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Effective Training of Convolutional Neural
Networks with Low-bitwidth Weights and

Activations
Bohan Zhuang, Mingkui Tan, Jing Liu, Lingqiao Liu, Ian Reid, and Chunhua Shen

Abstract—This paper tackles the problem of training a deep convolutional neural network of both low-bitwidth weights and activations.
Optimizing a low-precision network is very challenging due to the non-differentiability of the quantizer, which may result in substantial
accuracy loss. To address this, we propose three practical approaches, including (i) progressive quantization; (ii) stochastic precision;
and (iii) joint knowledge distillation to improve the network training. First, for progressive quantization, we propose two schemes to
progressively find good local minima. Specifically, we propose to first optimize a network with quantized weights and subsequently
quantize activations. This is in contrast to the traditional methods which optimize them simultaneously. Furthermore, we propose a
second progressive quantization scheme which gradually decreases the bit-width from high-precision to low-precision during training.
Second, to alleviate the excessive training burden due to the multi-round training stages, we further propose a one-stage stochastic
precision strategy to randomly sample and quantize sub-networks while keeping other parts in full-precision. Finally, we adopt a novel
learning scheme to jointly train a full-precision model alongside the low-precision one. By doing so, the full-precision model provides
hints to guide the low-precision model training and significantly improves the performance of the low-precision network. Extensive
experiments on various datasets (e.g., CIFAR-100, ImageNet) show the effectiveness of the proposed methods.

Index Terms—Quantized neural network, progressive quantization, stochastic precision, knowledge distillation, image classification.
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1 INTRODUCTION

State-of-the-art deep neural networks [1], [2], [3] usually
involve millions of parameters and need billions of FLOPs
for training and inference. The significant memory con-
sumption and computational cost can make it intractable
to deploy models to mobile, embedded hardware devices.
To improve computing and memory efficiency, various so-
lutions have been proposed, including network pruning [4],
[5], [6], low rank approximation of weights [7], [8], training
a low-precision network [9], [10], [11], [12] and efficient
architecture design [13], [14], [15]. In this work, we follow
the idea of training a low-precision network and our focus
is to improve the training process of such a network. Thus,
our work targets the problem of training a network with
both extremely low-bit weights and activations.

The solutions proposed in this paper contain three com-
ponents. They can be applied independently or jointly.
The first component is the progressive quantization which
consists of two schemes. The first strategy is to adopt a two-
stage training process. At the first stage, only the weights
of a network are quantized. After obtaining a sufficiently
good solution at the first stage, the activation of the network
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is further required to be in low-precision and the network
is trained again. Essentially, this two-stage approach first
solves a related sub-problem, i.e., training a network with
only low-bit weights and the solution of the sub-problem
provides a good initial point for training our target problem.
Following the similar idea, we propose our second scheme
by performing progressive training on the bitwidth aspect
of the network. Specifically, we incrementally train a serial
of networks with the quantization bitwidth (precision) grad-
ually decreased from full-precision to the target precision.

However, the above progressive quantization needs sev-
eral retraining steps which introduces additional training
burdens. To solve this problem, we further propose our
second component termed stochastic precision to effectively
combine these two strategies into one single training stage.
Inspired by dropout strategies [16], [17], we randomly select
a portion of the model (e.g., layers, blocks) and activations
or weights to quantize while keeping other parts in full-
precision. Thus, we can improve the gradient flow for
effectively training quantized neural networks.

The third component is inspired by the recent progress
of information distillation [18], [19], [20], [21], [22]. The basic
idea of those works is to train a target network alongside
another guidance network. For example, the works in [18],
[19], [20], [21], [22] propose to train a small student network
to mimic the deeper or wider teacher network. They add an
additional regularizer by minimizing the difference between
student’s and teacher’s posterior probabilities [19] or inter-
mediate feature representations [18], [22]. It is observed that
by using the guidance of the teacher model, better perfor-
mance can be obtained with the student model than directly
training the student model on the target problem. Motivated
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by these observations, we propose to train a full-precision
network alongside the target low-precision network. In our
work, the student network has the similar topology as that
of the teacher network, except that the student network is
low-precision while the teacher network keeps full-precision
operations. Moreover, in contrast to standard knowledge
distillation methods, we allow the teacher network to be
jointly optimized with the student network rather than
being fixed since we discover that this strategy enables the
two networks adjust better to each other. Interestingly, the
performance of both the full-precision teacher and the low-
precision student can be improved.

Our main contributions are summarized as follows.

• We propose two progressive quantization schemes
for tackling the non-differentiability of quantization
operations during training. In the first scheme, we
propose a two-stage training manner, where the
weights are first quantized to serve as a good ini-
tialization on further quantizing activations. In the
second scheme, we progressively reduce the bitwidth
during training to find better local minima.

• To reduce the extra training burden, we introduce
structured stochastic training, leading to an effective,
simplified one-stage training approach.

• To our knowledge, we are the first to propose to
improve the low-precision network training using
knowledge distillation technique where the full-
precision teacher and the quantized student are
jointly optimized to adapt to each other. We explore
different distilling schemes in Sec. 4 and all produce
improved accuracy for the low-precision model.

• We conduct extensive experiments with various pre-
cisions and architectures on the image classification
task.

This paper extends the preliminary conference ver-
sion [23] in several aspects. 1) Although the multi-stage
progressive quantization in [23] clearly improves the perfor-
mance, the multiple re-initialization and fine-tuning steps
make the training procedure complex and introduce com-
putation overhead. To solve this problem, here we pro-
pose a much simpler one-stage stochastic precision strategy
that enjoys the advantage of the multi-stage progressive
quantization. 2) We extend the hint-based joint knowledge
distillation to a more advanced framework that unifies
attention transfer [21] and posterior-based schemes. 3) We
now conduct extensive experiments on ImageNet over var-
ious architectures to formulate strong and comprehensive
baselines for future works. We study several schemes which
produce low-precision networks using different distilling
strategies and provide interesting analysis.

