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Abstract—One of the most prominent attributes of Neural
Networks (NNs) constitutes their capability of learning to extract
robust and descriptive features from high dimensional data,
like images. Hence, such an ability renders their exploitation
as feature extractors particularly frequent in an abundance
of modern reasoning systems. Their application scope mainly
includes complex cascade tasks, like multi-modal recognition
and deep Reinforcement Learning (RL). However, NNs induce
implicit biases that are difficult to avoid or to deal with and
are not met in traditional image descriptors. Moreover, the
lack of knowledge for describing the intra-layer properties -and
thus their general behavior- restricts the further applicability
of the extracted features. With the paper at hand, a novel
way of visualizing and understanding the vector space before
the NNs’ output layer is presented, aiming to enlighten the
deep feature vectors’ properties under classification tasks. Main
attention is paid to the nature of overfitting in the feature space
and its adverse effect on further exploitation. We present the
findings that can be derived from our model’s formulation and
we evaluate them on realistic recognition scenarios, proving its
prominence by improving the obtained results.

Index Terms—Deep learning, feature vector, sensor fusion,
transfer learning.

I. INTRODUCTION

HE contribution of Neural Networks (NNs) in computer
science comprises an indisputable fact. A simple search
through contemporary works suffices to convince us that Deep
Learning (DL) has significantly benefitted the performance of
machines on competitive problems, in fields like computer
vision [L], signal [2]] and natural-language processing [3].
Consequently, the use of NNs is expanded rapidly in more
and more tasks, conventional [4] or innovative [5]], while their
manipulation is simplified by the development of advanced
hardware processing units [6] and DL frameworks [7], [8].
However, one should never forget that NNs, like the rest
of machine learning algorithms, constitute the tool and not
the solution to a problem. The more we comprehend about
them as tools, by discovering useful properties along with the
advantages and disadvantages that they display, the better we
can exploit them in plenty of problems. Frequently, such an
understanding is based on their behavior on various tasks since
they appear to be particularly complex as a whole. Hence, our
knowledge originates from experimental results and empirical
rules, which however describe how they behave rather than
how they operate. The above distinction denotes how far we
find ourselves from their optimal usage [9].
In that event, the paper at hand focuses on the behavior of
the feature vectors before the output layer of a Deep Neural
Network (DNN). The motivation behind this analysis mainly
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lies in the tendency to exploit DNNs as feature extractors in
cascade and/or multi-modal tasks. Several novel approaches
have already been proposed, which employ suitable loss
functions, aiming to improve the classification performance
of DNNs [10]. The main benefit of the proposed functions
constitutes their capability of learning angularly discriminative
features [[L1]], [12], [L3]. The work at hand takes a step further
and analyzes practical properties of DNNs as feature extractors
without adopting any convention. The provided contributions
are as follows:

« the loci of the target classes in the deep feature space of
the last hidden layer of a DNN are defined and visually
illustrated for the first time;

« the supremacy of the feature vectors’ orientation against
their norm in the classification outcome is proved, while a
descriptive demonstration about their distribution within
the target class locus is provided;

« an efficient method for assessing the nature of overfitting
and the distribution of classifiers in the feature space
is proposed and empirically studied, by introducing two
metrics, viz., centrality and separability;

« a data handling strategy is suggested to cope with over-
fitting in neural-based extractors, as it is captured by our
analysis, in cases of further training and fusion.

Note that in contrast to the aforementioned works, the follow-
ing analysis applies to both shallow networks, i.e., networks
with one hidden layer and deep neural networks, without
any further convention, like custom softmax loss functions
or weight and feature vector normalization [14]]. The only
premise of our analysis constitutes the usage of the Softmax
loss or one of its variants [IL1]], [12], [13], [14].

The remainder of this paper is structured as follows. In
Section II, we discuss representative works that highlight
the exploitation of DNNs as feature extractors in unimodal
and multi-modal tasks, as well as approaches that deal with
the creation of discriminative feature vectors. Consequently,
Section III contains our detailed theoretical approach, while in
Section IV experiments are conducted to display its beneficial
results on practical problems. In the last section, we draw
conclusions and present suggestions for future work.

II. RELATED WORK

The current section presents a comprehensive description
regarding the most representative works that deal with the
extraction of features exploiting large inter-class distance from
DNNs. Subsequently, their wide usage on several cascade and
multi-modal tasks is discussed.

A. Discriminative Features

The demand on keeping the compactness of the intra-
class learned features relatively larger than their corresponding
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Fig. 1: Feature space division in R? with the ReLU activation function: (a) The differential vector @12 = 101 — We divides the space into
two halves, with the positive one denoting the subspace with z; > 2 and vise versa. (b) The same applies for every differential vector. (c)
The positive subspaces’ intersection of the differential vectors that include w1, i.e., w12 and w3, define the locus (D) of A; class, while

(d) the same applies for the rest of the classes’ loci (D2 and Ds3).

inter-class separability is a salient subject in several learning
approaches [15], [L6], [17]. A contemporary trend includes
the reinforcement of the DNN’s loss with angular margins
between the different classes, so as to enhance the feature
vectors’ discriminability. Towards that end, the Large-Margin
Softmax Loss (L-Softmax) [14] combines the cross-entropy
loss with the last fully-connected layer and a softmax function
to create more rigorous angular boundaries. Several theoretical
insights along with empirical studies showed that the introduc-
tion of hyperspherical or decoupled convolution operations in
CNNs can improve performance [18]], [19]. Especially, in Face
Recognition (FR) numerous approaches for discriminative fea-
tures have been proposed since the aforementioned necessity
is highly desired both for face identification and verification.
As an instance, an Ly-normalization on the feature vectors can
restrict them to lie on a hypersphere manifold with adjustable
radius, achieving improved results on face verification [10].
Moreover, SphereFace [11] succeeded advanced discriminabil-
ity by applying adjustable multiplicative angular margins in the
decision boundaries. On the contrary, a corresponding additive
cosine margin was investigated in CosFace [20]. Eventually,
the combination of the multiplicative and the additive cosine,
together with an additive angular margin adopted in ArcFace,
proved to outperform any other method [13].

B. DNNs for Feature Extraction

The advantageous behavior of DNNs and more specifically
of Convolutional Neural Networks (CNNs) as image descrip-
tors has been particulartly investigated in FR [21]], as already
stated in Section However, their exploitation has been
also proved beneficial in a wide variety of complex tasks.
Firstly, in the case of multi-modal learning [22], a priori
training of the unimodal architectures is often performed [23]],
given the lack of available multi-modal data and the com-
plexity of the developed architectures. The above models can
be also implemented by incorporating temporal information
through Long Short-Term Memory (LSTM) cells [24]. Then,
a fusion algorithm can be trained from the output feature
vectors of the unimodal architectures [25]. The fusion model
can be a DNN [26], a Deep Belief Network (DBN) [27], or
even an LSTM network [28]]. Modality fusion has also become

extremely widespread in Visual Question Answering (VQA),
where the last hidden layer of an embedded CNN architecture,
such as VGGNet [29]], is concatenated with the output vector
of an LSTM network to combine visual and textual data [30]].
In addition, in cases that temporal quality needs to be included
in the decision procedure, like in human action recognition,
the use of deep feature extractors has been proved particularly
beneficial [31]. Moreover, deep Reinforcement Learning (RL)
constitutes another challenging task, where a CNN can be
accurately trained as an image descriptor to provide the RL
agent with a feature vector, representing its current state [32].

