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Abstract—Open set recognition (OSR), aiming to simultaneously classify the seen classes and identify the unseen classes as
’unknown’, is essential for reliable machine learning. The key challenge of OSR is how to reduce the empirical classification risk on
the labeled known data and the open space risk on the potential unknown data simultaneously. To handle the challenge, we formulate
the open space risk problem from the perspective of multi-class integration, and model the unexploited extra-class space with a novel
concept Reciprocal Point. Follow this, a novel learning framework, termed Adversarial Reciprocal Point Learning (ARPL), is proposed
to minimize the overlap of known distribution and unknown distributions without loss of known classification accuracy. Specifically, each
reciprocal point is learned by the extra-class space with the corresponding known category, and the confrontation among multiple known
categories are employed to reduce the empirical classification risk. Then, an adversarial margin constraint is proposed to reduce the
open space risk by limiting the latent open space constructed by reciprocal points. To further estimate the unknown distribution from open
space, an instantiated adversarial enhancement method is designed to generate diverse and confusing training samples, based on the
adversarial mechanism between the reciprocal points and known classes. This can effectively enhance the model distinguishability to
the unknown classes. Extensive experimental results on various benchmark datasets indicate that the proposed method is significantly
superior to other existing approaches and achieves state-of-the-art performance. The code is released on github.com/iCGY96/ARPL.

Index Terms—Open Set Recognition, Out-of-Distribution Detection, Reciprocal Points, Generative Adversarial Learning
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1 INTRODUCTION

O VER the past few years, deep learning has equaled and
even surpassed human-level performances in many

image recognition and classification tasks [1]. These meth-
ods follow the closed set setting which assumes that all
testing classes are known or seen in the training. However,
in realistic applications, the knowledge of the classes is
incomplete, and unknown classes may be submitted to
an algorithm during testing. For example, an autonomous
mobile agent such as a self-driving vehicle will probably en-
counter objects of unknown origin at some point during its
lifecycle. Therefore, these superhuman performances with
closed set settings are illusory, since open set recognition
(OSR) [2] is the setting humans operate in, where they vastly
outperform all current computer vision approaches. Hence,
a robust recognition system should identify test samples as
known or unknown, and correctly classify all test instances
of seen or known classes simultaneously.

The key to OSR is to reduce the empirical classification
risk on labeled known data and the open space risk on
potential unknown data simultaneously, where the open
space risk is that of labeling the open space as ”positive” for
any known class [2]. Following this, a typical deep-learning-
based baseline employs a linear classification layer and the
softmax function on the embedding features to produce a
probability distribution over the known classes. It typically
assumes that the samples from the unknown classes should
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have a uniform probability distribution over the known
classes. As shown in Fig. 1(b), softmax constructs several
hyperplanes to separate the embedding feature space into
different subspaces where each subspace corresponds to a
known class. For the OSR task, the learned embedding fea-
tures should be not only separable but also discriminative
and sufficiently generalized to identify new unseen classes
without label prediction. However, softmax loss only en-
courages the separability of features, and cannot distinguish
the known and unknown classes sufficiently well. To make
the features more discriminative, several methods [3], [4],
[5] utilize a prototype to represent each known class in the
embedding feature space and encourage the features of the
training samples to be close to the corresponding proto-
types. As shown in Fig. 1(c), the learned prototypes may
converge in the space of the unknown classes in the training,
making the known and unknown classes indistinguishable.
Overall, these two types of methods both only focus on the
known data and ignore the potential characteristics of the
unknown data, resulting in less effectiveness in reducing
the open space risk. Contrary to the infinite unknown image
space in Fig. 1(a), most unknown samples obtain lower deep
magnitude features from the neural network [6], because
these samples could not activate a model trained with finite
known samples. This can also be observed from Fig. 1.
Hence, we argue that not only the known classes but also
the potential unknown deep space should be modeled in
the training.

To model the potential unknown space without corre-
sponding samples, a novel concept, the Reciprocal Point is
proposed in this article. Consider a straightforward case
with only one known class such as cat in Fig. 2. How to
identify a cat? Most classification methods aim to learn ”what
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(a) Image-space (b) Softmax (c) Prototype Learning (d) ARPL

Fig. 1: (a): Image-space has infinite open space, but deep responses of most unknowns distribute finite low magnitude
areas of deep space [6]. (b)-(d): LENET++ DEEP RESPONSES TO KNOWNS AND UNKNOWNS. MNIST (blue) is used
for known training, and KMNIST (green), SVHN (yellow) and CIFAR-100 (orange) are used for open set evaluation, where
their similarity with MNIST gradually decreased. The network in (b) was trained by Softmax, while the networks in (c)
and (d) are trained with Prototype Learning [3] and our novel Adversarial Reciprocal Prototype Learning (ARPL). This
paper addresses how to improve recognition by reducing the overlap between the deep features from known samples and
the features from different unknown samples. In an application, a score threshold should be chosen to optimally separate
various unknown from known samples. Unfortunately, such a threshold is difficult to find for either (b) or (c). A better
separation is achievable with (d).

is a cat?”, resulting in seeing only one spot in the whole
problem space. In contrast, Reciprocal Points, as potential rep-
resentative features of non-cats, identify cats by otherness.
Here a reciprocal point is typically adverse to the prototype
of a known class. All these Reciprocal Points constitute an
instantiated representation of the latent unexploited extra-
class space, which can potentially used to reduce uncertainty
when solving the problem ”what is a cat?” in an OSR setting.

For the known category cat, most unknown samples
obviously belong to the space of non-cats and their features
should be more similar to the representation of non-cats,
which means that the corresponding unknown information
is more implicit in each non-cats embedding space. There-
fore, a novel classification framework is proposed based
on the confrontation between multiple known classes and
their reciprocal points. It aims to enlarge the distance be-
tween the embedding features of the target class and the
corresponding reciprocal points, as shown in Fig. 3(a). We
also formulate the open set risk from the perspective of
multiclass integration. To reduce the open space risk for
each known class from potentially unknown data, a novel
adversarial margin constraint term is proposed to limit the
extraclass embedding space in a bounded range by bind-
ing the target class and its reciprocal point. Furthermore,
each known class belongs to the extra-class space of other
classes. When multiple classes interact with each other in
the training stage, all the known classes are not only pushed
to the periphery of the space by the corresponding recipro-
cal points for classification, but also pulled into a certain
bounded range by other reciprocal points with adversarial
margin constraints. Finally, as shown in Fig. 3(b), all known
classes are distributed around the periphery of the bounded
embedding space, and the unknown samples are limited to
the internal bounded space. The bounded constraint pre-
vents the neural network from generating arbitrarily high
confidence for unknown samples. Although only known
samples are available during the training stage, the interval

between known and unknown classes is separated indi-
rectly by reciprocal points.

To estimate the unknown distribution from the open
space, a novel Instantiated Adversarial Enhancement mecha-
nism is proposed to generate confusing training samples,
to enhance the model distinguishability of known and un-
known classes. Unlike the common Generative Adversarial
Network (GAN) [7], the proposed method involves an ad-
ditional adversarial strategy between the discriminator and
classifier: On the one hand, the generated samples should
deceive the discriminator so that it judge them to be known
samples; on the other hand, the classifier’s responses for
the generated samples are encouraged to be close to each
reciprocal point, as illustrated in Fig. 3(c). This means that
the generated samples should be as close to the open space
of the classifier’s embedding space as possible. Finally, the
generator, discriminator and classifier are trained jointly to
achieve equilibrium. More diverse and confusing samples
are generated during this process to promote the classifier
to filter out most samples that are significantly different
from the known samples. In addition, an auxiliary batch
normalization module and a focusing training mechanism
are developed to prevent the classifier from making confus-
ing predictions due to the diverse generated samples.

Our contributions are summarized as follows: (1) The
open space risk is formulated from the perspective of
multiclass integration, by introducing a novel concept, the
Reciprocal Point, to model the latent open space for each
known class in the feature space. (2) Based on recipro-
cal points with an adversarial margin constraint among
multiple known categories, a classification framework is
introduced to reduce the empirical classification risk and the
open space risk. The rationality of the adversarial margin
constraint is theoretically guaranteed by Theorem 1. (3) To
estimate the unknown distribution from the open space, in
particular the indistinguishable part with known categories,
a novel instantiated adversarial enhancement is designed
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 What is not a cat?

Cat

Prototype Reciprocal Point

 What is a cat?
Known ClassesTarget Class Unknown Classes

Fig. 2: How to identify a cat in the OSR setting? Most
methods focus on learning the potentially representative
features of cats as prototypes. In contrast, Reciprocal Points,
as potentially representative features of non-cats, identify the
cat by otherness. Here these Reciprocal Points constitute an
instantiated representation of the extra-class space, which
can potentially be used to reduce the uncertainty when
solving the OSR problem.

to generate more diverse confusing training samples from
the confrontation between the known data and reciprocal
points.

