
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 1

PVNAS: 3D Neural Architecture Search
with Point-Voxel Convolution

Zhijian Liu*, Haotian Tang*, Shengyu Zhao, Kevin Shao, and Song Han

Abstract—3D neural networks are widely used in real-world applications (e.g., AR/VR headsets, self-driving cars). They are required to
be fast and accurate; however, limited hardware resources on edge devices make these requirements rather challenging. Previous work
processes 3D data using either voxel-based or point-based neural networks, but both types of 3D models are not hardware-efficient due
to the large memory footprint and random memory access. In this paper, we study 3D deep learning from the efficiency perspective. We
first systematically analyze the bottlenecks of previous 3D methods. We then combine the best from point-based and voxel-based models
together and propose a novel hardware-efficient 3D primitive, Point-Voxel Convolution (PVConv). We further enhance this primitive with
the sparse convolution to make it more effective in processing large (outdoor) scenes. Based on our designed 3D primitive, we introduce
3D Neural Architecture Search (3D-NAS) to explore the best 3D network architecture given a resource constraint. We evaluate our
proposed method on six representative benchmark datasets, achieving state-of-the-art performance with 1.8-23.7× measured speedup.
Furthermore, our method has been deployed to the autonomous racing vehicle of MIT Driverless, achieving larger detection range, higher
accuracy and lower latency.

Index Terms—3D Point Cloud, Neural Architecture Search, Efficient Deep Learning, Autonomous Driving.

F

1 INTRODUCTION

3D deep learning has received increased attention thanks
to its wide applications. It has been applied in AR/VR

headsets to understand the layout of indoor scenes; it has also
been used in the LiDAR perception that serves as the eyes of
autonomous driving systems to understand the semantics of
outdoor scenes to parse the drivable area (e.g., roads, parking
areas). These real-world applications require high accuracy
and low latency at the same time: i.e., AR/VR headsets aim
to offer an instant and accurate response for better user
experience, and self-driving cars are expected to drive safely
even at a relatively high speed. However, the computational
resources on these devices are tightly constrained by the form
factor (since we do not want a full backpack of hardware or
a whole trunk of workstations) and heat dissipation. Thus, it
is crucial to design efficient and effective 3D neural network
models with limited hardware resources.

Collected by LiDAR sensors, 3D data usually comes in the
format of point clouds. Conventionally, researchers rasterize
the point cloud into voxel grids and process them using 3D
volumetric convolutions [1]. With low resolutions, there will
be information loss during voxelization: multiple points will
be merged together if they lie in the same grid. Therefore, a
high-resolution representation is needed in order to preserve
the fine details in the input data. However, the computational
cost and memory requirement both increase cubically with
voxel resolution. Thus, it is infeasible to train a voxel-based
model with high-resolution inputs: e.g., 3D-UNet [2] requires
more than 10 GB of GPU memory on 64×64×64 inputs with
batch size of 16, and the large memory footprint makes it

• Z. Liu, H. Tang, S. Zhao, K. Shao, and S. Han are with Department of
Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA. The first two authors contributed
equally to this work.
E-mails: {zhijian,kentang,shengyuz,kshao23,songhan}@mit.edu.

rather difficult to scale beyond this resolution.
Recently, another stream of models attempt to directly

process the 3D point clouds [3], [4], [5], [6]. These point-based
models require much lower GPU memory than voxel-based
models thanks to the sparse data representation. However,
they neglect the fact that the random memory access is also very
inefficient. As the input points are scattered over the entire 3D
space in a very irregular manner, processing them introduces
many random memory accesses. Most point-based models [6]
mimic the 3D volumetric convolution: i.e., they compute the
feature of each point by aggregating its neighboring features.
However, neighbors are not stored contiguously in the point
representation; therefore, indexing them requires the costly
nearest neighbor search. To trade space for time, previous
methods replicate the entire point cloud for each center point
in the nearest neighbor search, and the memory cost will
be O(n2), where n is the number of input points. Another
very large overhead is introduced by the dynamic kernel
computation. Since the relative positions of neighbors are
not fixed, these point-based models have to generate the
convolution kernels dynamically based on different offsets.

Designing efficient 3D neural networks needs to take
the hardware into consideration. Compared with arithmetic
operations, memory operations are much more expensive:
i.e., they consume two orders of magnitude higher energy
and have two orders of magnitude lower bandwidth (Fig. 1a).
Another very important aspect is the memory access pattern:
i.e., the random access will introduce memory bank conflicts
and decrease the throughput (Fig. 1b). From the hardware
perspective, conventional 3D models are inefficient due to
large memory footprint and random memory access.

This paper studies 3D deep learning from the perspective
of hardware efficiency. After analyzing the bottlenecks of pre-
vious methods, we introduce a novel hardware-efficient 3D
primitive, Point-Voxel Convolution (PVConv), that brings the

ar
X

iv
:2

20
4.

11
79

7v
2

 [
cs

.C
V

]
 2

6
A

pr
 2

02
2

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 2

(a) Operation: Memory vs. Arithmetic

3.2
5

640668

167

30

1

10

100

1000

32b Mult and Add 32b SRAM Read 32b DRAM Read

Energy (pJ) Bandwidth (GB/s)

(b) Memory Access: Random vs. Sequential

Addr. Bus

Data Bus

𝐴!

𝐷!

Wait for DRAM Access

𝐴"

𝐷"

𝐴#

with Bank Conflicts Wait for DRAM Access Wait …

Addr. Bus

Data Bus

𝐴!

𝐷!

𝐴"

𝐷"

𝐴# 𝐴$

𝐷# 𝐷$

without Bank Conflicts

Wait for DRAM Access
Wait for DRAM Access

Wait for DRAM Access
Wait for DRAM Access

Fig. 1. Efficient 3D models should reduce memory footprint and avoid random memory accesses. (a) Off-chip DRAM accesses take two orders of
magnitude more energy than arithmetic operations (640pJ vs. 3pJ), whereas the bandwidth is two orders of magnitude lower (30GB/s vs. 668GB/s).
Efficient 3D model should reduce the memory footprint, which is the bottleneck of voxel-based methods. (b) Random memory access is inefficient
since it cannot take advantage of the DRAM burst and will cause bank conflicts, whereas contiguous memory access does not suffer from the above
issue. Efficient 3D model should avoid random memory accesses, which is the bottleneck of point-based methods.

best from previous point-based and voxel-based models. It is
composed of a fine-grained point-based branch that keeps the
3D data in high resolution without large memory footprint,
and a coarse-grained voxel-based branch which aggregates
the neighboring features without random memory accesses.
However, as the resolution of its voxel-based branch is still
constrained by the memory, this primitive is not effective in
processing large scenes. To this end, we propose Sparse Point-
Voxel Convolution (SPVConv) that enhances our PVConv with
the sparse convolution to enable higher resolutions in the
voxel-based branch. Based on these efficient 3D primitives,
we then propose 3D Neural Architecture Search (3D-NAS) to
automatically explore the optimal 3D network architecture
given a resource constraint.

As 3D deep learning has been used in various real-world
scenarios (e.g., indoor scenes for AR/VR, and outdoor scenes
for autonomous driving), we demonstrate the effectiveness
of our proposed method on extensive benchmarks including
3D part segmentation (for objects), 3D semantic segmentation
(for indoor and outdoor scenes) as well as 3D object detection
(for outdoor scenes). Across all these datasets, our method
consistently achieves the state-of-the-art performance with
1.8-23.7× measured speedup. Furthermore, our method has
been deployed into the autonomous racing vehicle of MIT
Driverless, achieving larger detection range, lower latency
and higher accuracy. We hope that our research can bring
inspirations to further explorations in this direction.

2 RELATED WORK

2.1 3D Neural Networks

Conventionally, researchers relied on the volumetric repre-
sentation and applied the convolution to process 3D data [7],
[8], [9], [10], [11], [12]. To name a few, Maturana et al. [9]
proposed the vanilla volumetric CNN; Qi et al. [10] extended
2D CNNs to 3D and systematically analyzed the relationship
between 3D CNNs and multi-view CNNs; Wang et al. [13]
incorporated the octree into the volumetric CNN to reduce
the memory consumption. Recent studies suggest that the
volumetric representation can be used in 3D shape segmen-
tation [11], [14], [15] and 3D object detection [12] as well.

Due to the sparse nature of 3D data, the dense volumetric
representation is inherently inefficient and also inevitably
introduces information loss.

PointNet [3] takes advantage of the symmetric function
to directly process the unordered point sets in 3D. Later re-
search [4], [5], [16] proposed to stack PointNets hierarchically
to model neighborhood information and increase model ca-
pacity. Instead of stacking PointNets as basic blocks, another
type of methods [6], [17], [18] abstract away the symmetric
function using dynamically generated convolution kernels
or learned neighborhood permutation function. Some other
research, such as SPLATNet [19] that naturally extends the
2D image SPLAT to 3D, and SONet [20] which uses the self-
organization mechanism with the theoretical guarantee of
invariance to point order, also show great potential in general-
purpose 3D modeling with point clouds as input. Apart from
these general-purpose models, there are also some attempts
for specific 3D tasks. SegCloud [21], SGPN [22], SPGraph [23],
ParamConv [24], SSCN [25] and RSNet [26] are specialized
for 3D semantic and instance segmentation. As for 3D object
detection, F-PointNet [27] is based on the RGB detector and
point-based regional proposal networks; PointRCNN [28]
follows the similar idea while removing the RGB detector.

Recently, researchers started to pay attention to the effi-
ciency of 3D models. Hu et al. [29] proposed to aggressively
downsample the point cloud to reduce the computation cost.
Riegler et al. [1], Wang et al. [13], [30] and later Lei et al. [31]
proposed to reduce the memory of volumetric representation
using octrees where areas with lower density occupy fewer
voxel grids. Graham et al. [25] and Choy et al. [32] proposed
the sparse convolution to accelerate the vanilla volumetric
convolution by keeping the activation sparse and skipping
the computations in the inactive regions. However, all these
methods still require considerable random memory accesses,
which are very inefficient.

