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Graph Convolutional Module for
Temporal Action Localization in Videos

Runhao Zeng*, Wenbing Huang*, Mingkui Tan†, Yu Rong, Peilin Zhao, Junzhou Huang, and Chuang Gan

Abstract—Temporal action localization, which requires a machine to recognize the location as well as the category of action instances in
videos, has long been researched in computer vision. The main challenge of temporal action localization lies in that videos are usually long
and untrimmed with diverse action contents involved. Existing state-of-the-art action localization methods divide each video into multiple
action units (i.e., proposals in two-stage methods and segments in one-stage methods) and then perform action recognition/regression on
each of them individually, without explicitly exploiting their relations during learning. In this paper, we claim that the relations between
action units play an important role in action localization, and a more powerful action detector should not only capture the local content of
each action unit but also allow a wider field of view on the context related to it. To this end, we propose a general graph convolutional
module (GCM) that can be easily plugged into existing action localization methods, including two-stage and one-stage paradigms. To
be specific, we first construct a graph, where each action unit is represented as a node and their relations between two action units as
an edge. Here, we use two types of relations, one for capturing the temporal connections between different action units, and the other
one for characterizing their semantic relationship. Particularly for the temporal connections in two-stage methods, we further explore
two different kinds of edges, one connecting the overlapping action units and the other one connecting surrounding but disjointed units.
Upon the graph we built, we then apply graph convolutional networks (GCNs) to model the relations among different action units, which
is able to learn more informative representations to enhance action localization. Experimental results show that our GCM consistently
improves the performance of existing action localization methods, including two-stage methods (e.g., CBR [15] and R-C3D [47]) and
one-stage methods (e.g., D-SSAD [22]), verifying the generality and effectiveness of our GCM. Moreover, with the aid of GCM, our
approach significantly outperforms the state-of-the-art on THUMOS14 (50.9% versus 42.8%). Augmentation experiments on ActivityNet
also verify the efficacy of modeling the relationships between action units.

Index Terms—Temporal Action Localization, Graph Convolutional Networks, Video Analysis.
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1 INTRODUCTION

UNDERSTANDING human actions from raw videos is a long-
standing research goal of computer vision, owing to its

various applications in security surveillance, human behavior
analysis and many other areas [12], [36], [38], [42]. Joining the
success of deep learning, video-based action classification [6], [38],
[42] has exhibited fruitful progress in recent years. Nevertheless,
this task assumes a tacit approval of addressing videos that are
trimmed and short, which limits its practical potential. Temporal
action localization, in contrast, targets on untrimmed and long
videos to localize the start and end times of every action instance
of interest as well as to predict the corresponding label. Taking
the sports video in Figure 1 as an example, the detector should
determine where the action event is occurring and identify which
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class the event belongs to. The lower restriction in video collection
and preprocessing makes temporal action localization a more
compelling yet challenging task in video analytics.

A variety of studies have been performed on temporal action
localization over the last few years [1], [2], [7], [15], [16], [22],
[26], [34], [35], [56]. In general, existing methods are categorized
into two types: the two-stage paradigm [7], [15], [35], [56] and
the one-stage paradigm [2], [22], [26]. For the two-stage methods,
they first generate a set of action proposals and then individually
perform classification and temporal boundary regression on each
proposal. In terms of one-stage methods, they divide each video
into segments of equal number and then predict the labels and
boundary offsets of the anchors mounted to each segment. Despite
their difference in whether they use external proposals or not, these
two paradigms share the similar spirit of independently conducting
classification/regression on each action unit—a general concept
corresponds to the proposal in two-stage methods and the segment
in one-stage methods. Processing each action unit separately,
however, will inevitably neglect the relations in-between and
potentially lose critical cues for action localization. For example,
the adjacent action units around the target unit can provide temporal
context for localizing its temporal boundary. Meanwhile, two
distant action units might also provide indicative hints of action
recognition to each other if they are semantically similar.

Based upon the intuition above, this paper investigates the
relationships between action units from two perspectives, namely
the temporal relationship and the semantic relationship. To
illustrate this, we revisit the example in Figure 1, where we have
generated five action units. 1) Temporal relationship: the action
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Fig. 1. Schematic depiction of our approach. We apply graph convolu-
tional networks to model the interactions between action units and boost
the temporal action localization performance.

units p1, p2 and p3 overlapping with each other describe different
parts of the same action instance (i.e., the start period, main body
and end period). Conventional action localization methods perform
prediction on p1 by using its feature alone, which we think is
insufficient to deliver complete knowledge. If we additionally
consider the features of p2 and p3, we will obtain more contextual
information around p1, which is advantageous especially for
the temporal boundary regression of p1. On the other hand, p4

describes the background (i.e., the sport field), and its content is
also helpful in identifying the action label of p1, since what is
happening on the sports field is likely to be sports action (e.g.,
“riding bicycle”) but not the action that occurs elsewhere (e.g.,
“kissing”). In other words, the classification of p1 can be partly
guided by the content of p4 since they are temporally related
even disjointed. 2) Semantic relationship: p5 is distant from p1,
but it describes the same action type as p1 (“riding bicycle”) in
a different view. We can acquire more complete information for
predicting the action category of p1 if we additionally leverage the
content of p5.

To model the interactions between action units, one possible
way is to employ the self-attention mechanism [39], as what has
been conducted previously in language translation [39] and object
detection [19], to capture the pair-wise similarity between action
units. A self-attention module can affect an individual action unit
by aggregating information from all other action units with the
automatically learned aggregation weights. However, this method
is computationally expensive as querying all action unit pairs has a
quadratic complexity of the node number (note that each video can
contain more than thousands of action units). In contrast, graph
convolutional networks (GCNs), which generalize convolutions
from grid-like data (e.g.images) to non-grid structures (e.g.social
networks), have received increasing interest in the machine learning
domain [24], [50]. GCNs can affect each node by aggregating
information from the adjacent nodes, and thus are very suitable for
leveraging the relations between action units. More importantly,
unlike the self-attention strategy, applying GCNs enables us to
aggregate information from only the local neighborhoods for
each action unit, and thus can help remarkably decrease the
computational complexity.

In this paper, we propose a general graph convolutional module
(GCM) that can be easily plugged into existing action localization

methods to exploit the relations between action units. In this
module, we first regard the action units as the nodes of a specific
graph and represent their relations as edges. To construct the graph,
we investigate three kinds of edges between action units, including:
1) the contextual edges to incorporate the contextual information
for each proposal instance (e.g., detecting p1 by accessing p2 and
p3 in Figure 1); 2) the surrounding edges to query knowledge
from nearby but distinct action units (e.g., querying p4 for p1);
3) the semantic edges to involve the content of the semantically
similar units for enhanced action recognition (e.g., recognizing p1

by considering p5). Then, we perform graph convolutions on the
constructed graph. Although the information is aggregated from
local neighbors in each layer, message passing between distant
nodes is still possible if the depth of the GCNs increases. Moreover,
to avoid the overwhelming computational cost, we further devise a
sampling strategy to train the GCNs efficiently while still preserving
the desired detection performance. We evaluate our proposed
method by incorporating GCM with existing action localization
methods on two popular benchmarks for temporal action detection,
i.e., THUMOS14 [23] and AcitivityNet1.3 [5].

