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AGO-Net: Association-Guided 3D Point Cloud
Object Detection Network

Liang Du, Xiaoqing Ye, Xiao Tan, Edward Johns, Bo Chen,
Errui Ding, Xiangyang Xue, Jianfeng Feng

Abstract—The human brain can effortlessly recognize and localize objects, whereas current 3D object detection methods based on
LiDAR point clouds still report inferior performance for detecting occluded and distant objects: the point cloud appearance varies
greatly due to occlusion, and has inherent variance in point densities along the distance to sensors. Therefore, designing feature
representations robust to such point clouds is critical. Inspired by human associative recognition, we propose a novel 3D detection
framework that associates intact features for objects via domain adaptation. We bridge the gap between the perceptual domain, where
features are derived from real scenes with sub-optimal representations, and the conceptual domain, where features are extracted from
augmented scenes that consist of non-occlusion objects with rich detailed information. A feasible method is investigated to construct
conceptual scenes without external datasets. We further introduce an attention-based re-weighting module that adaptively strengthens
the feature adaptation of more informative regions. The network’s feature enhancement ability is exploited without introducing extra
cost during inference, which is plug-and-play in various 3D detection frameworks. We achieve new state-of-the-art performance on the
KITTI 3D detection benchmark in both accuracy and speed. Experiments on nuScenes and Waymo datasets also validate the
versatility of our method.

Index Terms—3D object detection, domain adaptation, associative recognition, point cloud, neural network, autonomous driving
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1 INTRODUCTION

O BJECT detection [1], [2], [3], [4] is drawing increasing
attention from both academia and industry due to its critical

role in robotics and autonomous driving [5]. Despite the recent
success of image-based 2D object detection [6], [7], 3D object
detection from LiDAR-based point clouds remains an under-
developed research area, and a highly challenging problem due to
object occlusion and variance in point distributions. The density
of a point cloud decreases as the distance to a LiDAR camera in-
creases, which causes an apparent density discrepancy. Moreover,
some parts of objects are invisible due to occlusion or low point
cloud occupancy. In this situation, 3D detection is unreliable and
error-prone because the network fails to extract sufficient features.

Recently, many cutting-edge 3D object detection approaches
[8], [9] have attempted to solve this problem. In STD [8],
PointsPool is introduced to convert sparse intermediate point
features to a more compact voxel representation. Nevertheless,
for far-range objects, the voxelization operation does not facilitate
the network in generating sufficient and robust features because
most voxels are empty. A generative adversarial network (GAN)
is leveraged by [9] to force the network to generate consistent
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Fig. 1. Illustration of the standard 3D object detection framework and the
proposed associative-recognition-inspired AGO-Net. The encoder and
the decoder are denoted by E and D, respectively. Compared with pre-
vious approaches that solely utilized the encoded features of real-world
point clouds for 3D object detection, our AGO-Net builds up the associ-
ation between incomplete perceptual features of real-world objects and
more complete features of corresponding class-wise conceptual models
via domain adaptation. AGO-Net mimics the conceptual association of
the human brain when perceiving objects, and fundamentally exploits
the network capability of the feature enhancement.

features between far-range and near-range objects. However, this
method aims at range domain adaptation and ignores object-wise
constraints, such as shapes and the viewing perspective of the ob-
jects. PV-RCNN [10] adopts both voxel-based features and point-
based features of point clouds and obtains more discriminative
representations at the cost of feature extraction.

Previous works like [11], [12] have proven that exploiting the
biological and psychological plausibility of the human brain to
build up intelligent systems brings significant performance gains
to various tasks. For the human psychological model, perceiving
3D objects is carried out in the form of a conceptual association
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process, which includes two vital stages [13]: (I) a “viewer-
centered” feature representation stage, where the features of per-
ceptual objects are presented from the viewer’s perspective, and
the visible features might lack structure and detail information
due to occlusion and large distance, and (II) an “object-centered”
stage, where the object’s features are enhanced by the conceptual
model of the same category retained in the memory. This asso-
ciation process helps map from an object to a view-invariant 3D
conceptual model, which is termed as associative recognition.

Considering the previously mentioned issues, we propose a
brain-inspired 3D object detection framework that associates weak
perceptual features of occluded and distant objects with complete
conceptual models’ features that are more favorable for detection.
As depicted in Figure 1, we select structurally-complete 3D
models as conceptual guidance and adapt object-wise features
from the perceptual domain to the conceptual domain during
training following a transfer learning paradigm. Comparing with
the conference version [14], there are four main differences. (1)
For network architecture, instead of directly performing domain
adaptation on the encoded feature, we decouple the features and
only adapt the regression feature according to the dynamic atten-
tion map generated by the classification feature (SC-reweight),
which achieves superior performance. (2) For the conceptual
domain construction, an object completion method is proposed
to maintain the original structure of each instance. (3) For the
performance and experiments, our AGO-Net ranked 1st among
all existing one-stage detectors in the KITTI test benchmark at the
time of submission. In addition to the KITTI experiments mainly
on the “Car” category in [14], we further perform multi-class
experiments on more challenging datasets such as nuScenes and
Waymo. (4) For portability, we have also conducted experiments
integrating our method into other state-of-the-art (SoTA) 3D
detection frameworks, which validates its generalizability.

The main contributions are summarized as follows:

• We propose a 3D detection framework that associates real-
world perceptual features with more complete features
from conceptual models, which strengthens the feature
robustness, especially for occluded and distant objects.

• We investigate a novel attention-based adaptation module
that adapts more critical features from the real-world
perceptual domain to the constructed conceptual domain.

• We present a feasible approach to generate the proposed
conceptual scenes without requiring external datasets.

• Our method achieves new SoTA 3D object detection
performance on the KITTI dataset in both accuracy and
speed (25 FPS). More evaluations on the nuScenes and
Waymo datasets further validate the effectiveness.

2 RELATED WORK

3D point cloud object detection. On the one hand, recent 3D
object detection approaches usually include four types: multi-
view-based, voxel-based, point-based, and graph-based methods
[15]. On the other hand, if divided by whether proposals and post-
refinement are required, 3D detection approaches can be divided
into one-stage and two-stage methods.

The multi-view approaches such as [16], [17], [18], [19]
project LiDAR point clouds to the image plane [20] or the bird’s
eye view (BEV) to encode features. Zhou et al. [21] proposed
a multi-view fusion framework that utilizes the complementary
information from BEV and perspective view.

The voxel-based methods utilize voxel representations for
point cloud encoding. Vote3Deep [22] and 3DFCN [20] evenly
discretize point clouds on grids and apply 3D convolutional
networks to address point clouds for object detection. Zhou et
al. proposed VoxelNet to learn discriminative features from sparse
point clouds [48]. The following works [23], [24] improve Vox-
elNet by adopting 3D sparse convolutional layers to save compu-
tational resources. Lang et al. introduced PointPillars [25], which
utilizes PointNets [27] to learn a representation of point clouds
that are organized in vertical columns (pillars), which boosts the
inference speed. Vora et al. introduced PointPainting [28], which
projects predicted 2D pixel-wise semantic labels to point clouds as
additional prior knowledge for the network. SA-SSD [30] employs
an auxiliary network that converts the convolutional features back
to point-level representations. The point-level supervision guides
the convolutional features to be aware of the structure. Cheng et al.
proposed PPBA [31], which learns to optimize data augmentation
strategies by narrowing the search space and adopting the best
parameters discovered in previous iterations.