2 RELATED WORK

We have witnessed a growing interest of model compression
methods, such as limited numerical precision, efficient ar-
chitecture design and knowledge distillation. We also study
the dropout strategies in this paper. Next we discuss related
literature with respect to these aspects.
Limited numerical precision. Model quantization aims to
quantize the weights, activations and even backpropagation

gradients into low-precision, to yield highly compact DNNs
compared to their floating-point counterparts. As a result,
most of the multiplication operations in network inference
can be replaced by more efficient addition or bitwise oper-
ations. In general, quantization methods generally involve
binary neural networks (BNNs) and fixed-point quantiza-
tion. In particular, BNNs [24], [25], [26], [27], [28], [29], [30],
where both weights and activations are quantized to binary
tensors, are reported to have potentially 32× memory com-
pression ratio, and up to 58× speed-up on CPU compared
with the full-precision counterparts. However, BNNs still
suffer from sizable performance drop issue, hindering them
from being widely deployed. To make a trade-off between
accuracy and complexity, researchers also study fixed-point
quantization [12], [31], [32], [33], [34]. In general, quanti-
zation algorithms aim at tackling two core challenges. The
first challenge is to design accurate quantizers to minimize
the information loss. Early works use handcrafted heuristic
quantizers [12] while later studies propose to adjust the
quantizers to the data, basically based on matching the
original data distribution [12], [35], minimizing the quan-
tization error [36] or directly optimizing the quantizer with
stochastic gradient descent [31], [37]. The second challenge
is to approximate gradients of the non-differentiable quan-
tizer. To solve this problem, most works in literature sim-
ply employ “pseudo-gradients” according to the straight-
through estimator (i.e., STE) [38]. Some recent studies pro-
pose to improve the discrete optimization problem via loss-
aware training [39], regularization [40], [41], [42], entropy
maximization [43], [44], or smoothing the quantizer [45]. In
addition to the quantization algorithms design, the under-
lying implementation and acceleration libraries [46], [47],
[48], [49] are indispensable to expedite the quantization
technique to be deployed on energy-efficient edge devices.
In this paper, we propose three training solutions that can
be built upon general quantization approaches.
Efficient architecture design. The increasing demand for
highly energy efficient neural networks that are deployable
to embedded hardware devices has motivated the network
architecture design. SqueezeNet [50] replaces 3×3 convolu-
tional filters with 1×1 size, which significantly decreases the
complexity. Depthwise separable convolutions employed in
Xception [51], MobileNet [14] and ShuffleNet [15] have been
proved to be efficient and effective. Since it is infeasible to
manually explore the optimal architecture from the enor-
mous design space, neural architecture search (NAS) aims at
automating the architecture design, giving rise to methods
based on the reinforcement learning [52], [53], [54], [55],
evolutionary algorithms [56], or gradient-based methods
[13], [57], [58].

Moreover, network pruning [4], [59] can be viewed as a
special case of NAS, aiming to remove redundant connec-
tions such as convolutional filters. Some works also employ
reinforcement learning [60], [61], Bayesian optimization [62]
or NAS [63] to automatically search the pruning policy for
each layer.
Knowledge distillation. Knowledge distillation was ini-
tially proposed for model compression, where a pow-
erful wide/deep teacher distills knowledge into a nar-
row/shallow student to improve its performance [18], [19].
In terms of the representation of knowledge to be distilled
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from the teacher, existing models typically use teacher’s
class probabilities [19] and/or feature representations [18],
[21]. Knowledge distillation has been widely used in many
computer vision tasks. Zhang et al. [64] proposes to trans-
fer the knowledge learned with optical flow CNN to im-
prove the action recognition performance. Moreover, several
works propose to learn efficient object detection [65], [66]
and semantic segmentation [67] with distillation. In contrast
to previous approaches, we concentrate on improving the
performance of the quantized neural network. By adapting
the teacher and student altogether, we can steadily improve
the performance of the quantized student network and even
the full-precision teacher network. Note that concurrent
works [44], [68] with ours [23] also apply knowledge dis-
tillation to quantization. We have also explored it together
with other advanced training strategies.
Dropout. Dropout [16], Maxout [69], DropConnect [70] and
DropIn [71] are a category of approaches that stochastically
drop intermediate nodes or connections during training to
prevent the network from overfitting. They essentially per-
form different types of regularization. Huang et al. [17] fur-
ther propose stochastic depth regularization via randomly
dropping a subset of layers during training. Dong et al. [72]
proposes to randomly quantize a portion of weights to low-
precision in the incremental training framework [9]. The
method in [72] was developed for only quantizing weights
of a network. In our method, we develop an extension of it
by further randomly quantizing a portion of the network,
i.e., layers or blocks as well as activations and weights. More-
over, we [23] propose two progressive training strategies: 1)
quantizing weights and activations in a two-stage manner;
2) progressively decreasing the bitwidth from high-precision
to low-precision during the course of training. However, the
multi-stage strategy may slow down the training. Inspired
by those dropout approaches, we improve the progressive
quantization by proposing an efficient single-stage stochas-
tic precision strategy. Our study shows that this extended
scheme is complementary to the proposed joint knowledge
distillation approach.

Recently, Yu et al. proposed slimmable neural networks
[73], [74] aiming to train a single neural network exe-
cutable at different widths on the fly at test time, per-
mitting instant and adaptive accuracy-efficiency trade-offs.
The core challenge is to sufficiently train all sub-networks.
Specifically, the original slimmable neural networks [73]
proposes to average gradients of different widths without
introducing stochastic selection. To improve the optimiza-
tion of all sub-networks, US-Nets [74] randomly samples
widths in a certain range and apply averaged gradients
back-propagated from the accumulated loss. However, our
approach aims to solve the notorious difficulty in propa-
gating gradients through a low-precision network due to
the non-differentiable quantization function. Inspired by the
dropout strategies, we propose to stochastically quantize
a portion of the network to low-bit while keeping the
other portion full-precision, thus making gradients back-
propagate more easily. In our method, there is no “sub-
networks” concept. We aim to maximize the performance
of the whole quantized network rather than optimizing the
mixed-precision network stochastically generated in each
iteration sufficiently.