In summary, our contributions are as follows:
• To the best of our knowledge, we are the first to exploit

the relationships between action units for temporal action
localization in videos.

• To model the interactions between action units, we propose
a general graph convolutional module (GCM) to construct
a graph of action units by establishing the edges based on
our valuable observations and then apply GCNs for message
aggregation among action units. Our GCM can be plugged
into existing two-stage and one-stage methods.

• Experimental results show that GCM consistently improves
the performance of SSN [56], R-C3D [47], CBR [15] and D-
SSAD [22] on two benchmarks, demonstrating the generality
and effectiveness of our proposed GCM. On THUMOS14
especially, our method obtains a mAP of 50.9% when
tIoU = 0.5, which significantly outperforms the state-
of-the-art, i.e., 42.8% by [7]. Augmentation experiments
on ActivityNet also verify the efficacy of modeling action
proposal relationships.

This paper extends our preliminary version [55] that was
published in ICCV 2019 in the following several aspects. 1)
We integrate graph construction and graph convolution into a
general graph convolutional module (GCM) so that the proposed
module can be plugged into any of the two-stage temporal action
localization methods (e.g., SSN, R-C3D and CBR) and the one-
stage methods (e.g., D-SSAD). 2) In addition to the temporal
relationships leveraged in our ICCV paper, we further explore
semantic relationships to learn more discriminative representations.
Experimental results reveal that the semantic relationships provide
more valuable information for action recognition. 3) We conduct
more ablation studies (e.g., analysis of semantic edges, runtime
comparison with the baseline methods, and comparisons for one-
stage methods) to verify the effectiveness and efficiency of the
proposed method. 4) We achieve clearly better action localization
results over our ICCV version on THUMOS14 (50.9% vs. 49.1%)
and ActivityNet 1.3 (31.45% vs. 31.11%).

2 RELATED WORK

Temporal action localization. Recently, great progress has been
achieved in deep learning [6], [38], [42], which facilitates the
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development of temporal action localization. Approaches on
this task can be grouped into three categories: (1) methods
performing frame or segment-level classification, which requires
a post-processing step (e.g., smoothing and merging) to obtain
the temporal boundaries of the action instances [29], [31], [34];
(2) approaches employing a two-stage framework similar to
the two-stage object detection methods in images. They often
involve proposal generation, proposal classification and boundary
refinement [35], [47], [56]; (3) methods that integrate proposal
generation and classification (and/or boundary regression) into
end-to-end architectures, which are often called one-stage action
localization methods [2], [26], [52].

Our work can be used to help both two-stage and one-stage
action localization paradigms, where each video is divided into
multiple action units and each action unit is processed individually.
Following the two-stage paradigm, Shou et al. [35] proposed
generating a set of proposal candidates from sliding windows
and classifying them by using deep neural networks. Xu et al.
[47] exploited the 3D convolutional networks and proposed a
framework inspired by Faster R-CNN [32]. Following the one-
stage paradigm, Lin et al. [26] divided the video into segments
and used convolutional layers to obtain video features, which
were further processed by an anchor layer for temporal action
localization. Huang et al. [22] decoupled the localization and
classification in a one-stage scheme. However, the above methods
neglect the contextual information of action units. To address
this issue, some attempts have been developed to incorporate the
context to enhance the proposal feature [7], [10], [14], [15], [56].
They show encouraging improvements by extracting features on the
extended receptive field (i.e., boundary) of the proposal. Despite
their success, they all process each action unit individually. In
contrast, our method considered the relations between action units.
Graph-based relation modeling. Relation modeling has proven
to be very helpful in many computer vision tasks like object
detection [19], visual reasoning [9] and image classification [44].
For instance, the performance of object detection can be improved
by considering the object relations since objects in an image are
often highly correlated [19]. Recently, Kipf et al. [24] proposed
graph convolutional network (GCN) to define convolutions on non-
grid structures. Due to its effectiveness in relation modeling, GCN
has been widely applied to several research areas in computer
vision, such as skeleton-based action recognition [50], object
detection [48] and video classification [45]. Wang et al. [45] used
a graph to represent the spatiotemporal relations between objects
for the action classification task. Xu et al. [48] constructed an
object graph relying on the spatial configurations between objects
for object detection. Our work considers both the temporal and
semantic relations between action units for a more challenging
temporal action localization task, where both action classification
and localization are required. Recently, Xu et al. [49] proposed a
one-stage action localization method with a graph to exploit the
relations between video segments. Our work is able to model the
relations between action units (i.e., video segments or proposals)
and is more general since it can be easily plugged into existing
action localization methods, including two-stage and one-stage
paradigms.
Graph sampling strategy. For real-world applications, the graph
can be large and directly using GCNs is inefficient. Therefore,
several attempts have been made for efficient training by virtue of
the sampling strategy, such as the node-wise method SAGE [17],
layer-wise model FastGCN [8] and its layer-dependent variant

AS-GCN [21]. In this paper, considering the flexibility and
implementability, we adopt the SAGE method as the sampling
strategy in our framework.

3 OUR APPROACH

3.1 Notation and preliminaries

We denote an untrimmed video as V = {It ∈ RH×W×3}Tt=1,
where It denotes the frame at the time slot t with height H
and width W . Within each video V , let P = {pi | pi =
(xi, (ti,s, ti,e))}Ni=1 be the action units of interest, where the action
unit can be a proposal in two-stage action localization methods
(e.g., SSN [56]) or a video segment in one-stage methods (e.g.,
SSAD [26]). Let ti,s and ti,e be the start and end times of an action
unit, respectively. In addition, given action unit pi, let xi ∈ Rd be
the feature extracted by a certain feature extractor (e.g., the I3D
network [6]) from frames between Iti,s and Iti,e .

Let G(V, E) be a graph of N nodes with nodes vi ∈ V and
edges eij = (vi, vj) ∈ E . Furthermore, let A ∈ RN×N be the
adjacency matrix associated with G. In this paper, we seek to
exploit graphs G(P, E) on action units in P to better model the
interactions between action units in videos. Here, each action unit
is treated as a node, and the edges in E are used to represent the
relations between nodes.

3.2 General scheme of our approach

We focus on solving the problem that existing temporal action
localization methods neglect the relation between action units,
which, however, is able to significantly improve the localization
accuracy. Thus, we propose a general graph convolutional module
(GCM) that can be inserted into existing action localization methods
in a plug-and-play manner. In particular, GCM uses a graph
G(P, E) to present the relations between action units and then
applies GCN on the graph to exploit the relations and learn
powerful representations for action units. The intuition is that when
performing graph convolution, each node aggregates information
from its neighborhoods. In this way, the feature of each action unit
is enhanced by other action units, which helps eventually improve
the detection performance. The schematic of our approach is shown
in Figure 2.