The point-based method F-PointNet [32] is the first to exploit
raw point clouds for 3D object detection. Frustum proposals
generated by off-the-shelf 2D object detectors are utilized as
candidate boxes, and final detection outputs are regressed based on
interior points [33]. Shi et al. presented PointRCNN [34], which
directly encodes the raw point cloud to predict 3D proposal regions
in a bottom-up manner based on the segmentation labels from 3D
bounding box annotations. 3DSSD [35] is the first one-stage point-
based method that removes the refinement module in all existing
point-based methods and introduces a fusion sampling strategy for
retaining sufficient interior points of different objects for detection.

In summary, the voxel-based methods such as [9], [24],
[30], that parse the 3D scene into a compact representation and
adopt straight-through CNN networks, rather than a coarse-to-
refine method with proposals and refinement, can be regarded as
one-stage methods. One-stage approaches gain efficiency while
losing some precision due to the progressively downscaled feature
maps. The point-based methods like [8], [10], [34] exploit spatial
features of the raw points based on the region proposal generated
by the first stage, but they sacrifice inference speed for accuracy.
Deep neural network-based transfer learning. Transfer learning
[36] is a machine learning paradigm that captures the notion of
knowledge transfer between related task domains in computer
vision [37], [38] and natural language processing (NLP) [39].
Traditional domain adaptation in transfer learning alleviates the
influence of the distribution mismatch between the source domain
and the target domain (e.g., training and testing data, synthetic
and real-world data, respectively) so that the generalizability of
the network can be boosted for the target domain data. Maximum
Mean Discrepancy (MMD) introduced by [40] is a common
domain distance metric. In addition to handcrafted distribution
distance metrics, deep neural networks are leveraged to perform
transfer learning. The learning-based methods can extract high-
level representations that disentangle different explanatory factors
of variations in the data [41]. Invariant factors that underlie
different populations are also manifested, which transfer well from
source domain tasks to target domain tasks [42]. [43] utilized
feature distillation to bridge the domain gap between the simulated
scene and real-world scene for semantic segmentation. For image
classification, [44] presented Attention Transfer (AT) that squeezes
intermediate feature maps into a single channel via an attention
mask for feature distillation.
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Fig. 2. Overview of the AGO-Net framework and its underlying biological model. AGO-Net consists of four parts: (a) The perceptual feature encoder
(PFE), which encodes perceived information in a manner similar to that employed by the visual cortex (VC) in the human brain for object perception,
as shown in the right figure. Various 3D detection methods can be utilized as alternatives to the 3D-BEV encoder, which encodes a 3D point cloud
scene to a compact BEV representation. (b) The conceptual feature generator (CFG) generates the features based on the constructed conceptual
scene, which provides conceptual association guidance for the PFE. This detachable auxiliary network is directly discarded during the inference
time. (c) The feature adaptation from the real-world perceptual domain to the constructed conceptual domain mimics the knowledge association
and retrieval process in the human brain. The large yellow arrow shows the adaptation direction. (d) The Spatial and Channel-wise attention-aware
reweighting module (SC-reweight) aids the siamese network in adapting more crucial features based on the difference feature map of the conceptual
and perceptual classification features. The loss terms of AGO-Net include the localization (XYZ), scale (WHL), classification, and rotation losses as
well as our proposed association loss Lago. A detailed explanation of the Bio-model is provided in Sec.3.1.

3 METHODOLOGY

In this section, we introduce our association-guided 3D object
detection network. As a result of the inevitable occlusion or
large distance, many foreground objects contain only a few
points, which makes it difficult for standard networks to perform
classification and localization. Therefore, the perceptual domain
corresponds to the real-world scene results that are not satisfactory
due to the variance in the point cloud appearance. Alternatively,
we can create a conceptual domain that learns from 3D conceptual
models with more complete structures to guide feature learning
in challenging cases. The conceptual features are discriminative
enough for object classification and localization since they are
extracted from point clouds with the finest details. If the domain
gap between the perceptual and conceptual features is diminished,
the network will have the capability to associate stronger features
for objects adaptively.

Fig. 3. One instantiated network of the PFE (red) / CFG (grey).

Figure 2 depicts the overall framework of AGO-Net, which
includes four parts: (a) the perceptual feature encoder (PFE) to
encode real-world target domain features for 3D object detec-
tion; (b) the conceptual feature generator (CFG) to generate the
source domain features from corresponding scenes reconstructed
by the conceptual models; (c) the perceptual-to-conceptual feature
domain adaptation; and (d) the Spatial and Channel-wise loss
reweighting module (SC-reweight) based on the classification
features from both perceptual and conceptual scenes, which forces
the network to strengthen the adaptation for regions that have
much more critical information. Our approach to constructing
conceptual scenes without involving external data is described in
Sec.3.1. The network architecture and its underlying biological

model that supports our motivation are also detailed in Sec.3.1. In
Sec.3.2, we further explain the training process of AGO-Net.

3.1 Network of AGO-Net

Our AGO-Net can employ various 3D point cloud detection
approaches, such as [24], [25], [30], etc., as its sub-networks
PFE and CFG. We adopt a one-stage architecture based on sparse
convolutional layers to instantiate one PFE and one CFG.
The PFE to encode perceptual features. The PFE serves as
the standard feature encoder of the real scenes, which is shown
in Figure 2 and colored in red. Following [30], our AGO-Net
first obtains the input point features by discretizing the point
coordinates to input tensor indices and then adopts 3D sparse
convolution [23] for feature extraction. Specifically, for the point
cloud quantization, we denote the coordinates of the ith point in
each scene as (Cix, C

i
y, C

i
z). To discretize the coordinates into

integer indices for the input tensor, we define (Sx, Sy, Sz) as the
quantization step along the X-, Y-, and Z-axes. Then, the index of
each point is given by:

P (Iix, I
i
y, I

i
z) = P (bC

i
x

Sx
c, bC

i
y

Sy
c, bC

i
z

Sz
c), (1)

where b·c denotes the floor operation. Based on the obtained index,
each point can be assigned to an entry of the network input tensor.
If multiple points share the same index, then the entry is simply
overwritten with the latest point.

As the red part depicted in Figure 2, the network architecture
of the PFE can be formulated as follows:{

FPclass, F
P
box = ξP(IP)

OPclass, O
P
box = HPclass(FPclass),HPbox(FPbox),

(2)

where ξP and IP denote the 3D-BEV encoder and the perceptual
input tensor, respectively. FPclass and FPbox are the output features
of the 3D-BEV encoder for object classification and 3D bounding
box regression. HPclass and HPbox represent sibling convolutions
to decode the features for the output predictions OPclass and OPbox,
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Fig. 4. The generation process of the conceptual model and scene.

respectively. Note that ξ can be instantiated by a variety of 3D
object detectors.