This study extends our ECCV spotlight paper [8] in sev-
eral respects. 1) We develop a novel instantiated adversarial
training strategy to enhance the model distinguishability
for known and unknown classes by generating confusing
training samples (Section 4). Experiments are conducted on
several datasets to prove the effectiveness of the proposed
method. 2) We improve the preliminary method by incor-
porating the cosine of the angle to measure the distance be-
tween the known classes and their reciprocal points, which
has intrinsic consistency with the classification loss (Section
3.2) and brings satisfactory performance improvement. 3)
The adversarial margin constraint is proposed to construct
a more elastic bounded space for multiclass adversarial
fusion, to learn a more discriminative feature space to iden-
tify various unknown distributions. We present theoretical
analysis to prove its rationality in (Section 3.3). 4) More
qualitative and quantitative experiments are conducted to
evaluate the effectiveness of the method, including the
following: (a) A more comprehensive metric, Open Set
Classification Rate [6], is developed by considering both
the distinction between known and unknown classes and
the accuracy of known classes. It is more in line with the
essence of open set recognition and is used to evaluate
different algorithms in Section 5.2. (b) We add experiments
on the out-of-distribution detection task in Section 5.3, and
more state-of-the-art algorithms for open set recognition
for comparison. (c) More visualizations illustrations and
correlations are shown to enable better understanding of the
embedding feature space for near-to-far unknown samples
in Section 5.4.

2 RELATED WORK

2.1 Open Set Recognition

Inspired by a classifier with rejection option [9], [10], [11],
Scheirer et al. [2] defined OSR problem for the first time and
proposed a base framework to perform training and evalua-
tion. In recent years, OSR has been surprisingly overlooked,
though it has more practical value than the common closed
set setting. The few works on this topic can be broadly
classified into two categories: discriminative models and
generative models.

Discriminative Methods. Before the deep learning era,
several OSR works utilizing traditional machine learning
methods were proposed. For example, Scheirer et al. [12] and
Jain et al. [13] considered a distribution of decision scores for
unknown detection based on extreme value models with
the Support Vector Machines (SVMs). Rudd et al. proposed
extreme value machines [14] which modeled class-inclusion
probabilities with an extreme value theory (EVT) based den-
sity function. Junior et al. [15] proposed an open set nearest
neighbor method, which identified any test sample having
low similarity to known samples. The similarity scores
were calculated using the ratio of the distances between
the nearest neighbors. Zhang et al. [16] proposed a sparse-
representation-based OSR method, which also used EVT
to identify unknown samples by residual errors. Note that
these methods usually do not scale well without careful fea-
ture engineering. Recently, deep neural networks (DNNs)
were also introduced to the OSR task by Bendale et al. [17].
They proved that the threshold on the softmax probability
does not yield a robust model for OSR. Openmax [17] was
then proposed to detect unknown classes by modeling the
distance of the activation vectors. Shu et al. [18] proposed
a K-sigmoid activation-based method, which enabled the
end-to-end training by eliminating outlier detectors outside
the network. In these works, the sigmoid function did not
have the compact abating property [12]. This property may be
activated by adding an infinitely distant input from all the
training data, and thus its open space risk is not bounded
[19].

Generative Methods. Unlike discriminative models, gener-
ator approaches generate unknown or known samples using
GANs [7], autoencoders [20] and flow-based Models [21] to
help the classifier to learn the decision boundary between
known and unknown samples. Ge et al. [22] proposed G-
Openmax, a direct extension of Openmax, using genera-
tive models to synthesize unknown samples to train the
network. Similar to the idea in [16], Yoshihashi et al. [19]
proposed the CROSR model, which combined the super-
vised learned prediction and unsupervised reconstructive
latent representation to redistribute the probability distribu-
tion. [23] proposed the C2AE model for OSR, using class
conditional autoencoders to obtain the decision boundary
from the reconstruction errors by EVT. Xin et al. [20] pro-
vided a conditional Gaussian distribution learning for the
Variational Auto-Encoder (VAE) to detect unknowns and
classify known samples by forcing different latent features
to approximate different Gaussian models. Zhang et al. [21]
proposed a composed of classifier and a flow-based density
estimator into a joint embedding space. However, these
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methods did not consider the deep distribution of unknown
classes in learners, resulting in potential open space risk.

2.2 Out-of-Distribution Detection
The OSR is naturally related to some other problem settings
such as out-of-distribution (OOD) detection [24], outlier
detection [25], and novel detection [26], etc. Considering the
safety of AI systems, the detection of OOD examples was
first introduced by Hendrycks et al. in [24]. Here OOD de-
tection is the detection of samples that do not belong to the
training set but may appear during testing [24]. Hendrycks
et al. [24] demonstrated that anomalous samples have a
lower maximum softmax probability than in-distribution
samples. Liang et al. [27] proposed ODIN to allow more
effective detection by using temperature scaling and adding
small perturbations to the input. Lee et al. [28] utilized
generative models to generate the most effective samples
from the OOD samples and derived a new OOD score from
this branch. Hendrycks et al. [29] proposed outiler exposure
by using an auxiliary dataset to teach the network better rep-
resentations for anomaly detection. OOD detection is similar
to the rejection of unknown classes in OSR, because they are
both study the separation of in-distribution (known) and
out-of-distribution (unknown) samples [2], [24] and do not
require the discriminator power for known classes.

2.3 Prototype Learning
A prototype is an average or best exemplar of a category,
thus can provide a concise representation for the entire
category of instances [30]. The best-known prototype learn-
ing method is k-nearest-neighbors (KNN). In [31], learn-
ing vector quantization (LVQ) was proposed to save the
storage space and improve the computational efficiency of
KNN. In most previous works, prototypes are learned by
optimizing the self-defined object functions [32]. Recently,
some methods have also combined prototype learning with
a probabilistic model and a neural network for classification
tasks. Under the framework of neural networks, prototypes
are learnable representations in the form of one or more
latent vectors per class. In [33], the authors represented
the input instance as a K-dimensional vector, modeled each
component as a mixture of probabilities, and finally applied
a probabilistic model to parameterize K-prototype patterns
through the likelihood maximization. Wen et al. [4] proposed
a center loss to learn the centers of the deep features of each
identity and used the centers to reduce intra-class variance.
Yang et al. [3], [5] proposed the Generalized Convolutional
Prototype Learning (GCPL) with a prototype loss, which
was used as a regularization method to improve the intra-
class compactness of the feature representation. For the OSR
problem, the prototype helps to reduce intraclass distance
of the known classes, but it ignores the potential character-
istics of the unknown data, resulting in less effectiveness in
reducing the open space risk.

3 ADVERSARIAL RECIPROCAL POINT LEARNING

3.1 Problem Definition
Given a set of n labeled samples DL = {(x1, y1), . . . ,
(xn, yn)} with N known classes, where yi ∈ {1, . . . , N}

is the label of xi, and a larger amount of test data DT =
{t1, . . . , tu} where the label of ti belongs to {1, . . . , N} ∪
{N + 1, . . . , N + U} and U is the number of unknown
classes in realistic scenarios, the deep embedding space of
category k is denoted by Sk and its corresponding open
space is denoted as Ok. To formalize and manage the open
space risk effectively, Ok is separated into two subspaces:
the positive open space from other known classes as Oposk
and the remaining infinite unknown space as the negative
open space Onegk . That is, Ok = Oposk ∪ Onegk .

In our method, the samples DkL ∈ Sk from category
k, samples D 6=kL ∈ Oposk from other known classes, and
samples DU ∈ Onegk from Rd other than DL, are defined
as the positive training data, the negative training data
and the potential unknown data respectively. The binary
measurable prediction function ψk : Rd 7→ {0, 1} is used to
map the embedding x to the label k. For the 1-class OSR
problem, the overall goal is to optimize a discriminative
binary function ψk by minimizing the expected error Rk:

argmin
ψk

{Rk | Rε(ψk,Sk ∪ Oposk ) + α · Ro(ψk,Onegk )}, (1)

where α is a positive regularization parameter, Rε is the
empirical classification risk on the known data, and Ro
is the Open Space Risk [2] that is used to measure the
uncertainty of labeling the unknown samples as the known
or unknown class. This is further formulated as a nonzero
integral function on space Onegk :

Ro(ψk,Onegk ) =

∫
Oneg

k
ψk(x)dx∫

Sk∪Ok
ψk(x)dx

. (2)

The more often the open space Onegk is labeled as positive ,
the greater the open space risk is.