Without loss of generality, we assume the action units have
been obtained beforehand by some methods (e.g., the TAG method
in [56]). Given the features of the action units {xi}Ni=1 and their
initial temporal boundaries {(ti,s, ti,e))}Ni=1, our GCM constructs
a graph G according to the temporal and semantic relations between
action units. Then, we apply a K-layer GCN in the GCM to exploit
the relations and obtain the relation-aware features Y of action
units. For the k-th layer (1 ≤ k ≤ K), the graph convolution is
implemented by

X(k) = AX(k−1)W(k). (1)

Here, A is the adjacency matrix, W(k) ∈ Rdk×dk is the parameter
matrix to be learned, X(k) ∈ RN×dk are the hidden features for
all action units at layer k, and X(0) ∈ RN×d are the input features.
We apply an activation function (i.e., ReLU) after each convolution
layer before the features are forwarded to the next layer. In addition,
our experiments find it more effective by further combining the
hidden features with the input features in the last layer, namely,

Y = X(K) +X(0), (2)
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Fig. 2. Schematic of our method. (a) Given a set of action units (e.g., proposals in two-stage methods and segments in one-stage methods), our
graph convolutional module (GCM) instantiates the nodes in the graph by each action unit. Then, we establish three kinds of edges among nodes to
model the relations between action units and employ GCNs on the constructed graph. Lastly, our GCM module outputs relation-aware features. (b)
For two-stage action localization methods, our GCM can be used in the second stage to enhance the proposal features, which are used for action
classification and boundary regression. (c) For one-stage action localization methods, our GCM can be exploited to enhance the video features
before the anchor layer.

where the summation is performed in an element-wise manner.
The relation-aware action unit features Y are then used to jointly
predict the action category ŷi and temporal position (t̂i,s, t̂i,e) for
each action unit pi by calculating

{(ŷi, (t̂i,s, t̂i,e))}Ni=1 = F (Y), (3)

where F denotes any action localization methods, such as SSN [56],
R-C3D [47], CBR [15] and D-SSAD [22].

In the following sections, we aim to answer two questions:
(1) how to construct a graph to represent the relations between
action units, and (2) how to insert our GCM into the existing
action localization methods, including the two-stage paradigm and
one-stage paradigm.

3.3 Action unit graph construction
For the graph G(P, E) of each video, the nodes are instantiated
as the action units, while the edges E between action units are
demanded to be characterized specifically to better model the
relations. One way for constructing edges is linking all action units
with each other, which yet leads to overwhelming computations
for going through all action unit pairs. It also incurs redundant or
noisy information for action localization, as some unrelated action
units should not be connected. In this paper, we devise a smarter
approach by exploiting the temporal relevance/distance and the
semantic relationships between action units instead. Specifically,
we introduce three types of edges, the contextual edges, the
surrounding edges and the semantic edges, respectively.

3.3.1 Contextual edges
We establish an edge between action units pi and pj if r(pi,pj) >
θctx, where θctx is a certain threshold. Here, r(pi,pj) represents
the relevance between action units and is defined by the tIoU metric,
i.e.,

r(pi,pj) = tIoU(pi,pj) =
I(pi,pj)

U(pi,pj)
, (4)

where I(pi,pj) and U(pi,pj) compute the temporal intersection
and union of the two action units, respectively. If we focus on the
proposal pi, establishing the edges by computing r(pi,pj) > θctx
will select its neighborhoods as those that have high overlaps with it.
Obviously, the non-overlapping portions of the highly-overlapping
neighborhoods can provide rich contextual information for pi.
As already demonstrated in [7], [10], exploring the contextual
information is of great help in refining the detection boundary
and eventually increasing the detection accuracy. Here, by our
contextual edges, all overlapping action units automatically share
the contextual information with each other, and this information is
further processed by the graph convolution.

3.3.2 Surrounding edges
The contextual edges connect the overlapping action units that
usually correspond to the same action instance. Actually, surround-
ing but disjointed action units (including the background items)
can also be correlated, and the message passing among them will
facilitate the detection of each other. For example, in Figure 1, the
background p4 provides guidance on identifying the action class
of action unit p1 (e.g., more likely to be sports actions). To handle
such kind of correlations, we first utilize r(pi,pj) = 0 to query
the disjointed action units, and then compute the following distance

d(pi,pj) =
|ci − cj |
U(pi,pj)

, (5)

to add the edges between nearby action units if d(pi,pj) < θsur ,
where θsur is a certain threshold. In Eq. (5), ci (or cj) represents the
center coordinate of pi (or pj). As a complement to the contextual
edges, the surrounding edges enable the message to pass across
distinct action instances and thereby provide more temporal cues
for the detection.

3.3.3 Semantic edges
The above contextual and surrounding edges aim to exploit the
temporal context for each action unit, which, however, still neglects



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

the semantic information between action units. It is worth noting
that one untrimmed video often contains multiple action instances
(e.g., each video on THUMOS14 dataset [23] contains more than
15 action instances on average), and the instances in one video
often belong to the same or semantically similar action category.
For example, the actions CricketBowling and CricketShot often
occur in the same video on THUMOS14. Although their categories
are different when performing action localization, it is intuitive
that the semantics of CricketBowling are helpful for recognizing
CricketShot from other actions (e.g., CliffDiving). Therefore, the
proposal that locates at a distance from an action but containing
similar semantic content might provide indicative hints for detecting
the action.

To exploit such semantic information for action localization,
we add a semantic edge between the action units that share similar
semantics. In particular, we first define an action unit set Si for the
i-th action unit as

Si = {pj |r(pi,pj) = 0, j ∈ Nl(i)}, (6)

where Nl(i) is the index set of the l nearest neighborhoods of
proposal pi and Nl(i) is constructed in the feature space relying
on the cosine similarity between action unit features xi and xj .
Then, we establish a semantic edge between pi and the action units
in Si. Note that the action unit feature xi can be the high-level
appearance or motion feature containing rich semantic information.
In other words, the action units sharing similar appearance (e.g.,
some similar places) or motions (e.g., the same action performed
by different actors) can be used to help the recognition of action
units. To summarize, the edge eij between nodes pi and pj can be
formulated as

eij =


1, if r(pi,pj) > θctx;

1, if r(pi,pj) = 0, d(pi,pj) < θsur;

1, if r(pi,pj) = 0, j ∈ Nl(i);

0, else.

(7)

3.3.4 Adjacency matrix
In Eq. (1), we need to compute the adjacency matrix A. Here, we
design the adjacency matrix by assigning specific weights to edges.
For example, we can apply the cosine similarity to estimate the
weights of edge eij by

Aij =

{
xT
i xj

‖xi‖2·‖xj‖2 , eij = 1;

0, eij = 0.
(8)

In the above computation, we compute Aij relying on the feature
vector xi. We can also map the feature vectors into an embedding
space using a learnable linear mapping function as in [44] before
the cosine computation. We leave the discussion in our experiments.

3.4 GCM for two-stage action localization methods

Due to the residual nature of GCM (see Eq. (2)), the proposed GCM
can be easily plugged into existing two-stage action localization
methods, which typically involve the following steps: Step 1:
generates a set of proposal candidates, which may contain action
instances; Step 2: uses some certain feature extractors, which
can be off-the-shelf [15] or trained in an end-to-end manner [47],
to obtain the proposal features; Step 3: processes the proposal
features using an action classifier and a boundary regressor,
which are often implemented as fully-connected layers; Step 4:

performs duplicate removal, which is usually achieved by using
non-maximum suppression (NMS).