C. Hyperspherical Learning

Hence, considering the applicability of deep feature vectors
in a wide variety of scientific fields, it becomes essential
to investigate their behavior and properties during and after
training. In this regard, several geometrical properties of DNNs
have been discussed in [33] and [34], where the deep feature
space is trained through a hyperspherical energy minimization
scheme inspired by the Thompson problem in physics [35]].
The above scheme replaces the common Softmax optimiza-
tion goal and encourages specific symmetries regarding the
distribution of a DNN’s weights in the feature space. This
allows for the utilization of efficient regularization techniques,
such as the widely known approaches of orthonormal [18]] and
orthogonality [36]]. Moreover, hyperspherical learning has been
proved beneficial in implementations like the one presented
in [37]]. This technique refers to the calculation of a sample’s
hardness based on its angular distance from the target class,
which is empirically considered as the weight vector of the
class. Due to the distinctive optimization goal, it is crucial to
clarify that, by forcing the weights of the last hidden layer
to follow specific symmetries, the findings of hyperspherical
learning approaches obey to different principles than the ones
studied here. Yet, an analysis regarding the usage of DNNs for
feature extraction shall initially focus on the simple Softmax
function since this is the commonly adopted technique in
classification tasks. Subsequently, within our study, we will
also discover and understand useful effects of approaches,
like the Lo-constrained Softmax [[14]], on the feature vectors’
distribution.
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III. METHOD
A. Feature Space Division

As stated above, the main scope of our work is to study
the behavior in one of the most common uses of DNNS, viz.,
the classification task. Specifically, we examine the way that
the input space of the output layer is divided by the target
classes and, as a result, how the classification goal affects
the distribution of its input vectors a € R™. Note that n
corresponds to the number of neurons in the previous layer
and in turn, the feature vectors’ size. The term deep feature
vector will be employed to describe the whole output of the
penultimate layer, thus referring to a vector that captures the
input’s properties as quantified by the entire DNN and forming
a global descriptor of the input data.

1) Preface: We denote the feature space F C R7t1
according to the neuron’s equation:

ZZZajwj+b, (1)
J

with a; being the feature vector’s coefficients, w; the trainable
weights of the neuron and b its trainable bias. Then, we
can define the expanded feature vector a. € F and the i-th
neuron’s trainable parameters w; € F:

Ge = [a1,a2, ..., an, 1] and @; = (w1, wa, ..., wy,b],  (2)
in order to simplify Eq. [l| to the dot product:
zZ; = (_le . II)Z'. (3)

Moreover, without loss of generality, we will consider F as
an n-sphere with an infinite radius R ~ oo, so that the S™(R)
encompasses all the possible feature vectors.

2) Simple Case: Considering a simple classification prob-
lem between three discrete classes, namely class A;, As and
A3, we employ three output neurons in the output layer.
Then, the softmax activation function is applied to extract the
classification result, known by the following equation:

ezi e(_le “W;4

Yi 3 o7 Z;jg eae'wj ) ( )

2

where z; represents the output of the i-th output neuron and
w; its trainable parameters. Keeping the case simple enough
for visualization purposes (Fig. [I), we consider 2-dimensional
feature vectors by also ignoring the bias. Since the ReLU acti-
vation function is applied in most deep learning architectures,
it is also adopted here, forcing the feature vector’s coordinates
to take non-negative values. However, the following analysis
applies even when ReLU is not employed.

In order for the feature vector a. to be classified in class
Ay, both of the following criteria should be satisfied:

e - W1 > G - Wy }

zZ1 > 22
—t _ _ B _
zZ1 > 23 Ae * W1 > Qe - W3

e - (w1 — wg) >0 e - w12 >0
L_le~(1f)1—ﬂ)3)>0 Qe - wig > 0 ’

&)
_—

where w19 = W, — Wy and w3 = W, — w3. From now on, we
keep this notation for vectors defined as w;; = w; — w; and

TABLE I: Number of differential vectors based on the number
of the target classes.

Number of Classes | 2 | 3 | 4 5 N
Differential Vectors | 1 [ 3 | 6 [ 10 [ .. | =V

refer to them as differential vectors. One can easily observe
that Wij = —Wyj.

Hence, according to Eq. 5] the first step is to calculate the
differential vectors w2 and wi3. Then, the sign of the dot
product and consequently the angles of vector a. with w2
and w3 specifies the locus of each critergl,\respectively.
F(Lin\stance, by solving the equation cos (Ge, W12) = 0 =>
(Ge,w12) = £7, we define in R? the perpendicular to w2
line, as the separation line between the positive and negative
values of the above dot product. The vector wio indicates
the/su\bspace of the positive ones, specified by the condition
(Ge,w12) € (=%, %). The geometric interpretation of the
above procedure is illustrated in Fig.[Tal We can work similarly
to define the separation lines of every differential vector, as
shown in Fig. [Tb] All the possible feature vectors lie inside
the 1-sphere, S*(R) (see Section and each separation
line divides the S*(R) into two semicircles (Fig. [1a).

The locus of the subspace of class A; is defined by the
simultaneous satisfaction of the criteria in Eq. 5] i.e., by the
intersection of the following positive subspaces:

Dyy = {a. € S*(R) : (ae/vw\m) € <_g’ g)}
T ©)

D3 = {a. € S'(R) : (dﬁs) € (—57 5)}

Moreover, the ReLU function restricts the allowable space of
the feature vectors only to the R% subspace. This includes
the first quadrant of the S*(R), where both coordinates take
non-negative values. Hence, the desired subspace results as:

Dy =R%,(\Di2[ ) Dis, (7)

which is depicted in Fig.
Similarly, we define the subspaces of classes A, and Aj
(D5, D3) as follows:

Dy =R2y( D21 [ ) Das,
D3 =R2y( | Da1[ ) Dsa,

resulting to the space division of Fig. [Id Notice that all the
available space of RZ, is exploited, while no intersection
exists between the sub_spaces Dy, Dy and Ds. As mentioned
above, each separation line divides the S*(R) into two semi-
circles, thus into two convex sets. In addition, R%, is also a
convex set. Since the intersection of any family of convex sets
(finite or infinite) constitutes also a convex set [38]], we ensure
that the subspaces D;, Dy and D3 are convex, as well. The
above property is essential for our following analysis.

3) Generalizing: Let us consider a classification task within
the feature space F C R"*! with N € N — {0,1} possible
classes for the feature vectors a. € F. Similarly, all the possi-
ble feature vectors will be located inside the n-sphere, S™(R).
Then, each differential vector w;;, with ¢,j = {1,2,...,N}

®)
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(a) (b)

Fig. 2: Feature space division in R3 (a) without and (b) with
the exploitation of the ReLU activation function.

and i # j, defines a separation hyperplane H;; € R" that
constitutes the solution of the linear equation @.w;; = 0. Such
a hyperplane is defined in geometry as a vector hyperplane and
passes through the origin. Thus, every separation hyperplane
divides S™(R) into two half-spaces, one including the locus of
the positive results of the aforementioned linear equation and
the other including the negative ones. The differential vector
indicates the subspace with the positive results defined as:
- - —— T T
D;j = {a. € S"(R) : (Ge,w;;) € (—5, 5)} )
The number of the separation hyperplanes adhere to Table. [I}
In accordance to our simple case, the subspace of the -
th class in S™(R) is specified by the fulfillment of all the
criteria that include the differential vectors of the specific
class 7. As a consequence, the positive subspaces that those
differential vectors define, intersect to the locus of the desired
class. Considering the above and Eq. 0] we can write for the
subspace of the i-th class:

N
m Dij7 for ’L:L
j=2
i—1 N
Di: < m Dij) m < ﬂ Dij>7 for i:{27 ...7N—1},
j=1 j=i+1
N-1
() Dij. for i=N.
j=1

(10)
Eq. [T0] applies for classification problems working on any
dimension, without applying the ReLU activation function on
the feature vectors. Otherwise the space for each one of the NV
classes arises from the intersection of the Eq. With the R’;‘gl
subspace. In Fig. [2| a division of the R® space is illustrated
both with or without the exploitation of ReLU.

Finally, since both R’;gl and D;; constitute convex sets
Vi,j = {1,2,..., N} with ¢ # j, their intersections are also
convex sets. Consequently, the subspace of any class in the
n-dimensional space is always a convex set, securing that no
discontinuity exists inside the class’s subspace.

B. Feature vectors’ sensitivity analysis

As described in Section [[II-A] the angles between the
feature vector a. and the differential vectors are decisive

Fig. 3: Plane of variations defined by the feature vector @. and the
weight w1 of the prevailing class A;. Each variation of a., including
its norm and its orientation, takes place onto this plane.

for the definition of the prevalent neuron. However, a high
classification confidence is not exclusively met by the criteria
of Eq.[5] On the contrary, a specific distance from the decision
boundaries is required, which is dependent both on the angular
distances and the feature vector’s norm. Hence, the impact of
both angle’s and norm’s variations of a feature vector (a.) on
the final result is investigated.

