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Abstract

As deep learning models are usually massive and complex, distributed learning is
essential for increasing training efficiency. Moreover, in many real-world appli-
cation scenarios like healthcare, distributed learning can also keep the data local
and protect privacy. A popular distributed learning strategy is federated learning,
where there is a central server storing the global model and a set of local computing
nodes updating the model parameters with their corresponding data. The updated
model parameters will be processed and transmitted to the central server, which
leads to heavy communication costs. Recently, asynchronous decentralized dis-
tributed learning has been proposed and demonstrated to be a more efficient and
practical strategy where there is no central server, so that each computing node
only communicates with its neighbors. Although no raw data will be transmitted
across different local nodes, there is still a risk of information leak during the com-
munication process for malicious participants to make attacks. In this paper, we
present a differentially private version of asynchronous decentralized parallel SGD
(ADPSGD) framework, or A(DP)2SGD for short, which maintains communication
efficiency of ADPSGD and prevents the inference from malicious participants.
Specifically, Rényi differential privacy is used to provide tighter privacy analysis for
our composite Gaussian mechanisms while the convergence rate is consistent with
the non-private version. Theoretical analysis shows A(DP)2SGD also converges at
the optimalO(1/

√
T ) rate as SGD. Empirically, A(DP)2SGD achieves comparable

model accuracy as the differentially private version of Synchronous SGD (SSGD)
but runs much faster than SSGD in heterogeneous computing environments.

1 Introduction

Distributed Deep Learning (DDL), as a collaborative modeling mechanism that could save storage
cost and increase computing efficiency when carrying out machine learning tasks, has demonstrated
strong potentials in various areas, especially for training large deep learning models on large dataset
such as ImageNet [2, 40, 36]. Typically, assume there are K workers where the data reside (a worker
could be a machine or a GPU, etc), distributed machine learning problem boils down to solving an
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empirical risk minimization problem of the form:

min
w∈Rd

F (w) := Ek∼I [Fk(w)] =

K∑
k=1

pkFk(w), (1)

where pk’s define a distribution, that is, pk ≥ 0 and
∑
k pk = 1, and pk indicates the percentage of

the updates performed by worker k. The objective F (w) in problem (1) can be rephrased as a linear
combination of the local empirical objectives Fk(w) := Eξ∼Dk [f(w; ξ)], where Dk denotes the data
distribution associated to worker k ∈ [K] and ξ is a data point sampled via Dk.

In particular, algorithms for DDL face with following issues. On one hand, the communication cost
to the central server may not be affordable since a large number of updates of a number of workers
are usually involved. Many practical peer-to-peer networks are usually dynamic, and it is not possible
to regularly access a fixed central server. Moreover, because of the dependency on the central server,
all workers are required to agree on one trusted central body, and whose failure would interrupt the
entire training process for all workers. Therefore, researchers have started to study fully decentralized
framework where the central server is not required [27, 24, 16, 15], which is also the focus of this
paper. In addition, to improve flexibility and scalability, as in [18], we consider the asynchronous
communication where the participant workers do not operate in the lock-step.

On the other hand, since a large number of workers usually participate in the training process in
distributed learning, it is difficult to ensure none of them are malicious. Despite no raw data sharing
and no central body are required to coordinate the training process of the global model, the open
computing network architecture and extensive collaborations among works still inevitably provide
the opportunities for malicious worker to infer the private information about another worker given the
execution of f(w), or over the shared predictive model w [32]. To alleviate this issue, differential
privacy (DP), as an alternative theoretical model to provide mathematical privacy guarantees, has
caught people’s attention [9]. DP ensures that the addition or removal of a single data sample does
not substantially affect the outcome of any analysis, thus is widely applied to many algorithms to
prevent implicit leakage, not only for traditional algorithms, e.g. principal component analysis [5],
support vector machine [25], but also for modern deep learning research [1, 21].

In this paper, we focus on achieving differential privacy in asynchronous decentralized communication
setting, where we target to obtain a good convergence rate while keeping the communication cost
low. We highlight the following aspects of our contributions:

• We propose a differentially private version of ADPSGD, i.e., A(DP)2SGD, where differential
privacy is introduced to protect the frequently exchanged variables.

• We present the privacy and utility guarantees for A(DP)2SGD, where Rényi differential
privacy is introduced to provide tighter privacy analysis of composite heterogeneous mecha-
nisms [22] while the convergence rate is consistent with the non-private version.

• Empirically, we conduct experiments on both computer vision (CIFAR-10) and speech
recognition (SWB300) datasets. A(DP)2SGD achieves comparable model accuracy and
level of DP protection as differentially private version of Synchronous SGD (SSGD) and
runs much faster than SSGD in heterogeneous computing environments.

2 Related Work

2.1 Differential Privacy

Differential privacy (DP), first introduced by Dwork et al. [9], is a mathematical definition for the
privacy loss associated with any data release drawn from a statistical database. The basic property of
DP mechanism is that the change of the output probability distribution is limited when the input of
the algorithm is slightly disturbed. Formally, it says:

Definition 1 ((ε, δ)-DP [9]). A randomized mechanismM : Xn → R satisfies (ε, δ)-differential
privacy, or (ε, δ)-DP for short, if for all x,x′ ∈ Xn differing on a single entry, and for any subset of
outputs S ⊆ R, it holds that

Pr[M(x) ∈ S] ≤ eεPr[M(x′) ∈ S] + δ. (2)
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The parameter ε balances the accuracy of the differentially privateM and how much it leaks [28].
The presence of a non-zero δ allows us to relax the strict relative shift in unlikely events [9].