In this paper, our proposed GCM is used between Step 2
and Step 3. Given a set of proposals, our GCM first constructs a
proposal graph according to Equation (7). Then, the relation-aware
proposal features are obtained by performing graph convolution
on the constructed graph via Equations (1) and (2). Joining the
previous work SSN [56], we find that it is beneficial to predict the
action label and temporal boundary separately by virtue of two
GCMs—one conducted on the original proposal features xi and
the other one on the extended proposal features x′i. The first GCM
is formulated as

{ŷi}Ni=1 = softmax(FC1(GCM1({xi}Ni=1))), (9)

where we apply a fully-connected (FC) layer with soft-max
operation on top of GCM1 to predict the action label ŷi. The
second GCM can be formulated as

{(t̂i,s, t̂i,e)}Ni=1 = FC2(GCM2({x′i}Ni=1)), (10)

{êi}Ni=1 = FC3(GCM2({x′i}Ni=1)), (11)

where the graph structure G(P, E) is the same as that in Eq. (9)
but the input proposal feature is different. The extended feature x′i
is attained by first extending the temporal boundary of pi with 1

2
of its length on both the left and right sides and then extracting
the feature within the extended boundary. Here, we adopt two FC
layers on top of GCM2, one for predicting the boundary (t̂i,s, t̂i,e)
and the other one for predicting the completeness score ĉi, which
indicates whether the proposal is complete or not. It has been
demonstrated by [56] that, incomplete action units that have low
tIoU with the ground-truths can have high classification scores,
and thus it will make mistakes when using the classification score
alone to rank the proposal for the mAP test; further applying the
completeness score enables us to avoid this issue.

For other two-stage action localization methods (e.g., CBR [15],
R-C3D [47]) that do not rely on the two-stream pipeline such as
SSN, we only insert one GCM into them. Specifically, GCM takes
the original proposal features xi as input and outputs the relation-
aware features, which are further processed by two individual
FC layers for predicting the action classification and boundary
regression, respectively. Formally, the action localization process
can be formulated as

{(t̂i,s, t̂i,e)}Ni=1 = FC4(GCM3({xi}Ni=1)),

{ŷi}Ni=1 = softmax(FC5(GCM3({xi}Ni=1))).
(12)

where FC∗ denotes the fully-connected (FC) layers, whose inputs
are the same relation-aware features produced by GCM.

3.5 GCM for one-stage action localization methods
Our proposed GCM is a general module for exploiting the
relationships between action units, which can be the segments
in one-stage action localization methods, as discussed in Section 1.

Existing one-stage methods [22], [26] are inspired by the single-
shot object detection methods in images [28]. A three-step pipeline
is used in these methods, as summarized below. Step 1: evenly
divides the input video into T segments and extracts a C-dim
feature vector for each segment, thus leading to a 1D feature
map F ∈ RT×C ; Step 2: obtain 1D feature maps with multiple
temporal scales (i.e., different temporal granularity) relying on F;
Step 3: predict the action category and boundary offsets of the
anchors mounted to each location on the 1D feature maps. For
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better readability, we call the feature vector at each location as a
feature unit.

Our proposed GCM is used between Step 2 and Step 3.
Although the boundaries of feature units are non-overlapping,
we can incorporate our GCM to exploit the relations between
feature units with a minor modification. In particular, we only
consider the surrounding and semantic edges to link the feature
units and perform graph convolution to aggregate messages. The
intuition is that the feature units can be regarded as a special
case of proposals. Specifically, each feature unit corresponds to a
segment in the videos with a certain duration, and these segments
are non-overlapping. By adding the GCM to the 1D feature maps,
we are able to exploit the relationship between the feature units in
a 1D feature map. It is worth mentioning that our module can be
inserted one or multiple times throughout the network to model the
feature relationships at different scales.

3.6 Training details
3.6.1 Loss functions
Our proposed method not only predicts the action category and the
completeness score (when inserting our GCM into SSN [56]) of
each proposal but also refines the temporal boundary of action units
by location regression. To train our model, we define the following
loss functions:
Classification Loss. We define the training loss function for the
action classifier as follows:

Lcls =
1

N

N∑
i=1

L1(yi, ŷi), (13)

where yi and ŷi are the ground truth and the prediction of the i-th
action unit, respectively. We use the cross-entropy loss as L1, and
N is the number of action units in a mini-batch.
Completeness Loss. Given the predicted completeness score êi
and the ground truth ei of the i-th action unit, we use the following
loss function to train the completeness predictor:

Lcom =
1

Ncom

N∑
i=1

1
i
comL2(ei, êi), (14)

where we use hinge loss as L2 and Ncom is the number of
completeness training samples. 1i

com is the indicator function,
being 1 if yi ≥ 1 (i.e., the action unit is not considered as part of
the background) and 0 otherwise.
Regression Loss. We devise a set of location regressors
{Rm}Nclass

m=1 , each for an action category. For an action unit, we
regress the boundary using the closest ground-truth instance as
the target. Our method predicts the offset ôi = (ôi,c, ôi,l) relative
to the action unit , where ôi,c and ôi,l are the offset of center
coordinate and length, respectively. The ground-truth offset is
denoted as oi = (oi,c, oi,l) and parameterized by:

oi,c = (ci − cgt)/li,
oi,l = log(li/lgt),

(15)

where ci and li denote the original center coordinate and length of
the action unit, respectively. cgt and lgt are the center coordinate
and length of the closest ground truth, respectively. To train the
regressor, we define the following loss function:

Lreg =
1

Nreg

N∑
i=1

1
i
regL3(oi, ôi), (16)

Algorithm 1 Training details of our method.

Input: Action unit set P = {pi | pi = (xi, (ti,s, ti,e))}Ni=1;
original action unit features {x(0)

i }Ni=1; extended action unit
features {x′i(0)}Ni=1; graph depth K; sampling size Ns

Parameter: Weight matrices W(k), ∀k ∈ {1, . . . ,K}

1: instantiate the nodes by the action units pi, ∀pi ∈ P
2: establish edges between nodes using Eq. (7)
3: obtain an action unit graph G(P, E)
4: calculate adjacent matrix using Eq. (8)
5: while not converges do
6: for k = 1 . . .K do
7: for p ∈ P do
8: sample Ns neighborhoods of p
9: aggregate information using Eq. (18)

10: end for
11: end for
12: predict action categories {ŷi}Ni=1 using Eq. (9)
13: perform boundary regression using Eq. (10)
14: predict completeness score {ĉi}Ni=1 using Eq. (11)
15: compute Ltotal using Eq. (17)
16: update parameters via stochastic gradient descent
17: end while

where Nreg is the number of regression training samples. 1i
reg

is the indicator function, being 1 if yi ≥ 1 and ei = 1 (i.e., the
proposal is a foreground sample) and 0 otherwise. We use the
smooth-L1 loss as L3 because it is less sensitive to outliers.
Multi-task Loss. We train the whole model by using the following
multi-task loss function:

Ltotal = Lcls + λ1Lcom + λ2Lreg, (17)

where λ1 and λ2 are hyper-parameters to trade-off these losses.
We set λ1 = λ2 = 0.5 in all the experiments and find that it works
well across all of them. It is worth mentioning that we consider
the completeness loss only when we plug our GCM into the SSN
method [56].