1) Preface: We focus our interest on feature vectors that
belong to the subspace of their correct class, but they are
not suitably placed in order for their classification cost to
approximate zero. In any other case, either the angle should
initially be fixed to minimize the calculated loss, or the loss
is too small and no further variation is required.

Thus, considering the feature vector a. and the dominant
class ¢, in the subspace of which a. lies, we calculate the
gradient of the softmax output of the j-th output neuron (V 5;),
as a function of two partial derivatives. The first refers to the
partial derivative over the feature vector’s norm R = | a.||
and the second one over its angle 6; with the weight w; of the
corresponding prevailing class (see Appendix A):

0S; 05

VS;(dR, de;) = a—édR + a—g?d@», (1
where:

as; S, L ([oy o=
it Rt —— —| e |, (12)
OR Z;V:O ek kZ:O OR OR
8Sj S; al 6Zj Oz N
o A ———|e*|. (13)
801 Z]kV:O ezk kZ:O 892 891

Hence, the partial derivatives of each output neuron z; over
R and 6; have to be calculated.

2) Simple Case: Aiming to calculate the term 0z;/06; in
Eq.[13] we will examine the simplistic scenario of classifying
a feature vector a, € R3 among three possible classes A;, As
and As, with A; being the prevailing one, i.e., i = 1 in Eq.[[3}]
We will focus our derivations on the response and weights
of class A,, indicating that j = 2 in Eq. [13] Section [[II-B3]
presents our findings extended to a generalized model.

Note that z constitutes the output of the second neuron in
the output layer expressed as a function of 6, according to the
common dot product rule:

29 = Qe - Wy = ||Ge||||w2|| cos 2 = R||ws]| cos bs. (14)
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Fig. 4: The diagrams of the output’s neurons for an input sample of class A; as a function of: (a) 6,, (b) R and (c) as a multi-variable
function, as well as the corresponding diagrams of the Softmax outputs over: (a) 6, (b) R and (c) both of them. Note that within a range
centered around 0, = 0, the feature vector’s membership in the prevalent class is evident.

Then, in order for the term 0z /06, to be computed, the above
dot product needs to be written as a function of 6 inste/a_@f
0. W@Lhe terms 6, and 65, we refer to the angles (G, w1)
and (a., w9), respectively, where a slight change of 65 affects
01, as well. We observe that variations of both R and 6; take
place onto a unit plane P that is defined by a. and wq, as
illustrated in Fig. EI Thus, we decompose w9 into two parts,
one orthogonal (wsz ) to P and one collinear (wq)) with it.
Then, we can write:

2y = Qe - (W) + WaL) = Ge - Wy + Qe - WL = Ge - Wa| (15)

since the dot product of the orthogonal component is always
zero. Considering the above, a change in R and 6, affects only
the collinear part wy|. Thus, the dot product can be described
by exploiting only terms being collinear with P, as follows:

22 = R||wy)|| cos(01 — ¢2), (16)

where ¢s is the angle between the collinear with P vectors Wy
and w;. As a consequence, the norm of the projected weight
onto the plane of variations defines, along with the norm R
of the feature vector, the amplitude of the dot product, B.,\its
maximum possible value. Correspondingly, the angle (s, w1 )
sets the phase difference (¢2), in which the maximum value
of the dot product is met. Note that for the dominant class Ay,

itis ||wy|| = [|w1]], 1 = 0 and thus:
z1 = R||w;]| cos by, a7
while
23 = R| w3 cos (61 — ¢3). (18)

We observe that each output changes linearly with R and
sinusoidally with ;. Thus, we can conceive our example’s
neurons’ outputs 21, zo and z3, as three sinusoidal waves of:

« common frequency,
« different and linearly dependent on IR amplitude and
« different and independent from a. phase shift.

The above properties for our simple case are depicted in
Fig. [fa] and Fig. fib] with the horizontal axis representing
the feature vector’s angle of rotation (6,.) onto the plane of
variations and the value of R, respectively. Fig. displays
the diagram of the neurons’ output as function of 6, and R.

By further exploiting Eq. f] we can calculate the classifica-
tion outputs ¥1,y2, and ys for each value of 6, and R from
the above distributions, producing the corresponding graphs
of Fig. Ad] el and A Using depicted responses in Fig. [4d] for
each value of 6,., we can extract the prevailing class, which
is changed under rotation. Consequently, Fig. e] verifies that
the prevailing class can not be affected by modifications of
R. On the contrary, variations in rotation can not reach high
softmax results without suitable modification of R. According
to Fig. [} the bigger the R, the closer the maximum softmax
value to 100%. In addition, while R increases, the graph over
0,- of the produced feature vector approximates the rectangular
function, thus increasing the range of its orientations that
secure high softmax results. The above property will be
particularly shown in our experiments.

Finally, from Eq. [I€] it follows that:

0z _

R [[way([| cos (01 — ¢2), (19)
322 _ .
8791 = —RH’(UQHHSIH (01 —¢2). (20)

Combining the above with Eq. [TT] [I2] and [T3] we define the
gradient of softmax over R and 0;.

3) Generalizing: In order to apply the above calculations
in any generic space J, some geometrical properties need to
be defined. To that end, we base our model on the Clifford
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algebra [39] and more specifically its power of geometrically
manipulating objects in high dimensions{ﬂ Its basic com-
ponents include vectors, bivectors and trivectors, while its
basic geometrical product denoted with a simple juxtaposition
between two compnents, say v; and vg, emerges from the
summation of other two products, viz. the inner (]) and the
outer (A) products [40]:

V1V = ’U1J1)2 + v1 A va. (21)
An illustration of the above components is shown in Fig. [3}
Here, we will keep in mind that the rotation of a feature vector
a. € JF can be described as:

a, =Va VT, (22)
where:
X 0, 0,
V= e_P% = cos? — sm;P, (23)

is called rotor and rotates the vector a. on the unit plane (]5)
by the angle (#,.). With VT we refer to the reverse of V:
Or

5 0 0, ~
Vi=etP7 = cosé + sin—P.

: 24)

Consequently, the projection of any weight vector w;| onto the
plane of w; and a. is calculated as follows. Initially, through
the wedge product a. A w;, we calculate the unit bivector:

po L nt (25)
1@e A |
referring to the plane of interest. Then, we apply:
wy) =V (w; | P)VT. (26)

In Eq. the inner product is exploited to calculate the
complement (within the subspace of P) of the orthogonal
projection of w; onto P [41]]. Then, a counter-clockwise
rotation of the produced vector by 7 over Pis performed
through the rotor:

. 2 A
V =cos— —sin— P = £(1 — P),
Once |[[w; | is calculated, we have:
zj = R-|Jwj | - cos (0; — ¢;), (28)
and
0z; _
a7 = @il cos (05 — ;).
82’]' _ . (29)
90, — —R||w; [ sin (0; — ¢;).
For j =i, |lw;y || = [lw,]| and ¢; = 0.

Nibrary: https://github.com/loannisKansizoglou/Deep-Feature-Space

Outer Product & Bivectors

Fig. 5: Clifford Algebra’s basic components and operations.

C. Findings Overview

At this stage, we take a moment to discuss the findings of
Sections and and highlight their importance to the
consequent study. To begin with, the geometrical interpreta-
tion, provided in Section [[lI-A] claims that the locus of a class
is defined exclusively by the orientation of the vectors, while
it constitutes a convex set of the space. Hence, the feature
vectors of a given class are anticipated to concentrate inside the
corresponding locus, by angularly approximating themselves.
The sensitivity analysis conducted in Section further
clarifies the higher impact of the feature vectors’ orientation.
To this end, the resulting mathematical formulation enables
us to investigate the gradients of softmax over the feature
vectors’ orientation and norm, providing an initiative intuition
regarding the gradients” magnitude in Fig. @ In Section [[V-B]
this formulation will be exploited to empirically prove the
orientation’s supremacy in practical scenarios.

