitioning algorithms such as normalized cut
to generate subgraphs which GPGL is applied to. We demonstrate
that H-GPGL is much more suitable than GPGL to large graph
applications such as 3D point cloud semantic segmentation, where
we achieve the state-of-the-art on ShapeNet part segmentation
benchmark. As future work we are interested in applying this
method to real-world problems such as LiDAR data processing.

ACKNOWLEDGMENT

This work was supported in part by the Mitsubishi Electric
Research Laboratories (MERL) and NSF CCF-2006738.

REFERENCES

[1] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in NeurIPS,
2016, pp. 3844–3852.

[2] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[3] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NeurIPS, 2017, pp. 1024–1034.

[4] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[5] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph
convolutional networks via importance sampling,” in ICLR, 2018.

[6] H. Gao and S. Ji, “Graph u-nets,” in ICML, 2019, pp. 2083–2092.
[7] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Sim-

plifying graph convolutional networks,” in International conference on
machine learning. PMLR, 2019, pp. 6861–6871.

[8] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions
on neural networks and learning systems, 2020.

[9] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,
and M. Grohe, “Weisfeiler and leman go neural: Higher-order graph
neural networks,” in AAAI, vol. 33, 2019, pp. 4602–4609.

[10] W. Zhao, C. Xu, Z. Cui, T. Zhang, J. Jiang, Z. Zhang, and J. Yang,
“When work matters: Transforming classical network structures to
graph cnn,” arXiv preprint arXiv:1807.02653, 2018.

[11] J. Jiang, Z. Cui, C. Xu, and J. Yang, “Gaussian-induced convolution
for graphs,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 4007–4014.

[12] Q. Xuan, J. Wang, M. Zhao, J. Yuan, C. Fu, Z. Ruan, and G. Chen,
“Subgraph networks with application to structural feature space expan-
sion,” IEEE Transactions on Knowledge and Data Engineering, 2019.

[13] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in ICML, 2016, pp. 2014–2023.

[14] R. Al-Rfou, B. Perozzi, and D. Zelle, “Ddgk: Learning graph repre-
sentations for deep divergence graph kernels,” in The World Wide Web
Conference. ACM, 2019, pp. 37–48.

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Table 8: Result comparison on ShapeNet part segmentation IoU (%) of each object class.

air plane bag cap car chair ear phone guitar knife lamp laptop motor bike mug pistol rocket skateboard table ave.

PointNet [74] 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6 80.4
Pointnet++ [75] 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6 81.9
DGCNN [89] 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0 82.3
RS-CNN [79] 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6 84.0

DensePoint [84] 84.0 85.4 90.0 79.2 91.1 81.6 91.5 87.5 84.7 95.9 74.3 94.6 82.9 64.6 76.8 83.7 84.2

Ours 83.3 83.1 89.4 75.9 87.8 80.5 91.7 90.9 87.2 96.0 66.6 92.6 86.3 69.4 81.1 86.0 84.2

[15] H. Gao and S. Ji, “Graph representation learning via hard and channel-
wise attention networks,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.
ACM, 2019, pp. 741–749.

[16] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[17] S. Ivanov and E. Burnaev, “Anonymous walk embeddings,” in Interna-
tional conference on machine learning. PMLR, 2018, pp. 2186–2195.

[18] F. Chen, S. Pan, J. Jiang, H. Huo, and G. Long, “Dagcn: Dual attention
graph convolutional networks,” arXiv preprint arXiv:1904.02278, 2019.

[19] A. J.-P. Tixier, G. Nikolentzos, P. Meladianos, and M. Vazirgiannis,
“Graph classification with 2d convolutional neural networks,” in Inter-
national Conference on Artificial Neural Networks. Springer, 2019,
pp. 578–593.

[20] Z. Xinyi and L. Chen, “Capsule graph neural network,” in ICLR, 2019.
[21] Z. Zhang, D. Chen, J. Wang, L. Bai, and E. R. Hancock, “Quantum-

based subgraph convolutional neural networks,” Pattern Recognition,
vol. 88, pp. 38–49, 2019.

[22] H. Jin, Q. Song, and X. Hu, “Discriminative graph autoencoder,” in
2018 IEEE International Conference on Big Knowledge (ICBK). IEEE,
2018, pp. 192–199.