Although by relaxing the guarantee to (ε, δ)-DP, advanced composition allows tighter analyses for
compositions of (pure) differentially private mechanisms (δ = 0), iterating this process quickly leads
to a combinatorial explosion of parameters [22]. To address the shortcomings of (ε, δ)-DP, Mironov
et al. [22] proposed a natural relaxation of differential privacy based on the Rényi divergence, i.e.,
Rényi differential privacy (RDP). The new definition RDP shares many important properties with the
standard definition of differential privacy, while additionally allowing for a more rigorous analysis of
composite heterogeneous mechanisms [22].

2.2 Differentially Private Distributed Learning

Existing literature on differentially private distributed learning either focus on centralized learning
or synchronous communication or convex problems. Our work combines decentralized learning,
asynchronous communication and non-convex optimization in a DP setting. In contrast, Cheng et
al. [7, 8] focus on decentralized learning systems and aim to achieve differential privacy, but their
convergence analysis is applied to strongly convex problems only. Bellet et al. [3, 4] obtain an
efficient and fully decentralized protocol working in an asynchronous fashion by a block coordinate
descent algorithm and make it differentially private with Laplace mechanism, but their convergence
analysis is only applied to convex problems.

Lu et al. [20] propose a differentially private asynchronous federated learning scheme for resource
sharing in vehicular networks. They perform the convergence boosting by updates verification and
weighted aggregation without any theoretical analysis. Li et al. [17] aims to secure asynchronous
edge-cloud collaborative federated learning with differential privacy. But they choose centralized
learning and conduct analysis under the convex condition. In this paper, we focus on achieving
differential privacy in asynchronous decentralized communication setting and dealing with non-
convex problems.

3 A(DP)2SGD Algorithm

Specifically, the decentralized communication network is modeled via an undirected graph G =
([K], E), consisting of the set [K] of nodes and the set E of edges. The set E are unordered pairs of
elements of [K]. Node k ∈ [K] is only connected to a subset of the other nodes, and not necessarily
all of them. We allow the information collected at each node to be propagated throughout the
network. To improve flexibility and scalability, we consider the asynchronous communication where
the participant workers do not operate in a lock-step [18].

During optimization, each worker maintains a local copy of the optimization variable. Suppose
that all local models are initialized with the same initialization, i.e., w0

k = w0, k = 1, ...,K. Let
wt
k denote the value at worker k after t iterations. We implement stochastic gradient descent in a

decentralized asynchronous manner by the following steps, which are executed in parallel at every
worker, k = 1, ...,K:

• Sample data: Sample a mini-batch of training data denoted by {ξik}Bi=1 from local memory
of worker k with the sampling probability B

nk
, where B is the batch size.

• Compute gradients: Worker k locally computes the stochastic gradient: gt(ŵt
k; ξtk) :=∑B

i=1 OFk(ŵt
k; ξt,ik ), where ŵt

k is read from the local memory.
• Averaging: Randomly sample a doubly stochastic matrix A and average local models by:

[w′1,w
′
2, ...,w

′
K ]← [w1,w2, ...,wK ]A; (3)

Note that each worker runs the above process separately without any global synchronization.
• Update model: Worker k locally updates the model:

wk ← w′k − ηgt(ŵk; ξk), (4)

Noth that averaging step and update model step can run in parallel. ŵk may not be the
same as w′k since it may be modified by other workers in the last averaging step.
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All workers simultaneously run the procedure above.

As we stated, the model is trained locally without revealing the input data or the model’s output to
any workers, thus it prevents the direct leakage while training or using the model. However, recall in
the averaging step, the model variables exchange frequently during training. In this case, the workers
still can infer some information about another worker’s private dataset given the execution over the
shared model variables [32]. To solve this issue, we apply differential privacy to the exchanged model
variables.

The general idea to achieve differential privacy is to add a stochastic component to the variables that
need to be protected. In our case, the exchanged information is model variables wk. Note that the
computation of wk depends on the gradients. Thus, instead of adding noise directly on the exchanged
model variable wk, we inject the noise on the gradients:

g̃(ŵk; ξk) = g(ŵk; ξk) + n,

where n ∼ N (0, σ242
2(g)) is the Gaussian distribution. The global sensitivity estimate 42(g) is

expected significantly reduced, resulting in higher accuracy by ensuring the norm of all gradients is
bounded for each update - either globally, or locally [28].

Then the update model step (4) turns into: wk ← w′k − ηg̃t(ŵk; ξk). Differential privacy ensures
that the addition or removal of a data sample does not substantially affect the outcome of any analysis.
The specific procedures are summarized in Algorithm 1.

Algorithm 1 A(DP)2SGD (logical view)

1: Initialization: Initialize all local models {w0
k}Kk=1 ∈ Rd with w0, learning rate η, batch size B,

privacy budget (ε, δ), and total number of iterations T .
2: Output: (ε, δ)-differentially private local models.
3: for <t = 0, 1, ..., T − 1> do
4: Randomly sample a worker kt of the graph G and randomly sample an doubly stochastic

averaging matrix At ∈ RK×K dependent on kt;
5: Randomly sample a batch ξtkt := (ξt,1kt , ξ

t,2
kt , ..., ξ

t,B
kt ) ∈ Rd×B from local data of the kt-th

worker with the sampling probability B
nkt

;

6: Compute stochastic gradient gt(ŵt
kt ; ξ

t
kt) locally: gt(ŵt

kt ; ξ
t
kt) :=

∑B
i=1 OFkt(ŵ

t
kt ; ξ

t,i
kt );

7: Add noise g̃t(ŵt
kt ; ξ

t
kt) = gt(ŵt

kt ; ξ
t
kt) + n, where n ∈ Rd ∼ N (0, σ2I) and σ is defined

in Theorem 2.
8: Average local models by [w

t+1/2
1 ,w

t+1/2
2 , ...,w

t+1/2
K ]← [wt

1,w
t
2, ...,w

t
K ]At;

9: Update the local model: wt+1
kt ← w

t+1/2
kt − ηg̃t(ŵt

kt ; ξ
t
kt); ∀j 6= kt,wt+1

j ← w
t+1/2
j .