1) General Rules of Feature Space: Summing up, we write
below certain properties that describe the studied feature space.

e R.I: Each class occupies a convex subspace of the feature
space defined and angularly delimited by its differential
vectors (Eq. [9).

e R.II: The prevalent class of each feature vector is exclu-
sively defined by its orientation (Fig. f).

e R.III: The softmax output of the prevalent class for a
feature vector is proportional to its norm.

The proof of R.III is given in Appendix B.

2) VC-dimension in F: Subsequently, we investigate a
possible relation between the studied feature space JF and
the Vapnik-Chernovenkis (VC) dimension [42], which can
provide a formal way to define the capacity of F. In our
study, we seek the maximum number d € N* such that there
is a possible layout of d feature vectors in F, for which the
hypothesis H, i.e., the set of separation hyperplanes defined in
Section can classify the above vectors for any possible
label assignment among them. In such a case, we say that
‘H shatters d points in F. Knowing the properties of F, we
firstly proceed with several important observations. According
to the angular property, we know that the norm of the feature
vectors does not affect the classification problem. Thus, in
order to define the VC-dimension of F, we select feature
vectors that lie upon a hypersphere manifold. Furthermore,
it is easy to show that in case that a binary classier is not
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able to shatter a specific layout of points in JF, then neither
sets of three or more classifiers can. To prove that, let us
simply assume a layout of d points in F that is shattered by
a hypothesis H3 of three separation hyperplanes, viz., Wi2,
w3 and wysg. Then, we can consider a labelling option of
the layout, where only the labels of the first two classes are
assigned and none of the third one. Since Hg3 shatters the
points and according to Eq. [/} we know that D;, includes all
the points with the label 1. Hence, w12 also separates the two
classes and given their unbounded selection, we can claim the
validity of our initial argument. Thus, the VC-dimension of a
binary classifier in F sets the upper bound of any hypothesis
in that feature space. In this case, our system degenerates
to the simple case of a perceptron, or more typically, of a
linear classifier, with the only differentiation being the norm
restriction due to the angular property. However, the above
restriction does not affect the proof of VC-dimension for linear
classifies, leading to the conclusion that d=N+1, where N
denotes the dimensionality of F.

D. Metrics

Taking into consideration the supremacy of the feature
vectors’ orientation in the classification outcome, discussed in
Section |[II-C| we draw useful conclusions about the form of
overfitting in F. As a whole, overfitting is mainly realized via
the divergence between the performance curves of the training
and the evaluation data. Keeping in mind that the evaluation
set remains agnostic to the model’s parameters, the separability
of its feature vectors is expected to differ from the training
ones. The above fact tends to become more intense when
the performance curves between the two sets diverge and a
larger amount of testing data are misplaced in F. As stated
in Section since the vectors’ orientation constitutes the
decisive factor, the above misplacement is anticipated to be
captured by observing their angular distribution in F. Ergo,
aiming to review the nature of overfitting in F, we propose two
metrics that describe the angular distribution of all a. € F,
viz., centrality (C) and separability (S). These metrics focus
only on the angular distribution of a., exploiting the cosine
distance metric d,. € [0, 1], where:

Qe, * Ue,

d.(a a =1 - —=—
e 8er) = 1 = 2

(30)

1) Centrality (C): This metric assesses the quality regarding
the angular distribution between the central vectors of the
target classes. Each central vector derives from the mean
value of the normalized d. belonging to the corresponding
target class. In specific, let us consider a set of N4 classes
A={AC }NA such that Vi, A exists a set of N feature

vectors al’ = {al }N( o . The central vector ¢ of A® is:

N@®
5(1) - NO)

N(Z) - a(ij bl
J

€2y

where aﬁ) denotes the Ly-normalized a( 9 and 7 € N a simple

index variable. Then, the centrality C() of the i-th class is

C = ming{d.(c®, ™)}, with k = {1,2,..., N4} and k #
1. Ergo, the centrahty ratio between the test and train sets is:

1
2) Separability (S): This metric evaluates the percentage
of the target class’s similarity over the rest of the classes
in F. For the i-th class, we find its nearest class AU),
where j = argming {d.(¢®,&*))}, k # i. Then, for k,l =
{0,1,..., N@1, we calculate the mean cosine distance between
the feature vectors of the same class:

N@® n@

1 N(szd ek’a(?’

Moreover, for k = {0,1,..., N®}and I = {0,1,..., NU)}, we
calculate the mean cosine distance between the feature vectors
of the ¢-th class with the ones of the j-th class:

k41 (33)

N@ )
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Then, the separability S() of the i-th class is S@ = 7" /7{"
and the separability ratio between the test and train sets is:
1 Z St @ test
S @) trtun
The above findings and metrics are exploited to evaluate our
salient argument, denoting that training a deep feature extrac-
tor with Softmax-based losses creates an angular discrepancy
between the training and the evaluation set in the studied
feature space. Therefore, training a cascade learning algorithm
with the same training set, used for the aforementioned extrac-
tor, further deteriorates the final performance on the evaluation
set. For this purpose, we empirically study the common case of
fusing the outputs from two unimodal extractors in a cascade
learning algorithm. The fusion operation of two input feature
vectors is simply denoted by their concatenation (7). In
specific, considering two vectors @V € R™ and @' € R™ with

n,m € N* their corresponding lengths, the resulting fused

features (@l € R"™™) conform to the equation al” = a¥ ~aZ'.

i) = (34)

(35)

IV. EXPERIMENTS

The properties in Section allow us to present a novel
geometrical interpretation with the purpose to denote the
adverse effect of overfitting in feature learning tasks that
exploit deep architectures as feature extractors. Hence, the
following empirical studies have been conducted to gradually
conclude in the final real-world scenario of feature fusion.
More specifically, we begin by detailing the datasets used dur-
ing experimentation, while several experiments are presented
to demonstrate the dominance of feature vectors’ orientation
during training and the norm’s contribution to the resulting
distribution. Consequently, we evaluate the ability of centrality
and separability to capture overfitting in F. Finally, we pro-
ceed with the main argument of the paper, by firstly measuring
overfitting in the unimodal feature extractors through the
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proposed metrics and then, empirically proving the validity
of our statement through training a fusion algorithm for a
representative classification task of emotion recognition. Our
results prove that an alternative training strategy, which obeys
the aforementioned guidelines, favors the overall system’s
performance in practical applications.

A. Datasets

1) CIFAR: Both CIFAR-10 and CIFAR-100 datasets [43]
include 50,000 training and 10,000 testing images of 32 x 32
pixels. CIFAR-10 is composed of images from 10 and CIFAR-
100 from 100 classes.

2) RML: The audio-visual RML dataset [44] consists of
720 video samples, each one containing scripted scenarios that
express a specific emotional context among six basic classes,
viz., happiness, sadness, surprise, anger, fear and disgust,
from 8 different subjects. The recording speed of the 720 x 480
video frames is 30 fps, while the sampling rate of the audio
mono channel is 22.05 kHz. During our experiments, we adopt
the Leave-One-Speaker-One (LOSO) strategy to evaluate the
speaker-invariant capabilities of each approach [43].

3) BAUM-1s: The audio-visual BAUM-1s dataset [46]] con-
tains 1184 video samples with spontaneous unscripted sce-
narios from 31 different subjects. Since the specific dataset
includes more emotional states than RML, we keep for co-
hesion only the 521 video samples that expose one of the
aforementioned basic emotions. The size of the video frames is
854 x 480 recorded with a speed of 30 fps, while the sampling
rate of the audio signal is set to 48 kHz. In order to assess the
speaker-invariant capabilities throughout our experiments, we
follow the Leave-One-Speakers-Group-Out (LOSGO) scheme
of 6 groups that include each speaker once [46].

4) eNTERFACE’05: The audio-visual eNTERFACE’05
dataset [47] is composed of samples with acted scenarios from
41 subjects. Those recordings expose one of the six basic
emotions along with neutral, which is discarded. The camera’s
recording speed is 25 fps and the sampling rate of the audio
signal is 48 kHz. The experiments on eNTERFACE’05 has
been also conducted according to the LOSGO scheme.