As shown in Figure 3, the “Sparse 3D Convs.” in the first red
box encodes the point cloud feature into a high-dimensional fea-
ture. The feature is then reshaped and converted to a BEV repre-
sentation via concatenating the feature along the height dimension
of the scene into one channel. After that, “BEV 2D Convs.” in the
third box encodes the compacted features into FPclass and FPbox.
Finally, the network uses two heads Hbox and Hclass to decode
two features for box regression and classification, respectively.

To alleviate the common issue of misalignment between the
classification confidence maps and the corresponding predicted
bounding boxes for 3D object detection, we apply the part-
sensitive warping (PSWarp) method following [30] to align the
classification confidences with the bounding boxes via a spatial
transformation of the feature map, as shown in Figure 2 (the grey
circled “p” at the end of the network). In terms of efficiency,
we choose PSWarp instead of the alternative method PSRoIAlign
[45], since [30] has proven that the performance of PSWarp is
comparable to the performance of PSRoIAlign, while PSWarp
takes only 1/10 the runtime of PSRoIAlign.
The CFG to generate conceptual features. With the same
architecture of the PFE, the siamese network CFG generates the
conceptual feature that served as the source domain feature. As the
grey part depicted in Figure 2, the CFG is formulated as follows:{

F Cclass, F
C
box = ξC(IC)

OCclass, O
C
box = HCclass(F Cclass),HCbox(F Cbox).

(3)

Eq. 3 is similar to Eq. 2, except that subscript C in Eq. 3 denotes
the conceptual domain, whereas subscriptP in Eq. 2 represents the
perceptual domain. We first train the CFG alone. The conceptual
dataset is derived from the real-world dataset and is integrated
with the conceptual models. Specifically, conceptual scenes denote
object cloud instances that have complete appearance to some
degree. Original point clouds with enough points and an intact
structure are simply included. The conceptual model is a more
complete point cloud for each object, such as a CAD model from
external resources, or a surrogate model with more informative
knowledge originating from the same dataset, i.e., self-contained.
The format of the conceptual model is not specifically restrained.

After the CFG is well trained, the parameters of the CFG
are frozen to provide stable feature guidance for further domain
adaptation, and the decoding part of the CFG is removed, as

shown in Figure 2. During the training of the entire AGO-Net,
the perceptual scene and its corresponding conceptual scene are
simultaneously fed into the PFE and CFG, respectively. The PFE
is encouraged to generate more complete features based on the
perceptual feature of the sparse and partial-visible point clouds
under the guidance of the CFG. During the inference time, we
simply remove the CFG from our framework.
Self-contained method to build conceptual scenes. The concep-
tual models that are utilized to construct the conceptual scenes
can be fabricated via various methods, such as 3D CAD models
and render-based techniques. In this paper, instead of appealing
to costly external resources, we propose a self-constrained scene-
constructing method to adopt surrogate models with more struc-
tural information that originated from the same dataset. Since 3D
point cloud objects of the same category usually have a similar
shape and scale, we collect the free-of-charge ground-truth objects
with more complete structures as the candidate conceptual models.

As shown in Figure 4, the generation process of the conceptual
scene contains three steps: (1) Objects are divided into M groups
according to their rotation angles. In each group, we choose the
top K% objects with the most points as our conceptual models.
(2) For each object that is not chosen as the conceptual model, we
choose the conceptual model with the minimum average closest
point distance from the object as its correspondence. (3) The
scale and rotation are further refined, and the added points within
the small neighborhood of original points (distance <= ϑ) are
removed to maintain the original structural information of the
perceptual object. The conceptual scene is composed by pasting
the conceptual models into the incomplete original point cloud.
Domain adaptation-based feature association. During the train-
ing process, the perceptual feature encoded by the PFE is learned
to map to the conceptual feature generated by the CFG via
domain adaptation, which establishes feature association. AGO-
Net optimizes an additional loss term of domain distance to guide
the network to generate domain-invariant source features based on
the target features. In other words, we apply a much better feature
representation extracted from the conceptual scene with a more
complete point cloud structure as high-dimensional supervision of
the 3D detection network.

Since the locations of both the real-world scanned objects
and the conceptual models are spatially aligned, the smooth-
L1 distance between these two features is directly optimized
for domain adaptation. The parameters of the PFE are tuned to
force perceptual objects to generate features that resemble more
informative conceptual features. We further constrain the domain
adaptation regions to encourage the network to focus on the
feature association of the foreground objects, which means that
the adaptation is restricted to foreground pixels. As illustrated
in Figure 5, the foreground object mask MFG is obtained by
reprojecting the 3D object ground truth bounding boxes to the
bird’s-eye view (BEV) map, which will be further explained in
our supplemental material. We then downsample the mask map to
match the scale of the perceptual and conceptual features.
The SC-reweight module for adaptation. The attention mecha-
nism is widely employed in many vision tasks [46], [47]. During
adaptation, some parts of an object may substantially contribute
to the 3D detection task and should be given greater attention,
while other parts may have little contribution. We exploit a spatial
and channel-wise loss reweighting module, which enables the
framework to differentiate between distinct parts.

For spatial-wise attention, as shown in Figures 5 and 7, the
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Fig. 5. Illustration of the attention-based reweighting module SC-
reweight. We average the classification features along the channel of
both perceptual scenes and conceptual scenes to obtain the response
maps. The difference map of the response maps is calculated and
multiplied by the foreground mask to obtain the spatial reweighting
map. The regions with added point clouds, which contain more critical
structural information and have a higher difference response, are given
more attention during domain adaptation. To obtain the channel-wise
reweighting vector, we utilize the difference feature map between per-
ceptual features and conceptual features for classification as the input of
a sub-network “C-R” in the SC-reweight. The channel-wise reweighting
vector is calculated by the C-R and multiplied in a channel-wise manner
with the tiled spatial reweighting map for adaptation.

classification response heatmap is calculated by averaging the
feature along the channel dimension. We can see that with a
more complete point cloud structure, the object regions of the
conceptual heatmap have higher values (warmer color) than the
regions of the perceptual heatmap, which means that the higher
response of the feature map reflects on the regions with more
complete structure information. Based on this observation, we
calculate the difference map between the two response maps to
obtain an attention map for regions with added structural features.
Consequently, the adaptation is strengthened in these regions and
forces the network to be aware of invisible object regions. For
channel-wise attention, the difference map between the conceptual
and perceptual feature map is fed into a sub-module, named C-R,
to obtain a Channel-wise Reweighting vector. The C-R consists of
an average pooling operation, several fully-connected layers, and
a softmax activation. Next, the spatial reweighting map is tiled
along the channel dimension to match the size of the original
feature map. The reweighting vector is then multiplied by the
spatial reweighting map to obtain the final reweighting map.