[23] Q. Zhao and Y. Wang, “Learning metrics for persistence-based
summaries and applications for graph classification,” arXiv preprint
arXiv:1904.12189, 2019.

[24] Y. Ma, S. Wang, C. C. Aggarwal, and J. Tang, “Graph convolutional
networks with eigenpooling,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2019, pp. 723–731.

[25] B. Knyazev, X. Lin, M. R. Amer, and G. W. Taylor, “Spectral multigraph
networks for discovering and fusing relationships in molecules,” arXiv
preprint arXiv:1811.09595, 2018.

[26] L. Jia, B. Gaüzère, and P. Honeine, “Graph kernels based on linear
patterns: Theoretical and experimental comparisons,” 2019.

[27] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2015, pp. 1365–1374.

[28] M. Neumann, R. Garnett, C. Bauckhage, and K. Kersting, “Propagation
kernels: efficient graph kernels from propagated information,” Machine
Learning, vol. 102, no. 2, pp. 209–245, 2016.

[29] N. M. Kriege, P.-L. Giscard, and R. Wilson, “On valid optimal assign-
ment kernels and applications to graph classification,” in NeurIPS, 2016,
pp. 1623–1631.

[30] A. Atamna, N. Sokolovska, and J.-C. Crivello, “Spi-gcn: A simple
permutation-invariant graph convolutional network,” 2019.

[31] P. Corcoran, “Function space pooling for graph convolutional net-
works,” in International Cross-Domain Conference for Machine Learn-
ing and Knowledge Extraction. Springer, 2020, pp. 473–483.

[32] S. Verma and Z.-L. Zhang, “Graph capsule convolutional neural net-
works,” arXiv preprint arXiv:1805.08090, 2018.

[33] M. Togninalli, E. Ghisu, F. Llinares-López, B. Rieck, and K. Borg-
wardt, “Wasserstein weisfeiler-lehman graph kernels,” arXiv preprint
arXiv:1906.01277, 2019.

[34] J. Li, Y. Rong, H. Cheng, H. Meng, W. Huang, and J. Huang, “Semi-
supervised graph classification: A hierarchical graph perspective,” in
The World Wide Web Conference. ACM, 2019, pp. 972–982.

[35] R. Kondor and H. Pan, “The multiscale laplacian graph kernel,” in
Advances in Neural Information Processing Systems, 2016, pp. 2990–
2998.

[36] Y. Lyu, M. Li, X. Huang, U. Guler, P. Schaumont, and Z. Zhang,
“Treernn: Topology-preserving deep graph embedding and learning,”
in 2020 25th International Conference on Pattern Recognition (ICPR).
IEEE, 2021, pp. 7493–7499.

[37] Z. Wang and S. Ji, “Second-order pooling for graph neural networks,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[38] R. Hu, S. Pan, G. Long, Q. Lu, L. Zhu, and J. Jiang, “Going deep:
Graph convolutional ladder-shape networks,” in Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 34, no. 03, 2020, pp.
2838–2845.

[39] G. Jaume, A.-p. Nguyen, M. R. Martínez, J.-P. Thiran, and M. Gabrani,
“edgnn: a simple and powerful gnn for directed labeled graphs,” arXiv
preprint arXiv:1904.08745, 2019.

[40] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn,
and D. Yu, “Convolutional neural networks for speech recognition,”
IEEE/ACM Transactions on audio, speech, and language processing,
vol. 22, no. 10, pp. 1533–1545, 2014.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[42] M. Chrobak and T. H. Payne, “A linear-time algorithm for drawing a
planar graph on a grid,” Information Processing Letters, vol. 54, no. 4,
pp. 241–246, 1995.

[43] W. Schnyder, “Embedding planar graphs on the grid,” in Proceedings of
the first annual ACM-SIAM symposium on Discrete algorithms. Society
for Industrial and Applied Mathematics, 1990, pp. 138–148.

[44] T. Kamada and S. Kawai, “An algorithm for drawing general undirected
graphs,” Information processing letters, vol. 31, no. 1, pp. 7–15, 1989.

[45] S. G. Kobourov, “Spring embedders and force directed graph drawing
algorithms,” arXiv preprint arXiv:1201.3011, 2012.