10: end for

4 Theoretical Analysis

In this section, we present the utility and privacy guarantees for A(DP)2SGD. Rényi differential
privacy is introduced to provide tighter privacy analysis of composite heterogeneous mechanisms
[22] while the convergence rate is consistent with ADPSGD.

4.1 Utility Guarantee

We make the following assumptions which are commonly used and consistent with the non-private
version of ADPSGD [22] to present the utility guarantee.
Assumption 1. Assumptions for stochastic optimization.

1) (Unbiased Estimation). Eξ∼Dk [Of(w; ξ)] = OFk(w),Ek∼I [OFk(w)] = OF (w).

2) (Bounded Gradient Variance).

Eξ∼Dk‖Of(w; ξ)− OFk(w)‖2 ≤ ς2,Ek∼I‖OFk(w)− OF (w)‖2 ≤ υ2. (5)

Assumption 2. Assumptions for asynchronous updates.
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1) (Spectral Gap). There exists a ρ ∈ [0, 1) such that

max{|λ2(E[A>t At])|, |λK(E[A>t At])|} ≤ ρ, ∀t, (6)

where λi(·) denotes the i-th largest eigenvalue of a matrix.

2) (Independence). All random variables: k, kt, ξt ∈ {0, 1, 2, ...} are independent. Doubly
stochastic averaging matrix At ∈ RK×K is a random variable dependent on kt.

3) (Bounded Staleness). Let’s denote Ŵt = Wt−τt and there exists a constant τ such that
maxt τt ≤ τ .

Note that a smaller ρ means faster information propagation in the network, resulting in faster
convergence.
Theorem 1. Suppose all functions fi(·)’s are with L-Lipschitz continuous gradients, and each of K
workers has dataset D(k) of size nk. Under Assumptions 1 and 2, if we choose C1 > 0, C2 ≥ 0 and
C3 ≤ 1, ∑T−1

t=0 E
∥∥OF (θt)

∥∥2
T

≤
2
(
EF (w0)− EF ∗)K

ηTB
+

2ηL

BK
(ς2B + 6υ2B2 + dσ2),

where θt denotes the average of all local models at t-th iteration, i.e., θt = 1
K

∑K
k=1 w

t
k. And

C1, C2, C3 are respectively defined as

C1 :=1− 24η2B2L2

(
τ
K − 1

K
+ ρ̄

)
, C3 :=

1

2
+
ηBLτ2

K
+

(
6η2B2L2 + ηKBL+

12η3B3L3τ2

K

)
2ρ̄

C1
,

C2 :=−
(
ηBL2

K
+

6η2B2L3

K2
+

12η3B3L4τ2

K3

)
4η2B2

(
τ K−1

K
+ ρ̄
)

C1
+
ηB

2K
− η2B2L

K2
− 2η3B3L2τ2

K3
,

where ρ̄ = K−1
K

(
1

1−ρ +
2
√
ρ

(1−√ρ)2

)
.

Note that θ0 = 1
K

∑K
k=1 w

0
k = w0 and F ∗ denotes the optimal solution to (1). Theorem 1 describes

the convergence of the average of all local models. By appropriately choosing the learning rate, we
obtain the following proposition.
Proposition 1. In Theorem 1, if the total number of iterations is sufficiently large, in particular,

T ≥L2K2 max

{
192

(
τ
K − 1

K
+ ρ̄

)
, 1024K2ρ̄2,

64τ2

K2
,

(K − 1)1/2

K1/6

(
8
√

6τ2/3 + 8
)2(

τ + ρ̄
K

K − 1

)2/3}
,

and we choose learning rate η = K
B
√
T

, then we obtain the following convergence rate∑T−1
t=0 E

∥∥OF (θt)
∥∥2

T
≤ 2(F (w0)− F ∗) + 2L(ς2/B + 6υ2 + dσ2/B2)√

T
.

Proposition 1 indicates that if the total number of iterations is sufficiently large, the convergence
rate of A(DP)2SGD is O(1/

√
T ) which is consistent with the convergence rate of ADPSGD. This

observation indicates that the differentially private version inherits the strengths of ADPSGD.

4.2 Privacy Guarantee

Theorem 2 (Privacy Guarantee). Suppose all functions fi(·)’s areG-Lipschitz and each ofK workers
has dataset D(k) of size nk. Given the total number of iterations T , for any δ > 0 and privacy
budget ε ≤ 10B2Tα/(3K2n2(1)µ), A(DP)2SGD with injected Gaussian noise N (0, σ2I) is (ε, δ)-
differentially private with σ2 = 20G2Tα/(K2n2(1)µε), where α = log(1/δ)/((1− µ)ε) + 1, if there
exits µ ∈ (0, 1) such that

α ≤ log

(
K3n3

(1)µε

K2n2
(1)µεB + 5TαB3

)
, (7)

where n(1) is the size of the smallest dataset among the K workers.

Additionally, we observe that differential privacy is also guaranteed for each intermediate model
estimator of each worker:
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Remark 1. At each iteration t ∈ [T ], intermediate model estimator wt
k is (

√
t/T ε, δ)-differentially

private, k ∈ [K].