2.2 Hardware-Efficient Deep Learning
Extensive attention has been paid to hardware-efficient deep
learning for real-world applications. For instance, researchers
have proposed to reduce the memory access cost by pruning
and quantizing the models [33], [34], [35], [36], [37] or directly

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 3

(a) Voxel-Based Models: Memory Grows Cubically

0 10 20 30 40 50 60 70 80 90 100
Distinguishable Points (%)

1
2
5

10

50
100
200
500

G
PU

 M
em

or
y

(G
B

)

8
16
32
48
64

96
128

192
256

V
ox

el
 R

es
ol

ut
io

n

64x64x64 resolution
11GB (Titan XP x 1)
42% information loss

128x128x128 resolution
83GB (Titan XP x 7)
7% information loss

(b) Point-Based Models: Large Memory Overheads

0

20

40

60

80

100

Irregular Access Dynamic Kernel Effective Computation

95

05
16

27

57

12

52

36
45

3

52

DGCNN PointCNN SpiderCNN PVCNN

R
at

io
 (%

)

Fig. 2. Both conventional voxel-based and point-based models are inefficient. (a) Voxel-based models suffer from the large information loss at
acceptable GPU memory consumption. (b) Point-based model suffer from large irregular memory access and dynamic kernel computation overheads.

designing the compact models [38], [39], [40], [41], [42], [43].
These approaches are general-purpose and suitable for any
neural networks. In this paper, we instead accelerate 3D neu-
ral networks based on some domain-specific properties: e.g.,
3D point clouds are highly sparse and spatially structured.

2.3 Neural Architecture Search

To alleviate the burden of manually designing neural net-
works [38], [39], [40], [42], [43], researchers have introduced
neural architecture search (NAS) to automatically architect
the neural network with high accuracy using reinforcement
learning [44], [45] and evolutionary search [46]. A new wave
of research started to design efficient models with neural
architecture search [47], [48], [49], [50] for edge deployment.
However, conventional frameworks require high computa-
tion cost and considerable carbon footprint [51]. In order to
tackle these, researchers have introduced different techniques
to reduce the search cost, including differentiable architecture
search [52], path-level binarization [53], single-path one-shot
sampling [54], [55], [56], and weight sharing [50], [56], [57].
Furthermore, neural architecture search has also been used
in compressing and accelerating neural networks, including
pruning [35], [58], [59], [60], [61] and quantization [37], [54],
[62], [63]. Most of these methods are tailored for 2D visual
recognition, which has many well-defined search spaces [64].
Lately, researchers have applied neural architecture search
to 3D medical image segmentation [65], [66], [67], [68], [69],
[70] as well as 3D shape classification [71], [72]. However,
they are not directly applicable to 3D scene understanding
since 3D medical data are still in the similar format as 2D
images (which are entirely different from 3D scenes), and
3D objects are of much smaller scales than 3D scenes (which
makes them less sensitive to the resolution).

3 ANALYSIS OF EFFICIENCY BOTTLENECKS

3D data usually comes in the format of point clouds:

x = {xk} = {(pk,fk)}, (1)

where pk is the coordinate of the kth point, and fk is the
feature corresponding to pk. The voxelized representation
can also be unified into this formulation, where pk stands

for the coordinate of the kth voxel grid. Based on this, voxel-
based and point-based convolution can be formulated as

yk =
∑

xi∈N (xk)

K(xk,xi)×F(xi). (2)

During the convolution, we iterate xk over the entire input.
For each center xk, we first index its neighbors xi in N (xk),
then convolve the neighboring featuresF(xi) with the kernel
K(xk,xi), and produces the corresponding output yk.

3.1 Voxel-Based Models: Large Memory Footprint
Conventionally, researchers rasterize the point cloud into
voxel grids and process them with 3D volumetric convolu-
tions [1]. Voxel-based representation is regular and has good
memory locality. However, it requires very high resolution
in order not to lose much information. When the resolution
is low, multiple points are bucketed into the same voxel grid,
and these points will no longer be distinguishable. A point
is kept only when it exclusively occupies one voxel grid. In
Fig. 2a, we investigate the number of distinguishable points
and the memory consumption (during training with batch
size of 16) with different resolutions. On a single GPU (with
12 GB of memory), the largest affordable resolution is 64,
which will lead to 42% of information loss. To keep more
than 90% of the information, we then need to double the
resolution to 128, consuming 7.2× GPU memory (82.6 GB),
which is prohibitive in constrained scenarios. Although the
GPU memory increases cubically with the resolution, the
number of distinguishable points has a diminishing return.
Therefore, the voxel-based solution is not scalable.

3.2 Point-Based Models: Sparse Data Organization
Recently, another stream of models process the point cloud di-
rectly [3], [4], [6], [16], [18]. These point-based models require
much lower GPU memory than voxel-based models thanks to
the sparse representation. Among them, PointNet [3] is also
computation efficient, but it lacks the local context modeling
capability. All the other models [4], [6], [16], [18] improve the
expressiveness of PointNet by aggregating the neighborhood
information in the point-based domain. However, this will
lead to the irregular memory access pattern and introduce
the dynamic kernel computation overhead, which becomes
the efficiency bottleneck.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 4

Devoxelize

Normalize

Voxelize

Fuse

(b) Point-Based Feature Transformation (Fine-Grained)

(a) Voxel-Based Feature Aggregation (Coarse-Grained)

Multi-Layer Perceptron

Convolve

Fig. 3. Point-Voxel Convolution (PVConv) is composed of a low-resolution
voxel-based branch and a high-resolution point-based branch. The voxel-
based branch extracts coarse-grained neighborhood information, which
is supplemented by fine-grained individual point features extracted from
the point-based branch.

Irregular Memory Access. Different from the voxel-based
representation, neighboring points xi ∈ N (xk) in the point-
based representation will not be laid out contiguously in the
memory. Besides, 3D points are scattered in R3; therefore,
we need to explicitly identify who are in the neighboring set
N (xk), rather than by direct indexing. Point-based methods
often define N (xk) as nearest neighbors in the coordinate
space [6], [18] or the feature space [16]. Either requires explicit
and expensive KNN computation. After KNN, gathering all
neighbors xi in N (xk) will require large amount of random
memory accesses, which is not cache friendly. Combining
the cost of neighbor indexing and data movement, the state-
of-the-art point-based models spend 36% [6], 52% [16] and
57% [18] of the total runtime on structuring the irregular data
and accessing the memory randomly (Fig. 2b).

Dynamic Kernel Computation. For 3D volumetric convo-
lutions, the kernel value K(xk,xi) can be directly indexed
because the relative positions of the neighbor xi are fixed
for different center xk: e.g., each axis of the offset pi − pk

can only be 0, ±1 for the convolution with size of 3. For the
point-based convolution, the points are scattered over the
entire 3D space irregularly; therefore, the relative positions
of neighbors become unpredictable. In this case, we will
have to calculate the kernel K(xk,xi) for each neighbor xi

on the fly. For instance, SpiderCNN [18] leverages the third-
order Taylor expansion as a continuous approximation of the
kernel K(xk,xi); PointCNN [6] permutes the neighboring
points into a canonical order with the feature transformer
F(xi). Both will introduce additional matrix multiplications.
Empirically, the overhead of dynamic kernel computation
for PointCNN can be more than 50% (Fig. 2b).

The combined overhead of irregular memory access and
dynamic kernel computation ranges from 55% (DGCNN) to
88% (PointCNN). Thus, most computations are wasted on
dealing with the irregularity of point-based representation.

4 DESIGNING EFFICIENT 3D PRIMITIVES

Based on our analysis of efficiency bottlenecks, we introduce
a novel hardware-efficient 3D primitive for small 3D objects
as well as indoor scenes: Point-Voxel Convolution (PVConv).
It combines the advantages of point-based methods (small
memory footprint) and voxel-based methods (good data
locality and regularity). For large outdoor scenes, we further
propose Sparse Point-Voxel Convolution (SPVConv) that en-

hances PVConv with the sparse convolution to enable higher
resolutions in the voxel-based branch.

4.1 Point-Voxel Convolution (PVConv)

Our PVConv disentangles the fine-grained feature transforma-
tion and the coarse-grained neighbor aggregation so that each
branch can be implemented very efficiently and effectively.
As in Fig. 3, the upper voxel-based branch first transforms the
points into low-resolution voxel grids, then it aggregates the
neighboring points with voxel-based convolutions, followed
by the devoxelization to convert them back to points. Either
voxelization or devoxelization requires a single scan over all
points, making the memory cost low. The lower point-based
branch extracts the features for each individual point. As it
does not aggregate the neighbor’s information, it is able to
afford a very high resolution.

4.1.1 Voxel-Based Feature Aggregation

A key component of convolution is to aggregate the neigh-
boring information in order to extract the local features. We
choose to perform this feature aggregation in the volumetric
domain due to its regularity.

Normalization. The scale of different point clouds might
be different. Thus, we normalize the coordinates {pk} before
converting the point cloud into the volumetric domain. First,
we translate all points into the local coordinate system with
the gravity center as the origin. After that, we normalize the
points into the unit sphere by dividing all coordinates by
max‖pk‖2, and then scale and translate the points to [0, 1].
We denote the normalized coordinates as {p̂k}.

Voxelization. We transform the normalized point cloud
{(p̂k,fk)} into the dense voxelized representation {Vu,v,w}
by averaging all of the features fk whose coordinate p̂k =
(x̂k, ŷk, ẑk) falls into the voxel grid (u, v, w):

Vu,v,w,c =
n∑

k=1

I[bx̂krc = u, bŷkrc = v, bẑkrc = w]

× fk,c/Nu,v,w,

(3)

where r denotes the voxel resolution, I[·] is the binary indica-
tor of whether the coordinate p̂k belongs to the voxel grid
(u, v, w), fk,c denotes the cth channel feature corresponding
to p̂k, and Nu,v,w is the normalization factor (i.e., the number
of points that fall in that voxel grid).

Feature Aggregation. After converting the points into the
voxel grids, we apply a stack of 3D volumetric convolutions
to aggregate the features. Similar to conventional 3D models,
we apply batch normalization [73] and nonlinear activation
function [74] after each 3D volumetric convolution.

Devoxelization. As we need to fuse the information with
the point-based feature transformation branch, we transform
the voxel-based features back to the domain of point cloud.
A simple implementation of the voxel-to-point mapping is
the nearest-neighbor interpolation (i.e., assign the feature of
a grid to all points in it). However, this implementation will
make the points in the same voxel grid always share the same
feature values. Therefore, we instead leverage the trilinear
interpolation to transform the voxel grids to points to make
sure that the features mapped to each point are distinct.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 5

4.1.2 Point-Based Feature Transformation
The voxel-based feature aggregation branch fuses the neigh-
borhood information in a coarse granularity. However, in
order to model finer-grained individual point features, low-
resolution voxel-based methods alone might not be sufficient.
Hence, we directly operate on each point to extract individual
point features using an MLP. Though simple, the MLP out-
puts distinct and discriminative features for each point. Such
high-resolution individual point information is very critical
to supplement the coarse-grained voxel-based information.
With individual point features and aggregated neighborhood
information, we can fuse two branches efficiently with an
addition as they are providing complementary information.