In the multiclass setting, the OSR problem is identified
by integrating multiple binary classification tasks (one vs.
rest) (as shown in Fig. 3). By summarizing the expected risk
in Eq. (1) among all known categories, i.e.,

∑N
k=1Rk, we

obtain
N∑
k=1

Rε(ψk, Sk ∪ Oposk ) + α ·
N∑
k=1

Ro(ψk, Onegk ). (3)

Minimizing the left side of Eq. (3) is equivalent to training
multiple-binary classifiers, producing a multiclass predic-
tion function f = �(ψ1, ψ2, . . . , ψN ) for N -category classi-
fication, where �(·) is the intergration operation. Hereafter,
Eq. (3) is formulated as:

argmin
f∈H

{Rε(f,DL) + α ·
∑N

k=1
Ro(f,DU )} (4)

where f : Rd 7→ N is a measurable multiclass recogni-
tion function, DL is the set of labeled data used during
the training phase, and DU is the potentially unknown
data. According to Eq. (4), solving the OSR problem is
equivalent to minimizing the combination of the empirical
classification risk on labeled known data and the open
space risk on potential unknown data simultaneously, over
the space of allowable recognition functions. This makes
embedding function more distinguishable between known
and unknown spaces.
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(a) Reciprocal Points for Single Class (b) Multi-Class Adversarial Fusion (c) Instantiated Adversarial Enhancement

Reciprocal PointsUnknown ClassesTarget Classes Known Classes

Fig. 3: An overview of the proposed Adversarial Reciprocal Point Learning (ARPL) approach for open set recognition. (a)
Reciprocal Points for Single Class promote each known class far away from their reciprocal points. (b) Multi-Class Adversarial
Fusion induces the confrontation between multi-category bounded spaces constructed by reciprocal points. As a result, the
known classes are pushed to the periphery of the feature space, and the unknown classes are limited in the bounded space.
(c) Instantiated Adversarial Enhancement generates more valid and more diverse confusing samples to promote the reliability
of the classifier.

3.2 Reciprocal Points for Classification

The reciprocal point Pk of category k is regarded as the
latent representation of the subdataset D 6=kL ∪ DU . Hence,
the samples of Ok should be closer to the reciprocal point
Pk than the samples of Sk, which is formulated as:

max(ζ(D 6=kL ∪ DU , P
k)) ≤ d, ∀d ∈ ζ(DkL, Pk), (5)

where ζ(·, ·) calculates the set of distances of all samples
between two sets. Based on Eq. (5), the samples can be
classified by the opposition between the reciprocal points
and the corresponding known classes.

Specifically, the reciprocal point of a class is represented
by an m-dimensional representation, and can be optimized
by an deep embedding function C with learnable parameters
θ. Given sample x and reciprocal point Pk, their distance
d(C(x),Pk) is calculated by combining the Euclidean dis-
tance de and dot product dd:

de(C(x),Pk) =
1

m
· ‖C(x)− Pk‖22,

dd(C(x),Pk) = C(x) · Pk,
d (C(x),Pk) = de(C(x), pki )− dd(C(x),Pk).

(6)

Each known class is opposite to its reciprocal point in terms
of both spatial position and angle direction. The combi-
nation of the Euclidean similarity and the dot product is
capable of better evaluating the similarity between the em-
bedding features of the known classes and their reciprocal
points.

Based on the proposed distance metrics, our framework
estimates the otherness between the embedding feature C(x)
and the reciprocal points of all known classes to determine
which category it belongs to. Following the nature of recip-
rocal points, the probability of sample x belonging to cat-
egory k is proportional to the otherness between C(x) and
the reciprocal point Pk, where a greater distance between
C(x) and Pk leads to assign the sample x to label k with
a larger probability. According to the sum-to-one property,
the final classification probability is normalized with the

softmax function:

p(y = k|x, C,P) = eγd(C(x), P
k)∑N

i=1 e
γd(C(x), Pi)

, (7)

where γ is a hyperparameter that controls the hardness
of the distance-probability conversion. The learning of θ is
achieved by minimizing the reciprocal points classification
loss based the negative log-probability of the true class k:

Lc(x; θ,P) = − log p(y = k|x, C,P). (8)

Through minimizing Eq. (8) which corresponds to
Rε(f,DL) in Eq. (4), the reciprocal points classification
loss reduces the empirical classification risk through the
reciprocal points.

In addition to classifying the known classes, an ad-
vantage of minimizing Eq. (8) is to separate known and
unknown spaces by maximizing the distance between the
reciprocal points of the category and its corresponding
training samples as follows:

argmax
f∈H

{ζ(DkL,Pk)}. (9)

Although Eq. (8) and Eq. (9) facilitate the maximization
of the interval between the closed space Sk and the center of
the open space Ok, Ok is not constrained in Eq. (8). Hence,
Sk and Ok may have an inestimable overlap (as shown in
Fig. 7(b)), meaning that the open space risk still exists.

3.3 Adversarial Margin Constraint

To reduce the open space risk Ro(f,DU ) in Eq. (4), a
novel Adversarial Margin Constraint (AMC) is proposed to
constrain the open space, where each particular category
k contains the positive open space Oposk and the infinite
negative open space Onegk . For multiclass OSR scenarios,
multiple class-wise open spaces are united into a global
open space OG:

OG =
⋂N

k=1
(Oposk ∪ Onegk ), (10)
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where the total open space risk can be restricted by limiting
the open space risk for each known class.

To separate Sk and Ok as much as possible, the open
space Ok must be restricted so that the open set space can
be estimated. We aim to reduce the open space risk of each
known class by limiting the open space Ok in a bounded
range. This has the effect facilitating an increase in the max-
imum value of the distance between the negative/unknown
data and reciprocal points less than R. Hence, the following
formula is established:

max(ζ(D 6=kL ∪ DU , P
k)) ≤ R. (11)

Clearly, it is almost impossible to manage the open space
risk by restricting the open space, because the open space
contains a large number of unknown samplesDU . However,
considering that spaces Sk and Ok are complementary to
each other, the open space risk can be bounded indirectly
by constraining the distance between the samples from Sk
and the reciprocal points Pk to be smaller than R as follows:

Lo(x; θ,Pk, Rk) = max(de(C(x),Pk)−R, 0), (12)

where R is a learnable margin and only the Euclidean
distance is used instead of a directional metric to obtain
a larger range of non-k samples. Specifically, minimizing
Eq. (12) by the classification loss Lc is equivalent to making
ζ(D 6=kL ∪DU , Pk) in Eq. (5) as smaller as possible compared
with R. Here we use a theorem to better illustrate the
advantage of our method.

Theorem 1. For a neural network whose logit layer is based on
reciprocal points, x ∈ DkL, Lc and Lo are minimized simultane-
ously if and only if max(ζ(D 6=kL , Pk)) ≤ R.

Proof. We give a proof by contradiction.
• For x ∈ DkL, we assume that there is a sample of

category t: s ∈ Dt, where t 6= k, and that ζ(s, Pk) > R.
• For such a sample, we can make the following infer-

ence:
– First, minimizing Lc maximizes the distance between

each category k and its Pk.
– Second, the loss Lo is minimized when ∀k ∈
{1, . . . , N},max(ζ(DkL, Pk)) ≤ R in Eq. (12). The
loss Lo is minimized, so ζ(s, Pt) ≤ R.

– Then, ζ(s, Pt) < ζ(s, Pk). Samples s is classified
into category k in Eq. (7), increasing the loss Lc.

• These consequences contradict what we have just as-
sumed that sample s belongs to category t.

• As a result, for x ∈ DkL, Lc and Lo are minimized
simultaneously if and only if max(ζ(D 6=kL , Pk)) ≤ R.

Theorem 1 further indicates that Eq. (11) can be obtained
by limiting the target known class as in Eq. (12) with the
classification loss Lc. If the target class k and its reciprocal
points are contained in a bounded range, the extraclass
of class k (including other known classes and potential
open space) is also constrained into a bounded space. With
such multicategory interactions, the known categories are
constrained to each other. On the one hand, the former
classification loss in Eq. (9) can be expected to increase the
distance between class k and its reciprocal point Pk. On the

Algorithm 1 The adversarial reciprocal point learning algo-
rithm.
Input: Training data {xi}. Initialized parameters θ in the

convolutional layers, and parameters P and R in the loss
layers, respectively. Hyperparameter λ, γ and learning
rate µ. The number of iteration t← 0.

Output: The parameters θ, P and R.
1: while not converge do
2: t← t+ 1.
3: Compute the joint loss by Lt = Ltc + λ · Lto.
4: Compute the backpropagation error ∂Lt

∂xt
for each i

by ∂Lt

∂xt
=

∂Lt
c

∂xt
+ λ · ∂L

t
o

∂xt
.