5) ShapeNet: The empirical evaluation between the distri-
bution of the input data and the division in F is conducted, by
exploiting the ShapeNet dataset [48]], which includes 31,963
per-point labelled 3D shape collections of 16 distinct cate-
gories. During our study, we exploit at each experiment the 3D
shapes among one of the categories: earphone, rocket, guitar,
table, skateboard, airplane and car. The 3D shapes are divided
into training, evaluation and testing sets, in accordance to [48]].

6) ImageNet32: In order to further evaluate the efficacy
of the proposed metrics in capturing the nature of overfitting
in F, the large-scale ImageNet32 dataset [49] is employed.
ImageNet32 constitutes a downsampled version of the com-
mon ImageNet dataset [50], where each image is resized to the
resolution of 32 x32. Note that the total number of training and
testing samples remains 1,281,167 and 50,000, respectively, as
well as the total number of classes, which equals to 1,000.

7) Pre-processing: All images from CIFAR-10 and CIFAR-
100 datasets are normalized based on the channel means and
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Fig. 6: The mean and standard deviation of 9S;/9R and 0S;/90;
during training on CIFAR-10 [43].

TABLE II: Convolutional architecture.

Layers Kernel Size | Kernels | Output Size
Convolution [5 % 5] 20 28 X 28
ReLU - - 28 x 28
MaxPooling 2 x 2] - 14 x 14
Convolution (5 x 5] 50 10 x 10
ReLU - - 10 x 10
MaxPooling 2 x 2] - 5x5
Convolution (5 % 5] 500 1x1
Fully Connected - 100 100
ReLU - - 100
Fully Connected - 10 10
(L2-)Softmax - - 10

standard deviations. Regarding the three emotional datasets,
we follow the strategy proposed in our previous work [26].
In specific, we detect the timestamps t. during which the
subject speaks in every video sample. For every t., we
extract the corresponding frame (f,) along with an audio
sample within a time window T,, = [t — tw,tc + t] With
t, = 500ms. The next t. is searched after 100ms. Then, a
face image is cropped from each frame with the Haar Feature-
Based Cascade detector [S1], while constantly keeping a fixed
distance between the subjects’ eyes of 55 pixels and then
resized to the final size of 224 x 224 x 3. During training,
we apply random adjustments on the face images’ saturation
and brightness. The audio samples are resampled to a 16 kHz
format and converted to a log-mel spectrogram representation
of 64 mel-spaced frequency bins and a range of 125 Hz-7,5
kHz. This is achieved through the short-time Fourier transform
with Hann windows with 25ms size and a step of 10ms.
Finally, by keeping the 96 middle columns, we set the size
of the representation at 64 x 96 x 1 [26].

B. Norm and Orientation in F

We revisit Section from an experimental point of view
in order to clarify the effects of the feature vectors’ norm R
and orientation 6;.

1) Setup: During our experimentation, we exploited the
simple convolutional architecture presented in Table |II, trained
it on CIFAR and we studied the behavior of all a.. Each
training procedure lasted 40 epochs with batch size 64 and
learning rate at 10~2. For each a@., we tracked the values
of the partial derivatives 0S;/0OR and 0S;/06; based on
Eq.[12)and Eq.[T3] respectively. Additionally, aiming to discern
the effect of R, we employed, apart from Softmax, the Lo-
Softmax [10], the L-Softmax [14] and the SphereFace [11]].
In specific, by keeping the same experimental setup, we trained
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Fig. 7: Cosine distance (d.) matrices between the feature vectors with ReLU on both the training (first row) and testing set (second row)
of CIFAR-10. Notice that the lower the scale factor, hence the radius of the feature vectors’ hypersphere, the higher the angular similarity
between the feature vectors of the same class, wrt. the rest. The testing set’s classification performance is not considerably affected.

TABLE III: Evaluation of feature space F.

Softmax Lo-Softmax L-Softmax | SphereFace
(s=20) | s=1) | (s=0.1)
Centrality, Cr .859 725 751 752 .926 .949
Separability, Sp 1990 .845 .823 .588 977 .954
Loss-Ratio, L 2.63 10.85 8.57 19.52 1.42 1.24

our CNN with Ls-Softmax for different values of s. For
stability purposes in the cases of L-Softmax and SphereFace,
we trained each of them with the larger batch size of 256,
exploiting a decaying learning rate, as proposed in [14] and
[11], respectively. After training, we calculated the mean
centrality and separability in F. For visualization purposes,
we also extracted the corresponding cosine distance matrices.
To achieve that, we randomly chose 1000 feature vectors of
each class from the training data and calculated their cosine
distances d.. The same procedure was adopted to extract the
cosine distance matrices for the testing set, as well.

2) Results: In Fig. |6, the mean and standard deviation of
0S;/OR and 0S;/00; during the training procedure are dis-
played. Note that the corresponding mean values of 9.5;/06;
are higher at least by one order of magnitude, stressing the
orientation’s dominance in the classification task. Moving on
to the resulting cosine distance matrices for the Softmax and
L-Softmax of Fig.[]] one can ascertain the inversely propor-
tional correlation between the norm and the differentiation of
the feature vectors belonging to the same class, wrt. the rest.
Taking into consideration the analysis in Section [II-B] and
[10], the above fact is indeed highly anticipated. Fig. 4] showed
that for large values of the feature vectors’ norm, the Softmax
output diagram approximates the rectangular function and
broadens the range of the available orientations that succeed
a classification accuracy of 100%. As a result, the feature
vectors are not motivated to further move away from their
decision boundaries and approximate their class’s center, thus
remaining more distant from the vectors of the same class.

Another finding of Section [[II-B| constitutes the inability
of R to considerably affect the classification performance.
As shown in Table [[Tl] and the testing distance matrices in

diversity

aeF

Fig. 8: Experimental setup for studying the correlation between the
input data’s distribution and the division in F. A class with larger
diversity among the training dataset occupies a smaller subspace.

Fig. [1l our simple CNN appears to overfit the training set
since the separability ratio Si is reduced. We can state that,
different values of s cause higher angular separability between
the training feature vectors, which is not given for the testing
set. Hence, specific care is required in angular-based losses,
because they can significantly strengthen the gap between the
distribution of the two sets.

C. Distribution of Hyperplanes in F

At this stage, it would be reasonable for the reader to wonder
whether there is a possible correlation between the distribution
of the input data of a DNN and the produced feature vectors
in F. Keeping in mind that the second depends on the loci of
the target classes in JF, the above correlation between the input
data distribution and the resulting classes’ loci is studied.

1) Setup: To achieve that, we investigate the challenge of
instance segmentation of 3D point clouds since it is more
straightforward to extract the necessary properties regarding
the distribution of the input. More specifically, we employ the
well-established PointNet architecture [52]] and conduct our
experiments on the ShapeNet dataset [48]]. Within each exper-
imentation, we exploit only one of the available categories of
ShapeNet and train the PointNet with the purpose to classify
each point of the cloud to the correct class of the specific
category. As an example, the category rocket, also depicted in
Fig. |§L includes three classes, viz., the body, the fin and the
nose. The input of the architecture constitutes the entire 3D



JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. XX, JULY 2021 10
TABLE IV: Angles (in degrees) between the differential vectors of each class in F.
Earphone Rocket Guitar Table Skateboard
D1 Do D3 D1 Do D3 D Do D3 D Do D3 D1 Do D3
Experiment 1 55.16 | 55.49 | 69.36 | 51.10 | 66.76 | 62.14 | 50.65 | 86.11 | 43.24 | 52.87 | 60.43 | 66.69 | 60.26 | 35.21 84.53
Experiment 2 51.47 | 56.37 | 72.16 | 49.56 | 70.36 | 60.08 | 47.58 | 88.26 | 44.16 50.85 59.30 | 69.85 | 68.20 | 26.83 | 84.97
Experiment 3 | 52.80 | 59.67 | 67.53 | 47.52 | 74.78 | 57.70 | 49.11 88.19 | 42.70 | 45.34 | 66.42 | 68.23 | 63.59 | 29.04 | 87.38
o 53.14 | 57.18 | 69.68 | 49.39 | 70.63 | 59.97 | 49.11 87.52 | 43.37 | 49.69 | 62.05 | 68.26 | 64.01 30.36 | 85.63
o 1.87 2.20 2.33 1.80 4.02 2.22 1.54 1.22 0.74 3.90 3.83 1.58 3.99 4.34 1.53
Airplane
D1y Do D3 Dy
(w12, w13) ‘ (w12, W14) ‘ (w013, w14) | (W21, w23) ‘ (w21, w24) | (W23, W24) | (W31,Ww32) ‘ (w31, W34) ‘ (w32, W34) | (W41, Wa2) ‘ (W41, Wa3) ‘ (W42, W43)
Experiment 1 7520 | 6133 | 6531 51.90 | 5791 55.96 52.90 | 56.63 | 52.07 60.76 | 5807 | 7197
uto 67.28 £ 7.14 55.26 & 3.06 53.87 4 2.43 63.60 & 7.37
Experiment 2 7701 | 66.60 [ 64.03 56.18 | 59.78 | 55.94 4681 | 5525 | 5353 5361 | 6072 | 70.53
nto 69.22 + 6.88 57.30 +2.15 51.86 + 4.46 61.62 + 8.49
Experiment 3 7147 | 6473 | 64.27 59.06 | 60.04 [ 5897 4947 | 5479 | 5422 5522 | 6094 | 66.81
uto 66.82 + 4.03 59.36 + 0.59 52.83 +2.92 60.99 + 5.79
Car
D1y Do D3 Dy
(w12, w13) ‘ (w12, W14) ‘ (13, @14) | (@21,23) ‘ (w21, W24) ‘ (w23, w24) | (W31, W32) ‘ (w31, W34) ‘ (w32, W34) | (W41, Wa2) ‘ (W41, Wa3) ‘ (W42, W43)
Experiment 1 57.20 | 6318 | 53.82 7544 | 6835 | 59.49 4736 | 5983 | 6238 4847 | 6636 | 5813
uto 58.07 &£ 4.74 67.76 £ 7.99 56.52 & 8.04 57.65 £ 8.95
Experiment 2 6049 | 6010 [ 50.63 7379 | 7457 ] 55 4572 | 6533 | 6188 4533 | 64.04 | 6157
nto 57.07 & 5.58 68.30 + 10.19 57.64 + 10.47 56.98 & 10.17
Experiment 3 5658 | 61.08 | 50.64 7587 | 6760 | 57.01 4755 | 5842 | 6104 5132 | 7094 | 6195
pto 56.10 + 5.24 66.83 + 9.45 55.67 £ 7.15 61.40 + 9.83
TABLE V: 3D Point Cloud Statistics regarding the diversity

of each class within the training dataset.

Ay Az Az Ay

DIV | P DIV | P DIV | P DIV | P

Earphone | 1.200 | 1.00 | 1.579 | 1.00 | 4.164 | 0.24 — —
Rocket 1.061 | 1.00 | 3.515 | 0.89 | 2.912 | 1.00 — -

Guitar 1.067 | 1.00 | 1.137 | 1.00 | 1.038 | 1.00 - -

Table 1.043 | 1.00 | 1.166 | 1.00 | 3.068 | 0.62 - -

Skateboard | 1.869 | 0.64 | 1.081 | 1.00 | 3.541 | 0.80 - —
Airplane | 1.025 | 1.00 | 1.023 | 1.00 | 1.202 | 1.00 | 2.438 | 0.78
Car 1.121 | 1.00 | 1.409 | 0.84 | 1.035 | 1.00 | 1.024 | 1.00

point cloud of one instance of the category rocket, while the
network’s output is the classification score of each point. Since
the output layer uses shared weights for each point [52], we
secure that the same separation hyperplanes are simultaneously
used to classify each point of the instance. In other words, for
n € N* number of points, we end up with n feature vectors in
F classified by the hyperplanes defined by the weights of the
last layer. PointNet is trained using the setup proposed in [52].

2) Results: After training, we measure the angles between
the resulting differential vectors for each class as presented
in Table In the case of three classes, there is exactly one
angle to be calculated for each class since, based on Egs.
and [8} the class is defined by two differential vectors. In
the case of four classes, we end up with three angles. Note
that each experiment is repeated three times, thus taking into
consideration its stochastic nature and providing better appre-
hension. We also present the mean p and standard deviation
o among the same experiments. For the cases of airplane and
car, we added the mean and the standard deviation among the
angles of the same target class, as well. In addition, Table E
keeps a statistical measurement of the dataset’s 3D shapes,
regarding the diversity of each class among the dataset. The
class’s diversity is computed through the divergence of its
point cloud among different instances of the dataset and it
can be interpreted as a measurement regarding the complexity

that the network needs to learn. In specific, let P{ and 77;,
i,j = 1,2,..., Ny, i # j, be the point clouds of the c-th
class from two of the total N; € N* dataset’s instances. We
compute the mean Euclidean distance between all points of
Pi and Py, denoted as de(PF, P¢£). In addition, we compute
the corresponding distance between the points of P; itself
(dg (Pg,P?)). The diversity of the c-th class among the dataset
arises from the equation below:

N N. 7 c c
1 > it Zj:ll,j;ﬁi de (P§, Py)

DIV® = =
N S de(PsLPY)

(36)

Yet, since it is quite common for a class not to be included in a
point cloud instance, we also keep the percentage of instances
(P;) that include points from each class. We argue that this
metric also quantifies the diversifying nature of a class. Due to
the heavy computational cost required for the calculation of the
above, our results in Table |V| have emerged from a randomly
selected subset containing 25% of the total instances.

From Table we ascertain that for each category there
is consistency regarding the succession of the angles’ values
among the classes. The above is highly important since it
proves that the distribution of the classifiers in F is not fully
stochastic, but rather follows several rules based on the data
distribution. By further comparing Tables and [V] for each
category and each class, we notice a strong relation between
the diversity of the class and its angles in F. Focusing on the
most diversifying classes of each category we can exclude that
their differentional vectors present the highest angles. Keeping
in mind Eq. the larger the angles between the differential
vectors, the smaller the size of a class’s locus. Hence, classes
with high diversity occupy less space in F. At a first glance,
this statement may appear a bit misplaced, but one should
keep in mind that samples with higher divergence provoke
higher loss values and, in turn, cause more intensive changes
to the DNN’s parameters. Those changes can be visible in
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TABLE VI: Centrality and Separability ratio between the testing and training set of D, for both visual and audio feature
extractors. This experiment was conducted over multiple iterations, each time leaving out a speaker s; or speakers-group gr;.

Angular RML BAUM-1s
Metrics s1 ‘ S2 ‘ s3 ‘ Sa ‘ S5 ‘ S6 ‘ s7 ‘ 58 gri ‘ gra ‘ grs ‘ gra ‘ grs ‘ gre
Visual Feature Extractor Visual Feature Extractor
Centrality, Cg 697 .760 801 | .635 787 713 .610 657 688 .607 687 .468 .593 .556
Separability, Si .687 .628 .632 .826 .653 768 .768 778 .489 .553 .519 .536 1420 .488
Loss-Ratio, L 22.085 | 21.159 | 8.431 | 8.397 | 11.516 | 10.048 | 18.999 | 13.547 | 12.859 | 19.052 | 15.056 | 22.634 | 20.673 | 23.746
Audio Feature Extractor Audio Feature Extractor
Centrality, Cr .646 739 .816 705 767 .802 .870 .646 744 720 .605 .656 .547 .857
Separability, Si .653 .692 .857 .833 975 976 1930 .884 742 .730 .882 .814 .670 .684
Loss-Ratio, L 13.168 | 10.227 | 5.003 | 8.810 7.460 6.283 4.942 6.247 11.294 | 13.050 | 13.358 | 11.570 | 17.016 | 10.681
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D. Multi-modal Fusion and Strategies 5o %" audio
The current section deals with the shape of overfitting in ° 10 1 " * % “
F and its adverse effect on feature extraction under cascade (b) BAUM-1s

training tasks, like modalities fusion. Moreover, an alterna-
tive fusion strategy that can considerably benefit the overall
performance is proposed. The above are examined in the
A-V emotion recognition challenge, by exploiting two deep
unimodal feature extractors and a fusion model.