[46] Y. Frishman and A. Tal, “Multi-level graph layout on the gpu,” IEEE
Transactions on Visualization and Computer Graphics, vol. 13, no. 6,
pp. 1310–1319, 2007.

[47] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” arXiv preprint arXiv:1709.05584,
2017.

[48] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,”
IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 5,
pp. 833–852, 2018.

[49] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey
of graph embedding: Problems, techniques, and applications,” IEEE
Transactions on Knowledge and Data Engineering, vol. 30, no. 9, pp.
1616–1637, 2018.

[50] U. Doğrusöz, B. Madden, and P. Madden, “Circular layout in the
graph layout toolkit,” in International Symposium on Graph Drawing.
Springer, 1996, pp. 92–100.

[51] M. Eiglsperger, S. P. Fekete, and G. W. Klau, “Orthogonal graph
drawing,” in Drawing Graphs. Springer, 2001, pp. 121–171.

[52] Y. Koren, “Drawing graphs by eigenvectors: theory and practice,”
Computers & Mathematics with Applications, vol. 49, no. 11-12, pp.
1867–1888, 2005.

[53] D. A. Spielman, “Spectral graph theory and its applications,” in 48th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS’07).
IEEE, 2007, pp. 29–38.

[54] R. Tamassia, Handbook of graph drawing and visualization. Chapman
and Hall/CRC, 2013.

[55] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

[56] R. Freese, “Automated lattice drawing,” in International Conference on
Formal Concept Analysis. Springer, 2004, pp. 112–127.

[57] A. Grover, A. Zweig, and S. Ermon, “Graphite: Iterative generative
modeling of graphs,” vol. 97, pp. 2434–2444, 2019. [Online]. Available:
http://proceedings.mlr.press/v97/grover19a.html

[58] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning deep
generative models of graphs,” arXiv preprint arXiv:1803.03324, 2018.

[59] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, “Graphrnn:
Generating realistic graphs with deep auto-regressive models,” in Inter-
national Conference on Machine Learning. PMLR, 2018, pp. 5708–
5717.

[60] B. Samanta, D. Abir, G. Jana, P. K. Chattaraj, N. Ganguly, and M. G.
Rodriguez, “Nevae: A deep generative model for molecular graphs,” in
AAAI, vol. 33, 2019, pp. 1110–1117.

[61] O.-H. Kwon and K.-L. Ma, “A deep generative model for graph layout,”
IEEE Transactions on visualization and Computer Graphics, vol. 26,
no. 1, pp. 665–675, 2019.

http://proceedings.mlr.press/v97/grover19a.html

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

[62] L. Franceschi, M. Niepert, M. Pontil, and X. He, “Learning discrete
structures for graph neural networks,” in ICML, 2019, pp. 1972–1982.

[63] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M.
Bronstein, “Geometric deep learning on graphs and manifolds using
mixture model cnns,” in CVPR, 2017, pp. 5115–5124.

[64] Z. Huang, J. Wu, and L. Van Gool, “Building deep networks on
grassmann manifolds,” in AAAI, 2018.

[65] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst, “Geodesic
convolutional neural networks on riemannian manifolds,” in Proceed-
ings of the IEEE international conference on computer vision work-
shops, 2015, pp. 37–45.

[66] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein, “Learning shape
correspondence with anisotropic convolutional neural networks,” in
Advances in Neural Information Processing Systems, 2016, pp. 3189–
3197.

[67] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “Cayleynets:
Graph convolutional neural networks with complex rational spectral
filters,” IEEE Transactions on Signal Processing, vol. 67, no. 1, pp.
97–109, 2018.

[68] L. Yi, H. Su, X. Guo, and L. J. Guibas, “Syncspeccnn: Synchronized
spectral cnn for 3d shape segmentation,” in CVPR, 2017, pp. 2282–
2290.

[69] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
IEEE Transactions on Knowledge and Data Engineering, 2020.

[70] M. Heimann, T. Safavi, and D. Koutra, “Distribution of node embed-
dings as multiresolution features for graphs,” in 2019 IEEE Interna-
tional Conference on Data Mining (ICDM). IEEE, 2019, pp. 289–298.

[71] T. T. T. Ho, H. Vu, and B. Le, “Efficient graph classification via
graph encoding networks,” in 2020 RIVF International Conference on
Computing and Communication Technologies (RIVF). IEEE, 2020, pp.
1–6.