5: Update the parameters P by Pt+1 = Pt − µt · ∂L
t

∂Pt =

Pt − µt · ( ∂L
t
c

∂Pt + λ · ∂L
t
o

∂Pt ).
6: Update the parameters R by Rt+1 = Rt − µt · ∂L

t

∂Rt =

Rt − λ · µt · ∂L
t
o

∂Rt .
7: Update the parameters θ by θt+1 = θt − µt · ∂L

t

∂θt
=

θt − µt · ( ∂L
t
c

∂θt
+ λ · ∂L

t
o

∂θt
).

8: end while

other hand, the class k is bounded by the other reciprocal
points P 6=k as follows:

argmin
f∈H

{max({ζ(DkL,P 6=k)−R} ∪ {0})}. (13)

Through this adversarial mechanism between Eq. (9) and
Eq. (13), each known class is pushed to the edge of the finite
feature space to the maximum extent, moving each far away
from its potential unknown space.

In addition, considering the bounded space B(Pk, R)
with the reciprocal points Pk as centers and R as its cor-
responding intervals, to separate the known and unknown
space, we utilize these bounded spaces to approximate the
global unknown spaceOG as closely as possible. As a result,
the calculation of the loss in Eq. (12) can be viewed as
reducing the open space risk Ro(f,DU ) in Eq. (4).

3.4 Learning the Open Set Network
In adversarial reciprocal points learning, the overall loss
function combines Eq. (8) and Eq. (12) to handle the em-
pirical classification risk and the open space risk simultane-
ously:

L(x, y; θ,P, R) = Lc(x; θ,P) + λLo(x; θ,P, R), (14)

where λ is the weight of the adversarial open space risk
module and θ,P, R represent the learnable parameters. Alg.
1 summarizes the learning details of the open set network
with joint supervision. Some additional explanations are
also given here.

Firstly, we discuss Unknown Classes for the Neural Net-
work. Based on the principle of maximum entropy, for an
unknown sample xu without any prior information, a well-
trained closed set discriminant function tends to assign
known labels to xu with a uniform probability. DNNs
usually embed the features of unknown samples into spaces
with lower magnitudes rather than random positions in
the full space. This phenomenon is also consistent with the
observation of [6] and the visualization results shown in
Fig. 1. For real images space, ”All positive examples are alike;
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(a) ARPL (b) ARPL+CS

Fig. 4: The visualization of the feature responses of the neu-
ral network to the samples from the confused generator. (a)
is trained only by ARPL. (b) is trained by ARPL+CS. The red
points represent the embedding of the confusing samples
generated through instantiated adversarial enhancement.

each negative example is negative in its own way” [2]. However,
the various negative examples (unknown) are not provided
for training the neural network, so as that these samples
obtain lower activation magnitudes from the neural net-
work than positive samples (known). Hence, most unknown
classes are distributed in low-magnitude area of the deep
feature space, as shown in Fig. 1 and 6(a). Furthermore, the
learned reciprocal points are also distributed in the low-
magnitude areas and push the known classes away from
the low-magnitude areas, so as to distinguish the known
from the unknown, as shown in Fig. 7. As illustrated in
Fig. 6(a), the retrieved images gradually become different
as we move from the class center to its reciprocal point.
The learned reciprocal points and the unknown classes have
more similarities in the deep feature space. Actually, it could
not find the specific realistic sample of the reciprocal point.
Basically, the differences among a large number of unknown
classes are still unknown to the classifier. Most unknown
classes have great commonality for a classifier, and this part
of commonness is ”unknown”.

Second, we discuss Unknown Classes and Reciprocal Points.
Since the global open space OG is more aggregated, the
open set space is able to be constrained through reciprocal
points in the deep embedding space. As shown in Fig. 3 and
Fig. 6(a), learning with Eq. (14) pushes the known spaces
to the periphery of OG and then separates two spaces as
much as possible. As a result, an excellent embedding space
structure is formed via adversarial reciprocal point learning
(ARPL), which can be used to further divide the known
classes and most unknown classes.

4 INSTANTIATED ADVERSARIAL ENHANCEMENT

As shown in Fig. 4(a), the ARPL classifier is able to distin-
guish an unknown distribution without any prior knowl-
edge of the unknown data, but is still vulnerable to the
confusing samples generated from a simple generator, even
when these samples are quite different from the known
categories. To further reduce the open space risk caused by
such unknown data, a good solution requires to minimizing
the open space from the learned neural networks, with the
support of a reasonable optimization strategy for unknown

DiscriminatorGenertor

Known Sample

Comfusing Sample

Known Sample

Co
nv

Classifier

Next Layer
BN

(known)

Auxiliary BN

BN
(unknown)

Re
LU

Close to  All 
Reciprocal Points

 (Unknown Sample)

Fig. 5: The basic framework of training the confused gen-
erator. Here, the generator maps a latent variable zi to the
generated confusing sample G(zi), and the discriminator
focuses on discriminating the real and generated samples.
The classifier with ABN is trained by ARPL and FT. An
adversarial mechanism between the known classes and re-
ciprocal points is introduced here. On the one hand, the gen-
erated images let the discriminator identify positive samples
(i.e., those close to known samples). On the other hand,
the generated images should be samples unknown to the
classifier, so the embedding feature of the neural network
with respect to these samples is close to all reciprocal points.

data. However, it is a haystack to find valid unknown
samples in a real scene. Therefore, we further generate the
Confusing Samples (CS) as unknown data DU to improve the
discriminability of the classifier for various novel distribu-
tions.

4.1 Learning the Confused Generator

Here, a new training strategy is proposed to learn a con-
fused generator. Unlike the common GAN [7], we want to
employ the generator to recover some confusing samples
from OG instead of known samples from Sk. As shown in
Fig. 5, the proposed instantiated adversarial enhancement
framework contains three main components: the discrimi-
nator D, the generator G, and the classifier C with a deep
embedding function C. The classifier with ARPL represents
the probability that the sample belongs to each known
category. The generator maps a latent variable z from a prior
distribution Ppri(z) to the generated outputs G(z), and the
discriminator D : X → [0, 1] represents the probability
of sample x being from the real distribution or a fake
distribution. Then, given {z1, · · · , zn} from the prior Ppri(z)
and the known samples {x1, · · · , xn}, the discriminator is
optimized to discriminate the real and generated samples:

max
D

1

n

n∑
i=1

[logD(xi) + log(1−D(G(zi)))]. (15)

In contrast, the generator expects the generated samples
to be closer to the known classes so as to deceive the
discriminator:

max
G

1

n

n∑
i=1

[logD(G(zi))]. (16)
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In order to confuse the generator, an adversarial mech-
anism between the known classes and reciprocal points is
introduced here. It encourages the generator to create sam-
ples close to each center Pk of the open space Ok. Similar
to Eq. (10), it is equivalent to encouraging the generated
images to be close to the global open space OG. Formally,
the generator is optimized through the classifier:

max
G

1

n

n∑
i=1

[− 1

N

N∑
k=1

S(zi,Pk) · log(S(zi,Pk))], (17)

where S(zi,Pk) = softmax(de(C(G(zi)),Pk)). The max-
imum value of Eq. (17) for confusing samples is achieved
when the embedding of these samples are close to all
reciprocal points. A theorem is introduced to better illustrate
this.

Lemma 1. For a neural network whose logit layer is based on
reciprocal points and x = G(z), Eq. (17) is maximized when the
distances between the deep feature vector C(x) and all reciprocal
points are equal: ∀n ∈ N : S(zi,Pk) = 1

N and the entropy of
the distance distribution is maximized.

For x = G(z), Eq. (17) is the same in form as the information
entropy over the per-class softmax scores. Thus, based on
Shannon entropy [34], it is intuitive that Eq. (17) is maxi-
mized when all values are equal.

By combining these two mechanisms for confrontation,
the generator is optimized by:

max
G

1

n

n∑
i=1

[logD(G(zi)) + β ·H(zi,P)], (18)

where β is a hyperparameter for controlling the weight
of the information entropy loss, and H(zi,P) =
− 1
N

∑N
k=1 S(zi,Pk) · log(S(zi,Pk)) is the information en-

tropy function. As in the framework illustrated in Fig. 5, we
aim to generate samples more similar with known samples;
this also forces the generator to create samples that balance
the distance for all the reciprocal points, so that they are
close to the global open space OG. If the generated samples
are far from the boundary of the known samples, the loss
in Eq. (16) should be large. To deceive the discriminator, the
generator generates samples similar to the known classes,
which also makes the features of the generated samples
close to the known classes and far from some reciprocal
points. Hence, the loss in Eq. (17) should be large. There-
fore, one expects that the proposed loss will encourage the
generator to produce samples that are on the boundary of
the global open space, as shown in Fig. 4(a) and Fig. 6(b).