3.6.2 Efficient training by sampling
Typical action unit generation methods usually produce thousands
of action units for each video. Applying the aforementioned
graph convolution (Eq. (1)) on all action units demands many
computations and large memory footprints. To accelerate the
training of GCNs, several approaches [8], [17], [21] have been
proposed based on neighborhood sampling. Here, we adopt the
SAGE method [17] in our method for its flexibility.

The SAGE method uniformly samples the fixed-size neigh-
borhoods of each node layer-by-layer in a top-down passway. In
other words, the nodes of the (k − 1)-th layer are formulated
as the sampled neighborhoods of the nodes in the k-th layer.
After all nodes of all layers are sampled, SAGE performs the
information aggregation in a bottom-up manner. Here, we specify
the aggregation function to be a sampling form of Eq. (1), namely,

x
(k)
i =

 1

Ns

Ns∑
j=1

Aijx
(k−1)
j + x

(k−1)
i

W(k), (18)

where node j is sampled from the neighborhoods of node i, i.e.,
j ∈ N (i), and Ns is the sampling size and is much less than the
total number N . The summation in Eq. (18) is further normalized
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by Ns, which empirically makes the training more stable. In
addition, we also enforce the self-addition of its feature for node
i in Eq. (18). We do not perform any sampling when testing. For
better readability, Algorithm 1 depicts the algorithmic flow of our
method.

4 EXPERIMENTS

4.1 Datasets

THUMOS14 [23] is a standard benchmark for action localization.
Its training set, known as the UCF-101 dataset, consists of 13320
videos. The validation, testing and background sets contain 1010,
1574 and 2500 untrimmed videos, respectively. The temporal action
localization task of THUMOS14, which contains videos over 20
hours from 20 sports classes, is very challenging since each video
has more than 15 action instances and its 71% frames are occupied
by background items. Following the common setting in [23], we
apply 200 videos in the validation set for training and conduct
evaluation on the 213 annotated videos from the testing set.
ActivityNet [5] is another popular benchmark for action localiza-
tion on untrimmed videos. We evaluate our method on ActivityNet
v1.3, which contains approximately 10K training videos and 5K
validation videos corresponding to 200 different activities. Each
video has an average of 1.65 action instances. Following the
standard practice, we train our method on the training videos and
test it on the validation videos. In our experiments, we contrast our
method with the state-of-the-art methods on both THUMOS14 and
ActivityNet v1.3, and perform ablation studies on THUMOS14.

4.2 Implementation details

Evaluation metrics. We use the mean average precision (mAP) as
the evaluation metric. A proposal is considered to be correct if its
temporal IoU with the ground-truth instance is larger than a certain
threshold and the predicted category is the same as this ground-truth
instance. On THUMOS14, the tIOU thresholds are chosen from
{0.1, 0.2, 0.3, 0.4, 0.5}; on ActivityNet v1.3, the IoU thresholds
are from {0.5, 0.75, 0.95}, and we also report the average mAP
of the IoU thresholds between 0.5 and 0.95 with the step of 0.05.
Graph construction. We construct the graph by fixing the values
of θctx as 0.7 and θsur as 1 for both streams, which are selected by
grid search. We adopt a 2-layer GCN since we observed no clear
improvement with more than 2 layers but the model complexity is
increased. For more efficiency, we choose Ns = 4 in Eq. (18) for
neighborhood sampling unless otherwise specified.
Training. The initial learning rate is 0.001 for the RGB stream and
0.01 for the flow stream. During training, the learning rates are
divided by 10 every 15 epochs. The dropout ratio is 0.8.
Testing. We do not perform neighborhood sampling (i.e., Eq. (18))
for testing. The predictions of the RGB and flow streams are fused
using a ratio of 2:3. We multiply the classification score with the
completeness score as the final score for calculating mAP. We
then use non-maximum suppression (NMS) to obtain the final
predicted temporal action units for each action class separately. We
use 800 and 100 action units per video for computing mAPs on
THUMOS14 and ActivityNet v1.3, respectively.
Action units and features for two-stage methods. The action
units in two-stage methods refer to the action proposals. Our model
is implemented under the two-stream strategy [36]: RGB frames
and optical-flow fields. 1) For SSN [56], we first uniformly divide
each input video into 64-frame RGB/optical-flow segments and

adopt a two-stream I3D model pre-trained on Kinetics [6] to obtain
a 1024-dimensional feature vector for each segment. Upon the I3D
features, we further apply max pooling across segments to obtain
one 1024-dimensional feature vector for each proposal that is
obtained by the BSN method [27]. Note that we do not finetune the
parameters of the I3D model in our training phase. In addition to the
I3D features and BSN proposals, our ablation studies in Section 5.4
also explore other types of features (e.g., 2D features [27]) and
proposals (e.g., TAG action units [56]). 2) For CBR [15], we use
the two-stream model [46] pre-trained on the ActivityNet v1.3
training set as the feature extractor. We use the proposals obtained
from the proposal stage in [15] to perform action localization. 3)
For R-C3D [47], we use a 3D ConvNet modified from C3D [38] to
extract proposal features. We adopt the proposals generated by the
proposal subnet in [47] for a fair comparison.
Action units and features for one-stage methods. The action
units in one-stage methods refer to the video segments. We
follow [22] to use two-stream networks [36] pre-trained on
Kinetics [6] to extract spatial and temporal feature representations
for each video clip with length 512. We keep other settings (e.g.,
the learning rate, anchor settings) the same as those are used in [22]
for fair comparisons.

4.3 Comparison with state-of-the-art results

THUMOS14. Our method is compared with the state-of-the-art
methods in Table 1. GCM consistently boosts the performance of
both two-stage methods (e.g., SSN [56], R-C3D [47], CBR [15])
and one-stage methods (e.g., D-SSAD [22]) on THUMOS14,
demonstrating the generality and effectiveness of our proposed
GCM. With the aid of GCM, our method (i.e., SSN+GCM) reaches
the highest mAP over all thresholds, implying that our method
can recognize and localize actions much more accurately than
any other method. In particular, our method outperforms the
previously best method (i.e., TAL-Net [7]) by 8.1% absolute
improvement and the second-best result [16] by more than 13.5%,
when tIoU = 0.5. When using the proposals of higher quality
(i.e., BMN proposals [25]), our method (i.e., SSN+GCM†) lifts the
mAP to 51.9% when tIoU = 0.5.
ActivityNet v1.3. We report the action localization results of
various methods in Table 2. Regarding the average mAP, our
method (i.e., SSN+GCM) outperforms SSN [56], and CDC [34]
by 2.83% and 3.40%, respectively. We observe that BSN [27] and
BMN [25] perform promisingly on this dataset. Note that these
two methods were originally designed for generating class-agnostic
proposals, and thus rely on external video-level action labels (from
UntrimmedNet [41]) for action localization. In contrast, our method
is self-contained and is able to perform action localization without
any external label.