This weighting approach shares the idea of focal loss [50].
We regard those parts of cars with fewer points and incomplete
structure information as the hard-detected regions, which will be
paid more attention during training and have much higher weights
in loss computation. The SC-reweight is formulated as follows:

Mreweight = η{φ[(
1

J

J∑
j=1

FPclass
j − 1

J

J∑
j=1

F Cclass
j
)2

·MFG], J} · [1 + β(FPclass − F Cclass)],

(4)

where Mreweight is the output reweighting map of the SC-
reweight, F Cclass and FPclass are the inputs. J is the channels
of Fclass, φ represents the operation that normalizes the map to
0∼1. η{F, J} denotes performing channel-wise tiling operation
(J times) on the feature F , andMFG is the foreground mask. β
represents the feature mapping of the C-R. FPclass and F Cclass in
Eq. 4, which are calculated forMreweight, are detached from the
gradient descent.

Biological model underlying the framework. The biological
model of associative recognition, which underlies AGO-Net, in-
cludes three principal factors, as illustrated in Figure 2: visual
cortex (VC), anterior temporal lobes (ATL), and inferior longitu-
dinal fasciculus (ILF). The VC encodes the perceived primary
information from real-world scenes, while the ATL have been
implicated as a vital repository of conceptual knowledge in 3D
object perception [49]. Different class-wise conceptual models
stored in ATL are coded in an invariant manner with complete
3D structural features. ILF connects ATL to VC and provides
the associative path between conceptual models and real-world
objects. Weak features from occluded and distant objects are
enhanced by the conceptual memory stored in the ATL. This
conceptual knowledge retrieval and association process between
the VC and the ATL is mimicked via domain adaptation.

3.2 Training of AGO-Net

Training of the CFG. There are two losses for the CFG, including
binary cross entropy loss for classification and smooth-L1 loss for
proposal generation. We denote the total loss of the CFG as:

LCFG = Lbox + Lclass. (5)

Same regression targets as those in [24], [48] are set up, and
smooth-L1 loss Lbox is adopted to regress the normalized box
parameters as:

∆x =
xa−xg

da
,∆y =

ya−yg
ha

,∆z =
za−zg
da

,

∆l = log(
lg
la

),∆h = log(
hg

ha
),∆w = log(

wg

wa
),

∆θ = θg − θa,
(6)

where x, y, and z are the center coordinates; w, l, and h are
the width, length, and height, respectively; θ is the yaw rotation
angle; the subscripts a, and g indicate the anchor and the ground
truth, respectively; and da =

√
(la)2 + (wa)2 is the diagonal

of the base of the anchor box. (xa, ya, za, ha, wa, la, θa) are
the parameters of 3D anchors and (xg, yg, zg, hg, wg, lg, θg)
represent the corresponding ground truth box.

We use the focal loss introduced by [50] for classification, to
alleviate the sample imbalance during the anchor-based training,
and the classification loss Lclass is formulated as follows:

Lclass = αt(1− pt)γ log(pt), (7)

where pt is the predicted classification probability and α and γ
are the parameters of the focal loss.
Training of the entire AGO-Net. In addition to the classification
and regression loss, there is an extra loss function for the feature
adaptation. We denote the total loss of AGO-Net as Ltotal:

Ltotal = Lbox + Lclass + σLago, (8)

where σ is a hyperparameter to balance loss terms. The association
loss Lago for feature adaptation is formulated as follows:

Lago =
1

N

N∑
n=1

[S1(FPbox
n
, F Cbox

n
) · (1 +Mreweight

n)], (9)

where FPbox and F Cbox are the two feature maps for box regression
from the perceptual (target) and conceptual (source) domains. N
denotes the number of nonzero pixels of Mreweight in Eq. 4,
respectively. S1 denotes smooth-L1 distance.
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Fig. 6. Visualization of the results on the KITTI validation split set. The ground-truth 3D boxes, predicted 3D boxes of the baseline method, and
predicted 3D boxes of our method are shown in green, yellow, and red, respectively, in the LiDAR phase. The first row and second row show the
RGB images and the BEV images, respectively.

4 EXPERIMENTS

4.1 Dataset and experimental setup

We evaluate our method on three widely acknowledged 3D object
detection datasets: KITTI [5], nuScenes [51], and Waymo Open
Dataset (WOD) [52].
KITTI dataset. The KITTI dataset contains 7,481 training and
7,518 test images as well as the relevant point clouds. We split
the training images equally into train and validation set following
previous works such as [10], [24]. Average precision (AP) metrics
measured in 3D and BEV are utilized to evaluate the performance.
Three levels of difficulty are defined according to the 2D bounding
box height, occlusion, and truncation degree as follows: “Easy”,
“Mod.”, and “Hard”.
nuScenes dataset. The nuScenes dataset contains 28,130 training
samples, 6,019 validation samples, and 6,008 test samples. Each
annotated frame corresponds to one point cloud captured by a
32-beam LiDAR. We follow the official evaluation protocol and
report the AP (13 classes) and mean AP (mAP) results.
Waymo dataset. Waymo Open Dataset includes RGB images and
point clouds from five cameras and LiDAR sensors, respectively. It
consists of 1,000 scenes for training and validation and 150 scenes
for testing. The dataset has 12M labeled 3D objects which are
annotated in a 360-degree field. For evaluation, AP and APH [52]
are used as the metric.

4.2 Implementation details

We introduce the implementation details for the KITTI dataset in
this section. More details of nuScenes and Waymo datasets can be
found in the released code.
Training details. For training, followed by [24], we select the
LiDAR points of interest that lie in the range (0m, 70.4m), (-40m,
40m), (-3m, 1m) along X-, Y-, Z-axes, respectively, and discard
the points that are invisible in the image view. During the training
time for both CFG and PFE, we set the matching thresholds for
the positive and negative anchors to 0.6 and 0.45, respectively.
The matching IoU between the 3D bounding boxes and anchors
is calculated by their nearest horizontal rectangles in BEV. The
anchor for detecting the car has a size of 1.6m in width, 3.9m in
length, and 1.56m in height. We discard all the anchors without
any points. The construction of conceptual scenes is based only
on the training set.
Data augmentation. To prevent AGO-Net from over-fitting, we
utilize the general “cut-and-paste” strategy following [24]. Note

that for each training sample, we perform the same data augmen-
tation for both conceptual and perceptual scenes so that the objects
pasted in both scenes are spatially aligned for domain adaptation.
Network architecture. Following [30], for the backbone network
PFE, the point clouds of the scene are converted to the input
tensor by quantization. After feeding into stacked sparse and sub-
manifold convolutions for feature extraction and dimensionality
reduction, the shape of the encoded tensor is 128×2×200×176,
where 2 corresponds to the height dimension. We squeeze the
height dimension by reshaping it into the feature map channels.
The box and classification head are then separately applied to de-
code the features for 3D object detection. Since the PFE and CFG
are siamese structures with different input data, the architecture
of CFG is identical to that of the PFE. We train the CFG for
conceptual models end-to-end and then keep it fixed for further
AGO-Net network training. In experiments, we utilize the SGD
optimizer to train AGO-Net for 50 epochs on a single NVIDIA
TITAN RTX GPU for about 14 hours. We set the learning rate,
weight decay, and batch size of AGO-Net to 0.01, 0.001, and 2,
respectively, and apply a cosine annealing strategy to decay the
learning rate. For inference, the low-confidence bounding boxes
are filtered out by a threshold of 0.3. We set the IoU threshold for
non-maximum suppression (NMS) to 0.1.
Training parameters. We set α = 0.25 and γ = 2 in focal loss,
M = 24 and K = 20 to create the conceptual scenes, σ = 1.0
to balance the loss terms, and ϑ = 0.25m to remove the added
points that are close to the original points. For the point cloud
quantization, we set (Sx, Sy, Sz) as (0.05m, 0.05m, 0.1m).