1) Setup of Feature Extractors: First, we investigate the
relationship between overfitting and angular distribution both
for audio and visual modalities on RML and BAUM-1s. Dur-
ing training, we formed a uniform dataset D,, by combining
the three emotional databases and we evaluated the resulting
distribution on each speaker (s;, + = 1,2,...,8) of RML and
each group of speakers (gr;, 7 = 1,2, ...,6) of BAUM-1s. This
course of experiments was performed under a leave-one-out
evaluation scheme, each time considering a different speaker
or group as a testing set. We exploited the MobileNetV2 [53]
pre-trained on ImageNet [50] to fine-tune our face images.
The training audio samples were also used to fine-tune the
pre-trained VGGish [54] architecture. We utilized the Adam
optimizer [55] with batch size 32 and an initial learning rate
at 1075 that exponentially decays by 90% for every 5,000
training steps. We trained each architecture for 10 epochs and
investigated the angular distribution of the feature vectors.

2) Feature Extractors’ Evaluation: Table [V presents the
resulting values of the Cr and Sy, for both unimodal extractors.
We can observe the lower values on BAUM-1s, which consti-
tutes a spontaneous, hence more difficult dataset. Generally,
Table [V]] contains low values regarding both centrality and

Fig. 10: Percentage of the accurately classified feature vectors
extracted by the unimodal feature extractors on (a) RML [44] and
(b) BAUM-1s [46]], using k-NN with d. and k € [3, 39]. The larger
the value of k, the bigger the gap between the succeeded percentage
on the training (red) and the corresponding testing (blue) vectors.

separability measures, indicating a significant gap between the
distribution of training and testing sets. The above property
can be further interpreted through a qualitative representation
illustrated in Fig. 0] According to Section [[V-B] we applied
Eq. 0] as our distance metric for the feature vectors. Com-
paring speakers sz, S4, S5, S¢ and sy against the rest of the
speakers or speaker-groups, we identify the most favorable
results, which also correspond to the lower values of Lp.

In addition, we employ k-NN, aiming to further demonstrate
the divergence of the feature vectors’ angular distribution
between the training and the testing set. Hence, we apply
k-NN to the feature vectors for each one of the trained
unimodal feature extractors in Table [VI[ using the cosine
distance metric. In specific, given a speaker and one of the
two sets, we measure Va. of the set the percentage of the
positive neighbors, i.e., the number of those that correspond to
the same class, over the number of the nearest neighbors k. In
case that this percentage is higher than 50%, the current feature
vector is considered to be correctly classified. We repeat the
experiment for any odd number of nearest neighbors k£ within
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[3,39], keeping the percentage of the accurately classified
feature vectors. In Fig. the mean and the standard deviation
among the speakers, both in RML and BAUM- 15, is illustrated
for each value of k € [3,39]. For each unimodal extractor on
both datasets there is a gap between the percentage succeeded
by k-NN on the training and the corresponding testing feature
vectors, which becomes even wider as we increase the value
of k. The above indicates the divergence between the angular
distribution of the two sets, settling an empirical illustration
of the separability problem in cascade tasks.

As shown, the distribution of feature vectors in F is
affected during training, leading to better central distribution
and angular separability of the training vectors as compared
against the testing ones. Hence, in cases of further training,
like fusion, where such a distribution constitutes the input
space of the cascade architecture, the existing discriminable
training features hamper the correct classification of the more
ambiguous features of the testing set. With the above in mind,
an unintuitive but crucial question arises. Would it be beneficial
to divide the available training data into two sets, one for
training the unimodal extractors and one for their fusion?
By doing so, the training of the fusion model would also
include more ambiguous samples since they would be novel
to the unimodal network. Such an input sample would closely
resemble the distribution of the actual testing set and the rest of
this subsection is dedicated to the assessment of this approach.

3) Setup of Fusion Strategies: We made use of the above
architectures for our unimodal feature descriptors, viz., the
MobileNetV2 and the VGGish for the visual and the audio
channels, respectively. For fusion, we tested the performance
of both a Support Vector Machine (SVM) and a DNN archi-
tecture. The latter contains two Fully-Connected (FC) layers
of 512 neurons with dropout rate 0.3 and three batch normal-
ization layers before, in-between and after the FC layers. D,
was shuffled and split in half, forming the sets: D; and Ds.
Then, we evaluated the performance of the total architecture
considering the strategies below:

e S1_1: We exploited the face images and speech samples

of D; to fine-tune the visual and audio channels. Then,
the fusion model was trained from the A-V data of D;.

e S1_o: The face images and speech samples of D; were
similarly exploited to fine-tune the visual and audio
channels, respectively. Then, the fusion model was trained
with the A-V data of the unused set Ds.

e S,_o: We fine-tuned both channels with the unimodal
data of the total set D,. Consequently, we trained their
fusion with the same A-V data. Note that this training
scheme also describes the experimental protocol for pro-
ducing the results in Table

Each training procedure has been conducted for 10 epochs,
exploiting the Adam optimizer with mini batch 32 and learning
rate starting at 10~ and exponentially decaying by 90% every
5,000 steps. Similarly, we assessed each strategy on RML
and BAUM-1s, following the LOSO and LOSGO schemes,
respectively. We also measured the mean performance among
all the aforementioned speakers and speakers-groups.

4) Results of Fusion Models: The results in Table [VII
verify the adverse effect of the overfitted unimodal descriptors

on the performance of the fusion model. Firstly, comparing
strategy S1_1 against S7_o, we can ensure that the second
one outperforms the first at any case for both fusion models.
This fact is highly anticipated since the final multi-modal
architecture of S7_», in contrast to S;_1, has been trained on
the whole dataset, including both D; and D,. Therefore, we
can not conclude that training the fusion model on unfamiliar
data, has benefited the final performance. For this purpose,
lets focus on S;_o and S,_, that have been trained on the
same amount of data. We observe that except for two cases,
including ss and s7, the results related to any other speaker
have been improved through the proposed cascade strategy.
Paying attention to the mean performance of each strategy
on the whole pool of speakers and speakers-groups, we can
highlight this advantageous property even more. The mean
performance appears to have been improved by 5.82% on the
DNN and 4.43% on the SVM fusion model.

Noticing the better performance of SVM, one could state
either that DNN seems not to be the most appropriate fusion
model for this multi-modal case, or that there could be a
better set of hyperparameters, such as learning rate, batch size,
architecture, efc. to achieve better performance and annul the
above benefit. However, as shown in Fig. [[T] and particularly
in the loss curves, when the feature extractors and the fusion
model are both trained with the same data, overfitting appears
quite earlier, which limits the room for improvement of the
fusion model. The accuracy curves of S,_, display a quick
peak during the first epochs, according to the similarity of
the feature vectors between the evaluation speaker and the
training set, but do not exhibit any further improvement. On
the contrary, the accuracy curves of the DNN under the S;_»
strategy imply a smoother behavior. Hence, the reconsideration
of the feature extractors’ training choice, such as the proposed
S1_2 scheme, denotes the best improvement candidate.

Paying closer attention to each individual speaker’s perfor-
mance, the obtain results for s3 and s7 constitute an exception
to the rest of our experimental results in Table This
behavior can be interpreted by re-examining Table [VI] (which
follows strategy S,_,), in order to find out that the audio
feature extractor of both speakers exhibits the highest C rates,
while also keeping increased Sp values, indicating similar
training and testing distributions. In a similar manner, the
visual feature extractor of sg also achieves high centrality and
separability values in Table explaining the fact that the
alternative fusion strategy has not significantly improved the
performance of S,_,. A more careful observation shows that
the above also applies for the rest of the speakers mentioned
in Section On the contrary, s1, s3 and sg have been
particularly harmed by S,_,, which are the main cases that
highlight the advantageous properties of S7_o. The visual
extractor of grg, presenting the second best value of Cr in
Table reveals the adverse effect of S,_, on the fusion
model, due to the low produced Sg values.