4.2 Reliability Enhancement

Consider the generated samples as unknown data DU , and
consider the ultimate goal of training a better feature space,
where the open space is minimized. Therefore, the classifier
C is optimized by the generated confusing samples as:

min
C

1

n

n∑
i=1

[L(xi, yi)− β ·H(zi,P)], (19)

where L is the overall loss of ARPL. These generated sam-
ples are used to estimate the unknown distribution of OG,

(a) Retrieval Examples (b) Generated Samples

Fig. 6: (a) Several retrieval examples from KMNIST. The
orange circle represents the known class number 7, and the
orange triangle represents the reciprocal point correspond-
ing to number 7. The red sample in the upper left corner
indicates a failure case, which is very similar to the known
class number 3. (b) Generated confusing images from ad-
versarial training with the ARPL classifier on MNIST. The
topmost and bottommost correspond to the known training
images.

to reduce the open space risk by reducing the size of OG (as
shown in Fig. 4(b)).

Note that the known samples and generated samples
are processed independently in Eq. (19). In this circum-
stance, the generated samples could confuse the classifier
because of their different distributions with known sam-
ples, resulting in inaccurate statistics. To disentangle this
mixed distribution into two underlying distributions for the
known and confusing samples, we propose Auxiliary Batch
Normalization (ABN) to guarantee that the normalization
statistics obtained exclusively for the confusing examples.
Specifically, Batch Normalization [35] normalizes the input
features by the mean and variance computed within each
minibatch, where the input features should come from a
single or similar distribution [36]. As illustrated in Fig. 5,
ABN helps to disentangle mixed distributions by keeping
separate BNs for features that belong to different domains.
Compared with the two-component mixture distribution
(known and confusing samples), this auxiliary BN is able
to effectively block the negative impact of confusing sam-
ples on known class discrimination. The ablation studies in
Sec. 5.3 demonstrate that such disentangled learning with
multiple BNs can improve the performance.

Finally, the discriminator and the classifier can be used
to improve each other through the confused generator.
This naturally suggests a joint training scheme where the
classifier improves the generator and vice versa. In the
same way, it is inevitably valid for the discriminator. An
alternating algorithm is designed to optimize the above
objective efficiently, as shown in Alg. 2. After training each
classifier with the confusing samples (step 6 in Alg. 2), we
add Focus Training (FT) and use the known class to train the
classifier again. The purpose of this scheme is to encourage
the classifier to focus on the known classification and correct
the deviation of giving too much attention to the confusing
samples.

Compared with [22], [28], [37], [38], the main differences
of the proposed instantiated adversarial enhancement are
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Algorithm 2 The instantiated adversarial enhancement al-
gorithm.

Input: Training data {xi}. Initialized parameters θD of the
discriminator D, θG of the confusing generator G and
θC of the classifier C with P and R in loss layers,
respectively. Hyperparameter λ, γ, β.

Output: The parameters θD, θG, θC , P and R.
1: repeat
2: Sample {z1, ..., zN} from prior Ppri(z) and known sam-

ples {(x1, y1), ..., (xN , yN )}.
3: Update the discriminator parameters θD by ascending

its stochastic gradient:

∇θD
1

n

n∑
i=1

[logD(xi) + log(1−D(G(zi)))].

4: Update the generator parameters θG by ascending its
stochastic gradient:

∇θG
1

N

N∑
i=1

[logD(G(zi)) + β ·H(ziP)].

5: Update the classifier parameters θC with P and R by
by descending its stochastic gradient:

∇θC
1

n

n∑
i=1

[L(xi, yi)− β ·H(zi,P)].

6: Update the classifier parameters θC with P and R by
minimizing 1

n

∑n
i=1 L(xi, yi).

7: until convergence

as follows: First, the proposed method uses the adversarial
mechanism between the close space Sk and the global open
space OG formed by the reciprocal points. Second, the
generated confusing samples and known samples are val-
idated as two different distributions to accurately estimate
the statistics of known and unknown classes. In addition,
the images generated by our method cover the whole low
response of the unknown feature space (as shown in Fig. 4),
and contain a certain quantity of confusing images similar
to the known classes (as illustrated in Fig. 6(b)).

4.3 Unknown Classes Detection

Based on Eq. (5), the unknown samples naturally have a
closer distance to all reciprocal points than the samples of
known classes. Therefore, the probability that the test in-
stance x belongs to one of the known classes is proportional
to the distance between x and the farthest reciprocal point
corresponding to category k:

p(known|x) ∝ max
k∈{1,...,N}

d(f(x),Pk). (20)

One of the key issues in OSR models is what’s a good score for
open set recognition? (i.e., identifying a class as known or un-
known). Since how rare or common samples from unknown
space are not known in the actual scenario, the approaches
to OSR that require an arbitrary threshold or sensitivity
for comparison are unreasonable [38]. Thus, the difference
between known and unknown probability belonging to any

known classes is used to measure the learned models’ ability
to detect unknown samples, which provides a calibration-
free measure of the detection performance.

5 EXPERIMENTS

5.1 Implementation Details

γ is set as 1.0, and λ and β are set to 0.1, in all training
phases. They all are determined by cross validation. The
reciprocal points are initialized by a random normal dis-
tribution and each margin is initialized to one. For open
set recognition, a global average pooling is added after the
final convolution layer of the encoder. In experiments for
out-of-distribution samples, the output after global average
pooling (GAP) of the ResNet is utilized as the feature.
The dimension of the reciprocal point is consistent with
the output of the GAP. Each known class is assigned one
reciprocal point for training. In addition to MNIST, random
center-cropping and random horizontal flips are used as
data augmentation. The images in TinyImageNet are resized
to 64x64 in the experiments. During testing, only the BN
for known classes is used to generate the deep feature for
known and unknown classes.

5.2 Experiments for Open Set Recognition

Datasets. Similar to [23], a simple summary of these proto-
cols for each dataset is provided:

• MNIST, SVHN, CIFAR10. For MNIST [39], SVHN [40]
and CIFAR10 [41], 6 known classes and 4 unknown
classes are randomly sampled.

• CIFAR+10, CIFAR+50. For the CIFAR+N experiments,
4 classes are sampled from CIFAR10 for training. N
nonoverlapping classes are used as unknown classes,
which are sampled from the CIFAR100 dataset [41].

• TinyImageNet. For experiments with TinyImageNet
[42], 20 known classes and 180 unknown classes are
randomly sampled for evaluation.

Evaluation Metrics. Since how rare or common the sam-
ples from unknown space are is not known in the actual
scenario, the approaches to OSR that require an arbitrary
threshold or sensitivity for comparison are unreasonable
[38]. A threshold-independent metric, the Area Under the
Receiver Operating Characteristic (AUROC) curve [38], is
taken as one of the evaluation metrics. The AUROC curve
is threshold-independent metric [43] that plots the true
positive rate against the false positive rate by varying a
threshold [28]. It can be interpreted as the probability that a
positive example is assigned a higher detection score than a
negative example [44].

However, the AUROC evaluates only the distinction be-
tween known and unknown classes, and does not consider
the accuracy of known classes in open set recognition, which
has been however hidden by this gold-standard ”fair” met-
ric [6], [45]. To adapt it to the case of open set recognition,
we introduce Open Set Classification Rate (OSCR) [6] as a new
evaluation metric. Let δ be a score threshold. The Correct
Classification Rate (CCR) is the fraction of samples where
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TABLE 1: The AUROC results of on detecting known and unknown samples. Results are averaged among five randomized
trials.

Method MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet

Softmax 97.8 ± 0.2 88.6 ± 0.6 67.7 ± 3.2 81.6 ± - 80.5 ± - 57.7 ± -
Openmax [17] 98.1 ± 0.2 89.4 ± 0.8 69.5 ± 3.2 81.7 ± - 79.6 ± - 57.6 ± -

G-OpenMax [22] 98.4 ± 0.1 89.6 ± 0.6 67.5 ± 3.5 82.7 ± - 81.9 ± - 58.0 ± -
OSRCI [38] 98.8 ± 0.1 91.0 ± 0.6 69.9 ± 2.9 83.8 ± - 82.7 ± - 58.6 ± -
CROSR [19] 99.1 ± - 89.9 ± - 88.3 ± - 91.2 ± - 90.5 ± - 58.9 ± -
C2AE [23] 98.9 ± 0.2 92.2 ± 0.9 89.5 ± 0.8 95.5 ± 0.6 93.7 ± 0.4 74.8 ± 0.5

RPL [8] 98.9 ± 0.1 93.4 ± 0.5 82.7 ± 1.4 84.2 ± 1.0 83.2 ± 0.7 68.8 ± 1.4
ARPL 99.6 ± 0.1 96.3 ± 0.3 90.1 ± 0.5 96.5 ± 0.6 94.3 ± 0.4 76.2 ± 0.5

ARPL+CS 99.7 ± 0.1 96.7 ± 0.2 91.0 ± 0.7 97.1 ± 0.3 95.1 ± 0.2 78.2 ± 1.3

TABLE 2: The open set classification rate (OSCR) curve results of open set recognition. Results are averaged among five
randomized trials.