4.3 Quantitative results

KITTI dataset. Table 1 shows the results on the KITTI 3D
object detection test server. On 08.10.2019, KITTI changed its
evaluation setting by using 40 recall positions. We compare the
proposed AGO-Net with other SoTA approaches by submitting the
detection results to the KITTI server for evaluation. At the time
of submission (22 Jun. 2020), our AGO-Net ranked 1st among all
existing one-stage detectors, 2nd among all existing detectors, and
1st on the “Easy” entry among all competitors on the leaderboard
in the most important “Car” category, with a real-time inference
speed of 25 FPS (faster than almost all other 3D object detection
methods). Our method is three times faster than the two-stage
top-ranked method PV-RCNN [10], while our “Easy” entry is
even better than PV-RCNN, and the “Mod.” and “Hard” entries
are close to it. Superior performance can be observed from Table
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Fig. 7. Visualization of the feature maps and results on the KITTI validation set. The first row shows the BEV of the constructed conceptual scene
and the perceptual scene, respectively. The ground-truth 3D boxes and the predicted 3D boxes of the baseline method and our method are drawn
in green, yellow, and red, respectively, in the LiDAR phase. The second and third rows show the response maps of Fbox and Fclass, respectively.

TABLE 1
Results on the KITTI 3D object detection test server. The 3D object detection and BEV detection are evaluated by average precision at IoU = 0.7
for cars. According to the new policy of the KITTI dataset, all results are evaluated by the mean average precision with 40 recall positions (R40).

Stage Method Time(s) Modality 3D Detection (%) BEV Detection (%) GPUEasy Mod. Hard Easy Mod. Hard

Two-stage

MV3D [16] 0.36 LiDAR + RGB 74.97 63.63 54.00 86.49 78.98 72.23 TITAN X
F-PointNet [32] 0.17 LiDAR + RGB 82.19 69.79 60.59 91.17 84.67 74.77 GTX 1080

AVOD [17] 0.10 LiDAR + RGB 76.39 66.47 60.23 89.75 84.95 78.32 TITAN XP
PointRCNN [34] 0.10 LiDAR only 86.96 75.64 70.70 92.13 87.39 82.72 TITAN XP
F-ConvNet [53] 0.48 LiDAR + RGB 87.36 76.39 66.69 91.51 85.84 76.11 -

Fast Point R-CNN [54] 0.07 LiDAR only 85.29 77.40 70.24 90.87 87.84 80.52 Tesla P40
MMF [55] 0.08 LiDAR + RGB 88.40 77.43 70.22 93.67 88.21 81.99 TITAN XP
STD [8] 0.10 LiDAR only 87.95 79.71 75.09 94.74 89.19 86.42 TITAN V

Patches [56] 0.15 LiDAR only 88.67 77.20 71.82 92.72 88.39 83.19 GTX 1080Ti
Part-A2 [57] 0.07 LiDAR only 87.81 78.49 73.51 91.70 87.79 84.61 Tesla V100

PV-RCNN [10] 0.15 LiDAR only 90.25 81.43 76.82 94.98 90.65 86.14 GTX 2080Ti

One-stage

VoxelNet [48] 0.23 LiDAR only 77.82 64.17 57.51 87.95 78.39 71.29 TITAN X
ContFuse [3] 0.06 LiDAR + RGB 83.68 68.78 61.67 94.07 85.35 75.88 -

SECOND [24] 0.05 LiDAR only 83.34 72.55 65.82 89.39 83.77 78.59 GTX 1080Ti
PointPillars [25] 0.02 LiDAR only 82.58 74.31 68.99 90.07 86.56 82.81 GTX 1080Ti
Point-GNN [15] 0.64 LiDAR only 88.33 79.47 72.29 93.11 89.17 83.90 GTX 1070

3DSSD [35] 0.04 LiDAR only 88.36 79.57 74.55 92.66 89.02 85.86 TITAN V
SA-SSD [30] 0.04 LiDAR only 88.75 79.79 74.16 95.03 91.03 85.96 GTX 2080Ti

AGO-Net (ours) 0.04 LiDAR only 91.53 80.77 75.23 95.55 90.00 84.72 GTX 2080Ti

1 when comparing AGO-Net with other cutting-edge one-stage
3D detection approaches. Our AGO-Net leads both SA-SSD [30]
and 3DSSD [35] by (2.8%; 1.0%; 1.1%) and (3.2%; 1.2%; 0.7%)
in 3D detection, respectively. The performance boost is mainly
contributed by the domain adaptation-based feature association,
which exploits the feature enhancement capability of the network.

To further validate the superior performance of AGO-Net, we
evaluate AGO-Net on the KITTI validation split set, as shown in
Table 2. Note that we only report AP with 11 recall positions in
Table 2 and Table 12 to compare with the results from previous
frameworks. For 3D object detection, by only utilizing LiDAR
point clouds, our AGO-Net outperforms all existing methods
on the most critical “Mod.” difficulty level. Thanks to the self-
contained conceptual model and feature association mechanism,
our straightforward yet effective network can achieve superior per-
formance compared with complicated networks in both accuracy
and speed. AGO-Net leads the 1st ranked one-stage method SA-

TABLE 2
“Mod.” results on 3D object detection of the KITTI validation split set at
IoU = 0.7 for cars. The AP is calculated with 11 recall positions (R11) to

compare our method with the previous methods.

Stage Method Reference AP3D

Two-stage

STD [8] ICCV 2019 79.80
Patches [56] arXiv 2019 79.04
Part-A2 [57] TPAMI 2020 79.47

PV-RCNN [10] CVPR 2020 83.90

One-stage

Point-GNN [15] CVPR 2020 78.34
3DSSD [35] CVPR 2020 79.45
SA-SSD [30] CVPR 2020 79.91

AGO-Net (ours) - 83.92

SSD and current 1st ranked two-stage method PV-RCNN by 4.0%
and 0.2%, respectively.



8

TABLE 3
3D object detection AP3D (R40) performance for “Pedestrian” and

“Cyclist” on KITTI val split set at IoU = 0.5.

Method Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard

conceptual 61.79 58.77 59.97 84.99 80.87 80.56
SECOND† [24] 55.94 51.14 46.17 82.96 66.74 62.78

baseline 57.47 52.02 47.44 83.31 67.55 63.94
ours 60.39 54.81 50.59 87.57 69.24 64.74

TABLE 4
3D object detection AP3D (R40) performance for “Pedestrian” and

“Cyclist” on KITTI test set at IoU = 0.5.