4.1.3 Analysis
PVConv is much better than previous voxel-based and point-
based models in terms of both efficiency and effectiveness.

Better Locality and Regularity. Our PVConv is more efficient
than conventional point-based convolutions due to its better
data locality and regularity. Our voxelization and devoxeliza-
tion both require onlyO(n) random memory accesses, where
n is the number of points, since we only need to iterate over
all points once to scatter them to their corresponding grids.
However, for conventional point-based methods, gathering
neighbors for all points will require at least O(kn) random
memory accesses, where k is the number of neighbors. Thus,
our PVConv is k× more efficient from this viewpoint. As
the typical value for k is 32/64 in PointNet++ [4] and 16 in
PointCNN [6], PVConv empirically reduces the number of
incontiguous memory accesses by 16-64×, achieving better
data locality. Besides, as our convolutions are done in the
voxel domain, which is regular, our PVConv does not require
KNN computation and dynamic kernel computation, which
are usually quite expensive.

Higher Resolution. As our point-based feature extraction
branch is implemented as MLP, a natural advantage is that
we are able to maintain the same number of points through-
out the whole network while still having the capability to
model neighborhood information. Let us make a comparison
between our PVConv and the set abstraction (SA) module
in PointNet++ [4]. Suppose we have a batch of 2048 points
with 64-channel features (with batch size of 16), and we then
aggregate information from 125 neighbors of each point and
transform the aggregated feature to output the features with
the same size. In this case, the SA module requires 75.2 ms
of latency and 3.6 GB of memory, while our PVConv only
requires 25.7 ms of measured latency and 1.0 GB of memory.
The SA module will have to downsample to 685 points (i.e.,
around 3× downsampling) to match up with the latency of
our PVConv, while the memory consumption will still be
1.5× higher. Therefore, with the same latency, our PVConv
is capable of modeling the full point cloud, while the SA
module has to downsample the input aggressively, which
will inevitably induce information loss.

4.2 Sparse Point-Voxel Convolution (SPVConv)
PVConv is very efficient and effective especially for small
3D objects and indoor scenes as their scales are fairly small;
however, it is less suitable for large outdoor scenes due to
the coarse voxelization. PVConv-based model can afford the

TABLE 1
Comparison between PVConv and SPVConv in Large Outdoor Scenes

Input Voxel Size (m) Latency (ms) Mean IoU

PVConv
Sliding Window 0.05 35640 –

Entire Scene 0.80 146 39.0

SPVConv Entire Scene 0.05 85 58.8

PVConv is not suitable for large scenes. If processing with sliding windows, its
latency is not affordable for deployment. If taking the whole scene, its resolution
is too coarse to capture useful information.

resolution of at most 128 in its voxel-based branch on a single
GPU (with 12 GB of memory). For a large outdoor scene (with
size of 100m×100m×10m), each voxel grid will correspond
to a large area (with size of 0.8m×0.8m×0.1m). In this case,
small instances (e.g., pedestrians) will only occupy very few
voxel grids. From such few points, PVConv can hardly learn
any useful information from the voxel-based branch, leading
to a relatively low performance (see Table 1). Alternatively,
we can process the large 3D scenes piece by piece so that
each sliding window is of smaller scale. In order to preserve
the fine-grained information, we found empirically that the
voxel size needs to be lower than 0.05m. In this case, we have
to run the model once for each of the 244 sliding windows,
which will take 35 seconds to process a single scene. Such a
large latency is not affordable for most real-time applications
(e.g., autonomous driving).

To this end, we introduce Sparse Point-Voxel Convolution
(SPVConv) to effectively and efficiently process the large 3D
scene. It follows a similar two-branch architectural design as
PVConv except that the volumetric convolution in the voxel-
based branch is replaced with the sparse convolution [32]. As
point clouds are intrinsically very sparse, this modification
can significantly reduce the memory consumption if we use
a higher resolution in the voxel-based branch. Furthermore,
SPVConv can also be considered as adding a high-resolution
point-based branch to the vanilla sparse convolution so that
the fine details (i.e., small instances) can be preserved.

Most of the operations in PVConv can be directly adapted
to the sparse voxelized representation. However, the vox-
elization and devoxelization is not as trivial since we cannot
easily index a given 3D coordinate in the sparse voxelized
representation. A straightforward implementation based on
the iterative coordinate comparison will require O(mn) of
time, where m is the number of points in the point cloud
representation, and n is the number of activated points in the
sparse voxelized representation. As m and n are typically at
the order of 105, this naive implementation is not practical for
real-time applications. Instead, we propose to use the parallel
hash tables on GPUs to accelerate the sparse voxelization
and devoxelization. Note that existing implementations [25],
[32] use CPU-based hash tables for kernel map construction
in the sparse convolution, which is much slower. Concretely,
we first construct a hash table for all activated points in the
sparse voxelized representation, which can be finished in
O(n) of time. After that, we iterate over all points, and for
each point, we then query its coordinate in the hash table
to obtain its corresponding index in the sparse voxelized
representation. As the lookup over the hash table requires

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 6

(a) Stage 1: Super Network Training

Fine-Grained Channel + Elastic Depth Weight Sharing

Uniform Sampling

GPU#1 GPU#N

…

#C
in

#Cout

m
ax

 #
C

in

max #Cout

Stage I
(Depth: 3)

Stage II
(Depth: 2,3)

Stage III
 (Depth: 1,2,3)

(b) Stage 2: Evolutionary Architecture Search

mutate

+

crossover

Super Network Sub Network

Sample

Latency Predictor

t=10ms

target = 12 ms

target = 8 ms

Keep Arch.

Rej. &
Resample

Fig. 4. We propose a two-stage 3D Neural Architecture Search (3D-NAS) framework to automatically design efficient 3D deep learning architectures.
(a) In the first stage, we train a super network that supports all candidate networks within the design space. (b) In the second stage, we perform
evolutionary architecture search to find the best candidate network given a specific resource constraint.

O(1) time in the worst case, this query step will in total take
O(m) time. Therefore, the total time of coordinate indexing
will be reduced from O(mn) to O(m+ n).

5 SEARCHING EFFICIENT 3D ARCHITECTURES

Even with the efficient 3D primitive, designing an efficient
neural network model is still challenging. We need to care-
fully adjust the network architecture (e.g., channel numbers
and kernel sizes of all layers) to meet the requirements for
real-world applications (e.g., latency, energy, and accuracy).
In this section, we propose 3D Neural Architecture Search (3D-
NAS) to automatically design efficient 3D models (Fig. 4).
We first carefully design a search space tailored for 3D and
then introduce our training paradigm that supports a large
number of neural networks within a single super network.
Finally, we use the evolutionary search to explore the best
candidate in the design space given a resource constraint.

5.1 Design Space
The performance of neural architecture search is impacted by
the design space quality. In our search space, we incorporate
fine-grained channel numbers and elastic network depths;
however, we do not support different kernel sizes.

5.1.1 Primitive Selection
PVConv accesses the memory contiguously and has fairly
small memory footprint for small objects and indoor scans.
However, it does not scale up very well to large-scale outdoor
scenes (Table 1) as the resolution of its voxel-based branch
is still constrained by the memory. SPVConv, on the other
hand, can efficiently scale up to large scans but falls short
in modeling small objects and regions due to the irregular
overhead introduced by sparse operations. As in Fig. 5, the
latency of SPVConv almost stays constant when the voxel
resolution increases from 4 to 48, but the latency of PVConv
quickly grows when the resolution scales up. As a result, at
smaller resolutions, PVConv can be up to 3.6× faster than
SPVConv, while SPVConv becomes 3.3× faster than PVConv
once the resolution is larger than 48. As the spatial range of
single objects/indoor scans is smaller than 1.5m×1.5m×1.5m,
it is sufficient to use voxel resolution smaller than 32, and
therefore, PVConv is favored over SPVConv. On the other
hand, SPVConv is favored when the spatial range scales far
beyond 1.5m×1.5m×1.5m. We will validate this in Section 6.

large scenessmall objects
& regions

balance point

PVConv

SPVConv

Resolution
4 8 16 24 32 40 48

5

10

15

20

La
te

nc
y

(m
s)

Fig. 5. PVConv is more efficient and effective at smaller resolutions while
SPVConv is more efficient at larger resolutions. Here, the GPU latency is
measured on NVIDIA GTX 1080 Ti.

5.1.2 Fine-Grained Channel Numbers

The computation cost increases quadratically with the num-
ber of channels; therefore, the channel number selection
has a large influence on the network efficiency. Most exist-
ing neural architecture frameworks [53] only support the
coarse-grained channel number selection: e.g., searching the
expansion ratio of the ResNet/MobileNet blocks over a few
(2-3) choices. In this case, only intermediate channel numbers
of the blocks can be changed; while the input and output
channel numbers will still remain the same. Empirically, we
observe that this limits the variety of the search space. To
this end, we enlarge the search space by allowing all channel
numbers to be selected from a large collection of choices (with
size of O(n)). This fine-grained channel number selection
largely increases the number of candidates for each block:
e.g., from 2-3 to O(n2) for a block with two convolutions.

5.1.3 Elastic Network Depth

For 3D CNNs, reducing the channel numbers alone cannot
achieve significant measured speedup, which is different
from normal 2D CNNs. For example, by shrinking all channel
numbers in MinkowskiNet by 4× and 8×, the number of
MACs is reduced to 7.5 G and 1.9 G, respectively. However,
although the number of MACs is drastically reduced, their
measured latency on the GPU is very similar: 105 ms and 96
ms (on NVIDIA GTX 1080 Ti GPU). This suggests that scaling

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 7

down the number of channels alone is not able to offer us
with very efficient models, even though the number of MACs
is very small. This might be because 3D modules are usually
more memory-bounded than 2D modules; the number of
MACs decreases quadratically with channel number, while
memory decreases linearly. Thus, we incorporate the elastic
network depth into our design space so that layers with very
small computation (and large memory cost) can be removed
and merged into their neighboring layers.

5.1.4 Small Kernel Matters

Kernel sizes are usually included into the search space of
2D CNNs. This is because a single convolution with larger
kernel size can be more efficient than multiple convolutions
with smaller kernel sizes on GPUs. However, it is not the
case for 3D CNNs. From the perspective of computation
cost, a single 2D convolution with kernel size of 5 requires
only 1.4×more MACs than two 2D convolutions with kernel
sizes of 3; while a single 3D convolution with kernel size of
5 requires 2.3× more MACs than two 3D convolutions with
kernel sizes of 3 (if applied to dense voxel grids). This larger
computation cost makes it less suitable to use large kernel
sizes in 3D CNNs. Furthermore, the computation overhead
of 3D modules is also related to the kernel sizes. For example,
the sparse convolution requires O(k3n) time to build the
kernel map, where k is the kernel size and n is the number
of points, which indicates that its cost grows cubically with
respect to the kernel size. Based on these reasons, we decide
to keep the kernel size of all convolutions to be 3 and do not
allow the kernel size to change in our search space. Even with
the small kernel size, we can still achieve a large receptive
field by changing the network depth, which can achieve the
same effect as changing the kernel size.