Actually, our method can be modified to take external labels
into account. To achieve this, we replace the predicted action
classes in Eq. (9) with the external action labels. Specifically, given
an input video, we use UntrimmedNet to predict the top-2 video-
level classes and assign these classes to all the proposals in this
video. Thus, each proposal has two predicted action classes. To
compute mAP, we follow [27] to obtain the score of each proposal
by calculating sprop = sgcm ∗ sbsn/bmn ∗ sunet, where sgcm
is the proposal score predicted by our model (i.e., SSN+GCM),
sbsn/bmn is the confidence score produced by BSN (or BMN) and
sunet denotes the action score predicted by UntrimmedNet. As
summarized in Table 2, our enhanced version (i.e., SSN*+GCM)
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TABLE 1
Action localization results on THUMOS14, measured by mAP (%) at
different tIoU thresholds α. (†) indicates the method that uses BMN

proposals [25].

Paradigm tIoU 0.1 0.2 0.3 0.4 0.5

One-Stage

Yeung et al. [52] - - 36.0 26.4 17.1
Lin et al. [26] - - 43.0 35.0 24.6
Buch et al. [2] - - 45.7 - 29.2
Huang et al. [22] 66.4 64.7 59.8 53.4 43.2
Huang et al. + GCM 66.4 65.2 61.4 54.7 44.8

Two-Stage

Wang et al. [40] 18.2 17.0 14.0 11.7 8.3
Caba et al. [4] - - - - 13.5
Escorcia et al. [11] - - - - 13.9
Oneata et al. [30] 36.6 33.6 27.0 20.8 14.4
Richard et al. [33] 39.7 35.7 30.0 23.2 15.2
Yeung et al. [52] 48.9 44.0 36.0 26.4 17.1
Yuan et al. [54] 51.0 45.2 36.5 27.8 17.8
Yuan et al. [53] 51.4 42.6 33.6 26.1 18.8
Shou et al. [35] 47.7 43.5 36.3 28.7 19.0
Hou et al. [18] 51.3 - 43.7 - 22.0
Buch et al. [3] - - 37.8 - 23.0
Shou et al. [34] - - 40.1 29.4 23.3
Dai et al. [10] - - - 33.3 25.6
Gao et al. [14] 54.0 50.9 44.1 34.9 25.6
Huang et al. [20] - - - - 27.7
Yang et al. [51] - - 44.1 37.1 28.2
Zhao et al. [56] 66.0 59.4 51.9 41.0 29.8
Gao et al. [13] - - - - 29.9
Alwassel et al. [1] - - 51.8 42.4 30.8
Lin et al. [27] - - 53.5 45.0 36.9
Gleason et al. [16] 52.1 51.4 49.7 46.1 37.4
Chao et al. [7] 59.8 57.1 53.2 48.5 42.8
Xu et al. [47] 54.5 51.5 44.8 35.6 28.9
Xu et al. + GCM 56.3 53.5 47.0 37.9 30.9
Gao et al. [15] 60.1 56.7 50.1 41.3 31.0
Gao et al. + GCM 61.2 57.8 50.3 42.4 32.2
Zhao et al. [56] (I3D) 69.7 67.5 64.6 58.3 49.3
Zhao et al. + GCM 70.5 68.6 65.2 59.8 50.9
Zhao et al. + GCM† 72.5 70.9 66.5 60.8 51.9

TABLE 2
Action localization results on ActivityNet v1.3 (val), measured by mAP
(%) at different tIoU thresholds and the average mAP of IoU thresholds
from 0.5 to 0.95. (*) indicates the method that uses the external video

labels/scores from UntrimmedNet [41].

tIoU 0.5 0.75 0.95 Average
Singh et al. [37] 34.47 - - -
Wang et al. [43] 43.65 - - -
Shou et al. [34] 45.30 26.00 0.20 23.80
Dai et al. [10] 36.44 21.15 3.90 -
Xu et al. [47] 26.80 - - -
Zhao et al. [56] 39.12 23.48 5.49 23.98
Chao et al. [7] 38.23 18.30 1.30 20.22
Lin et al. [27] (BSN*) 46.45 29.96 8.02 30.03
Xu et al. [49] (GTAD*) 50.36 34.60 9.02 34.09
Lin et al. [25] (BMN*) 50.07 34.78 8.29 33.85
SSN (BSN prop [27]) 38.59 24.53 4.57 24.37
SSN + GCM (BSN prop [27]) 42.55 28.27 2.84 27.20
SSN* + GCM (BSN prop [27]) 47.92 32.91 4.16 31.45
SSN* + GCM (BMN prop [25]) 51.03 35.17 7.44 34.24

consistently outperforms BSN and BMN when using the same
proposals. Moreover, SSN*+GCM outperforms GTAD [49] even
though GTAD uses additional video classification scores from [41].
These results further demonstrate the effectiveness of our method.

5 ABLATION RESULTS ON TWO-STAGE METHODS

In this section, we will perform complete and in-depth ablation
studies to evaluate the impact of each component of our model.

TABLE 3
Ablation study of GCM on CBR and R-C3D, measured by mAP (%) when

tIoU=0.5 on THUMOS14.

Setting mAP@IoU=0.5 Gain
CBR [15] 31.00 -
CBR + GCM 32.24 1.24
R-C3D [47] 28.90 -
R-C3D + GCM 30.85 1.95

5.1 Effectiveness and generality of GCM
In this section, we incorporate our GCM into two popular two-stage
action localization methods (i.e., CBR [15] and R-C3D [47]) to
validate the effectiveness and generality of GCM. In the following,
we present the implementation details and the results.
Cascaded Boundary Regression (CBR) [15]. The CBR method
adopts a cascaded framework to iteratively regress the boundary
of the action units. In the proposal stage, CBR uses a deep model
to obtain the initial action units by refining the boundary of the
sliding windows. In the detection stage, CBR uses another deep
model to learn better representations of the action units. Last,
these action units are forwarded to fully-connected layers for
action classification and boundary regression. In our experiments,
we insert our GCM in the detection stage. The outputs of the
GCM are forwarded to the action classifier and regressor. For a
fair comparison with CBR, we use two-stream features and unit-
level offsets. As shown in Table 3, our GCM helps to lift the
action localization results over all IoU thresholds, demonstrating
its effectiveness.
Region Convolutional 3D Network (R-C3D) [47]. Inspired by
the faster-RCNN [32] approach in object detection, Xu et al.
proposed an end-to-end R-C3D network for activity detection.
The network encodes the frames with fully-convolutional 3D layers
and then uses a proposal subnet to generate activity segments (i.e.,
action units). Last, they use a classification subnet to classify
and refine the action units based on the RoI-pooled features.
Our GCM takes the pooled features as input and enhances the
features by constructing a graph and performing graph convolution.
The outputs of the GCM are forwarded to the action classifier
and regressor. We follow the same settings in [47] for a fair
comparison. From Table 3, the action localization performance of
R-C3D is significantly improved with the help of our GCM. More
critically, the performance gain on two action localization methods
demonstrates the generality of our module.