3 METHODS

In this section, we first introduce the quantization pre-
liminaries in Sec. 3.1. We then describe the progressive
quantization schemes in Sec. 3.2 and explain the stochastic
precision approach in Sec. 3.3. Finally, we elaborate the joint
knowledge distillation in Sec. 3.4.

3.1 Problem definition
In this work, we use DoReFa-Net [12]1 to quantize both
weights and activations. Consider the general case of k-bit
quantization. We define the quantization function Q(·) as:

zq = Q(z) =
1

2k − 1
· round((2k − 1) · zr), (1)

where zr ∈ [0, 1] denotes the normalized full-precision
value and zq ∈ [0, 1] denotes the normalized quantized
value. With this quantization function, we can define the
weight quantization process and the activation quantization
process as follows:
Quantization on weights:

wq = 2Q

(
tanh(w)

2max(|tanh(w)|)
+

1

2

)
− 1. (2)

In other words, we first use tanh(w)
2max(|tanh(w)|) +

1
2 to obtain a

normalized version of w and then perform the quantization,
where tanh(·) is adopted to reduce the impact of large
values.
Quantization on activations:

Same as [12], we first use a clip function f(x) =
clip(x, 0, 1) to bound the activations to [0, 1]. After that,
we quantize the activation by applying the quantization
function Q(·) on f(x):

xq = Q(f(x)). (3)

Back-propagation with quantization function:
In general, the quantization function is non-

differentiable and thus it is impossible to directly apply the
back-propagation to train the network. To overcome this
issue, we adopt the straight-through estimator [12], [25],
[38] to approximate the gradients calculation. Formally,
we approximate the partial gradient ∂zq

∂zr
with an identity

mapping, namely ∂zq
∂zr

≈ 1. Accordingly, ∂`
∂zr

can be
approximated by

∂`

∂zr
=

∂`

∂zq

∂zq
∂zr
≈ ∂`

∂zq
, (4)

where ` is the loss.

3.2 Progressive quantization
3.2.1 Two-stage optimization
With the straight-through estimator, it is possible to directly
optimize the low-precision network. However, the gradi-
ent approximation of the quantization function inevitably
introduces noisy signals for updating network parameters.
Strictly speaking, the approximated gradient may not be the
right updating direction. Thus, the training process can be

1. It should be noted that our proposed method is orthogonal to other
quantization methods.
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Algorithm 1: Two-stage optimization for k-bit quanti-
zation

Input: Training data {(xi, yi)}Ni=1; A K-bit precision
model MK

low with weights WK
low.

Output: A low-precision deep model Mk
low with

weights Wk
low and activations being

quantized into k-bit.
1 Stage 1: Quantize WK

low:
2 for epoch = 1, ... do
3 for i = 1, ...N do
4 Randomly sample a mini-batch data;
5 Quantize the weights WK

low into k-bit by
calling some quantization methods with K-bit
activations;

6 Stage 2: Quantize activations:
7 Initialize Wk

low using the converged k-bit weights
from Stage 1 as the starting point;

8 for epoch = 1, ... do
9 for i = 1, ...N do

10 Randomly sample a mini-batch data;
11 Quantize the activations into k-bit by calling

some quantization methods while keeping the
weights to k-bit;

more likely to get trapped at a poor local minimal than
training a full-precision model. Applying the quantization
function to both weights and activations further worsens
the situation.

To alleviate this training difficulty, we devise a two-stage
optimization procedure as follows. At the first stage, we
only quantize the weights of the network while setting the
activations to be full-precision. After the converge (or after a
certain number of iterations) of this model, we further apply
the quantization function on the activations as well and
retrain the network. Essentially, the first stage of this method
is a related sub-problem of the target one. Compared to
the target problem, it is easier to optimize since it only
introduces quantization function on weights. Thus, we are
more likely to arrive at a good solution for this sub-problem.
Then, using it to initialize the target problem may help
the network avoid poor local minima which is likely to be
encountered if we train the network from scratch.

Let MK
low be the high-precision model with K-bit. We

propose to learn a low-precision model Mk
low in a two-stage

manner withMK
low serving as the initial point, where k < K .

The detailed algorithm is shown in Algorithm 1.

3.2.2 Progressive precision
The aforementioned two-stage optimization approach sug-
gests the benefits of using a relatively easy-to-optimize
problem to find a good initialization. However, separating
the quantization of weights and activations is not the only
solution to implement the above idea. In this paper, we also
propose a second scheme which progressively lowers the
bitwidth of the quantization during the course of network
training. Specifically, we progressively conduct the quanti-
zation from higher precisions to lower precision (e.g., 32-bit
→ 16-bit → 4-bit → 2-bit). The model of higher precision

Algorithm 2: Progressive precision for accurate CNNs
with low-precision weights and activations

Input: Training data {(xj , yj)}Nj=1; A pre-trained
32-bit full-precision model Mfull as baseline;
the precision sequence {b1, ..., bn} where
bn < bn−1, ..., b2 < b1 = 32.

Output: A low-precision deep model M bn
low.

1 Let M b1
low =Mfull, where b1 = 32;

2 for i = 2, ...n do
3 Let k = bi and K = bi−1;
4 Obtain Mk

low by calling some quantization
methods with MK

low being the input;

will be used as the starting point of the relatively lower
precision, in analogy with annealing.

Let {b1, ..., bn} be a sequence precision, where bn <
bn−1, ..., b2 < b1, bn is the target precision and b1 is set to 32
by default. The whole progressive optimization procedure
is summarized in Algorithm 2.

LetMk
low be the low-precision model with k-bit andMfull

be the full-precision model. In each step, we propose to learn
Mk

low, with the solution in the (i − 1)-th step, denoted by
MK

low, serving as the initial point, where k < K .