5.2 Training Paradigm

Searching over a fine-grained design space is very challeng-
ing since it is impossible to train every sampled candidate
network randomly from scratch [47]. Motivated by Guo et
al. [54], we incorporate all candidate networks into a single
super network, and after training this super network once,
each candidate network can then be extracted with inherited
weights. The total training cost during the neural architecture
search can then be reduced from O(n) to O(1), where n is
the number of candidate networks.

5.2.1 Uniform Sampling

At each training iteration, we randomly sample a candidate
network from the super network: i.e., randomly select the
channel number for each layer, and then randomly select the
network depth (i.e. the number of blocks to be used) for each
stage. The total number of candidate networks to be sampled
during training is very limited; thus, we choose to sample
different candidate networks on different GPUs and average
their gradients at each step so that more candidate networks
can be sampled. For 3D, this is more critical because the 3D
datasets usually contain fewer samples than the 2D datasets:
e.g., 20K on SemanticKITTI [75] vs. 1M on ImageNet [76].

5.2.2 Weight Sharing
As the number of candidate networks is enormous, every
candidate network will only be optimized for a small fraction
of the total schedule. Therefore, uniform sampling alone is
not enough to train all candidate networks sufficiently (i.e.,
achieving the same level of performance as being trained
from scratch). To tackle this, we adopt the weight sharing
technique so that every candidate network can be optimized
at each iteration even if it is not sampled. Specifically, given
the input channel number Cin and output channel number
Cout of each convolution layer, we simply index the first Cin
and Cout channels from the weight tensor accordingly to
perform the convolution [54]. For each batch normalization
layer, we similarly crop the first c channels from the weight
tensor based on the sampled channel number c. Finally, with
the sampled depth d for each stage, we choose to keep the
first d layers, instead of randomly sampling d of them. This
ensures that each layer will always correspond to the same
depth index within the stage.

5.2.3 Progressive Depth Shrinking
Suppose we have n stages, each of which has m different
depth choices ranging from 1 to m. If we sample the depth
dk for each stage k randomly, the expected total depth of the
network will be E[d] =

∑n
k=1 E[dk] = n(m+ 1)/2, which is

much smaller than the maximum depth nm. Furthermore,
the probability of the largest candidate network (with the
maximum depth) being sampled is extremely small: m−n.
Therefore, the largest candidate networks are poorly trained
due to the small possibility of being sampled. To this end,
we introduce progressively depth shrinking to alleviate this
issue. We divide the training epochs into m segments for
m different depth choices. During the kth training segment,
we only allow the depth of each stage to be selected from
m− k + 1 to m. This is essentially designed to enlarge the
search space gradually so that these large candidate networks
can be sampled more frequently.

5.3 Search Algorithm
After the super network is fully trained, we use the evolution-
ary architecture search to find the best network architecture
under a certain resource constraint.

5.3.1 Resource Constraint
We support #MACs and measured latency as our resource
constraint for candidate networks.

#MACs Constraint. #MACs is an implementation- and
hardware-agnostic efficiency metric. Unlike dense 2D CNNs,
#MACs of sparse 3D CNNs cannot be simply determined
by the input size and network architecture. This is because
the sparse convolution only performs the computation over
the active synapses; thus, its computation cost is also related
to the size of kernel map, which is determined by the input
sparsity pattern. To address this, we first estimate the average
kernel map size over the entire dataset for each convolution
layer and then sum them up to compute the average #MACs.

Latency Constraint. We support to directly use the mea-
sured latency on the target hardware as our resource con-
straint as well. We first encode each candidate network into
a 1D architecture vector. We then randomly sample 50,000

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 8

TABLE 2
Results of Object Part Segmentation on ShapeNet Part

#Par. (M) #MACs (G) Mem. (G) Lat. (ms) mIoU

PointNet [3] 2.5 5.3 1.5 15.1 83.7
3D-UNet [2] 8.1 2996.9 8.8 682.1 84.6
RSNet [26] 6.9 1.4 0.8 74.6 84.9
PointNet++ [4] 1.8 4.9 2.0 77.9 85.1
DGCNN [16] 1.5 18.5 2.4 87.8 85.1
SPVCNN (0.25×C) 0.3 0.3 1.1 20.2 84.4
PVCNN (0.25×C) 0.3 1.0 0.8 8.3 85.2
SPVNAS 1.7 1.0 1.2 18.4 85.2
PVNAS-A 0.4 0.9 0.9 7.0 85.2

SpiderCNN [18] 2.6 10.6 6.5 170.7 85.3
SPVCNN (0.5×C) 1.1 1.3 1.4 24.7 85.1
PVCNN (0.5×C) 1.1 3.9 1.0 16.0 85.5
PVNAS-B 0.6 2.2 1.0 11.6 85.5
PVNAS-C 0.7 2.9 1.0 14.0 85.6

PointConv [77] 21.6 11.6 6.5 163.7 85.7
PointCNN [6] 8.3 26.9 2.5 135.8 86.1
SPVCNN (1×C) 4.2 5.3 2.0 38.0 85.6
PVCNN (1×C) 4.2 15.3 1.6 41.4 86.2

On average, PVCNN outperforms point-based models with 5.5× speedup and
3× memory reduction, and outperforms the voxel-based baseline with 59×
measured speedup and 11× memory reduction.

candidate networks from the design space and measure their
latency on the target hardware. With the collected pairs of
architecture vector and measured latency, we finally train an
MLP regressor to estimate the latency based on the network
architecture. The resulting predictor can accurately predict
the latency of different candidate networks with a relative
error of less than 2% on both edge and cloud GPUs.

5.3.2 Evolutionary Search
We automate the architecture search with the evolutionary
algorithm [54]. We initialize the starting population with n
randomly sampled candidate networks. At every iteration,
we evaluate all candidate networks in the population and
select the k models with the highest accuracy (i.e., the fittest
individuals). The population for the next iteration is then
generated with (n/2) mutations and (n/2) crossovers. For
each mutation, we randomly select one among the top-k
candidates and modify each of its architectural parameters
(e.g., channel numbers, network depths) with a pre-defined
probability; for each crossover, we select two from the top-
k candidates and produce a new network by fusing them
together randomly. Finally, the best network architecture is
obtained from the population of the last iteration. During the
evolutionary search, we ensure that all candidate networks in
the population always meet the given resource constraint (we
will resample another candidate network until the resource
constraint is satisfied).

6 EXPERIMENTS

In this section, we evaluate our models on six representative
3D benchmark datasets:
• ShapeNet [8] (coarse-grained object part segmentation),
• PartNet [78] (fine-grained object part segmentation),

• S3DIS [79], [80] (indoor scene segmentation),
• SemanticKITTI [75] (outdoor scene segmentation),
• nuScenes [81] (outdoor scene segmentation),
• KITTI [82] (outdoor object detection).

On these datasets, we evaluate four variants of our method:
• PVCNN (manually-designed model with PVConv),
• PVNAS (3D-NAS applied to PVCNN),
• SPVCNN (manually-designed model with SPVConv),
• SPVNAS (3D-NAS applied to SPVCNN).

6.1 3D Object Part Segmentation
6.1.1 ShapeNet
We first evaluate our method on 3D part segmentation and
conduct experiments on the large-scale 3D object dataset,
ShapeNet [8]. As 3D objects are very small, it is suitable to
process them using PVConv. Therefore, we build our PVCNN
by replacing the MLP layers in PointNet [3] with PVConv’s.

Baselines. We use PointNet [3], RSNet [26], PointNet++ [4]
(with multi-scale grouping), DGCNN [16], SpiderCNN [18]
and PointCNN [6] as point-based baselines. We reimplement
3D-UNet [2] as voxel-based baseline. For a fair comparison,
we follow the same evaluation protocol as in Li et al. [6] and
Graham et al. [25]. The evaluation metric is mean intersection-
over-union (mIoU): we first calculate the part-averaged IoU
for each of the 2,874 test models and average the values
as the final metrics. Besides, we report the measured GPU
latency and GPU memory consumption on a single NVIDIA
GTX 1080 Ti GPU. We ensure the input data to have the same
size with 2048 points and batch size of 8.

Results. As in Table 2, PVCNN outperforms all previous
models. It directly improves the accuracy of its backbone
(PointNet) by 2.5% with even smaller overhead compared
with PointNet++. Besides, we also design narrower versions
of our PVCNN by reducing the number of channels to 25%
(0.25×C) and 50% (0.5×C). The resulting model requires only
46.4% latency of PointNet, and it still outperforms several
point-based methods with sophisticated neighborhood ag-
gregation including RSNet, PointNet++ and DGCNN, which
are almost an order of magnitude slower. PVCNN achieves
a much better accuracy vs. latency trade-off compared with
all point-based methods. With similar accuracy, PVCNN is
24× faster than SpiderCNN and 3.3× faster than PointCNN.
Our PVCNN also achieves a significantly better accuracy vs.
memory trade-off compared with the voxel-based baseline.
With better accuracy, PVCNN can save the GPU memory
consumption by 10× compared with 3D-UNet. We further
apply 3D-NAS to PVCNN under different latency constraints
to obtain a family of PVNAS models. With the same accuracy
as PVCNN (0.25×C), PVNAS-A achieves 1.2× faster infer-
ence speed. It also outperforms PointNet by 1.5 mIoU with
3× measured speedup. In comparison with PVCNN (0.5×C),
PVNAS-B achieves 1.4× speedup with no loss of accuracy,
and PVNAS-C achieves 1.1× speedup with better mIoU.

PV/SPVConv. On ShapeNet, PVCNN/PVNAS achieves
far better efficiency-accuracy trade-offs compared with SPVC-
NN/SPVNAS. Specifically, PVCNN achieves similar or better
mIoU than SPVCNN with 2.4×measured speedup. Similarly,
PVNAS-A achieves the same accuracy as SPVNAS with 2.6×
lower latency. These results validate our claim in Section 5.1.1
that PVConv is more favorable for modeling small 3D objects.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 9

(a) Top Row: Features Extracted from Coarse-Grained Voxel-Based Branch (Large, Continuous)

(b) Bottom Row: Features Extracted from Fine-Grained Point-Based Branch (Isolated, Discontinuous)

Fig. 6. Two branches are providing complementary information: the voxel-based branch focuses on the large, continuous parts, while the point-based
focuses on the isolated, discontinuous parts.