Method Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard

SECOND† [24] 43.04 35.92 33.55 71.05 55.64 49.83
ours 45.18 37.22 34.62 72.82 57.60 51.53

The “Cyclist” and “Pedestrian” categories are more challeng-
ing than the “Car” for voxel-only-based 3D object detection due
to their non-rigid structures and small scale. To fully validate the
effectiveness of the proposed method, we still report AP3D results
(IoU = 0.5) of these two categories with respect to the baseline
method and SECOND [24] in Tables 3 and 4. The SECOND†

is implemented in OpenPCDet [58]. Note that in the following
sections, the “baseline” denotes our instantiated PFE (without
the CFG) introduced in Sec. 3.1, and the “conceptual” denotes
training and testing on the conceptual dataset. Despite the number
and quality limitation of conceptual models, our method still
outperforms the baseline method with considerable margins.

As shown in Table 8, we also report results for the near-range
experiment at 0-30 m, median-range at 30-50 m, and far-range
at 50-80 m with and without adaptation. Regarding both near-
, median-, and far-range performances, our method outperforms
the baseline method by (0.5%; 3.1%; 3.0%) on “Mod.” entry,
respectively, especially for the median- and far-range.
nuScenes and Waymo datasets. To demonstrate the versatility
of our approach, we evaluate on nuScenes and Waymo datasets.
Following previous works [10], [25], we adopt the same range
and ring-view scenes for processing point clouds and official
evaluation metrics of each dataset. Tables 5 and 6 demonstrate the
superiority of our method on validation and test set of nuScenes,
and Table 7 depicts the prevalence on the Waymo dataset com-
pared to the baseline and the cutting-edge one-stage method [24].
For Waymo dataset, only 20% subset of data is utilized for
training due to limited computation resources, which is consistent
with OpenPCDet [58]. Note that the backbone of our method
(derived from [30]) is different from SECOND†, therefore the
performances of SECOND† and the baseline are slightly different.

4.4 Qualitative results
We present some representative comparison results of the baseline
and AGO-Net on the KITTI validation set in Figure 6. 3D
bounding boxes detected from LiDAR are projected onto RGB
images for better visualization. The ground truth, and the predicted
3D boxes of the baseline and our method, are colored in green,
yellow, and red, respectively. The first to third rows show the
RGB image, the front view, and the bird’s-eye view, respectively.
As observed, our method can produce high-quality 3D bounding

boxes in different kinds of scenes. The distant and occluded
objects that are difficult for the baseline method to detect, are
accurately predicted by AGO-Net due to the association capability
of the network.

To further observe how the perceptual-to-conceptual domain
adaptation fundamentally improves 3D object detection, we vi-
sualize the conceptual and perceptual features before and after
adaptation as well as their corresponding detection results in
Figure 7. The first row shows the bird’s-eye view of perceptual
and conceptual scenes, respectively. The second and third rows
show the feature decoded for 3D bounding box and classification,
respectively. We average the feature map along the channel di-
mension to obtain the response heatmap. Warmer color indicates
a higher response. As depicted in the first and second columns,
the pixel-wise difference between two feature maps is prone to be
large in regions containing insufficient and incomplete structural
information due to occlusion or distance. The conceptual response
of distant and occluded objects is much more obvious than that
of the perceptual objects (highlighted by the red boxes), as the
added point clouds for each incomplete perceptual object provide
adequate structural information to extract discriminative features.
After the perceptual domain feature is well adapted, the response
of the distant and occluded objects becomes more similar to that
of conceptual objects. The qualitative comparison (Row 1 and
Column 3) of the results based on the original perceptual feature
(baseline) and the feature after adapted (ours) shows that the two
distant objects are well detected, and the rotation angle of the ob-
ject is refined due to the associated critical structural information.
The feature visualization demonstrates that the proposed approach
adaptively generates robust features for predicting more accurate
3D bounding boxes.

4.5 Ablation study

Ablation experiments are conducted on the KITTI dataset.
The upper bound performance of the conceptual domain. To
validate the upper-bound performance of the CFG module, we
conduct experiments on conceptual scenes only in both training
and testing, rather than the real dataset. High performance can be
observed in the first row of Table 9, which can serve to instruct
our associated-guided network. As shown in the first row, the high
precision (over 96%) on all entries indicates the possibility of
adopting conceptual models to guide PFE for enhanced feature
learning, while the second row shows the domain gap between
the conceptual and perceptual dataset; therefore we cannot just
use the conceptual scenes for training and test the model on the
real scenes. The third row shows the performance of the baseline
model. The fourth row “real + conceptual” indicates merely train-
ing baseline model with KITTI train split set and the generated
conceptual data without using the siamese network for adaptation.
The result validates that simply mixing more training data using
the same network will not improve the detector performance.
Different settings of AGO-Net. We investigated the performance
with and without the domain adaptation and the SC-reweight
module, as shown in Table 10. The first row is the baseline results
trained with only KITTI train split set. Owing to the object-wise
domain adaptation (“CFG”), an improvement is observed in Row
2. The third row shows the results with both the CFG and the
SC-reweight module (“SC”). The improvements on all difficulty
levels indicate that the full approach learns more discriminative
features for 3D detection.
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TABLE 5
Per class performance on the nuScenes validation set. Evaluation of detections as measured by average precision (AP) or mean AP (mAP).

Abbreviations: construction vehicle (C. V.), pedestrian (Ped.), motorcycle (Motor.), and traffic cone (T. C.).

Methods mAP Car Truck Bus Trailer C. V. Ped. Motor. Bicycle T. C. Barrier Reference
SECOND [24] 27.1 75.5 21.9 29.0 13.0 0.4 59.9 16.9 0.0 22.5 32.2 Sensors 2018

PointPillars [25] 29.5 70.5 25.0 34.4 20.0 4.5 59.9 16.7 1.6 29.6 33.2 CVPR 2019
WYSIWYG [29] 35.4 80.0 35.8 54.1 28.5 7.5 66.9 18.5 0.0 27.9 34.5 CVPR 2020
InfoFocus [26] 36.4 77.6 35.4 50.5 25.6 8.3 61.7 25.2 2.5 33.4 43.4 ECCV 2020
3DSSD [35] 42.7 81.2 47.2 61.4 30.5 12.6 70.2 36.0 8.6 31.1 47.9 CVPR 2020

baseline 42.9 79.8 45.9 62.0 32.5 12.7 71.1 29.6 4.5 44.1 47.2 -
ours 45.1 81.5 50.1 62.2 34.0 13.3 72.2 32.5 5.9 48.1 51.2 -

TABLE 6
Per class performance on the nuScenes test set. Evaluation of detections as measured by average precision (AP) or mean AP (mAP).

Abbreviations: construction vehicle (C. V.), pedestrian (Ped.), motorcycle (Motor.), and traffic cone (T. C.).