3.3 Stochastic precision
In the proposed progressive quantization method, we need
to gradually quantize the network to low-precision in
multi-round training stages. However, the multiple re-
initialization and fine-tuning steps may introduce additional
computation overhead. To solve this problem, this section
develops a single-stage stochastic precision (SP) strategy to
improve the training efficiency while enjoying the advan-
tage of the multi-stage progressive quantization. Inspired
by the studies that incrementally or stochastically train a
certain part of the network [9], [73], we propose to incorpo-
rate the stochasticity into the progressive training.

The term “stochastic structure” means that we randomly
choose a network structural component, namely, layers,
blocks, activations or weights to quantize and keep the rest
to be full-precision. The specific scheme is elaborated as
follows.

Suppose that we decompose the network M into Z
fragments M = {m1, ...,mZ}, where mi can be any struc-
ture such as a convolutional layer or a residual block. For
each iteration, we intend to partition the fragments into
two sets, a low-precision set Gq = {mq1 , ...,mqNq

} and a
full-precision set Gr = {mr1 , ...,mrNr

}, which satisfies the
condition:

Gq ∪Gr =M, and Gq ∩Gr = ∅. (5)

where Nq and Nr are the number of elements in two sets
respectively.

In our method, we randomly partition Mlow into Gq and
Gr . This is implemented by introducing a binary indicator
b ∈ RZ and a stochastic ratio δ. We randomly set b(i) = 1
with probability (1 − δ), and if b(i) = 1 the i-th fragment
is quantized and otherwise is kept to be full-precision. We
linearly decrease δ to 0 to ensure the whole network being
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Algorithm 3: Stochastic precision training algorithm.

Input: Training data {xt,yt}; weights Wt (W0 =
Wfull); stochastic ratio δt and decay rate µ.

Output: Updated parameters Wt+1; stochastic ratio
δt+1.

1 Partition M into Z fragments {m1, ...,mZ};
2 if δt > 0 then
3 Obtain the binary indicator matrix Bt via uniform

sampling with probability δt;
4 Partition the network M into the quantized set

Gq = {Gtqwa, Gtqw, Gtqa} and the full-precision set
Gtr according to Bt;

5 Obtain the corresponding mixed-precision
parameter set
W̃t = {Q(Wt

qwa), Q(Wt
qw),W

t
qa,W

t
r} ;

6 else
7 W̃t = Q(Wt);

8 ỹt = Forward(xt,W̃t);
9 Compute the loss L(yt, ỹt);

10 ∂L

∂W̃t
= Backward( ∂L∂ỹt ,W̃

t);
11 Update parameters Wt+1 using STE defined in Eq. (4)

and some proper optimizers;
12 δt+1 = δt − µ;

quantized in the end. Note that this procedure implicitly
achieves the effect of the incremental quantization [9] but
without the need of multi-round training.

To further increase the randomness in quantizing m, we
can stochastically choose whether to quantize weights or
activations or both of them. This can be implemented by
randomly sampling a binary indicator matrix B ∈ RZ×2,
where its first column is used to decide whether to quantize
the weights in the corresponding fragment and the second
column is used to decide whether to quantize activations
respectively.

As a result, Gq can be further partitioned into three sub-
sets {Gqwa, Gqw, Gqa}, which represents quantizing both
weights and activations, only quantizing weights and only
quantizing activations, respectively. Thus, SP can share the
advantage of the progressive training in Sec. 3.2.1 and
Sec. 3.2.2.

Moreover, in Sec. 4.2.1, we will explore the effect of
different structure choices of m as well as the extent of
randomness to the final performance.

3.4 Joint knowledge distillation on quantization

The third approach proposed here is inspired by the success
of using information distillation [18], [19], [20], [21], [22]
to train a relatively shallow network. Specifically, these
methods usually use a teacher model (usually a pretrained
deeper network) to provide guided signal for the shallower
network. Following this motivation, we propose to train
the low-precision network alongside another guidance net-
work. Unlike the work in [18], [19], [20], [21], [22], the
guidance network shares the similar architecture as the
target network but is pretrained with full-precision weights
and activations.

However, a pre-trained model may not be necessarily
optimal or may not be suitable for quantization. As a result,
directly using a fixed pretrained model to guide the target
network may not produce the best guidance signals. To
mitigate this problem, we do not fix the parameters of a
pretrained full-precision network.

By using the guidance training strategy, we assume that
there exist some full-precision models with good general-
ization performance, and an accurate low-precision model
can be obtained by directly performing the quantization on
those full-precision models. In this sense, the feature maps
of the learned low-precision model should be close to that
obtained by directly performing quantization on the full-
precision model. To achieve this, essentially, in our learning
scheme, we can jointly train the full-precision and low-
precision models. This allows these two models adapt to
each other. We even find by doing so the performance of the
full-precision model can be slightly improved in some cases.

Formally, let Wfull and Wlow be the weights of the full-
precision model and low-precision model, respectively. Let
µ(x;Wfull) and ν(x;Wlow) be the nested feature maps (i.e.,
activations) of the full-precision model and low-precision
model, respectively. To create the guidance signal, we may
require that the nested feature maps from the two models
should be similar. However, µ(x;Wfull) and ν(x;Wlow) is
usually not directly comparable since one is full-precision
and the other is low-precision. To link these two models, we
can directly quantize the weights and activations of the full-
precision model. For simplicity, we denote the quantized
feature maps by Q(µ(x;Wfull)). Thus, Q(µ(x;Wfull)) and
ν(x;Wlow) will become comparable. Inspired by the atten-
tion transfer method [21], we propose to apply attention
matching at a set of T transfer points within a network, the
constraint can be expressed as:

Latt(Wfull,Wlow) =
N∑
i=1

T∑
j=1

∥∥∥∥∥ A
j
S

‖ AjS ‖2
− A

j
T

‖ AjT ‖2

∥∥∥∥∥ , (6)

where A
j
S and A

j
T are the sum of the absolute values across

the channel dimension of feature maps ν(xi;Wlow) and
Q(µ(xi;Wfull)), respectively.