TABLE 3
Results of Fine-Grained Object Part Segmentation on PartNet

#P (M) #M (G) L (ms) mIoU Bed Bott Chair Clock Dish Disp Door Ear Fauc Knife Lamp Micro Frid Stora Table Trash Vase

PointNet [3] 2.5 25.1 9.4 35.6 13.4 29.5 27.8 28.4 48.9 76.5 30.4 33.4 47.6 32.9 18.9 37.2 33.5 38.0 29.0 34.8 44.4
PointNet++ [4] 1.8 5.4 26.0 42.5 30.3 41.4 39.2 41.6 50.1 80.7 32.6 38.4 52.4 34.1 25.3 48.5 36.4 40.5 33.9 46.7 49.8
Deep LPN [83] 2.7 3.0 206.8 38.6 29.5 42.1 41.8 34.7 33.2 81.6 34.8 49.6 53.0 44.8 28.4 33.5 32.3 41.1 36.3 43.1 57.8
SpiderCNN [18] 2.6 52.2 2170.8 37.0 36.2 32.2 30.0 24.8 50.0 80.1 30.5 37.2 44.1 22.2 19.6 43.9 39.1 44.6 20.1 42.4 32.4
PointCNN [6] 8.3 71.9 106.6 46.4 41.9 41.8 43.9 36.3 58.7 82.5 37.8 48.9 60.5 34.1 20.1 58.2 42.9 49.4 21.3 53.1 58.9
ResGCN [84] 3.8 55.9 771.3 45.1 35.9 49.3 41.1 33.8 56.2 81.0 31.1 45.8 52.8 44.5 23.1 51.8 34.9 47.2 33.6 50.8 54.2
SPVCNN (0.5×C) 0.3 1.6 13.5 43.6 32.8 45.1 35.3 33.7 58.1 79.5 36.2 49.4 48.7 39.5 22.7 49.3 38.1 41.2 27.2 49.1 55.4
PVCNN (0.5×C) 0.3 2.3 4.4 47.2 35.4 44.5 37.0 38.9 63.2 81.4 44.2 52.1 53.5 46.0 23.1 54.5 43.6 44.1 30.3 52.7 57.3
SPVCNN (0.72×C) 0.6 3.3 15.4 44.3 33.3 47.2 36.9 36.0 59.6 79.5 34.9 49.0 50.4 37.4 23.9 48.9 40.4 42.6 27.8 50.1 54.5
PVCNN (0.72×C) 0.6 4.7 5.5 47.3 35.6 43.5 38.8 39.5 62.9 81.0 42.6 53.0 54.5 42.9 24.4 53.5 42.5 45.6 32.0 52.1 59.7
SPVCNN (1×C) 1.1 6.4 16.9 45.0 32.9 46.1 37.6 33.5 58.7 80.0 38.3 51.6 50.6 44.6 23.4 49.3 38.7 44.1 29.8 51.0 54.7
PVCNN (1×C) 1.1 9.1 6.9 47.8 35.9 43.9 39.8 40.0 61.5 81.6 44.9 52.5 54.6 45.0 26.0 55.2 44.3 46.2 32.7 51.6 56.7

SGAS [85] – – 143∗ 48.3 43.4 50.8 41.2 38.8 61.4 82.6 37.1 48.8 56.1 49.4 21.2 56.5 44.5 49.4 29.3 54.4 56.0
LC-NAS-14 [86] – – 152∗ 48.6 41.9 51.7 39.7 39.6 61.5 82.5 39.3 49.0 54.7 55.3 22.2 55.1 45.2 48.0 30.3 54.6 54.9
LC-NAS-18 [86] – – 185∗ 46.6 40.7 50.5 39.9 39.5 59.8 82.2 35.0 44.5 53.2 44.9 22.0 54.1 41.5 45.8 31.5 53.0 54.4
SPVNAS 0.4 1.2 13.2 46.8 36.7 48.2 39.4 35.7 61.9 81.8 40.0 54.2 55.1 40.4 25.3 50.8 41.3 45.9 31.3 51.5 56.7
PVNAS-A 0.3 2.7 4.2 47.5 35.2 44.1 39.5 36.6 59.6 81.8 44.8 52.4 54.7 47.3 23.2 54.1 45.0 45.8 32.5 53.4 57.6
PVNAS-B 0.4 3.9 4.9 48.0 37.3 44.5 40.2 36.0 60.6 82.1 43.8 52.3 55.8 47.3 23.8 52.2 47.8 47.8 34.1 52.7 57.5

Here, #P denotes the number of parameters, #M denotes the number of MACs, and L denotes the measured latency (on a single NVIDIA GTX 1080 Ti GPU). ∗:
numbers are from Li et al. [86], which are measured on a single NVIDIA RTX 2080 GPU.

(a) PVCNN vs. PointNet

0

28

56

84

112

140

Nano TX2 AGX Xavier

139.9

42.6
19.9

76.0

20.3
8.2

PointNet (83.7 mIoU)
0.25 PVCNN (85.2 mIoU)

O
bj

ec
ts

 P
er

 S
ec

on
d

(b) PVNAS vs. PVCNN

8.3 FPS
1.3

 faster

×

1.4 faster×47.9 mIoU

Fig. 7. PVCNN achieves real-time 3D object segmentation with 2,048
input points on edge devices. With PVNAS, we further boost the efficiency
on NVIDIA Jetson Nano, achieving 8.3 FPS with 10,000 input points.

Visualization. We visualize the voxel and point features
from the final PVConv, where warmer color indicates larger
magnitude. As in Fig. 6, the voxel branch tends to capture
large, continuous parts (e.g., table top, lamp head) while

the point branch captures isolated, discontinuous details
(e.g., table legs, lamp neck). Two branches indeed provide
complementary information. This is aligned with our design.

6.1.2 PartNet
We also conduct experiments on the more challenging fine-
grained 3D object part segmentation benchmark, PartNet [78].
Different from ShapeNet, where each object is annotated with
2 to 6 parts, objects in PartNet can have as many as 50 parts.
To perform fine-grained segmentation, the models usually
take in a batch of 10,000 points instead of 2,048 points.

Baselines. We compare PVCNN with state-of-the-art point-
based methods including PointNet [3], PointNet++ [4], Deep
LPN [83], SpiderCNN [18], PointCNN [6] and ResGCN [84].
We also compare PVNAS with automatically-designed point
cloud segmentation networks including SGAS [85] and LC-
NAS [86]. To ensure fair comparisons, we follow the original
experiment setting in Mo et al. [78] to train separate models
for different object classes. The results of our method are

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 10

TABLE 4
Results of Indoor Scene Segmentation on S3DIS

#Par. (M) #MACs (G) Mem. (GB) Lat. (ms) mIoU

PointNet [3] 1.2 3.6 1.0 12.1 43.0
PVCNN (0.125×C) 0.04 0.3 0.6 6.2 46.9

DGCNN [16] 1.0 36.9 2.4 168.1 48.0
RSNet [26] 6.9 2.2 1.1 111.5 52.0
SPVCNN (0.25×C) 0.2 0.4 1.1 21.1 50.4
PVCNN (0.25×C) 0.2 0.9 0.7 9.0 52.3

3D-UNet [2] 14.0 349.6 6.8 574.7 55.0
SPVCNN (1×C) 2.7 6.6 1.8 41.0 54.9
PVCNN (1×C) 2.6 13.0 1.3 39.1 56.1
PVCNN++ (0.5×C) 3.4 6.6 0.7 40.9 57.6

PointCNN [6] 11.5 17.5 4.6 282.3 57.3
PVCNN++ (1×C) 13.7 26.2 0.8 67.2 59.0

On average, PVCNN and PVCNN++ outperform point-based models with 8×
speedup and 3× memory reduction. They outperform the voxel-based baseline
with 14× speedup and 10× memory reduction.

averaged over at least three runs. For the other methods, we
report the accuracy from their papers and measure #Params,
#MACs and latency with their open-source implementation.

Results. As in Table 3, PVCNN achieves superior results
compared with all manually-designed point-based methods.
Specifically, PVCNN (0.5×C) outperforms PointCNN with
27.7× model size reduction, 31.3× computation reduction,
and 23.7× measured speedup. This indicates that PVConv
scales much better (w.r.t. the number of points) than other
point-based primitives. Then, we apply 3D-NAS to PVCNN
under 4.2/4.9 ms latency constraints on NVIDIA GTX 1080
Ti GPU. The resulting PVNAS outperforms PVCNN (0.72×C)
and PVCNN (1×C) with 1.3× and 1.4× speedup, respectively.
It also compares favorably with AutoML-based approaches.
With more than 29× speedup, PVNAS achieves similar IoU
compared with SGAS and LC-NAS.

PV/SPVConv. On PartNet, PVCNN (0.5×C) is 3.8× faster
than SPVCNN (1×C), while achieving 2.2% higher accuracy.
3D-NAS improves the performance of SPVCNN significantly;
however, SPVNAS is still 3.1× slower than PVNAS-A. This
again emphasizes the importance of primitive selection.

Deployment. We deploy our PVCNN and PVNAS on edge
devices. As in Fig. 7a, PVCNN runs at real time (20 FPS) on
NVIDIA Jetson Nano, which only consumes the power of
a light bulb (5 W). Even when the number of input points
increases by 5× on PartNet, PVNAS can still run at 8.3 FPS on
NVIDIA Jetson Nano (Fig. 7b). Thus, PVNAS can empower
efficient 3D vision on low-power devices, which becomes
increasingly important with the rise of AR/VR applications.