Methods mAP Car Truck Bus Trailer C. V. Ped. Motor. Bicycle T. C. Barrier Reference
PointPillars [25] 30.5 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9 CVPR 2019

CenterNet [7] 33.8 53.6 27.0 24.8 25.1 8.6 37.5 29.1 20.7 58.3 53.3 arXiv 2019
WYSIWYG [29] 35.0 79.1 30.4 46.6 40.1 7.1 65.0 18.2 0.1 28.8 34.7 CVPR 2020
InfoFocus [26] 39.5 77.9 31.4 44.8 37.3 10.7 63.4 29.0 6.1 46.5 47.8 ECCV 2020

ours 46.2 80.7 45.0 57.5 48.4 12.0 71.4 30.7 5.9 57.2 53.6 -

TABLE 7
Multi-class 3D detection results on the validation sequence of the Waymo dataset.

Difficulty Method Vehicle (IoU=0.7) Pedestrian (IoU=0.5) Cyclist (IoU=0.5)
3D AP 3D APH 3D AP 3D APH 3D AP 3D APH

LEVEL 1
SECOND† [24] 67.9 67.3 57.8 47.6 54.0 52.7

baseline 67.4 66.8 57.4 47.8 53.5 52.3
ours 69.2 68.7 59.3 48.7 55.3 54.2

LEVEL 2
SECOND† [24] 59.4 58.9 49.8 41.0 52.3 51.0

baseline 58.9 58.3 49.4 41.1 51.8 50.6
ours 60.6 60.1 51.8 42.4 53.5 52.5

TABLE 8
Near-range (0∼30m), median-range (30∼50m), and far-range

(50∼80m) comparisons on AP3D (R40). Note that for the easy level in
the far-range area, the AP is always 0 since there is no easy object.

Method Near-range Median-range Far-range
Easy Mod. Hard Easy Mod. Hard Mod. Hard

baseline 95.37 95.33 92.34 48.05 63.89 61.73 7.49 9.57
ours 95.91 95.85 92.90 52.14 67.02 64.79 10.44 11.36

TABLE 9
The upper bound performance of AP3D (R40) training with the

conceptual data and testing on the conceptual.

training data validation data AP3D (IoU=0.7)
Easy Mod. Hard

conceptual conceptual 98.74 98.72 96.56
conceptual real 92.39 72.55 70.04

real real 92.21 83.03 79.98
real + conceptual real 92.42 82.97 79.86

Spatial and channel-wise reweighting (SC-reweight). To vali-
date the effectiveness of the SC-reweight, we conduct experiments
with different settings of the SC-reweight, as shown in Table 11.
“spatial” shows the performance based on the reweighting map
that only utilizes spatial attention. “channel” reports the result with

TABLE 10
AGO-Net with different settings on AP3D at IoU=0.7 (R40).

Method AP3D (IoU=0.7)
Easy Mod. Hard

baseline 92.21 83.03 79.98
CFG 93.45 84.21 81.86

CFG + SC 94.01 84.84 82.38

TABLE 11
Effects of spatial and channel-wise attention in SC-reweight (R40).

Attention setting AP3D (IoU=0.7)
Easy Mod. Hard

none 93.45 84.21 81.86
spatial 93.90 84.75 82.32
channel 93.59 84.32 81.97

spatial + channel 94.01 84.84 82.38

channel-wise attention. “spatial + channel” shows the performance
with the full setting. The progressive improvement demonstrates
that the spatial and channel-wise loss reweighting is vital to the
domain adaptation process and forces the network to adapt to more
critical structural features during the adaptation.

The comparison of (a) and (b) in Figure 8 shows that the
regions with added point clouds in the conceptual scene have a
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much higher response than the regions in the perceptual scene. As
shown in (c), the high-response regions of the spatial reweighting
map are spatially aligned with those less informative regions that
are difficult to adapt in the perceptual feature in (d). Consequently,
during the adaptation process, the regions are given more attention
to adapt more spatial and structural information for regressing 3D
object bounding boxes from the conceptual feature in (e).

Fig. 8. Visualization of the feature maps and spatial reweighting maps.
The first row shows the comparison of (a) conceptual scene and (b) per-
ceptual scene with their classification response maps, respectively. The
second row depicts (c) the spatial reweighting map, (d) the perceptual
feature response map during adaptation, and (e) the conceptual feature
response map, respectively.

TABLE 12
Applying our association-guided architecture on different frameworks

on AP3D. The AP is calculated with 11 recall positions (R11) to
compare our method with the previous methods

Method AP3D (IoU=0.7)
Easy Mod. Hard

PointPillars [25] 85.14 76.44 70.02
PointPillars + AGO 86.16 78.53 75.21

SECOND [24] 88.07 77.12 75.27
SECOND + AGO 89.17 78.82 77.51

Generalizability. We adopt other 3D detection networks [24],
[25] to instantiate the PFE and CFG to validate the expansion
capability and versatility of AGO-Net. As shown in Table 12, our
association-guided framework (with “AGO”) boosts these methods
by a large margin, especially for “Mod.” and “Hard” entries.

TABLE 13
Comparison on different construction strategies (R40).

Construction strategy AP3D (IoU=0.7)
Easy Mod. Hard

replace 93.74 84.38 82.11
add (with removal) 94.01 84.84 82.38

Different conceptual scene construction strategies. As illus-
trated in Figure 4, different from the previous work [14], we do
not simply use the conceptual model to replace the perceptual
object. Instead, we paste the conceptual model onto the original
perceptual object and remove those conceptual points that are
close to the original perceptual points. Such a simple removal

operation keeps the original structure of the object point cloud.
Table 13 shows the superior performance of our improved strategy.

TABLE 14
Comparison of performing adaptation on different features (R40).

Feature for adaptation AP3D (IoU=0.7)
Easy Mod. Hard

Fbox + Fclass 93.40 84.10 81.73
Fclass 92.51 83.16 80.07
Fbox 93.45 84.21 81.86

Comparison of performing adaptation on different features.
We attempt to adapt only Fclass or both Fbox and Fclass to
ascertain which feature adaptation is more effective. As shown in
Table 14, “Fbox + Fclass” adaptation and “Fclass” adaptation do
not perform better than “Fbox” adaptation. The association-based
mechanism digs deep into the invisible structures of occluded and
distant objects for object perception, with the premise that the
categories of the objects are correctly recognized.
Comparison on different attention modules. We also experi-
ment to compare the SC-reweight module with the Incompletion-
aware module (IAM) proposed in [14]. Table 15 demonstrates
the superior performance of the SC-reweight module. Note that
the SC-reweight does not depend on additional time-consuming
deformable convolutional layers [59].

TABLE 15
Comparison on different attention modules with and without the

deformable convolutional layer (R40).

Attention Deform AP3d (IoU=0.7) FPSmodule layer Easy Mod. Hard
none × 93.45 84.21 81.86 25
none X 93.71 84.39 82.02 17

IAM [14] X 94.08 84.69 82.37 17
SC-reweight × 94.01 84.84 82.38 25
SC-reweight X 94.26 84.98 82.52 17

5 CONCLUSION

In this paper, we proposed a brain-inspired 3D point cloud
object detection framework, named AGO-Net. This learns to
associate features of perceived objects from the real scene with
discriminative features from their conceptual models via domain
adaptation, which fundamentally enhances the feature robustness
against appearance changes in point clouds. We further leverage
the classification feature maps to obtain a reweighting map for
the adaptation loss, which encourages the feature adaptation to
focus on more informative regions, and boosts the final detection
performance. A practical method for generating conceptual scenes
without any external dataset is also introduced. Moreover, our
simple yet effective approach can be easily integrated into many
existing 3D object detection frameworks. The experimental results
on the KITTI, nuScenes and Waymo datasets demonstrate the
effectiveness and efficiency of the proposed framework.
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Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost)
from scratch. Journal of machine learning research, 12(Aug):2493–2537,
2011.