Algorithm 4: Guided training with a full-precision
network for k-bit quantization

Input: Training data {(xi, yi)}Ni=1; A pre-trained 32-bit
full-precision model Mfull; A k-bit precision
model Mk

low.
Output: A low-precision deep model Mk

low with
weights and activations being quantized into
k bits.

1 Initialize Mk
low based on Mfull;

2 for epoch = 1, ... do
3 for i = 1, ...N do
4 Randomly sample a mini-batch data;
5 Quantize the weights Wlow and activations

into k-bit by minimizing L2(Wlow);
6 Update Mfull by minimizing L1(Wfull);
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Fig. 1: Demonstration of the guided training strategy. Dashed lines show the guidance loss.

Similar to [19], we can also employ the posterior prob-
ability as the guidance signal. Let pfull and plow be the
full-precision teacher network and low-precision student
network predictions, respectively. To measure the correla-
tion between the two distributions, we employ the Kull-
back–Leibler (KL) divergence:

LKL(pfull|plow) =
N∑
i=1

pfull(xi) log
pfull(xi)

plow(xi)
. (7)

Finally, let Lθ1 and Lθ2 be the cross-entropy classifica-
tion losses for the full-precision and low-precision model,
respectively. The guidance losses in Eqs. (6) and (7) will be
added to Lθ1 and Lθ2 , respectively, resulting in the final
objectives for the two networks, namely

L1(Wfull) = α1Lθ1+βLKL(plow|pfull)+γLatt(Wfull,Wlow),
(8)

and

L2(Wlow) = α2Lθ2+βLKL(pfull|plow)+γLatt(Wfull,Wlow),
(9)

where {α1, α2}, β and γ are the balancing hyper-
parameters. We share β and γ for these two objectives.

In the learning procedure, both Wfull and Wlow will
be updated by minimizing L1(Wfull) and L2(Wlow) sep-
arately, using a mini-batch stochastic gradient descent
method. The detailed algorithm is shown in Algorithm 4.
A high-bit precision model MK

low is used as an initialization
of Mk

low, where K > k. Specifically, for the full-precision
model, we have K = 32. Relying on Mfull, the weights and
activations of Mk

low can be initialized respectively.
Note that the training process of the two networks are

different. When updating Wlow by minimizing L2(Wlow),
we use the full-precision model as initialization and apply
STE to fine-tune the model. When updating Wfull by min-
imizing L1(Wfull), we use conventional forward-backward
propagation to fine-tune the model.

3.5 Remarks on the proposed methods
The proposed three approaches tackle the difficulty in
training a low-precision model with different strategies.
They can be applied independently. However, it is also
possible to combine them together. For example, we can
apply the progressive precision to any step in the two-stage

approach; we can also apply the joint knowledge distillation
to any step in the progressive quantization; we can combine
stochastic precision with the joint knowledge distillation
approach. Detailed analysis on possible combinations will
be empirically evaluated in the experiment section.

4 EXPERIMENTS

Datasets and models. To investigate the performance of
the proposed methods, we conduct experiments on CIFAR-
100 [75] and ImageNet [76]. We employ ResNet [3], Pre-
ResNet [77] and AlexNet [1] for experiments. We use a
variant of the AlexNet structure by removing dropout layers
and add batch normalization after each convolutional layer
and fully-connected layer. This structure is widely used in
previous works [11], [12].
Comparison methods. To justify the effectiveness of the
proposed approaches, we conduct experiments on various
representative quantization approaches, including uniform
fixed-point approach DoReFa-Net [12], non-uniform fixed-
point method LQ-Net [36], as well as binary neural network
approaches BiReal-Net [30] and Group-Net [33]. The “Base-
line” in all experiments means that we quantize the model
using DoReFa-Net [12], which is defined in Sec. 3.1. We
define “TS”, “PP”, “SP” and “KD” to represent two-stage
optimization in Sec. 3.2.1, progressive precision in Sec. 3.2.2,
stochastic precision in Sec. 3.3 and joint knowledge distilla-
tion in Sec. 3.4, respectively.
Implementation details. As in [12], [23], [24], [33], [35], we
quantize the weights and activations of all convolutional
layers except that the first and the last layers are kept in full-
precision. However, we also quantize all the layers so that
the model contains complete fixed-point operations and we
label this case with a * symbol. In all ImageNet experiments,
training images are resized to 256 × 256, and a 224 × 224
crop is randomly sampled from an image or its horizontal
flip, with the per-pixel mean subtracted. We do not use any
further data augmentation in our implementation. We use a
simple single-crop testing for standard evaluation. No bias
term is utilized.

Without loss of generality, we finetune from the pre-
trained full-precision model and set the initial learning rate
for the quantized model to 0.005. We train a maximum 30
epochs, and decay the learning rate by 10 at the 15-th and
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25-th epoch. We use SGD for optimization, with a batch size
of 256, a momentum of 0.9 and a weight decay of 1e-4. More
specific hyperparameters are provided in each subsection.
Our implementation is based on PyTorch.

4.1 Effect of progressive quantization
In this part, we explore the effect of the proposed progres-
sive quantization methods.

4.1.1 Effect of the two-stage optimization
We analyze the effect of each stage in the two-stage ap-
proach in Figure 2. We take the 2-bit ResNet-50 on ImageNet
as an example. In Figure 2, step-1 has the minimal loss of
accuracy. As for the step-2, although it incurs an apparent
accuracy decrease in comparison with that of the step-1,
its accuracy is consistently better than the results of the
baseline in every epoch. This illustrates that progressively
seeking for the local minimum point is crucial for final better
convergence, which proves the effectiveness of this simple
mechanism.

TABLE 1: Accuracy (%) of different comparing methods on
the ImageNet validation set.

Precision model method top-1 acc. top-5 acc.