Method MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet

Softmax 99.2 ± 0.1 92.8 ± 0.4 83.8 ± 1.5 90.9 ± 1.3 88.5 ± 0.7 60.8 ± 5.1
GCPL [3] 99.1 ± 0.2 93.4 ± 0.6 84.3 ± 1.7 91.0 ± 1.7 88.3 ± 1.1 59.3 ± 5.3
RPL [8] 99.4 ± 0.1 93.6 ± 0.5 85.2 ± 1.4 91.8 ± 1.2 89.6 ± 0.9 53.2 ± 4.6
ARPL 99.4 ± 0.1 94.0 ± 0.6 86.6 ± 1.4 93.5 ± 0.8 91.6 ± 0.4 62.3 ± 3.3

ARPL+CS 99.5 ± 0.1 94.3 ± 0.3 87.9 ± 1.5 94.7 ± 0.7 92.9 ± 0.3 65.9 ± 3.8

the correct class k has maximum probability and has a
probability greater than δ:

CCR(δ) =
|{x ∈ DkT ∧ argmaxkP (k|x) = k̂ ∧ P (k̂|x) ≥ δ}

|DkT |
.

(21)
The False Positive Rate (FPR) is the fraction of samples from
unknown data DU that are classified as any known class k
with a probability greater than δ:

FPR(δ) =
|{x|x ∈ DU ∧maxkP (k|x) ≥ δ}|

|DU |
. (22)

A larger value of the OSCR indicates better detection per-
formance. Following the protocol in [38], the AUROC and
the OSCR are averaged over five randomized trials.

Network Architecture. The classifier for this experiment is
the same as the neural network used in [38]. Apart from the
Adam optimizer [46] used in TinyImageNet, all classifiers
are trained with the momentum stochastic gradient descent
(Momentum SGD) optimizer [47]. The learning rate of the
classifier starts from 0.1 and decreases by a factor of 0.1
every 30 epochs in the training progress. The confused
generator and the discriminator are the same as thos in [28],
and are trained by the Adam optimizer [46] with a learning
rate of 0.0002. More details are given in Section 5.1.

Result Comparison. As shown in Table 1, ARPL using
only known training samples significantly outperforms
most other approaches (including traditional discriminative
method-based neural networks and some complicated gen-
erative methods [19], [23], [38] for OSR) significantly. These
generative methods [19], [23], [38] consider using decoder
to optimize the deep feature space, but they do not pay at-
tention to the characteristics of the unknown distribution in
deep feature space. Instead, ARPL pushes the known classes

away from the unknown classes through reciprocal points
to form a better discriminative feature space. Furthermore,
ARPL with Confusing Samples (ARPL+CS) performs sig-
nificantly better than other recent state-of-the-art generative
methods [19], [20], [23], [38] and ARPL, especially on SVHN,
CIFAR, and TinyImageNet. This further demonstrates the
superiority of the proposed method, and these confusing
samples can effectively improve the reliability of the neural
network with ARPL.

Moreover, we design a new OSR experiment for a more
reasonable comparison. First, we abandon the baseline with
hinge loss in [38], which can lead to some optimization
difficulties. The more robust cross-entropy loss is used as
a new baseline in this experiment. Second, we introduce a
new evaluation metric, OSCR [6], to comprehensively eval-
uate the classification performance for known and unknown
class detection under different thresholds. Finally, under
the same five known and unknown splits, we report the
performance of the average for five trials.

Compared with the experiment based on the AUROC
in Table 1, most tasks in this new OSR experiment become
more difficult because these methods should balance the
unknown detection with classification for known classes.
We compared four discriminative methods based on a neu-
ral network as shown in Table 2. ARPL shows excellent
performance compared to cross-entropy loss, GCPL [3], and
RPL [8]. Moreover, with the assistance of confusing samples,
the OSCR of ARPL was greatly improved. In particular,
on TinyImageNet, the performance was improved 3.6%
compared with that of ARPL. These results show that ARPL
and ARPL+CS are able to effectively improve the detection
ability of unknown samples while ensuring the accuracy of
known class classification.
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TABLE 3: Distinguishing in- and out-of-distribution test set data for image classification under various validation setups.
All values are percentages and the best results are indicated in bold.

Method In: CIFAR10 / Out: CIFAR100 In: CIFAR10 / Out: SVHN

TNR AUROC DTACC AUIN AUOUT TNR AUROC DTACC AUIN AUOUT
Cross Entropy 31.9 86.3 79.8 88.4 82.5 32.1 90.6 86.4 88.3 93.6

GCPL [3] 35.7 86.4 80.2 86.6 84.1 41.4 91.3 86.1 86.6 94.8
RPL [8] 32.6 87.1 80.6 88.8 83.8 41.9 92.0 87.1 89.6 95.1
ARPL 47.0 89.7 82.6 90.5 87.8 53.8 93.2 87.2 90.3 95.8

JCL [28] 35.8 87.8 81.2 89.1 88.6 34.7 92.2 88.5 90.6 92.9
ARPL+CS (w/o ABN) 46.3 88.8 81.7 89.1 87.1 44.7 90.9 84.1 86.2 94.6

ARPL+CS (w/o FT) 46.7 89.7 82.4 90.7 87.8 71.0 95.6 91.1 94.0 96.8
ARPL+CS 48.5 90.3 83.4 91.1 88.4 79.1 96.6 91.6 94.8 98.0

5.3 Experiments for Out-of-Distribution Detection

Datasets. we adopt three image datasets that represent the
most challenging pairs of common OOD detection bench-
marks [24], CIFAR10, CIFAR100 [41], SVHN [40] for evalu-
ation. CIFAR100 and SVHN are the near OOD dataset and
far OOD dataset for CIFAR10, respectively. Note that the
CIFAR10 and CIFAR100 classes are mutually exclusive.
Evaluation Metrics. Referring to the evaluation index in
[24], [27], [28], [29], the AUROC, the true negative rate
(TNR) at 95% true positive rate (TPR), the area under the
precision-recall curve (AUPR), and the detection accurac-
yare are adopted for evaluation:

• True negative rate (TNR) at 95% true positive rate
(TPR). Let TP, TN, FP, and FN denote true positives,
true negatives, false positives and false negatives, re-
spectively. We measure TNR = TN/(TP+TN), when
TPR = TP/(FP + FN) is 95%

• Area under the precision-recall curve (AUPR). The PR
curve is graph plotting precision = TP/(TP + FP )
against recall = TP/(TP+FN) by varying a threshold.
The AUIN (or AUOUT) is the AUPR where the in- (or
out-of-) distribution samples are specified as positive.

• Detection accuracy (DTACC). This metric corresponds
to the maximum classification probability over all pos-
sible thresholds δ. We assume that both positive and
negative examples have equal probability of appearing
in the test set, i.e., P (x ∈ Pin) = P (x ∈ Pout) = 0.5

Network Architecture. We demonstrate the effectiveness of
the proposed method using ResNet with 34 layers [48] on
various vision datasets. All classifiers are trained for 100
epochs with batch size 128 with the Adam optimizer [46].
The learning rate of the classifier starts at 0.1 and decreases
by a factor of 0.1 every 30 epochs in the training process.
The confused generator and the discriminator are the same
as those in [28], and are trained by the Adam optimizer [46]
with the learning rate of 0.0002. More details are given in
Section 5.1.
Result Comparison. As shown in Table 3, the ARPL out-
performs training by three methods for in-distribution data
only; the methods are cross-entropy loss (Baseline), GCPL
[3] and RPL [8]. For CIFAR100 containing both test samples
that are near as well as far OOD, ARPL is more than 3%
better than the RPL in terms of AUROC. This confirms
that ARPL can differentiate OOD classes that are near or
far from in-distribution data. Additionaly, our methods are

compared with a generative OOD model, named Joint Con-
fidence Loss (JCL) [28], which adopts a similar mechanism
with our instantiated adversarial enhancement. Due to con-
sidering the difference between the unknown and known
samples in deep feature space, the performance of ARPL
without the auxiliary training of confusing samples even is
better than that of JCL.

Here we analyze the role of ABN and FT for instantiated
adversarial enhancement. The performance of ARPL+CS
w/o ABN is much lower than that of ARPL. This is con-
sistent with our assumption that confusing samples and
known images have different underlying distributions. Al-
though the generator aims to generate images that are con-
sistent with the distribution of known classes, the distribu-
tions of the generated images and known classes gradually
separate after adding our adversarial mechanism. One BN
for mixed distributions would influence the performance to
detect OOD samples. After adding ABN (ARPL+CS w/o
FT), the performance is gradually improved, especially for
far OOD detection.

However, the detection of near OOD is not improved
compared with that of ARPL. It could be that confusing
samples affect the discriminative feature of the known class
in the training stage. Based on the prior initialization of
confusing samples, we use FT to encourage the classifier to
pay more attention to the classification of known classes.
The performance of both near and far OOD was further
improved as shown in Table 3.