Recall Theorem 1, the difference of introducing Gaussian mechanism lies on the term
2L(dσ2/B2)/

√
T compared to ADPSGD. The Gaussian noise injected in each iteration is pro-

portional to the total number of iterations. That is, to achieve differential privacy, we need to pay
for a constant term which is proportional to the added noise at each iteration. By assuming all
functions fi(·)’s are with G-Lipschitz and plugging the noise level into the Proposition 1, we obtain
the following Proposition.
Proposition 2 (Utility Guarantee). Suppose all functions fi(·)’s are G-Lipschitz in Proposition 1.
Given ε, δ > 0, under the same conditions of Theorem 2, if the number of iterations T further satisfies

T =
2
(
F (w0)− F ∗ + L(ς2/B + 6υ2)

)
K2n2

(1)ε
2

40dLG2 log(1/δ)
, (8)

let C4 = 4
√

5
(

1 + 1
B2µ(1−µ)

)
, then A(DP)2SGD’s output θ̃ =

∑T
t=1 θ

t satisfies

E
∥∥∥OF (θ̃)

∥∥∥2 ≤ C4
G
√
dL (F (w0)− F ∗ + L(ς2/B + 6υ2)) log(1/δ)

Kn(1)ε
.

5 Experiments

We implement Synchronous SGD (SYNC) as the "golden" baseline to examine if A(DP)2SGD
can achieve the best possbile model accuracy while maintaining DP protection as no existing FL
training method has been proven to outperform SYNC for the final model accuracy. In SYNC, we
place an “allreduce” (sum) call after each learner’s weight update in each iteration and then take the
average of the weights across all the learners. We leave detailed system design and implementation to
Appendix A.

5.1 Dataset and Model

We evaluate on two deep learning tasks: computer vision and speech recognition. For computer
vision task, we evaluate on CIFAR-10 dataset [14] with 9 representative convolutional neural network
(CNN) models [19]: ShuffleNet [42], MobileNetV2 [26], EfficientNet-B0 [31], MobileNet [12],
GoogleNet [30], ResNext-29 [35], ResNet-18 [11], SENet-18 [13], VGG-19 [29]. Among these
models, ShuffleNet, MobileNet(V2), EfficientNet represent the low memory footprint models that
are widely used on mobile devices, where federated learnings is often used. The other models are
standard CNN models that aim for high accuracy.

For speech recognition task, we evaluate on SWB300 dataset. The acoustic model is a long short-term
memory (LSTM) model with 6 bi-directional layers. Each layer contains 1,024 cells (512 cells in
each direction). On top of the LSTM layers, there is a linear projection layer with 256 hidden units,
followed by a softmax output layer with 32,000 (i.e. 32,000 classes) units corresponding to context-
dependent HMM states. The LSTM is unrolled with 21 frames and trained with non-overlapping
feature subsequences of that length. The feature input is a fusion of FMLLR (40-dim), i-Vector
(100-dim), and logmel with its delta and double delta (40-dim ×3). This model contains over 43
million parameters and is about 165MB large.

5.2 Convergence Results

We train each CIFAR-10 model with a batch size of 256 per GPU (total batch size 4096 across 16
GPUs) and adopt this learning rate setup: 0.4 for the first 160 epochs, 0.04 between epoch 160 and
epoch 240, and 0.004 for the remaining 60 epochs. For the SWB300 model, we adopt the same
hyper-parameter setup as in [37]: we train the model with a batch size of 128 per GPU (total batch
size 2048 across 16 GPUs), the learning rate linearly warmup w.r.t each epoch from 0.1 to 1 for the
first 10 epochs and then anneals by a factor of

√
2/2 each epoch for the remaining 10 epochs. The

Baseline column in Table 1 records the utility (test accuracy for CIFAR-10 and held-out loss for
SWB300) when no noise is injected for SYNC and ADPSGD.
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Model/Dataset Baseline Noise (Small) Noise (Medium) Noise (Large)
SYNC ADPSGD SYNC A(DP)2* SYNC A(DP)2 SYNC A(DP)2

EfficientNet-B0 90.41 91.21 90.26 89.90 88.13 87.01 82.99 82.47
ResNext-29 92.82 94.17 91.63 91.52 89.30 88.61 84.35 82.20
MobileNet 91.87 92.80 90.58 90.59 88.92 88.13 84.16 83.11

MobileNetV2 94.29 94.14 92.61 92.13 90.93 90.45 86.52 84.83
VGG-19 92.95 92.73 91.21 91.03 88.27 87.89 82.80 81.78

ResNet-18 94.01 94.97 91.67 91.64 89.08 88.43 83.40 81.01
ShuffleNet 92.74 92.67 91.23 90.78 89.39 88.71 85.08 82.67
GoogleNet 94.04 94.65 91.94 92.26 90.28 90.05 86.34 85.51
SENet-18 94.19 94.68 91.99 91.92 89.99 88.99 10.00 82.90

LSTM 1.566 1.585 1.617 1.627 1.752 1.732 1.990 2.010

Table 1: Convergence Comparison. CIFAR-10 model utility is measured in test accuracy. SWB300
model utility is measured in held-out loss. Noise level (σ) for CIFAR-10 is set as 1 (small), 2
(medium), 4 (large). Noise level (σ) for SWB is set as 0.08 (small), 0.16 (medium), 0.32 (large).
*A(DP)2 stands for A(DP)2SGD.

A
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y 
(%

)

Epochs

Figure 1: CIFAR-10 convergence comparison between SYNC and ADPSGD under various levels
of noise injection (i.e., differential privacy budget). SYNC and ADPSGD achieve similar level of
utilities (i.e. test accuracy).

The remaining columns in Table 1 summarize the convergence comparison between SYNC and
ADPSGD under various levels of noise. Baseline ADPSGD can outperform SYNC due to ADPSGD’s
intrinsic noise can lead model training to a better generalization[38] when batchsize is large. Figure 1
visualizes the convergence comparison of three models between SYNC and ADPSGD on CIFAR-10.
More results are provided in Appendix B.