6.2 3D Indoor Scene Segmentation

We then evaluate our method on 3D semantic segmentation
and conduct experiments on the large-scale indoor scene
dataset, S3DIS [79], [80]. Though indoor scenes are usually
much larger (e.g., 6m×6m×3m) than single 3D objects, it
is still affordable to process them using sliding windows
(e.g., 1.5m×1.5m×3m). Note that the evaluation protocol is
different from recent methods [32] that take in the entire
scene. Our setting is closer to the real-world scenario since

TABLE 5
Results of Outdoor Scene Segmentation on SemanticKITTI (3D)

#Params (M) #MACs (G) Latency (ms) mIoU

PointNet [3] 3.0∗ – 500∗ 14.6
SPGraph [23] 0.3∗ – 5200∗ 17.4
PointNet++ [4] 6.0∗ – 5900∗ 20.1
TangentConv [14] 0.4∗ – 3000∗ 40.9
RandLA-Net [87] 1.2 66.5 880 (256+624)† 53.9
KPConv [88] 18.3 207.3 – 58.8
MinkowskiNet [32] 21.7 114.0 294 63.1

PVCNN 2.5 42.4 146 39.0
SPVCNN 21.8 118.6 317.1 65.3

SPVNAS-A 2.6 15.0 110 63.7
SPVNAS-B 12.5 73.8 259 66.4

SPVNAS outperforms MinkowskiNet with 2.7× speedup. †: computation time
+ post-processing time. ∗: results from Behley et al. [75].

depth cameras only capture a small region in a single pass.
Similar to object part segmentation, we build PVCNN based
on PointNet [3] and PVCNN++ based on PointNet++ [4].

Baselines. We compare our models with the state-of-the-
art point-based models [3], [6], [16], [26] and the voxel-based
baseline [2]. Following Tchapmi et al. [21] and Li et al. [6],
we train the models on area 1,2,3,4,6 and test them on area
5 because it is the only one that does not overlap with any
other area. Both data processing and evaluation protocol are
the same as PointCNN [6] for fair comparison. We measure
the latency and memory consumption with 32768 points per
batch on a single NVIDIA GTX 1080 Ti GPU.

Results. As in Table 4, PVCNN improves its backbone
(i.e., PointNet) by more than 13% in mIoU and outperforms
DGCNN (which involves sophisticated graph convolutions)
by a large margin in both accuracy and latency. Remarkably,
our PVCNN++ outperforms the state-of-the-art point-based
model (PointCNN) by 1.7% in mIoU with 4× lower latency,
and the voxel-based baseline (3D-UNet) by 4% in mIoU with
more than 8× lower latency and GPU memory consumption.
Similar to object part segmentation, we also design compact
models by reducing the number of channels in our PVCNN to
12.5%, 25% and 50% and our PVCNN++ to 50%. Remarkably,
the narrower version of our PVCNN outperforms DGCNN
with 15× measured speedup, and RSNet with 9× measured
speedup. Furthermore, it achieves 4% improvement in mIoU
over PointNet while still being 2.5× faster than this extremely
efficient 3D model (which does not have any neighborhood
aggregation). We refer the readers to Fig. 8 for accuracy vs.
latency and accuracy vs. memory trade-offs.

PV/SPVConv. With the same network structure, PVCNN
is more effective than SPVCNN, achieving 1.2-2.1% higher
mIoU (Table 4). Similar to our results on object segmentation,
SPVCNN fails to achieve large speedups with small channel
numbers: with 4× channel reduction, SPVCNN achieves only
1.9× speedup while PVCNN achieves 4.3× speedup. Thus,
PVCNN is a superior choice for indoor scene segmentation.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 11

(a) Trade-Off: Mean IoU vs. GPU Latency

20 60 100 140 180 220 260 300
Latency (ms)

45.0

47.5

50.0

52.5

55.0

57.5

60.0

M
ea

n
Io

U

6.9x speedup

PVCNN
PVCNN++

3D-UNet
PointCNN

RSNet
DGCNN

PointNet

(b) Trade-Off: Mean IoU vs. GPU Memory

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
GPU Memory (GB)

45.0

47.5

50.0

52.5

55.0

57.5

60.0

M
ea

n
Io

U

6.6x reduction

PVCNN
PVCNN++

3D-UNet
PointCNN

RSNet
DGCNN

PointNet

Fig. 8. PVCNN achieves a much better trade-off between accuracy and efficiency than the point-based and voxel-based baselines on S3DIS.

(a) Trade-Off: Mean IoU vs. #MACs

0 10 20 30 40 50 60 70 80 90 100 110 120
#MACs (G)

57

59

61

63

65

67

M
ea

n
Io

U

SPVNAS SPVCNN MinkowskiNet

(b) Trade-Off: Mean IoU vs. GPU Latency

100 125 150 175 200 225 250 275 300 325
GPU Latency (ms)

57

59

61

63

65

67

M
ea

n
Io

U

SPVNAS SPVCNN MinkowskiNet

Fig. 9. An efficient 3D primitive (SPVConv) and a well-designed network architecture (3D-NAS) are both important to the performance of SPVNAS.

(a) Input Scene (b) Error by MinkowskiNet

traffic sign

boundary

bicycle

person

pole

(c) Less Error by SPVNAS

boundary

traffic sign

person

pole

bicycle

(d) Ground Truth

Fig. 10. MinkowskiNet usually has a higher error recognizing small objects and region boundaries, while our SPVNAS recognizes small objects better
thanks to the high-resolution point-based branch.

6.3 3D Outdoor Scene Segmentation
6.3.1 SemanticKITTI
We evaluate our method on 3D semantic segmentation and
conduct experiments on the large-scale outdoor scene dataset,
SemanticKITTI [75]. This dataset contains 23,201 LiDAR point
clouds for training and 20,351 for testing, and it is annotated

from all 22 sequences in the KITTI [93] Odometry benchmark.
We train all models on the entire training set and report the
mean intersection-over-union (mIoU) on the official test set
under the single scan setting. We measure the latency on a
single NVIDIA GTX 1080 Ti GPU with batch size of 1. We

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 12

TABLE 6
Results of Outdoor Scene Segmentation on SemanticKITTI (2D)

#Params (M) #MACs (G) Latency (ms) mIoU

DarkNet21Seg [75] 24.7 212.6 73 (49+24)† 47.4
DarkNet53Seg [75] 50.4 376.3 102 (78+24)† 49.9
SqueezeSegV3-21 [89] 9.4 187.5 97 (73+24)† 51.6
SqueezeSegV3-53 [89] 26.2 515.2 238 (214+24)† 55.9
3D-MiniNet [90] 4.0 – – 55.8
PolarNet [91] 13.6 135.0 62 57.2
SalsaNext [92] 6.7 62.8 71 (47+24)† 59.5

SPVNAS 1.1 8.9 89 60.3

SPVNAS outperforms the 2D projection-based methods with at least 7.1×
computation reduction. †: computation time + projection time.

use TorchSparse v1.0.0* as our inference backend.
Results. As in Table 5, SPVNAS outperforms the previous

state-of-the-art MinkowskiNet [32] by 3.3% in mIoU with
1.7× model size reduction, 1.5× computation reduction and
1.1×measured speedup. Further, we downscale our SPVNAS
by setting the resource constraint to 15G MACs. This offers us
with a much smaller model that outperforms MinkowskiNet
with 8.3×model size reduction, 7.6× computation reduction,
and 2.7×measured speedup. In Fig. 10, we also provide qual-
itative comparisons between SPVNAS and MinkowskiNet:
our SPVNAS makes fewer errors for small instances.

In Table 6, we compare SPVNAS with 2D projection-based
models. With a smaller backbone (by removing the decoder
layers), SPVNAS outperforms DarkNets [75] by more than
10% in mIoU with 1.2× speedup even though 2D CNNs are
much better optimized by modern deep learning libraries.
Compared with other 2D methods, our SPVNAS achieves
at least 8.5× model size reduction and 15.2× computation
reduction while being much more accurate. Furthermore,
SPVNAS achieves higher mIoU than KPConv [88], which is
the previous state-of-the-art point-based model, with 17×
model size reduction and 23× computation reduction.

Analysis. In Fig. 9, we present both mIoU vs. #MACs and
mIoU vs. latency trade-offs, where we uniformly scale the
channel numbers in MinkowskiNet and SPVCNN down as
our baselines. It can be observed that a better 3D module
(SPVNAS) and a well-designed 3D network architecture (3D-
NAS) are equally important to the final performance boost.
Remarkably, SPVNAS outperforms MinkowskiNet by more
than 6% in mIoU at 110 ms latency. Such a large improvement
comes from non-uniform channel scaling and elastic network
depth. In these manually-designed models (MinkowskiNet
and SPVCNN), 77% of the total computation is distributed
to the upsampling stage. With 3D-NAS, this ratio is reduced
to 47-63%, making the computation more balanced and the
downsampling stage (feature extraction) more emphasized.

6.3.2 nuScenes
The distribution of point clouds varies significantly across dif-
ferent sensors. To verify the generalizability of our SPVCNN
and SPVNAS, we also conduct experiments on a recent 3D
segmentation benchmark, nuScenes [81]. The dataset contains
34,149 LiDAR point clouds for training and 6,008 for testing,

*. https://github.com/mit-han-lab/torchsparse

TABLE 7
Results of Outdoor Scene Segmentation on nuScenes

#Params (M) #MACs (G) Latency (ms) mIoU

PolarSeg [91] 13.6 45.6 42.8 47.8
MinkowskiNet [32] 21.7 22.2 81.0 53.7

SPVCNN 21.8 23.1 89.9 54.7
SPVNAS 9.6 10.6 59.1 54.7

SPVNAS outperforms MinkowskiNet with 2.1× computation reduction and
1.4× measured speedup.

TABLE 8
Results of Outdoor Object Detection on KITTI (Two-Stage)

Mem.
(G)

Lat.
(ms)

Car Cyclist Pedestrian

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

F-PN 1.3 29.1 85.2 71.6 63.8 77.1 56.5 52.8 66.4 56.9 50.4
F-PN++ 2.0 105.2 84.7 72.0 64.2 75.6 56.7 53.3 68.4 60.0 52.6

PVCNN 1.4 58.9 85.3 72.1 64.2 78.1 57.5 53.7 70.6 61.2 56.3

PVCNN outperforms F-PointNet++ in all categories significantly with 1.8×
measured speedup and 1.4× memory reduction.

TABLE 9
Results of Outdoor Object Detection on KITTI (One-Stage)

Car Cyclist Pedestrian

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

SECOND [94] 89.8 80.9 78.4 82.5 62.8 58.9 68.3 60.8 55.3

SPVCNN 90.9 81.8 79.2 85.1 63.8 60.1 68.2 61.6 55.9

SPVCNN outperforms SECOND in most categories especially in cyclists.

and provides point-level semantic annotations for each point
cloud. We follow the official instruction to split the training
set into train split (consisting of 28,130 LiDAR point clouds)
and val split (consisting of 6,019 LiDAR point clouds). We
train all manually-designed models on the train split and
evaluate them on the val split. For our SPVNAS, we search
the best model on a 20% holdout minival split from the train
split and perform evaluation on the val split. We report the
official 31-class mIoU as the evaluation metric. Similar to
SemanticKITTI, we measure the latency on an NVIDIA GTX
1080 Ti GPU with batch size of 1.