2W, 2A ResNet-50

Baseline 70.19 89.15
Baseline + TS 70.92 90.03
Baseline + PP 70.78 89.98

Baseline + TS + PP 71.13 90.12

4W, 4A ResNet-50*

Baseline 75.11 75.70
Baseline + TS 75.32 91.93
Baseline + PP 75.38 91.77

Baseline + TS + PP 75.50 92.01

2W, 2A ResNet-50*

Baseline 67.68 70.00
Baseline + TS 69.22 87.03
Baseline + PP 68.79 86.90

Baseline + TS + PP 69.43 87.01

4W, 4A AlexNet*

Baseline 56.17 79.35
Baseline + TS 57.66 81.03
Baseline + PP 57.47 80.80

Baseline + TS + PP 57.83 80.85

2W, 2A AlexNet*

Baseline 48.26 71.56
Baseline + TS 50.67 74.92
Baseline + PP 50.29 74.80

Baseline + TS + PP 50.94 74.93

4.1.2 Effect of the progressive precision strategy
What is more, we also separately explore the progressive
precision effect on the final performance. In this experiment,
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Fig. 2: The two-stage training approach on ResNet-50.

we apply AlexNet and ResNet-50 on the ImageNet dataset.
We continuously quantize both weights and activations si-
multaneously from 32-bit→8-bit→4-bit→2-bit and explicitly
illustrate the accuracy change process for each precision
in Figure 3. The quantitative results are also reported in
Table 1. From the figure, we find that for 8-bit and 4-bit, the
low-bit model has no accuracy loss with respect to the full-
precision model. However, when quantizing from 4-bit to 2-
bit, we can observe a significant accuracy drop. Despite this,
we still observe 2.0% relative improvement by comparing
the Top-1 accuracy over the 2-bit baseline, which proves the
effectiveness of the proposed strategy. It is worth noting that
the accuracy curves become more unstable when quantizing
to the lower bit. This phenomenon is reasonable because
the quantized value will change more frequently during the
training process when the bitwidth is reduced.
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Fig. 3: The progressive training approach on AlexNet*.

4.2 Effect of the stochastic precision
In this subsection, we further explore the effect of the
stochastic precision strategy on general quantization ap-
proaches. The stochastic ratio δ is initialized to 0.5 and lin-
early decayed to 0 at the 20-th epoch. We train a maximum
40 epochs and decay the learning rate by 10 at the 25-th
and 35-th epochs. Other hyperparameters are set to default.
The default structure of the fragment m is a residual block
and we stochastically quantize weights and activations in all
cases unless special explanations. The results are reported
in Table 2. By combining the baseline methods with SP,
we find an apparent performance increase compared with
the baselines in all cases. During training, we stochastically
keep a portion of the network to full-precision and update
by the standard gradient-based method. This strategy shares
the similar spirit with the progressive quantization to relax
the discrete quantizer effectively. Moreover, the proposed
stochastic strategy only requires one training stage without
fine-tuning the model in many training rounds.

4.2.1 Effect of different SP policies
We further explore the influence of different choices of the
fragment m described in Sec. 3.3 as well as the extent of ran-
domness. We treat GroupNet as our baseline approach and
utilize 5 binary bases. The results are reported in Table 3. We
explore two different structures of m, including one convo-
lutional layer and one residual block which corresponds to
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TABLE 2: Accuracy (%) of different comparing methods with
SP on the ImageNet validation set. Experiments are repeated
for 3 times and we report the results with mean and standard
deviation.

model method top-1 acc. top-5 acc.

ResNet-50 DoReFa-Net (2-bit) 70.19 89.15
DoReFa-Net + SP 72.23±0.05 90.78±0.10

ResNet-50 LQ-Net (3-bit) 74.23 91.63
LQ-Net + SP 75.14±0.04 92.33±0.09

ResNet-18 BiReal-Net 56.43 79.52
BiReal-Net + SP 58.81±0.05 81.24±0.12

ResNet-18 GroupNet (5 bases) 64.82 85.72
GroupNet + SP 65.89±0.06 86.30±0.10
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Fig. 4: The stochastic precision training approach on ResNet-
50.

layerdrop and blockdrop respectively. We further incorporate
the randomness of quantizing weights and activations into
m and is denoted by W/A. From the results, we observe that
all the four cases show improved performance compared
with the baseline, which justifies adding randomness is a
general way for relaxing the low-precision network training.
By comparing the result of layerdrop+W/A with layerdrop,
we observe performance drop with the increase of random-
ness. However, blockdrop+W/A performs slightly better than
blockdrop. This shows that adding excessive stochasticity can
make the gradient updating direction deviate while appro-
priate extent of randomness can relax the non-differentiable
problem to facilitate optimization. Moreover, the accuracy
of layerdrop and blockdrop are very close, which shows that
the structure of m is not sensitive to the final performance.

TABLE 3: Accuracy (%) of different stochastic policies on the
ImageNet validation set.

model method top-1 acc. top-5 acc.

ResNet-18

GroupNet (5 bases) 64.8 85.7
GroupNet + blockdrop 65.6 86.3
GroupNet + layerdrop 65.7 86.5

GroupNet + blockdrop + W/A 65.9 86.6
GroupNet + layerdrop + W/A 65.0 86.1

4.3 Effect of the joint knowledge distillation on quanti-
zation

To investigate the effect of the joint knowledge distillation
approach explained in Sec. 3.4, we explore four different
training schemes to obtain a low-precision student network.

4.3.1 Joint fine-tuning of the low-precision student and the
full-precision teacher

In this scheme, both networks are primed with correspond-
ing full-precision pretrained weights as initialization and
are jointly optimized. We explore two network structures,
including PreResNet and ResNet. When using a certain
student network Mlow, we use the teacher network Mfull

to have either the same or larger depth. The results are
reported in Table 4 and Table 5. The initial learning rates
for Mlow and Mfull are set to be 0.005 and 0.001, respec-
tively. The balancing hyperparameters {α1, α2} = {1, 0.5},
β = 0.5 and γ = 50. Other hyperparameters are set to
default.
Discussion. From the results, we observe that all our low-
precision models surpass the corresponding baselines. It
justifies that Mfull can provide useful auxiliary supervision
to assist the convergence of Mlow. Moreover, the relative
improvement with ResNet is larger than that with PreRes-
Net. To highlight, the relative Top-1 improvement w.r.t. 2-bit
ResNet-50 is 1.77% while the PreResNet-50 counterpart is
0.71%. This phenomenon can be attributed that quantized
ResNet is more difficult to be optimized since the skip
connections are also quantized which blocks layers later in
the network to access information gained in earlier layers.
In this scenario, Mfull can effectively ease the training of
Mlow by adapting knowledge to each other. We can also
justify that keeping the skip connections to high-precision is
important to maintain the performance of the low-precision
network similar to [30], [78].