Summary ADPSGD and SYNC achieve the comparable level of utility under the same level of noise
injection, thus ensuring the same level of differential privacy budget.

5.3 Deployment in the Wild

Federated learning is most often deployed in a heterogeneous environment where different learners
are widespread across different type of network links and run on different types of computing devices.
We compare SYNC and ADPSGD for various noise levels (i.e. differential privacy budgets) in 3 case
studies. More results are provided in Appendix B.

Case I: Random learner slowdown In this scenario, during iteration there is a random learner that
runs 2X slower than normal. This could happen when some learner randomly encounters a system
hiccup (e.g., cache misses). In SYNC, every learner must wait for the slowest one thus the whole
system slows down by a factor of 2. In contrast, ADPSGD naturally balances the workload and
remains largely undisturbed. Figure 2 illustrates the convergence w.r.t runtime comparison between
SYNC and ADPSGD on CIFAR-10 when a random learner is slowed down by 2X in each iteration
for medium-level noise (for the sake of brevity, we omit the comparison for other levels of noise, as
they exhibit similar behaviors).

Case II: One very slow learner In this scenario, one learner is 10X slower than all the other
learners. This could happen when one learner runs on an outdated device or the network links that go
into the learners are low-speed compared to others. Similar to Case I, in SYNC, all the learners wait
for the slowest one and in ADPSGD, the workload is naturally re-balanced. Figure 3 illustrates the
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Figure 2: CIFAR-10 convergence when a random learner is slowed down by 2X in each iteration
with medium level of noise injection.

Figure 3: CIFAR-10 convergence when one learner is slowed down by 10X in each iteration
with medium level of noise injection. ADPSGD runs significantly faster than SYNC due to its
asynchronous nature.

convergence w.r.t runtime comparison of three models between SYNC and ADPSGD on CIFAR-10
when 1 learner is slowed down by 10X in each iteration for medium-level noise.

Case III: Training with Large Batch To reduce communication cost, practitioners usually prefer
to train with a larger batch size. When training with a larger batch-size, one also needs to scale up
the learning rate to ensure a faster convergence [38, 10, 40]. It was first reported in [38] that SYNC
training could collapse for SWB300 task when batch size is large and learning rate is high whereas
ADPSGD manages to converge. We found some models (e.g., EfficientNet-B0) for computer vision
task also exhibit the same trend. We increase batch size per GPU by a factor of two for CIFAR-10
and SWB300, scale up the corresponding learning rate by 2 and introduce small level of noise, SYNC
collapses whereas ADPSGD still converges. Figure 4 shows when batch size is 2X large, SYNC
training collapses for CIFAR-10 (EfficientNet-B0 model) and SWB300, but ADPSGD manages to
converge for both models.
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Figure 4: When batch size is 2X larger and learning rate is 2X larger, ADPSGD converges whereas
SYNC does not, with small level of noise injection.

Summary In the heterogeneous environment where federated learning often operates in, ADPSGD
achieves much faster convergence than SYNC and ADPSGD can perform well in the case when
SYNC does not even converge. Since SYNC often yields the most accurate model among all DDL
algorithms, we can safely conclude ADPSGD also achieves the best possible model accuracy in a DP
setting, at a much higher speed.
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6 Conclusion

This paper presents a differentially private version of asynchronous decentralized parallel SGD,
maintaining communication efficiency and preventing inference from malicious participants at the
same time. We theoretically analyze the impact of DP mechanism on the convergence of ADPSGD.
Our analysis shows A(DP)2SGD also converges at the optimal O(1/

√
T ) rate as SGD. Besides, the

privacy and utility guarantees are provided where Rényi differential privacy is introduced to provide
tighter privacy analysis for the composite Gaussian mechanism. Finally, we evaluate A(DP)2SGD on
both computer vision and speech recognition tasks, and the results demonstrate that it can achieve
comparable utility than differentially private version of synchronous SGD but much faster than its
synchronous counterparts in heterogeneous computing environments. Future work will focus on
adaptive noise level associated with gradient clipping under asynchronous decentralized setting.

Broader Impact Statement

This paper studies the problem of developing differentially private asynchronous decentralized parallel
stochastic gradient descent (ADPSGD). Privacy and security are essential problems in real world
applications involving sensitive information such as healthcare and criminal justice. The decentralized
optimization setting can greatly enhance the security of the model training process and protect the
data privacy at different locations. However, the parameter sharing and transmission process can
still leak sensitive information. The DP mechanism further protects this potentially vulnerable step
and makes the entire process more secure. The proposed A(DP)2SGD mechanism can be broadly
applied in the training process of a variety set of machine learning models, and also enhance their
trustworthiness in applications involving sensitive information.
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A System Design and Implementation

Most (if not all) of the state-of-the-art DL models are trained in the Synchronous SGD fashion, as
it is considered to have the most stable convergence behavior [10, 6, 41] and often yields the best
model accuracy. No existing FL training method has been proven to outperform SYNC for the final
model accuracy. We implement Synchronous SGD (SYNC) as the "golden" baseline to examine
if A(DP)2SGD can achieve the best possbile model accuracy while maintaining DP protection. In
SYNC, we place an “allreduce” (sum) call after each learner’s weight update in each iteration and
then take the average of the weights across all the learners. An allreduce call is a reduction operation
followed by a broadcast operation. A reduction operation is both commutative and associative (e.g.,
summation). The allreduce mechanism we chose is Nvidia NCCL [23], which is the state-of-the-art
allreduce implementation on a GPU cluster.