5.2 How do proposal-proposal relations help?
As illustrated in Section 3.4, we apply two GCMs for action classi-
fication and boundary regression separately. Here, we implement
the baseline with a 2-layer multilayer-perceptron (MLP). The MLP
baseline shares the same structure as GCM except that we remove
the adjacent matrix A in Eq. (1). Specifically, for the k-th layer, the
propagation in Eq. (1) becomes Xk = Xk−1Wk, where Wk are
the trainable parameters. Without using A, MLP processes each
proposal feature independently. By comparing the performance of
MLP with GCN, we can justify the importance of message passing
along action units. To do so, we replace each GCM with an MLP
and have the following variants of our model including: (1) MLP1

+ GCM2 where GCN1 is replaced; (2) GCM1 + MLP2 where
GCM2 is replaced; and (3) MLP1 + MLP2 where both GCMs
are replaced. Table 4 shows that all these variants decrease the
performance of our model, thus verifying the effectiveness of GCNs
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Fig. 3. Visualization results of the graph constructed by our GCM on THUMOS14. The temporal boundary of the input proposal is not precise (i.e.,
some portions of the corresponding ground truth have not been detected). Our proposed GCM helps to aggregates contextual information from other
proposals and lastly predicts the action category correctly and refines the temporal boundary of the input proposal precisely.

for both action classification and boundary regression. Overall, our
method significantly outperforms the MLP protocol (i.e.MLP1

+ MLP2), validating the importance of considering the relations
between action units in temporal action localization. The MLP
baseline is indeed a particular implementation of SSN [56]. We
compare the runtime between GCM and MLP baseline in Table 5.
In detail, we train each model with 200 iterations on a Titan X
GPU and report the average processing time per video per iteration
(note that proposal generation and feature extraction are excluded
for each model). It reads that GCM only incurs a relatively small
additional runtime compared with the MLP baseline but is able to
improve the performance significantly.
Visualization of the constructed graph. To understand how
proposal-proposal relations help improve the action localization
performance, we visualize an example of the graph constructed
by our proposed method in Figure 3. Specifically, given an input
proposal p1, we choose K = 8 proposals with the largest weights
among all connected proposals. The temporal boundary of the
input proposal p1 is not precise (i.e., the ending period of the
corresponding ground truth action instance has not been detected in
p1). The contextual and surrounding edges connect four proposals
(p2, p3, p4 and p5) that can provide a wider receptive field for p1

to detect the ending period of actions. Interestingly, the semantic
edges connect not only two proposals (p6 and p7) that provide
action information from other action instances in the same video but
also two proposals (p8 and p9) with background scenes related to
the action instance. Lastly, the temporal boundary of p1 is refined
to match the corresponding ground truth and the action category
is correctly predicted by our method. Clearly, our proposed GCM
is able to exploit contextual information to improve the action
localization performance.

5.3 How does the graph convolution help?

In addition to graph convolutions, performing mean pooling
among proposal features is another way to enable information
dissemination between action units. We thus conduct another
baseline by first adopting MLP on the action unit features and
then conducting mean pooling on the output of MLP over adjacent

TABLE 4
Comparison between our model and the MLP baseline on THUMOS14,

measured by mAP (%) when tIoU=0.5..

mAP@tIoU=0.5 RGB Gain Flow Gain
MLP1 + MLP2 36.82 - 46.74 -
MLP1 + GCM2 38.11 1.29 47.39 0.65
GCM1 + MLP2 37.87 1.05 48.14 1.40
GCM1 + GCM2 39.38 2.56 48.76 2.02

TABLE 5
Comparison with MLP baseline in terms of runtime, computation

complexity in FLOPs, and action localization mAP on THUMOS14.

Method Runtime FLOPs mAP@tIoU=0.5
RGB Flow

MLP1 + MLP2 0.376s 16.57M 36.82 46.74
GCM1 + GCM2 0.404s 17.70M 39.38 48.76

TABLE 6
Comparison between our model and mean-pooling (MP) on THUMOS14,

measured by mAP (%) when tIoU=0.5.

mAP@tIoU=0.5 RGB Gain Flow Gain
MP1 + MP2 37.12 - 46.96 -
MP1 + GCM2 38.32 1.20 47.66 0.80
GCM1 + MP2 38.38 1.26 47.93 1.07
GCM1 + GCM2 39.38 2.26 48.76 1.80

action units. The adjacent connections are formulated by using the
same graph as GCN. We term this baseline as MP below. Similar
to the setting in Section 5.2, we have three variants of our model
including: (1) MP1 + MP2; (2) MP1 + GCM2; and (3) GCM1 +
MP2. We report the results in Table 6. The models with two GCMs
outperform all MP variants, demonstrating the superiority of graph
convolution over mean pooling in capturing between-proposal
connections. The protocol MP1 + MP2 in Table 6 performs better
than MLP1 + MLP2 in Table 4, which again reveals the benefit
of modeling the relations between action units, even though we
pursue it using the naive mean pooling.
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Fig. 4. Action localization results on THUMOS14 with different backbones,
measured by mAP@tIoU=0.5.

TABLE 7
Comparison of different types of edge functions on THUMOS14,

measured by mAP (%) when tIoU=0.5.

mAP@tIoU=0.5 RGB Flow
cos-sim 38.32 47.62
cos-sim + self-add 39.38 48.76
embed-cos-sim + self-add 39.27 48.92

5.4 Influences of different backbones
Our framework is general and compatible with different backbones
(i.e., action units and features). In addition to the backbones applied
above, we further perform experiments on TAG action units [56]
and 2D features [27]. We try different combinations: (1) BSN+I3D,
(2) BSN+2D, (3) TAG+I3D, and (4) TAG+2D, and report the
results of SSN and SSN+GCM in Figure 4. In comparison with
MLP, our method leads to significant and consistent improvements
in all types of features and action units. These results conclude that
our method is generally effective and is not limited to the specific
feature or proposal type.

5.5 The weights of edge and self-addition
We have defined the weights of edges in Eq. (8), where the
cosine similarity (cos-sim) is applied. This similarity can be
further extended by first embedding the features before the cosine
computation. We call the embedded version as embed-cos-sim,
and compare it with cos-sim in Table 7. No obvious improvement
is attained by replacing cos-sim with embed-cos-sim (the mAP
difference between them is less than 0.3%). Eq. (18) has considered
the self-addition of the node feature. We also investigate the
importance of this term in Table 7. It suggests that the self-addition
leads to at least 1.06% absolute improvements on both RGB and
flow streams.
Comparisons with learned weights. To further verify the ef-
fectiveness of our graph construction strategy, we conduct an
experiment by using learned weights of edge. Specifically, we
first construct a fully-connected graph and then follow the “scaled
dot-product attention” mechanism in [39] to obtain the adjacent

matrix by computing Aij = e(W1xi)
T (W2xj)∑N

n=1 e(W1xi)
T (W2xn)

, where W1

TABLE 8
Comparisons between our GCM and the baseline using learned weights

on THUMOS14.

Method mAP at different tIoUs
0.1 0.2 0.3 0.4 0.5

SSN [56] 69.7 67.5 64.6 58.3 49.3
SSN + Learned weights 70.3 68.3 64.5 58.2 49.7 (↑0.4)
SSN + GCM (ours) 70.5 68.6 65.2 59.8 50.9 (↑1.6)

TABLE 9
Comparison of three types of edge on THUMOS14, measured by mAP

(%) when tIoU=0.5.

mAP@tIoU=0.5 RGB Gain Flow Gain
w/ all edges 39.38 - 48.76 -
w/o surrounding edges 38.80 -0.58 47.69 -0.56
w/o contextual edges 38.28 -1.10 47.57 -0.68
w/o semantic edges 39.02 -0.36 47.38 -0.87
w/o edges (MLP) 36.82 -2.56 46.74 -2.02

TABLE 10
Comparison of different sampling sizes and training time for each

iteration on THUMOS14, measured by mAP@tIoU=0.5.