Results. As in Table 7, SPVNAS achieves a better accuracy
vs. efficiency trade-off than both PolarSeg [91] and Minkowsk-
iNet [32]. It outperforms MinkowskiNet by 1.0% in mIoU
with 2.3×model size reduction, 2.1× computation reduction,
and 1.4× speedup. It achieves 6.9% mIoU improvement over
the projection-based PolarSeg. Similar to our observations on
SemanticKITTI, both efficient 3D primitive design (SPVConv,
+1.0 mIoU) and network architecture search (3D-NAS, 2.2×
computation reduction, 1.5× measured speedup) contribute
to the accuracy and efficiency boost of SPVNAS.

6.4 3D Outdoor Object Detection

We evaluate our method on 3D object detection and con-
duct experiments on the large-scale outdoor scene dataset,
KITTI [93]. We follow the conventional training-validation

https://github.com/mit-han-lab/torchsparse

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 13

(a) SECOND

duplicate predictions

missing prediction

(b) SPVCNN

correct prediction

correct prediction

(c) Ground Truth

Fig. 11. Visualizations of outdoor object detection on KITTI. SPVCNN performs better than SECOND in detecting small objects in crowded scenes.

(a) MIT Driverless (b) PVCNN

Fig. 12. PVCNN is much more accurate: e.g., MIT Driverless’ model misclassifies the right traffic cone in the second example as blue. PVCNN also
supports larger detection range (see the first and the third example), enabling the racing vehicle to confidently run at a higher speed.

split, where 3,712 samples are used for training and 3,769
samples are left for validation. We report the 3D average
precision (with 40 recall positions) on the validation set under
IoU thresholds of 0.7 for car, 0.5 for cyclist and pedestrian.

Results. We first apply our method to F-PointNet [27],
which is a two-stage 3D object detection framework. It first
leverages the off-the-shelf 2D object detector to produce frus-
trum proposals. For each frustrum, it then applies PointNets
to classify the content. As the frustrums are relatively small, it
is suitable to process them using PVConv. Thus, we build our
PVCNN based on F-PointNet by replacing the MLP layers
within its instance segmentation network with PVConv and
keep its box proposal and refinement networks unchanged.
We compare our PVCNN with F-PointNet (whose backbone
is PointNet) and F-PointNet++ (whose backbone is Point-
Net++). In Table 8, even if our PVCNN does not aggregate
neighboring features in the box estimation network while
F-PointNet++ does, PVCNN still outperforms it in all classes

with 1.8× lower latency. Remarkably, our model achieves
2.4% average mAP improvement in the most challenging
pedestrian class. Compared with F-PointNet, our PVCNN
obtains up to 4-5% mAP improvement in pedestrians, which
indicates that our model is both efficient and expressive.

Apart from the frustrum-based framework, we also apply
our method to SECOND [94], which is a single-stage 3D
object detection framework. It consists of a sparse encoder
using 3D sparse convolutions and a region proposal network
that performs 2D convolutions after projecting the encoded
features into the bird’s-eye view (BEV). Unlike F-PointNet,
SECOND is applied to the entire outdoor scenes, which are
of large scale. Therefore, we choose to replace the sparse
encoder with SPVCNN. As a fair comparison, we reimple-
ment and retrain SECOND, which already outperforms the
results claimed in the original paper [94]. As summarized
in Table 9, our SPVCNN achieves consistent improvements
in all categories, especially in cyclist and pedestrian. This is

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 14

Fig. 13. Autonomous racing vehicle of MIT Driverless (at the Formula
Student competition). Top: vehicle on the racing track (©FSG - Elena
Schulz). Bottom: 3D data collected by the Velodyne 32-channel LiDAR
sensor mounted on the car.

TABLE 10
Results of Cone Classification for Autonomous Racing Vehicle

#Params (M) #MACs (G) Latency (ms) Accuracy (%)

MIT Driverless – – 14.0 95.0
PointNet [3] 2.0 0.07 1.4 96.6
PointNet++ [4] 1.7 4.0 53.5 97.0
DGCNN [16] 0.6 0.03 2.1 98.0
PVCNN 0.5 0.03 2.3 98.8

Compared with existing learning-based solutions, PVCNN achieves higher
accuracy with low latency. Here, we measure the GPU latency on NVIDIA
GTX 1080 Ti based on an average of 8 cones per scene.

because the high-resolution point-based branch carries more
information for small objects. We also provide qualitative
results in Fig. 11, where SPVCNN excels in detecting small
objects in crowded scenes.

7 APPLICATIONS

The autonomous racing vehicle is an ideal testbed of au-
tonomous driving systems. Given the image and LiDAR
inputs, the system needs to operate the car to drive on the
racing track as fast as possible (and avoid the obstacles). As
in Fig. 13, the racing track is surrounded by traffic cones
in the Formula Student competition. In particular, there are
three types of traffic cones, the blue ones representing the
left boundary of the track, the yellow ones defining the right
boundary of the track, and the orange ones marking the
start and finish of the track. A typical solution is composed
of perception, state estimation, path planning and control.
Among these stages, the perception model serves as the eyes
of the racing vehicle: it needs to localize and recognize the
traffic cones accurately in order to segment the (drivable)
racing track. The model needs to be very fast as its latency
limits the velocity of the racing car; it also needs to be very
accurate in order to prevent the car from driving outside
the racing track and hitting the landmarks (2 seconds of
penalty for each cone hit by the rules of the Formula Student
competition). Therefore, we aim to improve the efficiency and
accuracy of the LiDAR perception model with our PVCNN.

For the LiDAR perception pipeline, MIT Driverless adopts
the clustering algorithm to localize the traffic cones on the
racing track and then classifies the type of each traffic cone
based on their LiDAR features. Due to the limited hardware
resources on the car, their team previously designed a simple
1D feature-based neural network as their cone classification
model. Though simple, it achieves moderate classification
accuracy of 95%, which helped their team win the second
and third places in two of the largest 2019 Formula Student
competitions. However, this simple perception model can
only support the detection range of 8 meters, limiting the
velocity of their car to only 5 meters per second. Together
with MIT Driverless, we replace their traffic cone classifica-
tion model with our PVCNN. As in Table 10, our PVCNN
accelerates their previous pipeline by 6× while achieving
almost perfect classification accuracy (98.8%). PVCNN also
outperforms other learning-based solutions such as PointNet
(+2.2%), PointNet++ (+1.8%) and DGCNN (+0.8%). In Fig. 12,
we also visualize the traffic cone classification results of their
original solution and our PVCNN, from which, our PVCNN
is indeed more accurate and supports larger detection range,
enabling the racing vehicle to run at a higher speed. MIT
Driverless has deployed our PVCNN into their latest system.

8 CONCLUSION

In this paper, we studied 3D deep learning from the hardware
efficiency perspective. We systematically analyzed the bottle-
necks of previous point-based and voxel-based models and
proposed a novel hardware-efficient 3D primitive to combine
the best from both. We further enhanced this primitive with
the sparse convolution to make it more effective for large
(outdoor) scenes. Based on our designed 3D primitive, we
then introduced the 3D neural architecture search framework
to automatically explore the best network architecture that
satisfies a given resource constraint. Extensive experiments
on multiple 3D benchmark datasets validate the efficiency
and effectiveness of our proposed method. Finally, we also
deployed our model to the autonomous racing vehicle of MIT
Driverless, achieving larger detection range, higher accuracy
and lower latency. We hope that this paper will enable more
real-world applications and inspire future research in the
direction of efficient 3D deep learning.

ACKNOWLEDGMENTS

This work is supported by NSF CAREER Award #1943349,
MIT Quest for Intelligence, MIT-IBM Watson AI Lab, Sam-
sung, Hyundai and SONY. We thank AWS Machine Learning
Research Awards for providing the computational resource.

REFERENCES

[1] G. Riegler, A. O. Ulusoy, and A. Geiger, “OctNet: Learning Deep 3D
Representations at High Resolutions,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017.

[2] O. Cicek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ron-
neberger, “3D U-Net: Learning Dense Volumetric Segmentation
from Sparse Annotation,” in Proc. Medical Image Computing and
Computer Assisted Intervention, 2016.

[3] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2017.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 15

[4] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space,”
in Proc. Adv. Neural Inf. Process. Syst., 2017.

[5] R. Klokov and V. S. Lempitsky, “Escape from Cells: Deep Kd-
Networks for the Recognition of 3D Point Cloud Models,” in Proc.
IEEE Int. Conf. Comput. Vis., 2017.

[6] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “PointCNN:
Convolution on X -Transformed Points,” in Proc. Adv. Neural Inf.
Process. Syst., 2018.

[7] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3D ShapeNets: A Deep Representation for Volumetric Shapes,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015.

[8] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and
F. Yu, “ShapeNet: An Information-Rich 3D Model Repository,”
arXiv:1512.03012, 2015.

[9] D. Maturana and S. Scherer, “VoxNet: A 3D Convolutional Neural
Network for Real-Time Object Recognition,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robot. Syst., 2015.

[10] C. R. Qi, H. Su, M. Niessner, A. Dai, M. Yan, and L. J. Guibas,
“Volumetric and Multi-View CNNs for Object Classification on 3D
Data,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016.

[11] Z. Wang and F. Lu, “VoxSegNet: Volumetric CNNs for Semantic
Part Segmentation of 3D Shapes,” IEEE Trans. Vis. Comput. Graph,
2019.

[12] Y. Zhou and O. Tuzel, “VoxelNet: End-to-End Learning for Point
Cloud Based 3D Object Detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2018.

[13] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-CNN:
Octree-based Convolutional Neural Networks for 3D Shape Analy-
sis,” ACM Trans. Graph., 2017.

[14] M. Tatarchenko, J. Park, V. Koltun, and Q.-Y. Zhou, “Tangent
Convolutions for Dense Prediction in 3D,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018.

[15] T. Le and Y. Duan, “PointGrid: A Deep Network for 3D Shape
Understanding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2018.

[16] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic Graph CNN for Learning on Point Clouds,”
ACM Trans. Graph., 2019.

[17] S. Lan, R. Yu, G. Yu, and L. S. Davis, “Modeling Local Geometric
Structure of 3D Point Clouds using Geo-CNN,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2019.

[18] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao, “SpiderCNN: Deep
Learning on Point Sets with Parameterized Convolutional Filters,”
in Proc. Eur. Conf. Comput. Vis., 2018.

[19] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.-H. Yang,
and J. Kautz, “SPLATNet: Sparse Lattice Networks for Point Cloud
Processing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018.

[20] J. Li, B. M. Chen, and G. H. Lee, “SO-Net: Self-Organizing Network
for Point Cloud Analysis,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2018.