Moreover, we can come to an assumption that the
distillation process becomes more effective when the low-
precision network is more difficult to train. This assumption
can be further proved by the experiments in Sec. 4.3.2.

In Table 5, we experiment with PreResNet-18 which
is paired with various teacher networks but with deeper
layers. However, the benefit of using a deeper network
saturates at some points. For example, the final trained ac-
curacy of 2-bit PreResNet-18 model paired with PreResNet-
50 is only 0.04% higher than that obtained by pairing the
PreResNet-34 network.

With the simple DoReFa-Net uniform quantization strat-
egy, we can achieve comparable or even higher accuracy
compared with the full-precision model using 4-bit pre-
cision. It means that we can deploy the 4-bit model in
hardware devices with no loss of accuracy which would
greatly save memory bandwidth and power consumption.

Interestingly, we also observe that the full-precision
teacher can also be improved by learning together with
the student. We plot the convergence curves in Figure 5.
We can observe that the teacher’s performance drops at
the beginning epochs due to inaccurate gradients from the
student. During optimization, the student network serves
as a regularizer for the teacher network which can even
surpass the pretrained baseline.

4.3.2 Learning from scratch vs. fine-tuning

In this scheme, we train a low-precision student from scratch
given a pretrained full-precision teacher network. During
training, both of the models are mutually updated. The
initial learning rates for student and teacher are set to be
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TABLE 4: Accuracies of the quantized ResNet using joint training approach and finetuning. W and A refer to the bitwidth of
weights and activations, respectively. Experiments are repeated for 3 times and we report the results with mean and standard
deviation.

Precision ResNet-18
Baseline

ResNet-18
with ResNet-18

ResNet-34
Baseline

ResNet-34
with ResNet-34

ResNet-50
Baseline

ResNet-50
with ResNet-50

32W, 32A Top-1% 69.75 - 73.21 - 75.64 -
Top-5% 89.01 - 91.40 - 92.25 -

4W, 4A Top-1% 69.47±0.04 70.18±0.04 71.31±0.03 73.08±0.05 74.50±0.03 75.67±0.06
Top-5% 88.80±0.09 90.20±0.12 90.08±0.11 91.53±0.10 91.46±0.14 92.19±0.13

2W, 2A Top-1% 64.67±0.04 65.58±0.05 68.17±0.05 69.20±0.06 70.19±0.04 71.96±0.06
Top-5% 85.78±0.10 86.44±0.14 88.05±0.09 89.09±0.13 89.15±0.08 90.63±0.16

TABLE 5: Accuracies of the quantized PreResNet using joint training approach and finetuning. Experiments are repeated for 3
times and we report the results of mean and standard deviation.

Precision PreResNet-18
Baseline

PreResNet-18
with PreResNet-18

PreResNet-18
with PreResNet-34

PreResNet-18
with PreResNet-50

PreResNet-34
Baseline

PreResNet-34
with PreResNet-34

PreResNet-50
Baseline

PreResNet-50
with PreResNet-50

32W, 32A Top-1% 69.95 - - - 73.53 - 76.11 -
Top-5% 89.21 - - - 91.30 - 92.81 -

4W, 4A Top-1% 69.81±0.04 70.12±0.05 - - 73.57±0.03 73.90±0.03 75.92±0.02 76.62±0.04
Top-5% 89.04±0.09 89.57±0.09 - - 91.35±0.08 91.62±0.10 92.82±0.07 93.14±0.09

2W, 2A Top-1% 64.51±0.05 65.67±0.06 65.82±0.05 65.86±0.04 69.31±0.05 70.26±0.04 71.20±0.04 71.91±0.05
Top-5% 85.85±0.10 86.80±0.11 86.84±0.10 86.73±0.12 88.92±0.11 89.64±0.10 90.18±0.10 90.53±0.12
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Fig. 5: Both student and teacher are fine-tuned from the
pretrained models. We use ResNet-50 as illustration.

0.1 and 0.001, respectively. We train a maximum 80 epochs
with SGD, and the learning rate is decayed by 10× at epochs
30, 50, 60 and 70. We use the batch size of 256.

The results are reported in Table 6. From the results, we
can summarize two instructive statements.

• The relative improvement of KD is more apparent
than those that are from fine-tuning. For instance,
with 2-bit representations, the relative improvement
for PreResNet-50 is 2.40% while the fine-tuning coun-
terpart is 0.71% in Table 5. This is reasonable since
learning from scratch is more challenging than fine-
tuning and the auxiliary guidance from the teacher
has more affects.

• Fine-tuning performs steadily better than learning
from scratch. It shows that the pretrained full-
precision model can serve as an important initializa-
tion.

We also show the convergence curves in Figure 6.
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Fig. 6: Student is learnt from scratch while teacher is fine-
tuned. PreResNet-50 is used here.

4.3.3 Learning from the fixed teacher

In this section, we fix the pretrained teacher network and
only fine-tune the student network. This is the scheme used
by [19] to train their student network. The training details
for the student network are the same as those described in
Sec. 4.3.1.

From Table 7, we can observe that the improvement is
relatively lower than that with jointly updated teachers in
Table 5. This proves that directly transferring the knowledge
from the fixed pretrained teacher may not be optimal or not
be suitable for quantization. Both Mlow and Mfull should be
jointly optimized to adapt to each other.