[72] K. Zhang, M. Hao, J. Wang, C. W. de Silva, and C. Fu, “Linked dynamic
graph cnn: Learning on point cloud via linking hierarchical features,”
arXiv preprint arXiv:1904.10014, 2019.

[73] G. Te, W. Hu, A. Zheng, and Z. Guo, “Rgcnn: Regularized graph cnn
for point cloud segmentation,” in 2018 ACM Multimedia Conference on
Multimedia Conference. ACM, 2018, pp. 746–754.

[74] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 652–660.

[75] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in neural
information processing systems, 2017, pp. 5099–5108.

[76] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn: Con-
volution on x-transformed points,” in Advances in Neural Information
Processing Systems, 2018, pp. 820–830.

[77] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao, “Spidercnn: Deep learning
on point sets with parameterized convolutional filters,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp.
87–102.

[78] J. Li, B. M. Chen, and G. Hee Lee, “So-net: Self-organizing network
for point cloud analysis,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 9397–9406.

[79] Y. Liu, B. Fan, S. Xiang, and C. Pan, “Relation-shape convolutional
neural network for point cloud analysis,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
8895–8904.

[80] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks
on 3d point clouds,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 9621–9630.

[81] H. Lei, N. Akhtar, and A. Mian, “Octree guided cnn with spherical
kernels for 3d point clouds,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 9631–9640.

[82] A. Komarichev, Z. Zhong, and J. Hua, “A-cnn: Annularly convolutional
neural networks on point clouds,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2019, pp. 7421–
7430.

[83] Z. Zhang, B.-S. Hua, and S.-K. Yeung, “Shellnet: Efficient point cloud
convolutional neural networks using concentric shells statistics,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 1607–1616.

[84] Y. Liu, B. Fan, G. Meng, J. Lu, S. Xiang, and C. Pan, “Densepoint:
Learning densely contextual representation for efficient point cloud
processing,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2019, pp. 5239–5248.

[85] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.-H. Yang, and
J. Kautz, “Splatnet: Sparse lattice networks for point cloud processing,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2530–2539.

[86] R. Klokov and V. Lempitsky, “Escape from cells: Deep kd-networks for
the recognition of 3d point cloud models,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 863–872.

[87] N. Verma, E. Boyer, and J. Verbeek, “Feastnet: Feature-steered graph
convolutions for 3d shape analysis,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2018, pp. 2598–
2606.

[88] Y. Shen, C. Feng, Y. Yang, and D. Tian, “Mining point cloud local
structures by kernel correlation and graph pooling,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018,
pp. 4548–4557.

[89] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” Acm
Transactions On Graphics (tog), vol. 38, no. 5, pp. 1–12, 2019.

[90] Y. Rao, J. Lu, and J. Zhou, “Spherical fractal convolutional neural
networks for point cloud recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
452–460.

[91] J. Mao, X. Wang, and H. Li, “Interpolated convolutional networks for
3d point cloud understanding,” arXiv preprint arXiv:1908.04512, 2019.

[92] Y. Lyu, X. Huang, and Z. Zhang, “Learning to segment 3d point clouds
in 2d image space,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 12 255–12 264.

[93] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015.

[94] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1251–1258.

[95] A. Zisserman, “Self-supervised learning,” https://project.inria.fr/paiss/
files/2018/07/zisserman-self-supervised.pdf, 2018.

[96] L. A. Wolsey and G. L. Nemhauser, Integer and combinatorial opti-
mization. John Wiley & Sons, 2014.

[97] S. P. Bradley, A. C. Hax, and T. L. Magnanti, “Applied mathematical
programming,” 1977.

[98] NetworkX developer team, “Networkx,” 2014. [Online]. Available:
https://networkx.github.io/

[99] D. Harel and Y. Koren, “A fast multi-scale method for drawing large
graphs,” in International symposium on graph drawing. Springer, 2000,
pp. 183–196.

[100] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio,
“Maxout networks,” in International conference on machine learning,
2013, pp. 1319–1327.

[101] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2015. [Online]. Available: http://arxiv.org/abs/1412.6980

[102] J. Shi and J. Malik, “Normalized cuts and image segmentation,” De-
partmental Papers (CIS), p. 107, 2000.