5.4 Ablation Study

5.4.1 ARPL vs. Softmax.
The classification loss term (the first part of Eq. (14)) defines
the classification principle of reciprocal points. Similar to
softmax, the learned representation is still linearly separable
only with this classification loss. As shown in Fig. 1(b)
and 7(b), reciprocal points without Lo are learned to the
origin, and there is a significant overlap between the known
and unknown classes in the low response part of entire
feature space. Additionally, observing the OSCR curve in
Fig. 9, the CCR is lower when the FPR is lower for softmax.
This is the reason why the neural network learned with
softmax detects unknown samples as known classes with
high confidence. In contrast, ARPL with Lo to constrain
the open space achieves a better distribution (as shown in
Fig. 7(c)), where the whole feature space is contained in
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(a) RPL(λ = 0) (b) ARPL(λ = 0) (c) ARPL(λ = 0.1) (d) ARPL+CS

Fig. 7: (1) The first row is visualization in the learned feature space of MNIST as known and KMNIST, SVHN, CIFAR100
as unknown. Color shapes in the middle are data of unknown, and circles in color are data of known samples. Different
colors represent different classes. Colored triangles represent the reciprocal points learned of different known categories.
(2) The second row is the maximum distance distribution between features and reciprocal points.

a limited range (1-13.5 in the abscissa for unknowns and
14-17 in the abscissa for knowns in Fig. 7(c)) to prevent
high confidence for unknown classes. APRL with Lo can
guarantee high accuracy even at the low FPR in Fig. 9,
because of effective restrictions on the open space by Lo
and pushing the known classes far away from the global
open space.

5.4.2 ARPL vs. GCPL.
As shown in Fig. 1(c), GCPL used the prototypes to reduce
the intraclass variance. However, without considering the
unknown, GCPL extends unknown classes to the whole
feature space, resulting in a significant overlap with known
classes. In the initial stage of neural network training, the
prototypes of GCPL are easily distributed in the unknown
feature space. This also leads to some known categories
are distributed in the lower response part of the feature
space, which increases the open space risk. As shown in
Fig. 9, GCPL achieves worse AUROC and OSCR perfor-
mance than softmax. In contrast, ARPL is not affected by
the initialization because each known class is far away
from its corresponding unknown representation, a recipro-
cal point. Under the interaction of the classification loss and
Lo, different known categories spread to the periphery of
the space, while unknown categories are restricted to the
interior. A clear gap is maintained between the two types
of samples (known vs. unknown), as shown in Fig. 7(c).
ARPL improves the robustness of neural networks by pre-
venting the misjudgment of the unknown class through the
bounded restriction, thereby enhancing and stabilizing the
classification of known categories.

5.4.3 ARPL vs. RPL.
As shown in Table 1, Table 2 and Table 3, ARPL has great
improvement over RPL [8]. Compared with RPL, ARPL

Fig. 8: Ablation experiments on λ with CIFAR10 as known
data and CIFAR100 as unknown data.

improves the similarity estimation and reduces the open
space risk through an elastic bounded space. First, for the
distance between the feature and reciprocal points in Eq. (6),
the angle metric is added. Each known class is opposite to its
reciprocal points in terms of spatial position and angle direc-
tion. Comparing Fig. 7(a) and Fig. 7(b), there are is a larger
space between the features of each class in ARPL(λ=0),
and each class is more compact. Adding the angle metric
effectively reduces the intraclass distance to achieve better
performance with different λ as shown in Fig. 8. Second,
we no longer limit the distance between the known classes
and the corresponding reciprocal points to the same margin,
and we use adaptive regularization in Eq. (12). The stronger
limitation in [8] will reduce the network‘s discriminability
for all known classes. The performance of classification and
unknown detection will be reduced if this restriction is too
large. It also is sensitive to the setting of hyperparameter λ
in [8]. Compared with ARPL and RPL+AMC in Fig. 8, the
performance of RPL and RPL+cosine are more affected by
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(a) known:MNIST, unknown: KMNIST (b) known:MNIST, unknown: SVHN (c) known:MNIST, unknown: CIFAR100

Fig. 9: (1) The first row is the Area Under the Receiver Operating Characteristic (AUROC) applied to the data from
MNIST as known and KMNIST, SVHN, CIFAR100 as unknown. (2) The second row is Open Set Classification Rate curves
provided for the same algorithms. Compared with AUROC, more significant differences could be observed through Open
Set Classification Rate curves.

λ and their performances are more unstable. For the AMC,
the learnable value R is used as the anchor. By constantly
adjusting the reciprocal points and the deep feature, all
known classes are promoted to less than R, so as to focus on
samples that are difficult to distinguish among unknowns
adaptively. Through this adversarial margin constraint in
Eq. (12), the neural network can no longer focus on the
samples that meet conditions in Eq. (11), and pay more
attention to optimizing the bounded samples.

5.4.4 ARPL vs. ARPL + Confusing Samples.

From the experiment on OOD detection, CS improves ARPL
more for detecting far OOD. Additionally, as shown in
Fig. 7(c) and Fig. 7(d), confusing samples make the differ-
ence between MNIST, SVHN and CIFAR100 even greater.
Note that SVHN and MNIST have the same class, the num-
bers 0-9, but they are also accurately detected as unknown
classes. The main reason for this difference is the difference
of the image domain, color images vs. black and white
images. This also demonstrates that the proposed method
has the ability to reject data from different domains. For
KMNIST, ARPL+CS does not seem to bring much improve-
ment in feature visualization in Fig. 7(d). The samples from
KMNIST are difficult for the classifier to distinguish, and
have more similarities in the shape and structure with those
of MNIST. However, ARPL+CS still improves the detection
ability for these confusing samples, as shown in Table 3 and
Fig. 9. In general, confusing samples effectively improve the
ability of ARPL to detect various unknown categories while
ensuring the accuracy of known class classification.

Fig. 10: The influence of ABN and FT on the accuracy of
known and AUROC for detecting unknown in the training
process, where MNIST is the known dataset and KMNIST
is the unknown dataset. ABN can ensure that confining
samples do not made a negative effect on the classifier,
and FT further enhances the ability to distinguish unknown
classes.

5.4.5 ABN & FT

The training process would not be stable if the two op-
posite constraints in Sec. 4 were added directly. Hence,
we propose ABN and FT for reliability enhancement. As
shown in Fig. 10, the training of ARPL without ABN finally
collapses on MNIST. The known and unknown classes use
their own BN independently, so the training process of the
known classes will not be affected when the distributions
of unknown samples and known samples are very differ-
ent. With stability training procedure of ABN, FT further
enhances the ability to distinguish known and unknown
classes. With ABN and FT, ARPL+CS can improve the
ability of neural networks to distinguish known classes and
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(a) (b)

Fig. 11: (a): The variation trend of margin with the number
of known classes. (b): The AUROC performance based on
the different number of known classes on CIFAR100, where
remaining classes as unknown.

the discriminability of judging various unknown classes,
simultaneously.

5.4.6 Analysis of the Margin.
Different datasets need different sizes for deep feature
space to ensure that known and unknown can be classified
correctly. Fig. 11(a) proves that the margin increases with
the number of known classes with fixed λ. Moreover, the
distributions of features learned under different numbers of
known classes still are discriminative for known classes and
unknown classes as shown in Fig. 12. As shown in Fig. 11(b),
ARPL can also retain better performance for detecting un-
known classes compared with softmax and GCPL with dif-
ferent numbers of known classes. Softmax and GCPL only
enhance the separability of features, and cannot distinguish
known and unknown classes sufficiently well. ARPL can
make the known and unknown classes distinguishable by
pushing the known samples far away from the potential
unknown space. This phenomenon demonstrates the ratio-
nality of the spatial distribution learned for multiple classes.
ARPL can effectively control the interaction among different
known classes, by learning a more appropriate embedding
space size. As a result, the previous conclusion about ARPL
still holds for different numbers of known classes.

Furthermore, for open set recognition, the fixed known
classes are provided in the training, while the unknown
classes are infinite. As mentioned above, reciprocal points
are modeled for most unknown distribution which is dif-
ferent from the provided known classes. However, there
are some unknown classes that are very similar to known
classes, and even it is hard to distinguish them through the
human eye. In this case, the neural network will be easily
affected by the limited known priors, resulting in generating
a high feature response. This is also the reason that the
upper left part of Fig.6(a) is affected by the open set data
from KMNIST. We will explore these challenges in future
research.

5.5 Further Analysis

5.5.1 Analysis of Closed Set Recognition.
We adopt ResNet with 34 layers [48] for closed set recogni-
tion on CIFAR10, CIFAR100, and Aircraft 300 (Air-300) [8].