However, this scheme has an advantage that one can
pre-compute and store the guidance signals and access
them during training Mlow, which can save the forward
and backward pass computations w.r.t. Mfull. For better
understanding, we further show the convergence curves for
AlexNet* on ImageNet in Figure 7.
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TABLE 6: The accuracy of the quantized PreResNet using the joint training approach, which is learnt from scratch. Experiments
are repeated for 3 times and we report the results with mean and standard deviation.

Precision PreResNet-18
Baseline

PreResNet-18
with PreResNet-18

PreResNet-34
Baseline

PreResNet-34
with PreResNet-34

PreResNet-50
Baseline

PreResNet-50
with PreResNet-50

32W, 32A Top-1% 69.95 - 73.53 - 76.11 -
Top-5% 89.21 - 91.30 - 92.81 -

4W, 4A Top-1% 67.85±0.08 69.29±0.10 71.46±0.13 73.05±0.14 73.82±0.12 75.42±0.11
Top-5% 88.15±0.16 88.84±0.15 90.06±0.14 91.01±0.16 91.53±0.13 92.82±0.15

2W, 2A Top-1% 62.54±0.12 65.08±0.11 66.57±0.13 68.69±0.14 67.15±0.13 69.55±0.12
Top-5% 84.47±0.16 86.21±0.18 87.18±0.16 88.52±0.20 87.74±0.16 89.38±0.19

TABLE 7: The accuracy of the quantized PreResNet using the fixed full-precision teacher.

Precision PreResNet-18
Baseline

PreResNet-18
with PreResNet-18

PreResNet-34
Baseline

PreResNet-34
with PreResNet-34

4W, 4A Top-1% 69.81 70.15 73.57 73.97
Top-5% 89.07 89.48 91.35 91.72

2W, 2A Top-1% 64.51 65.09 69.31 69.96
Top-5% 85.85 86.44 88.92 89.51
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Fig. 7: Joint training vs. fixed teacher using AlexNet* on
ImageNet.

4.3.4 Ablation study on guidance signals
In this part, we further explore the effect of different distil-
lation guidance signals as introduced in Sec. 3.4. The results
are reported in Table 8. We observe that integrating both
posterior-based and attention-based distillation strategies
achieve the best result, performing better than using them
separately.

4.3.5 Visualization
We further visualize and conduct more analysis on the ex-
perimental results in Figure 8. To explain why the proposed
joint distillation strategy works better than the baseline, we
illustrate the probability estimates assigned to Top-10 high-
est ranked classes obtained by a ResNet-18 on ImageNet

TABLE 8: Abalation study on the guidance signals with
ResNet-50 on ImageNet.

Precision ResNet-50
Baseline

ResNet-50
posterior

ResNet-50
attention transfer

ResNet-50
joint

2W, 2A Top-1% 70.19 71.40 71.51 71.96
Top-5% 89.15 90.04 90.17 90.63
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Fig. 8: Mean posterior probability visualization.

trained by our joint distillation vs. an independently trained
counterpart. This visualization is based on a randomly sam-
pled mini-batch of 256. From Figure 8, we have two main ob-
servations. First, we see that the posterior distribution of our
proposed joint KD fits the full-precision counterpart better,
which expects to have more accurate predictions. Second,
the posterior probability of the jointly updated full-precision
teacher adapts better to the low-precision student than
the fixed full-precision teacher. This observation justifies
that, with our joint distillation strategy, the low-precision
student and the full-precision teacher learn collaboratively
and adapt to each other throughout the training process.

4.4 Effect of quantizing all layers
In this part, we further explore the effect of quantizing the
first convolution layer and the last classification layer to the
final performance. We report the performance in Tables 1,
11, 12 and 13. With “2W, 2A”, the performance of ResNet-50
beats ResNet-50* by a large margin. This shows that keeping
the first and the last layer to high-precision is crucial to
preserve the quantized model accuracy. Moreover, the pro-
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posed advanced training approaches improve the baseline
significantly. For 2-bit precision, the gap between “ResNet-
50* TS+PP+KD” and baseline* is 2.93% while “ResNet-50
TS+PP+KD” improves baseline by 2.21%. It further justifies
the claim in Sec. 4.3.1 and Sec. 4.3.2 that the proposed
training algorithms can be more effective when the model is
more challenging to be optimized.

4.5 Combining different training strategies

Finally, we come to our complete approach by combining
TS, PP, SP and KD. We first combine TS, PP with KD and
the results are shown in Tables 11 and 13. Moreover, we
also combine the one-stage SP strategy with KD and the full
results are reported in Tables 9, 10 and 12.

We observe that the proposed approaches can benefit
from each other and further improve the performance on all
settings. For instance, with “2W, 2A” in Table 9, we find a
3.06% relative gap between the baseline on ResNet-50. Even
with the basic quantizer in DoReFa-Net, the difference in
Top-1 error is only 2.39%. This strongly justifies that the
proposed joint knowledge distillation and the stochastic
precision are general training approaches for improving
low-bit neural networks.

5 CONCLUSION

In this paper, we have proposed three novel approaches to
solve the optimization problem for quantizing the network
with both low-precision weights and activations. Firstly,
we have proposed the progressive quantization approach
which includes two schemes. Specifically, we have proposed
a two-stage training scheme, where we use the real-valued
activations as an intermediate step. We have also observed
that continuously quantizing from high-precision to low-
precision is also beneficial to the final performance. More-
over, we have proposed a stochastic precision strategy to
significantly reduce the training complexity of progressive
quantization while still improving the performance.

Furthermore, we have presented to improve the accuracy
of low-precision networks with knowledge distillation. In
particular, to better take advantage of the knowledge from
the full-precision model, we have proposed to jointly learn
the low-precision model and its full-precision counterpart.
We have explored various distillation schemes and all ob-
served improvements over the baseline. Finally, we have
combined the three training approaches to further boost the
performance. We have conducted extensive experiments to
justify the effectiveness of the proposed approaches on the
image classification task.
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