To implement ADPSGD, we place all the learners (i.e., GPUs) on a communication ring. To avoid
deadlock, we partition the communication ring into nonintersecting sets of senders and receivers and
require that communication edges start from the sender sub-graph and end in the receiver sub-graph.
To achieve better convergence behavior, we also adopt the communication randomization technique
as proposed in [39], in which sender randomly picks a receiver in each iteration. The paired-up
sender and receiver exchange weights and update their weights as the average of the two. A global
counter is maintained to record how many minibatches all the learners in the system collectively
have processed. The training finishes when the global counter reaches the termination threshold. We
implemented ADPSGD in C++ and MPI.

In both SYNC and ADPSGD, we insert random noise into gradients in each iteration to enable
differential privacy protection.

B Additional Experiment Results

B.1 Software and Hardware

We use PyTorch 1.1.0 as the underlying deep learning framework. We use the CUDA 10.1 compiler,
the CUDA-aware OpenMPI 3.1.1, and g++ 4.8.5 compiler to build our communication library, which
connects with PyTorch via a Python-C interface. We run our experiments on a 16-GPU 2-server
cluster. Each server has 2 sockets and 9 cores per socket. Each core is an Intel Xeon E5-2697 2.3GHz
processor. Each server is equipped with 1TB main memory and 8 V100 GPUs. Between servers are
100Gbit/s Ethernet connections. GPUs and CPUs are connected via PCIe Gen3 bus, which has a
16GB/s peak bandwidth in each direction per CPU socket.

B.2 Dataset and Model

We evaluate on two deep learning tasks: computer vision and speech recognition. For computer vision
task, we evaluate on CIFAR-10 dataset [14], which comprises of a total of 60,000 RGB images of size
32 × 32 pixels partitioned into the training set (50,000 images) and the test set (10,000 images). We
test CIFAR-10 with 9 representative convolutional neural network (CNN) models [19]: (1) ShuffleNet,
a 50 layer instantiation of ShuffleNet architecture [42]. (2) MobileNetV2, a 19 layer instantiation of
[26] architecture that improves over MobileNet by introducing linear bottlenecks and inverted residual
block.(3) EfficientNet-B0, with a compound coefficient 0 in the basic EfficientNet architecture [31].
(4) MobileNet, a 28 layer instantiation of MobileNet architecture [12]. (5) GoogleNet, a 22 layer
instantiation of Inception architecture [30]. (6) ResNext-29, a 29 layer instantiation of [35] with
bottlenecks width 64 and 2 sets of aggregated transformations. (7) ResNet-18, a 18 layer instantiation
of ResNet architecture [11].(8) SENet-18, which stacks Squeeze-and-Excitation blocks [13] on top
of a ResNet-18 model. (9) VGG-19, a 19 layer instantiation of VGG architecture [29]. The detailed
model implementation refers to [19].

Among these models, ShuffleNet, MobileNet(V2), EfficientNet represent the low memory footprint
models that are widely used on mobile devices, where federated learnings is often used. The other
models are standard CNN models that aim for high accuracy.

For speech recognition task, we evaluate on SWB300 dataset. The training dataset is 30GB large and
contains roughly 4.2 million samples. The test dataset is 564MB large and contains roughly 80,000
samples. The acoustic model is a long short-term memory (LSTM) model with 6 bi-directional layers.
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Figure 5: CIFAR-10 convergence comparison between SYNC and ADPSGD under various levels
of noise injection (i.e., differential privacy budget). SYNC and ADPSGD achieve similar level of
utilities (i.e. test accuracy).

Each layer contains 1,024 cells (512 cells in each direction). On top of the LSTM layers, there is a
linear projection layer with 256 hidden units, followed by a softmax output layer with 32,000 (i.e.
32,000 classes) units corresponding to context-dependent HMM states. The LSTM is unrolled with
21 frames and trained with non-overlapping feature subsequences of that length. The feature input is
a fusion of FMLLR (40-dim), i-Vector (100-dim), and logmel with its delta and double delta (40-dim
×3). This model contains over 43 million parameters and is about 165MB large.

Table 2 summarizes the model size and training time for both tasks. Training time is measured on
running single-GPU and accounts the time for collecting training statistics (e.g., L2-Norm) and noise
injection operations.

Model/Dataset Model Size (MB) Training Time (hr)
ShuffleNet/C* 4.82 4.16

MobileNetV2/C 8.76 4.63
EfficientNet-B0/C 11.11 5.53

MobileNet/C 12.27 3.55
GoogleNet/C 23.53 8.43
ResNext-29/C 34.82 7.08
ResNet-18/C 42.63 5.56
SENet-18/C 42.95 5.80
VGG-19/C 76.45 7.42
LSTM/S** 164.62 102.41

Table 2: Model size and training time. Training time is measured on running on 1 V100 GPU, which
accounts additional operations for collecting training statistics (e.g., L2-Norm) and noise injection
operations. *C stands for CIFAR-10, **S stands for SWB300.

Figure 7 depicts the convergence comparison between SYNC and ADPSGD on CIFAR-10 when 1
learner is slowed down by 10X.

Figure 9 depicts the convergence comparison between SYNC and ADPSGD on SWB300 task for
Case I and case II.
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Figure 6: CIFAR-10 convergence when one learner is slowed down by 10X in each iteration
with medium level of noise injection. ADPSGD runs significantly faster than SYNC due to its
asynchronous nature.

C Proofs of Theorem 1

Proof. Recall that we have the following update rule:
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Figure 7: CIFAR-10 convergence when one learner is slowed down by 10X in each iteration with
medium level of noise injection (we omit displaying other levels of noise for the sake of brevity).
ADPSGD runs significantly faster than SYNC due to its asynchronous nature.