TABLE 4: Test accuracy of different methods on CIFAR10,
CIFAR100 and Air-300. The best results are indicated in
bold.

Method CIFAR10 CIFAR100 Air-300

Softmax 93.1 70.8 92.4
GCPL 93.3 70.3 92.3
RPL 93.8 71.8 92.9

ARPL 94.1 72.1 94.5
ARPL+CS(w/o ABN) 94.0 71.8 93.2

ARPL+CS(w/o FT) 93.1 71.5 93.0
ARPL+CS 94.0 72.8 94.7

Air-300 contains 320,000 annotated color images from 300
different classes in total. Each category contains 100 images
least, and a maximum of 10,000 images, which leads to a
long-tailed distribution. All classes are divided into two
parts with 180 known classes for training and 120 novel
unknown classes for testing respectively. In contrast to the
existing benchmark datasets, the tailored Air-300 dataset
maintains a long-tailed distribution to simulate the real
visual world. Here, we focus on the closed set accuracy of
the model in 180 known categories. The images of Air-300
are center-cropped and resized to 64x64 in this experiment.

As shown in Table 4, ARPL achieves comparable perfor-
mance with traditional softmax and the prototype learning
method GCPL. The interclass distance between the known
classes is increased by using reciprocal points to push the
known classes away from the global open space, so that the
neural network can learn more discriminative features for
the known classes through ARPL. This demonstrates the ef-
fectiveness of ARPL for conventional closed set recognition
tasks. Moreover, by incorporating CS, the closed set accu-
racy for ARPL+CS is not decreased and it can even perform
better ARPL on CIFAR100 and Air-300. ARPL+CS is not
affected by confusing samples, which largely depends on
the proposed ABN and FT. Without ABN or FT, the closed
set accuracy can decrease because of the deviation from
confusing samples. These results demonstrate that ARPL
and ARPL+CS can improve the ability of neural networks
to distinguish known classes and the discriminability of
judging various unknown classes.

5.5.2 Semantic Shift versus Non-semantic Shift

More complex open set scenarios is explored through a
large-scale data set DomainNet [49]. DomainNet has high-
resolution images in 345 classes from six different domains.
There are three domains in the dataset with class labels
available when the experiments are conducted. These are
real, clipart, and quickdraw, and they result in different
types of distribution shifts. To create subsets with semantic
shifts, all classes are separated into two splits. Split A has
class indices from 0 to 172, while split B has indices from 173
to 334. Our experiments use real-A for in-distribution and
the other subsets for out-of-distribution. With the definition
given in [50], real-B has a semantic shift from real-A, while
clipart-A has a nonsemantic shift. Clipart-B therefore has
both types of distribution shift. We train the ResNet with 34
layers [48] for 100 epochs with batch size 128 and an SGD
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(a) K = 2 (b) K = 4 (c) K = 6 (d) K = 8

Fig. 12: The learned representations of ARPL with different numbers of known classes. The data is from MNIST by
randomly sampling K known classes and 10 − K unknown classes. Colored triangles represent the learned reciprocal
points of different known classes.

TABLE 5: Performance of three methods using DomainNet.
The known is the real-A subset. The type of distribution shift
presents a trend of difficulty to the OOD detection problem:
Semantic shift (S) > Non-Semantic Shift (NC) > Semantic +
Non-Semantic shift.

OOD Shift AUROC OSCR

S NS Softmax / ARPL / ARPL+CS

real-B X 72.3/74.2/75.2 41.7/60.8/61.9
clipart-A X 66.4/70.9/72.7 41.4/58.0/59.4
clipart-B X X 77.0/81.1/82.9 45.3/65.3/66.6

quickdraw-A X 77.9/86.1/86.7 44.6/68.5/69.0
quickdraw-B X X 79.5/87.4/87.5 45.5/69.4/69.5

optimizer with momentum 0.9. The learning rate starts at
0.01 and decreases by a factor of 0.1 in the training process
every 30 epochs. The images are center-cropped and resized
to 80x80 in this experiment.

The results in Table 5 reveal some trends. The first is
that the OOD datasets with both types of distribution shifts
are easier to detect, followed by nonsemantic shifts. The
second observation is that ARPL can effectively detect all
distribution shifts, in contrast to softmax. In particular, for
OSCR, ARPL achieves a good performance improvement.
Finally, confusing samples play an important role in differ-
ent domains and can improve the detection performance of
ARPL. The near domain can obtain a larger improvement
from confusing samples.

5.5.3 Experiments on ImageNet.

To better compare our method with traditional softmax,
we conduct experiments on the larger and more diffi-
cult ImageNet-1K dataset [51]. ImageNet-1K includes 1000
classes with more than 1,200,000 training images and 50K
validation images. Moreover, ImageNet-O [52] is adopted as
the out-of-distribution dataset for ImageNet-1K. ImageNet-
O includes 2K examples from ImageNet-22K [51] excluding
ImageNet-1K. ResNet 18 [48] is trained on ImageNet-1K and
tested on both ImageNet-1K and ImageNet-O.

As shown in Table 6, ARPL performs better than tradi-
tional softmax, GCPL and RPL even on the large and diffi-
cult datasets, in terms of both close-set accuracy (ACC) and
unknown detection (AUROC). In particular, for unknown

TABLE 6: Open set recognition performance of different
methods on the larger and more difficult datasets, where
ImageNet-1K as the known dataset and ImageNet-O as the
unknown dataset.

Method ACC AUROC OSCR

Softmax 69.6 48.2 42.4
GCPL 63.0 56.0 43.0
RPL 69.8 59.4 48.6

ARPL 70.2 60.0 48.9

detection, ARPL achieves an approximately 12% improve-
ment over softmax. Due to the constraints on the global
open space imposed by the reciprocal points, our method
can ensure a better separation of known and unknown
classes while ensuring the accurate recognition of known
classes. These results show the excellent scalability of ARPL
in larger scale datasets.

5.5.4 Extension for Class-Incremental Learning.
To validate the potential of reciprocal points in incremen-
tal learning, we train ResNet with 34 layers to classify
CIFAR100. We assume that a classifier is pretrained on a
certain number of base classes and new classes with corre-
sponding datasets are incrementally provided one by one.
In this incremental scenario, half of the CIFAR100 classes
are set as base classes and the rest are set as new classes.
The experiment are conducted in five times where class
splits are randomly generated in each time, and then the
averaged results are reported. Since the reciprocal points
of the base classes are distributed in the unknown deep
feature space which may contain the novel classes, we try to
use the reciprocal points to represent the novel classes. For
comparison, we consider different sets of bases to represent
base classes and novel classes, where the bases are learned
by other methods. Specifically, for the softmax classifier, the
weight of the last linear layer is used as a set of bases, so that
the logit is the coefficient based on these bases. Similarly,
the prototypes and reciprocal points of base classes can be
different sets of bases to represent different classes and their
logit scores are used for classification.

The experiments are evaluated by overall accuracy and
the results are shown in Fig. 13. The proposed recipro-
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Fig. 13: Experimental results of class-incremental learning
on CIFAR100. We report the overall accuracy after the last
new class is added.

cal points outperform the other methods by a significant
margin, as the number of new classes increases. In the
case of similar initial accuracy, reciprocal points can bet-
ter resist catastrophic forgetting. The experimental results
demonstrate the superiority of our reciprocal points. Further
potential of reciprocal points in incremental learning will be
explored in the future.

6 CONCLUSION

This paper formulates the open space risk from the per-
spective of multiclass integration, by introducing a novel
concept, the Reciprocal Point, to model the extraclass space
corresponding to each known category. We introduce a
novel learning framework, Adversarial Reciprocal Point
Learning, to promote a reliable open set neural network.
Specifically, a classification framework with the adversarial
margin constraint is introduced to reduce the empirical
classification risk and the open space risk. The rationality of
the adversarial margin constraint is theoretically guaranteed
by Theorem 1. Furthermore, to estimate the unknown distri-
bution from the open space, an instantiated adversarial en-
hancement is designed to generate more diverse confusing
training samples from the confrontation between the known
data and reciprocal points. Our methods break the closed-
world assumption in traditional neural networks and adopt
open-world reciprocal points for discrimination between
known and unknown samples. Extensive experiments con-
ducted on multiple datasets demonstrate that our method
outperforms previous state-of-the-art open set classifiers in
all cases.

This paper also reveals that the recognition of unknown
classes by a neural network is mostly based on known
priors, so the distribution of unknown classes is more aggre-
gated in the low-response area of deep feature space, while
the known classes are distributed in the high response space.
This is very similar to the observation that the neocortical
areas obtain structured knowledge from the hippocampus
through interleaved learning [53]. In the future, we will
explore more details about the neural mechanism of few
shot learning, and then utilize it to improve the ability of
the neural network to detect and learn unknown categories.
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