[103] V. Vasudevan and M. Ramakrishna, “A hierarchical singular value
decomposition algorithm for low rank matrices,” CoRR, vol.
abs/1710.02812, 2017. [Online]. Available: http://arxiv.org/abs/1710.
02812

[104] L. Yi, V. G. Kim, D. Ceylan, I. Shen, M. Yan, H. Su, C. Lu, Q. Huang,
A. Sheffer, L. Guibas et al., “A scalable active framework for region
annotation in 3d shape collections,” ACM Transactions on Graphics
(TOG), vol. 35, no. 6, p. 210, 2016.

[105] B. Delaunay et al., “Sur la sphere vide,” Izv. Akad. Nauk SSSR,
Otdelenie Matematicheskii i Estestvennyka Nauk, vol. 7, no. 793-800,
pp. 1–2, 1934.

[106] N. Amenta, D. Attali, and O. Devillers, “Complexity of delaunay
triangulation for points on lower-dimensional˜ polyhedra,” in 18th
ACM-SIAM Symposium on Discrete Algorithms, 2007, pp. 1106–1113.

[107] P. Yakubovskiy, “Segmentation models,” https://github.com/qubvel/
segmentation_models, 2019.

https://project.inria.fr/paiss/files/2018/07/zisserman-self-supervised.pdf
https://project.inria.fr/paiss/files/2018/07/zisserman-self-supervised.pdf
https://networkx.github.io/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1710.02812
http://arxiv.org/abs/1710.02812
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Yecheng Lyu (S’17) received his B.S. degree
from Wuhan University, China in 2012 and M.S.
degree from Worcester Polytechnic Institute,
USA in 2015 where he is currently a Ph.D stu-
dent working on autonomous vehicles. His cur-
rent research interest is point cloud processing
and deep learning.

Xinming Huang (M’01–SM’09) received the
Ph.D. degree in electrical engineering from Vir-
ginia Tech in 2001. Since 2006, he has been
a faculty in the Department of Electrical and
Computer Engineering at Worcester Polytechnic
Institute (WPI), where he is currently a chair
professor. Previously he was a Member of Tech-
nical Staffs with the Bell Labs of Lucent Tech-
nologies. His main research interests are in the
areas of circuits and systems, with emphasis
on autonomous vehicles, deep learning, IoT and

wireless communications.

Ziming Zhang is an assistant professor at
Worcester Polytechnic Institute (WPI). Before
joining WPI he was a research scientist at Mit-
subishi Electric Research Laboratories (MERL)
in 2017-2019. Prior to that, he was a research
assistant professor at Boston University in 2016-
2017. Dr. Zhang received his PhD in 2013 from
Oxford Brookes University, UK, under the super-
vision of Prof. Philip H. S. Torr. His research
areas include object recognition and detection,
zero-shot learning, deep learning, optimization,

large-scale information retrieval, visual surveillance, and medical imag-
ing analysis. His works have appeared in TPAMI, IJCV, CVPR, ICCV,
ECCV, ACM Multimedia, ICDM, ICLR and NIPS. He won the R&D 100
Award 2018.

	1 Introduction
	2 Related Work
	3 Graph-Preserving Grid Layout (GPGL)
	3.1 Problem Setup
	3.2 Penalized Kamada-Kawai Algorithm for GPGL
	3.2.1 Preliminary: Kamada-Kawai Algorithm
	3.2.2 Our Algorithm

	3.3 Experiments: Small Graph Classification
	3.3.1 Data Sets & Data Augmentation
	3.3.2 Grid-Layout based 3D Representation
	3.3.3 Classifier: Multi-Scale Maxout CNNs (MSM-CNNs)
	3.3.4 Implementation
	3.3.5 Ablation Study
	3.3.6 State-of-the-Art Comparison

	4 Hierarchical GPGL (H-GPGL)
	4.1 Algorithm Overview
	4.2 Normalized Cuts shi2000normalized for Graph Partitioning
	4.3 Experiment: Point Cloud Semantic Segmentation
	4.3.1 Graph Construction from Point Cloud
	4.3.2 Implementation Details
	4.3.3 Results

	5 Conclusion
	References
	Biographies
	Yecheng Lyu
	Xinming Huang
	Ziming Zhang