Figure 8: SWB300 convergence comparison be-
tween SYNC and ADPSGD under various levels
of noise injection (i.e., differential privacy bud-
get). SYNC and ADPSGD achieve similar level
of utilities (i.e. held-out loss).
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ADPSGD runs significantly faster than SYNC
due to its asynchronous nature.
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For T1 we have
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+

(
ηBL2

K
+

6η2B2L3

K2

) T−1∑
t=0

E
K∑
k=1

pk

∥∥∥θ̂t − ŵt
k

∥∥∥2
+
η3BL2τ2(ς2B + 6υ2B2 + dσ2)T

K3
+
η2L(ς2B + 6υ2B2 + dσ2)T

2K2

=

(
ηBL2

K
+

6η2B2L3

K2
+

12η3B3L4τ2

K3

) T−1∑
t=0

E
K∑
k=1

pk

∥∥∥θ̂t − ŵt
k

∥∥∥2︸ ︷︷ ︸
T3

−
(
ηB

2K
− η2B2L

K2
− 2η3B3L2τ2

K3

) T−1∑
t=0

E

∥∥∥∥∥
K∑
k=1

pkOFk(ŵt
k)

∥∥∥∥∥
2

− ηB

2K

T−1∑
t=0

E
∥∥OF (θt)

∥∥2
+
η3BL2τ2(ς2B + 6υ2B2 + dσ2)T

K3
+
η2L(ς2B + 6υ2B2 + dσ2)T

2K2
(13)

We can use Lemma 1 to bound the term T3 and we use similar notations as in [18] for simpler notation.
By arranging the terms, we have

EF (θT ) ≤EF (θ0)− C2

T−1∑
t=0

E

∥∥∥∥∥
K∑
k=1

pkOFk(ŵt
k)

∥∥∥∥∥
2

− ηB

2K

T−1∑
t=0

E
∥∥OF (θt)

∥∥2
+ C3

η2LT

K2
(ς2B + 6υ2B2 + dσ2). (14)

Then, while C3 ≤ 1 and C2 ≥ 0 we complete the proof of Theorem 1.∑T−1
t=0 E ‖OF (θt)‖2

T
≤

2
(
EF (θ0)− EF (θT )

)
ηTB/K

+
2ηL

BK
(ς2B + 6υ2B2 + dσ2)
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≤
2
(
EF (w0)− EF ∗

)
ηTB/K

+
2ηL

BK
(ς2B + 6υ2B2 + dσ2).

We complete the proof.

D Proofs of Lemma 1

Lemma 1. While C1 > 0 and ∀T ≥ 1, we have∑T−1
t=0 E

∑K
k=1 pk

∥∥∥θ̂t − ŵt
k

∥∥∥2
T

≤4η2B2

TC1

(
τ
K − 1

K
+ ρ̄

) T−1∑
t=0

E

∥∥∥∥∥
K∑
k=1

pkOFk(ŵt
k)

∥∥∥∥∥
2

+
2η2(ς2B + 6υ2B2 + dσ2)ρ̄

C1
(15)

Proof. First, we have

E
∥∥g(ŵt

kt , ξ
t
kt) + n−BOFkt(w

t
kt)
∥∥2

=E
∥∥g(ŵt

kt , ξ
t
kt)−BOFkt(w

t
kt)
∥∥2 + E‖n‖2 ≤ Bς2 + dσ2. (16)

According to our updating rule and Lemma 6 in [18], we can obtain

E
∥∥θt+1 −wt+1

k

∥∥2
=E

∥∥∥θt − η

K
(g(ŵt

kt , ξ
t
kt) + n)−

(
WtAtek − ηg̃(Ŵt, ξtkt)ek

)∥∥∥2
≤2η2B2K − 1

K
E

t∑
j=0

12L2
K∑
k=1

pk

∥∥∥θ̂j − ŵj
k

∥∥∥2 + 2E

∥∥∥∥∥
K∑
k=1

pkOFk(ŵj
k)

∥∥∥∥∥
2


× (ρt−j + 2(t− j)ρ
t−j
2 ) + 2η2(ς2B + 6υ2B2 + dσ2)ρ̄. (17)

where ρ̄ = K−1
K

(
1

1−ρ +
2
√
ρ

(1−√ρ)2

)
.

Noting that Ŵt = Wt−τt , then we have

E
K∑
k=1

pk

∥∥∥θ̂t − ŵt
k

∥∥∥2 =

K∑
k=1

pkE
∥∥∥θ̂t − ŵt

k

∥∥∥2
≤2η2B2K − 1

K
E
t−τt−1∑
j=0

12L2
K∑
k=1

pk

∥∥∥θ̂j − ŵj
k

∥∥∥2 + 2E

∥∥∥∥∥
K∑
k=1

pkOFk(ŵj
k)

∥∥∥∥∥
2


× (ρt−τt−1−j + 2(t− τt − 1− j)ρ
t−τt−1−j

2 ) + 2η2(ς2B + 6υ2B2 + dσ2)ρ̄.