[40] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard
Scholkopf, and Alexander J Smola. A kernel method for the two-sample-
problem. In Advances in Neural Information Processing Systems, pp.
513–520, 2006.

[41] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation
learning: A review and new perspectives. IEEE transactions on pattern
analysis and machine intelligence, 35(8):1798–1828, 2013.



12

[42] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How
transferable are features in deep neural networks? In Advances in Neural
Information Processing Systems, pp. 3320–3328, 2014.

[43] Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo Luo, and
Jingdong Wang. Structured Knowledge Distillation for Semantic Seg-
mentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2604—2613, 2019.

[44] Sergey Zagoruyko and Nikos Komodakis. Paying more attention to
attention: Improving the performance of convolutional neural networks
via attention transfer. In Proceedings of the International Conference on
Learning Representations, 2017.

[45] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection
via region-based fully convolutional networks. In Advances in Neural
Information Processing Systems, pp. 379—387, 2016.

[46] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-
local neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 7794-–7803, 2018.

[47] Zhe Liu, Xin Zhao, Tengteng Huang, Ruolan Hu, Yu Zhou, and Xiang
Bai. Tanet: Robust 3d object detection from point clouds with triple
attention. In Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 11677–11684, 2020.

[48] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point
cloud based 3d object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4490–4499, 2018.

[49] Paul Hoffman and Matthew A Lambon Ralph. From percept to concept
in the ventral temporal lobes: Graded hemispheric specialisation based on
stimulus and task. Cortex, 101:107–118, 2018.

[50] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal loss for dense object detection. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 2980–2988, 2017.

[51] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar
Beijbom. nuscenes: A multimodal dataset for autonomous driving. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 11621–11631, 2020.

[52] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard,
Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin
Caine, et al. Scalability in perception for autonomous driving: Waymo
open dataset. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2446–2454, 2020.

[53] Zhixin Wang and Kui Jia. Frustum convnet: Sliding frustums to aggregate
local point-wise features for amodal 3d object detection. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1742-
–1749, 2019.

[54] Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast point r-cnn. In
Proceedings of the IEEE International Conference on Computer Vision,
pp. 9775–9784, 2019.

[55] Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urtasun. Multi-
task multi-sensor fusion for 3d object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7345–
7353, 2019.

[56] Johannes Lehner, Andreas Mitterecker, Thomas Adler, Markus Hof-
marcher, Bernhard Nessler, and Sepp Hochreiter. Patch refinement–
localized 3d object detection. arXiv preprint arXiv:1910.04093, 2019.

[57] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng
Li. From points to parts: 3d object detection from point cloud with
part-aware and part-aggregation network. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1–1, 2020.

[58] OpenPCDet Development Team, Openpcdet: An open-source toolbox
for 3D object detection from point clouds. https://github.com/open-
mmlab/OpenPCDet, 2020.

[59] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu,
and Yichen Wei. Deformable convolutional networks. In Proceedings
of the IEEE International Conference on Computer Vision, pp. 764–773,
2017.

Liang Du received the B.S. degree from Harbin
Engineering University, China, in 2016. He re-
ceived the M.S. degree from the University of
Chinese Academy of Sciences, China, in 2019.
He is currently pursuing the Ph.D. degree at
Fudan University, China. His current research
interests include 3D computer vision, transfer
learning, and autonomous driving. He has con-
tributed several papers in top conferences, such
as CVPR, ICCV, and ECCV.

Xiaoqing Ye received the Ph.D. degree in in-
formation and communication engineering from
the University of Chinese Academy of Sciences,
China, in 2019. She is currently with the depart-
ment of computer vision technology, Baidu as a
Senior Engineer. Her current research interests
include 3D computer vision and autonomous
driving. She has contributed several papers in
top conferences, such as CVPR, ECCV, ICCV
and AAAI.

Xiao Tan received the Ph.D. degree in computer
vision from the University of New South Wales,
Sydney, in 2014. His research interests include
computer vision, pattern recognition, and image
processing. He is currently with the department
of computer vision technology, Baidu as a Se-
nior Engineer, leading the tech-team to develop
visual systems for AI-city and autonomous driv-
ing. He has contributed 10+ papers in top con-
ferences and journals, such as CVPR, ECCV,
ICCV, and TIP.
Edward Johns received the B.A. and M.Eng.
degrees from the University of Cambridge in
2006 and 2007, and the PhD degree from Im-
perial College London in 2014. He is currently
Director of the Robot Learning Lab at Imperial
College London, where his research focusses on
the intersection between robotics, computer vi-
sion, and machine learning. He has contributed
30+ papers in top conferences and journals,
such as NeurIPS, CVPR, ICCV, ECCV, and IJCV.

Bo Chen received the B.S., and M.S. degrees
from Jilin University, China. He is the general
manager of FAW (Nanjing) Technology Devel-
opment Co., Ltd, and experts in artificial intel-
ligence. He is currently in charge of the de-
velopment of autonomous driving based on AI
algorithm.

Errui Ding received Ph.D. degree from Xidian
University in 2008 and currently is the director of
Computer Vision Technology Department (VIS)
of Baidu Inc. In recent years, he has published
tens of papers on top-tier conferences and was
awarded Best Paper Runner-up at ICDAR 2019.
He co-organized several competitions and work-
shops at recent ICDAR and CVPR. He is also a
member of CSIG, CCF and CAAI.

Xiangyang Xue received the B.S., M.S., and
Ph.D. degrees in communication engineering
from Xidian University, Xian, China, in 1989,
1992, and 1995, respectively. He is currently a
professor of computer science with Fudan Uni-
versity, Shanghai, China. His research interests
include computer vision, multimedia information
processing, and machine learning.

Jianfeng Feng received the B.S., M.S., and
Ph.D. degrees from the Department of Prob-
ability and Statistics, Peking University, China.
He is the chair professor of Shanghai National
Centre for Mathematic Sciences and the Dean
of Brain-inspired AI Institute in Fudan University.
He has been developing new mathematical, sta-
tistical, and computational theories and methods
to meet the challenges raised in neuroscience
and mental health researches.


	1 Introduction
	2 Related work
	3 Methodology
	3.1 Network of AGO-Net
	3.2 Training of AGO-Net

	4 Experiments
	4.1 Dataset and experimental setup
	4.2 Implementation details
	4.3 Quantitative results
	4.4 Qualitative results
	4.5 Ablation study

	5 Conclusion
	References
	Biographies
	Liang Du
	Xiaoqing Ye
	Xiao Tan
	Edward Johns
	Bo Chen
	Errui Ding
	Xiangyang Xue
	Jianfeng Feng