Finally, aiming to farther evaluate the effects of our analysis,
we applied certain configurations on S;_o and S,_, and
conducted the same experiments both on RML and BAUM-
Is. In specific, instead of exploiting the above datasets to
train our unimodal extractors, we made use of two unimodal
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Fig. 11: Accuracy (first row) and loss (second row) curves of three representative evaluation examples during training the DNN fusion
model under different strategies. When the same training data are used (see S1—1, Sa—a), overfitting appears in the early stages of training.

TABLE VII: Classification performance (%) of fusion models under different training strategies.

RML BAUM-1s
Strategy mean
s1 ‘ S9 ‘ s3 ‘ S4 ‘ S5 ‘ S6 ‘ s7 S8 gri ‘ gra ‘ grs ‘ gra ‘ grs ‘ gre
DNN Fusion Model
S1-1 51.15 | 60.59 | 69.88 | 68.61 | 61.43 | 69.87 | 49.15 | 66.86 | 55.82 | 34.43 | 57.94 | 46.27 | 49.10 | 32.34 | 58.53
S1-2 54.36 | 64.12 | 70.07 | 69.58 | 63.05 | 73.82 | 54.21 | 68.78 | 56.26 | 36.02 | 58.38 | 46.91 | 53.77 | 41.58 | 61.46
Sa—a 45.41 | 54.41 | 73.05 | 67.72 | 60.78 | 71.96 | 54.62 | 52.50 | 41.81 | 34.33 | 53.31 | 44.59 | 52.70 | 29.16 | 55.64
SVM Fusion Model
S1-1 53.44 | 65.59 | 71.36 | 75.72 | 64.26 | 75.83 | 55.81 | 65.53 | 40.12 | 36.22 | 59.30 | 48.12 | 50.47 | 36.65 | 60.25
S1-2 55.96 | 67.65 | 72.22 | 79.52 | 67.42 | 80.17 | 62.05 | 73.79 | 52.07 | 36.72 | 59.71 51.12 | 50.68 | 39.32 | 64.05
Sa—a 48.39 | 62.35 | 7593 | 79.07 | 66.86 | 79.40 | 63.20 | 62.52 | 35.61 | 36.52 | 55.66 | 46.58 | 47.59 | 32.55 | 59.62
Pre-Trained DNN Fusion Model
Sh_, 51.83 | 7529 | 82.65 | 84.24 | 80.23 | 75.76 | 76.72 | 75.29 | 61.17 | 40.70 | 50.15 | 47.96 | 69.09 | 42.71 | 68.98
S . 43.12 | 72.06 | 80.93 | 86.63 | 74.39 | 75.06 | 73.10 | 72.79 | 56.17 | 38.71 | 44.19 | 40.62 | 63.55 | 43.43 | 65.18

dataset, viz., the AffectNet [56] and IEMOCAP [57] datasets
for the visual and audio channels, respectively. Then, the
modified S]_, strategy included the training of the fusion
model on our evaluation datasets: RML and BAUM-1s, always
sustaining the LOSO and LOSGO schemes. On the other hand,
within S/, , the unimodal extractors were firstly further fine-
tuned on the evaluation datasets and then, the fusion model
was also trained on the same data. The produced results are
presented in the last two rows of Table Note that, similarly
to our previous results, apart from two cases, the further
training of the unimodal channels with data, which are also
exploited afterwards for training the fusion model, deteriorated
the performance of the overall model.

E. Overfitting in F

At this stage, we present a statistical assessment of Cr and
Sr regarding their efficiency in capturing overfitting in F.
Hence, we compare their correlation with the loss-ratio (L)
that is widely exploited to evaluate the quality of each training
procedure of DNNs. Notice that Lr can not be adopted in
cases of feature extractors since the loss is indeterminable.
We exploit the Pearson Correlation Coefficient (p) between L
and the product of the proposed statistics CrSr, with the latter
capturing the behavior of both metrics in one value. Thereafter,

we observe in our CIFAR experimentation (Table [[TI) a high
correlation between them with p = —0.9786. The negative
sign, indicating the negative correlation, is highly anticipated
since the higher the loss ratio of the testing over the training
samples, the lower their regarding separability and centrality.
Regarding Table the correlation coefficient p of the visual
extractor equals —0.8397 on RML and —0.8415 on BAUM-
Is, while for the audio extractor the corresponding values
are —0.8176 and —0.9585, respectively. The above essentially
indicate that the CrSr product effectively resembles the be-
havior of L, proving their capability of capturing overfitting
even on the output space of a feature extractor.

A final assessment regarding the capacity of CrSg is
conducted, by training the well-established ResNet-18 archi-
tecture [S8] on the ImageNet32 dataset [49]. For every two
epochs, the feature vectors of both the training and the testing
sets were kept to measure their corresponding Cr and Sg
values. The training procedure lasted for 40 epochs, a batch
size of 256 and an initial learning rate of 0.1, with step-wise
decaying by an order of magnitude when the procedure reaches
the 50% and 75% of the its total duration. In Fig. the
obtained values of CrSg are displayed, as well as the inverse
of the common loss-ratio L in order to visually assess the
positive correlation between the two metrics. Subsequently,
we apply a Z-score normalization (standardization) to both
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Fig. 12: Qualitative comparison of the proposed CrSr metric (blue) against the inverse of the common loss-ratio Lr one (red) on the
large-scale ImageNet32 dataset, using the ResNet-18 architecture. In (a) the obtained values of the two metrics during the training procedure
are depicted, while in (b) the standardized values of the two metrics are displayed, proving the high correlation, thus the ability of centrality
and separability metrics to capture the divergence between the training and the testing sets in F.

metrics, producing two highly correlated signals, as shown in
Fig. Proceeding to the calculation of pearson correlation
coefficient between the obtained CrSgr and Lg values, we
find it to be equal to —0.9558. This result further denotes
the validity of our findings and, thus, the ability of CrSg to
capture the divergence between training and testing sets in F.

V. CONCLUSION

With the paper at hand, a cohesive study has been con-
ducted, describing the basic properties of the feature space
F in a DNN architecture under the classification task. More
specifically, the angular classification property of the Softmax
function has been investigated, showing its decisive role in the
final result and the feature vectors’ orientation. Our analysis
allowed for the representation of the nature of overfitting
in F by using two statistical metrics that focus: (a) on the
distribution of the per-class central vectors and (b) the separa-
bility between the feature vectors of the bordering classes.
We proved that they can accurately describe the level of
overfitting in F, which is mainly considered as a gap between
the per-class distributions of the training and testing vectors.
Meanwhile, certain of the adverse effects on cascade and
fusion applications of DNNs are denoted. It has been shown
that in cases of low centrality and separability values in the
unimodal feature extractors, an alternative training strategy
should be considered. This would include the division of the
initial available training data into two clusters: one for the
unimodal and one for the fusion training procedure. The above
strategy has been proved particularly beneficial in most of our
cases, achieving on average of about 5% more accurate results
among our two evaluation datasets. As part of our future work,
we shall consider the above property so as to investigate a
suitable configuration on the Softmax function that enforces
both the centrality and separability values to stay quite higher.
Such a function could potentially enhance the performance
of the feature extractors and simultaneously approximate the
performance achieved by the proposed training strategy.

APPENDIX A
PARTIAL DERIVATIVES OF SOFTMAX

Below, we calculate the partial derivatives for the j-th output
of the softmax function (S;) over the feature vector’s G, norm
(R), when 7 is the prevailing class.
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N
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Similarly, we can calculate the partial derivative over the
feature vector’s angle (6;):
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APPENDIX B

PROOF OF R.III

Considering Eq. the partial derivative of the i-th softmax
output of a feature vector a. over its norm R is given by:

851- k=0 OR OR
> e
k=0

N
We know that S; > 0 and > e** > 0. Moreover, provided

k=0
that ¢ constitutes the dominant class, we can write for any
class k # i:
Zi > 2k,

_ _ (40)
R||w;]| cos(8;) > R||wkH || cos(6; — ox),
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according to Eq.[28] Eliminating the positive value R, we have:

(|| cos(0:) > ||y || cos(6; — dx), (41)
which from Eq. 29 results in:
azi azk .

Hence, the numerator of the fraction in Eq.[39]is also positive,
meaning that:
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