Ns 1 2 3 4 5 10
mAP 48.28 48.47 48.54 48.76 48.34 48.30

Time(s) 0.10 0.23 0.33 0.41 0.48 1.72

and W2 are learnable parameters andN is the number of proposals
in one video. Note that one video often contains thousands of
proposals, and thus using a fully-connected graph will inevitably
incur large computation cost when aggregating information from
all other proposals. From Table 8, our GCM outperforms the
baseline using learned weights. This is probably because the fully-
connected graph may introduce noise from irrelevant proposals,
which may even make the training unstable. In contrast, our
GCM passes messages only from the temporally adjacent and
semantically correlated action units, and thus may eliminate
noisy information from irrelevant action units and yield better
performance. Moreover, using learned weights is able to lift the
action localization performance of the baseline (49.7% vs 49.3%).
These results reveal that exploiting action unit relations helps
localize actions more precisely, and they also justify our motivation
for considering the relations between action units.

5.6 Is it necessary to consider three types of edges?
To evaluate the necessity of formulating three types of edges, we
perform experiments on three variants of our method, each of
which removes one type of edge in the graph construction stage.
From Table 9, the result drops remarkably when any kind of edge
is removed. Another crucial point is that our method still improves
the MLP baseline when only the surrounding edges remain. The
rationale behind this could be that actions in the same video are
correlated and exploiting the surrounding relation enables more
accurate action classification.

5.7 The efficiency of our sampling strategy
We train our model efficiently based on the neighborhood sampling
in Eq. (18). Here, we are interested in how the sampling size Ns

affects the final performance. Table 10 reports the testing mAPs
corresponding to different Ns values varying from 1 to 5 (and also
10). The training time per iteration is also added in Table 10. We
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Ground Truth Volleyball Spiking42.9s 44.2s 

SSN + GCM Volleyball Spiking42.8s 44.3s
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Ground Truth Volleyball Spiking50.7s 52.4s

SSN + GCM Volleyball Spiking50.7s 52.2s
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time

Fig. 5. Qualitative results on THUMOS14 dataset. Our proposed GCM helps SSN to predict a more precise temporal boundary.

TABLE 11
Ablation study of our GCM on D-SSAD, measured by mAP (%) when

tIoU=0.5 on THUMOS14.

Setting mAP@IoU=0.5 Gain
D-SSAD [22] (our impl.) 43.21 -
D-SSAD + GCM × 1 43.47 0.26
D-SSAD + GCM × 2 44.29 1.08
D-SSAD + GCM × 3 44.77 1.56

observe that when Ns = 4, the model achieves higher mAP than
the full model (i.e., Ns = 10) while reducing the training time by
76% for each iteration. This is interesting, as sampling fewer nodes
yields even better results. We conjecture that the neighborhood
sampling can bring in more stochasticity and guide our model
to escape from the local minimal during training, thus delivering
better results.

6 ABLATION RESULTS ON ONE-STAGE METHODS

6.1 Effectiveness of GCM

Decoupled single-shot temporal action detection (D-
SSAD) [22]. Huang et al. decoupled the localization and classifica-
tion in a one-stage scheme. In particular, D-SSAD consists of three
main components: a base feature network, an anchor network, and a
classification/regression module. The base feature network extracts
representations of each video segment to form feature maps. Then,
a multi-branch anchor network takes the feature maps as input and
produces multiple anchors at each location on the feature maps.
Last, the anchors are processed by the classification and regression
module. In our experiments, we add our GCM to the feature maps
before generating anchors. As discussed in Section 3.5, the GCM
can be inserted one or multiple times throughout the network to
model the feature relationships at different scales. Therefore, we
add the GCM to feature maps with multiple scales (from 1 to 3).
From Table 11, the performance of D-SSAD is improved by using

TABLE 12
Comparison of two types of edge on THUMOS14, conducted on

D-SSAD [22] with GCM.

Settings mAP@tIoU=0.5 Gainsurrounding edges semantic edges
× × 43.21 -
X × 43.82 0.61
× X 44.19 0.98
X X 44.77 1.56

our GCM to enhance the features. As more GCMs are inserted,
the action localization results increase, which demonstrates that
our GCM is general and compatible with the one-stage action
localization methods.

6.2 How much does each type of edge help?
To evaluate the effectiveness of surrounding and semantic edges, we
perform experiments by gradually adding one type of edge to our
GCM. From Table 12, adding the surrounding edge and semantic
edge to the baseline (i.e., without both types of edges) results
in at least 0.61% improvements in terms of action localization
mAP. When considering both surrounding and semantic edges
simultaneously, the performance is further improved to 44.77%,
which strongly supports the necessity of constructing two types of
edges in our proposed GCM.

7 QUALITATIVE RESULTS

Given the significant improvements, we also attempt to find out
in what cases our method improves over the baseline method. We
visualize the qualitative results on THUMOS14 in Figure 5. In
these examples, the baseline method (i.e., SSN [56]) is able to
predict the action category correctly, while failing to precisely
predict the location of actions. With the help of our proposed GCM,
we predict a more precise temporal boundary, which demonstrates
the effectiveness of GCM for temporal action localization.
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Fig. 6. Examples of failure cases. Top: Our method predicts the beginning portion of Pole Vault as Javelin Throw since these two actions have similar
contents (i.e., an athlete running with a pole). Bottom: Our method mis-classifies the action Cliff Diving into the action Diving without recognizing the
background cliff.

Failure case analysis. Our method achieves state-of-the-art per-
formance on two benchmark action localization datasets, but like
other methods, it is still not sufficiently capable of detecting actions
when they share the similar contents. For example, in Figure 6, our
method correctly detects the locations of actions but misclassifies
the action Pole Vault into the action Javelin Throw since both these
actions share similar contents (i.e.an athlete runs when holding a
pole). Another failure case is the misclassification between Cliff
Diving and Diving. While this is a common challenge in temporal
action localization, exploiting more advanced feature extraction
methods may solve it to some extent, which will be left for future
exploration.

8 CONCLUSIONS

In this paper, we have exploited the relationships between action
units to address the task of temporal action localization in videos.
Specifically, we have proposed to construct a graph of action units
based on the temporal context and semantic information, and apply
GCNs to enable message passing among action units. In this way,
we enhanced the action unit features and eventually improved the
action localization performance. More critically, we have integrated
the above graph construction and graph convolution processes into
a general graph convolutional module (GCM), which can be easily
inserted into existing action localization methods, including the one-
stage paradigm and two-stage paradigm. Experimental results show
that our GCM is compatible with other action localization methods
and helps to consistently improve their action localization accuracy.
With the aid of GCM, our method outperforms the state-of-the-art
methods by a large margin on two benchmarks, i.e., THUMOS14
and ActivithNet v1.3. It would be interesting to extend our method
for object detection in images and we leave it for our future work.
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