According to Lemma 7 in [18], we can obtain∑T−1
t=0

∑K
k=1 pkE

∥∥∥θ̂t − ŵt
k

∥∥∥2
T

≤2η2B2

T

K − 1

K

T−1∑
t=0

t−τt−1∑
j=0

12L2
K∑
k=1

pk

∥∥∥θ̂j − ŵj
k

∥∥∥2 + 2E

∥∥∥∥∥
K∑
k=1

pkOFk(ŵj
k)

∥∥∥∥∥
2


× (ρt−τt−1−j + 2(t− τt − 1− j)ρ
t−τt−1−j

2 ) + 2η2(ς2B + 6υ2B2 + dσ2)ρ̄

≤4η2B2

T

(
τ
K − 1

K
+ ρ̄

) T−1∑
t=0

E

∥∥∥∥∥
K∑
k=1

pkOFk(ŵt
k)

∥∥∥∥∥
2

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+
24η2B2L2

T

(
τ
K − 1

K
+ ρ̄

) T−1∑
t=0

E
K∑
k=1

pk

∥∥∥θ̂t − ŵt
k

∥∥∥2 + 2η2(ς2B + 6υ2B2 + dσ2)ρ̄. (18)

By rearranging the terms we obtain

(
1− 24η2B2L2

(
τ
K − 1

K
+ ρ̄

))
︸ ︷︷ ︸

C1

∑T−1
t=0 E

∑K
k=1 pk

∥∥∥θ̂t − ŵt
k

∥∥∥2
T

≤4η2B2

T

(
τ
K − 1

K
+ ρ̄

) T−1∑
t=0

E

∥∥∥∥∥
K∑
k=1

pkOFk(ŵt
k)

∥∥∥∥∥
2

+ 2η2(ς2B + 6υ2B2 + dσ2)ρ̄. (19)

We complete the proof.

E Proofs of Theorem 2

Definition 2 ((α, ε)-RDP [22]). A randomized mechanismM : Xn → R satisfies ε-Rényi differential
privacy of order α ∈ (1,∞), or (α, ε)-RDP for short, if for all x,x′ ∈ Xn differing on a single entry,
it holds that

Dα(M(x)‖M(x′)) ,
1

α− 1
logEx∼M(x′)

(
M(x)(x)

M(x′)(x)

)α
≤ ε. (20)

The new definition (α, ε)-RDP shares many important properties with the standard definition of differ-
ential privacy, while additionally allowing for a more rigorous analysis of composite heterogeneous
mechanisms [22].

To achieve differential privacy, a stochastic component (typically by additional noise) is usually added
to or removed from the locally trained model. Typically, Gaussian mechanism, one of the common
choices, injects additive Gaussian noise to the query:

M , f(x) +N (0, σ242
2(f)), (21)

whereN (0, σ242
2(f)) is the Gaussian distribution noise with mean 0 and standard deviation σ42(f)

which depends on the privacy budget ε as well as the sensitivity of f . And the (global) sensitivity of a
function f is defined as:

Definition 3 (lp-Sensitivity). The lp-sensitivity of a function f is defined by

4p(f) = max
x,x′
‖f(x)− f(x′)‖p, (22)

where x and x′ differ in only one entry.

In order to prove Theorem 2, we need the following Lemmas.

Lemma 2 (Gaussian Mechanism [22, 34, 33]). Given a function f : Xn → R, the Gaussian
MechanismM , f(x) +N (0, σ2I) satisfies (α, α42

2(f)/(2σ2))-RDP. In addition, ifM is applied
to a subset of samples using uniform sampling without replacement Swo

γ , thenMS
wo
γ that appliesM◦

Swo
γ obeys (α, 5γ2α42

2(f)/σ2)-RDP when σ2/42
2(f) ≥ 1.5 and α ≤ log(1/(γ(1 + σ2/42

2(f))))
with γ denoting the subsample rate.

Lemma 3 (Composition [22, 33]). Let Mi : Xn → Ri be an (α, εi)-RDP mechanism for i ∈
[k]. If M[k] : Xn →

∏k
i=1Ri is defined to be M[k](x) = (M1(x), ...,Mk(x)), then M[k] is

(α,
∑k
i=1 εi)-RDP. In addition, the input of Mi can be based on the outputs of previous (i − 1)

mechanisms.

Lemma 4 (From RDP to (ε, δ)-DP [22]). If a randomized mechanismM : Xn → R is (α, ε)-RDP,
thenM is (ε+ log(1/δ)/(α− 1), δ)-DP, ∀δ ∈ (0, 1).
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Proof. Let’s consider the Gaussian mechanism at the t-th iteration, as

Mt = gt(wt
kt ; ξ

t
kt) +N (0, σ2I). (23)

Since all functions are G-Lipschitz, we have the l2-sensitivity bound 42 = ‖g(wt
kt ; ξ

t
kt) −

g(wt
kt ; ξ

′t
kt)‖2/B ≤ 2G/B. Thus, according to Lemma 2,Mt is (α, 4G2α/(2B2σ2))-RDP.

For the randomly sampling procedure Swo
γ which is performed at the beginning of each iteration, we

have the subsample rate γ ≤ B
Kn(1)

, where n(1) is the size of the smallest dataset among K workers.

Then, the mechanism provides at least (α, 20G2α/(K2n2(1)σ
2))-RDP when σ2/42

2 ≥ 1.5. After T
iterations, by sequential composition from Lemma 3, we observe that the output of A(DP)2SGD is
(α, 20G2Tα/(K2n2(1)σ

2))-RDP.

Then, using the connection between RDP to (ε, δ)-DP from Lemma 4, we obtain

20G2Tα/(K2n2(1)σ
2) + log(1/δ)/(α− 1) = ε. (24)

Let α = log(1/δ)/((1− µ)ε) + 1, we have

σ2 =
20G2Tα

K2n2(1)εµ
≥ 6G2

B2
, (25)

which implies that ε ≤ 10B2Tα
3K2n2

(1)
µ

.

In addition, via Lemma 2, we need α ≤ log(1/(γ(1 + σ2/42
2))), which implies that α ≤

log
(
K3n3(1)εµ/(K

2n2(1)εµB + 5TαB3)
)

.

Thus, the output of A(DP)2SGD is (ε, δ)-differentially private for the above value of σ2.
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