[21] L. P. Tchapmi, C. B. Choy, I. Armeni, J. Gwak, and S. Savarese,
“SEGCloud: Semantic Segmentation of 3D Point Clouds,” in Proc.
Int. Conf. 3D Vis., 2017.

[22] W. Wang, R. Yu, Q. Huang, and U. Neumann, “SGPN: Similarity
Group Proposal Network for 3D Point Cloud Instance Segmenta-
tion,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018.

[23] L. Landrieu and M. Simonovsky, “Large-Scale Point Cloud Seman-
tic Segmentation With Superpoint Graphs,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018.

[24] S. Wang, S. Suo, W.-C. Ma, A. Pokrovsky, and R. Urtasun, “Deep
Parametric Continuous Convolutional Neural Networks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018.

[25] B. Graham, M. Engelcke, and L. van der Maaten, “3D Semantic
Segmentation With Submanifold Sparse Convolutional Networks,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018.

[26] Q. Huang, W. Wang, and U. Neumann, “Recurrent Slice Networks
for 3D Segmentation on Point Clouds,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2018.

[27] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum PointNets
for 3D Object Detection from RGB-D Data,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018.

[28] S. Shi, X. Wang, and H. Li, “PointRCNN: 3D Object Proposal
Generation and Detection from Point Cloud,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2019.

[29] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and
A. Markham, “RandLA-Net: Efficient Semantic Segmentation of
Large-Scale Point Clouds,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2020.

[30] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “Adaptive
O-CNN: A Patch-based Deep Representation of 3D Shapes,” in
SIGGRAPH Asia, 2018.

[31] H. Lei, N. Akhtar, and A. Mian, “Octree Guided CNN With
Spherical Kernels for 3D Point Clouds,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2019.

[32] C. Choy, J. Gwak, and S. Savarese, “4D Spatio-Temporal ConvNets:
Minkowski Convolutional Neural Networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2019.

[33] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both Weights and
Connections for Efficient Neural Networks,” in Proc. Adv. Neural
Inf. Process. Syst., 2015.

[34] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding,” in Proc. Int. Conf. Learn. Representations, 2016.

[35] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC: AutoML
for Model Compression and Acceleration on Mobile Devices,” in
Proc. Eur. Conf. Comput. Vis., 2018.

[36] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental Net-
work Quantization: Towards Lossless CNNs with Low-Precision
Weights,” in Proc. Int. Conf. Learn. Representations, 2017.

[37] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-Aware
Automated Quantization with Mixed Precision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2019.

[38] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-Level Accuracy with 50x Fewer
Parameters and < 0.5MB Model Size,” arXiv, 2016.

[39] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications,”
arXiv:1704.04861, 2017.

[40] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018.

[41] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan,
W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam,
“Searching for MobileNetV3,” in Proc. IEEE Int. Conf. Comput. Vis.,
2019.

[42] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely
Efficient Convolutional Neural Network for Mobile Devices,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018.

[43] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
Guidelines for Efficient CNN Architecture Design,” in Proc. Eur.
Conf. Comput. Vis., 2018.

[44] B. Zoph and Q. V. Le, “Neural Architecture Search with Reinforce-
ment Learning,” in Proc. Int. Conf. Learn. Representations, 2017.

[45] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning Transfer-
able Architectures for Scalable Image Recognition,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2018.

[46] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-
Fei, A. Yuille, J. Huang, and K. Murphy, “Progressive Neural
Architecture Search,” in Proc. Eur. Conf. Comput. Vis., 2018.

[47] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “MnasNet: Platform-Aware Neural Architecture
Search for Mobile,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2019.

[48] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “FBNet: Hardware-aware Efficient Convnet
Design via Differentiable Neural Architecture Search,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2019.

[49] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” in Proc. Int. Conf. Mach. Learn.,
2019.

[50] H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han, “HAT:
Hardware-Aware Transformers for Efficient Natural Language
Processing,” in Proc. Annu. Meet. Assoc. Comput. Linguistics, 2020.

[51] E. Strubell, A. Ganesh, and A. McCallum, “Energy and Policy
Considerations for Deep Learning in NLP,” in Proc. Annu. Meet.
Assoc. Comput. Linguistics, 2019.

[52] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable Archi-
tecture Search,” in Proc. Int. Conf. Learn. Representations, 2019.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 16

[53] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct Neural Architec-
ture Search on Target Task and Hardware,” in Proc. Int. Conf. Learn.
Representations, 2019.

[54] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun,
“Single Path One-Shot Neural Architecture Search with Uniform
Sampling,” in Proc. Eur. Conf. Comput. Vis., 2020.

[55] Y. Chen, T. Yang, X. Zhang, G. Meng, X. Xiao, and J. Sun, “DetNAS:
Backbone Search for Object Detection,” in Proc. Adv. Neural Inf.
Process. Syst., 2019.

[56] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for All: Train
One Network and Specialize it for Efficient Deployment,” in Proc.
Int. Conf. Learn. Representations, 2020.

[57] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha,
J. Liu, and D. Marculescu, “Single-Path NAS: Designing Hardware-
Efficient ConvNets in Less Than 4 Hours,” arXiv:1904.02877, 2019.

[58] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler,
V. Sze, and H. Adam, “NetAdapt: Platform-Aware Neural Network
Adaptation for Mobile Applications,” in Proc. Eur. Conf. Comput.
Vis., 2018.

[59] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-T. Cheng, and J. Sun,
“MetaPruning: Meta Learning for Automatic Neural Network
Channel Pruning,” in Proc. IEEE Int. Conf. Comput. Vis., 2019.

[60] H. Cai, J. Lin, Y. Lin, Z. Liu, K. Wang, T. Wang, L. Zhu, and
S. Han, “AutoML for Architecting Efficient and Specialized Neural
Networks,” IEEE Micro, 2019.

[61] M. Li, J. Lin, Y. Ding, Z. Liu, J.-Y. Zhu, and S. Han, “GAN
Compression: Efficient Architectures for Interactive Conditional
GANs,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020.

[62] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Hardware-Centric
AutoML for Mixed-Precision Quantization,” Int. J. Comput. Vis.,
2020.

[63] T. Wang, K. Wang, H. Cai, J. Lin, Z. Liu, H. Wang, Y. Lin, and
S. Han, “APQ: Joint Search for Network Architecture, Pruning
and Quantization Policy,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2020.

[64] I. Radosavovic, J. Johnson, S. Xie, W.-Y. Lo, and P. Dollar, “On
Network Design Spaces for Visual Recognition,” in Proc. IEEE Int.
Conf. Comput. Vis., 2019.

[65] Z. Zhu, C. Liu, D. Yang, A. Yuille, and D. Xu, “V-NAS: Neural
Architecture Search for Volumetric Medical Image Segmentation,”
in Proc. Int. Conf. 3D Vis., 2019.

[66] S. Kim, I. Kim, S. Lim, W. Baek, C. Kim, H. Cho, B. Yoon, and
T. Kim, “Scalable Neural Architecture Search for 3D Medical Image
Segmentation,” in Proc. Medical Image Computing and Computer
Assisted Intervention, 2019.

[67] D. Yang, H. Roth, Z. Xu, F. Milletari, L. Zhang, and D. Xu,
“Searching Learning Strategy with Reinforcement Learning for
3D Medical Image Segmentation,” in Proc. Medical Image Computing
and Computer Assisted Intervention, 2019.

[68] W. Bae, S. Lee, Y. Lee, B. Park, M. Chung, and K.-H. Jung, “Resource
Optimized Neural Architecture Search for 3D Medical Image
Segmentation,” in Proc. Medical Image Computing and Computer
Assisted Intervention, 2019.

[69] K. C. Wong and M. Moradi, “SegNAS3D: Network Architecture
Search with Derivative-Free Global Optimization for 3D Image
Segmentation,” in Proc. Medical Image Computing and Computer
Assisted Intervention, 2019.

[70] Q. Yu, D. Yang, H. Roth, Y. Bai, Y. Zhang, A. Yuille, and D. Xu,
“C2FNAS: Coarse-to-Fine Neural Architecture Search for 3D Medi-
cal Image Segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2020.

[71] Z. Ma, Z. Zhou, Y. Liu, Y. Lei, and H. Yan, “Auto-ORVNet:
Orientation-Boosted Volumetric Neural Architecture Search for
3D Shape Classification,” IEEE Access, 2020.

[72] G. Li, G. Qian, I. C. Delgadillo, M. Muller, A. Thabet, and
B. Ghanem, “SGAS: Sequential Greedy Architecture Search,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020.

[73] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” in Proc.
Int. Conf. Mach. Learn., 2015.

[74] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities
Improve Neural Network Acoustic Models,” in Proc. Int. Conf.
Mach. Learn., 2013.

[75] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
niss, and J. Gall, “SemanticKITTI: A Dataset for Semantic Scene
Understanding of LiDAR Sequences,” in Proc. IEEE Int. Conf.
Comput. Vis., 2019.

[76] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2009.

[77] W. Wu, Z. Qi, and L. Fuxin, “PointConv: Deep Convolutional
Networks on 3D Point Clouds,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2019.

[78] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and
H. Su, “PartNet: A Large-Scale Benchmark for Fine-Grained and
Hierarchical Part-Level 3D Object Understanding,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2019.

[79] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer, and
S. Savarese, “3D Semantic Parsing of Large-Scale Indoor Spaces,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016.

[80] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese, “Joint 2D-3D-
Semantic Data for Indoor Scene Understanding,” arXiv:1702.01105,
2017.

[81] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A
Multimodal Dataset for Autonomous Driving,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2020.

[82] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2012.

[83] E.-T. Le, I. Kokkinos, and N. J. Mitra, “Going Deeper with Lean
Point Networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2020.

[84] G. Li, M. Müller, G. Qian, I. C. Delgadillo, A. Abualshour, A. Thabet,
and B. Ghanem, “DeepGCNs: Can GCNs Go as Deep as CNNs?”
in Proc. IEEE Int. Conf. Comput. Vis., 2019.

[85] G. Li, G. Qian, I. C. Delgadillo, M. Müller, A. Thabet, and
B. Ghanem, “SGAS: Sequential Greedy Architecture Search,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020.

[86] G. Li, M. Xu, S. Giancola, A. Thabet, and B. Ghanem, “LC-NAS:
Latency Constrained Neural Architecture Search for Point Cloud
Networks,” arXiv:2008.10309, 2020.

[87] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and
A. Markham, “RandLA-Net: Efficient Semantic Segmentation of
Large-Scale Point Clouds,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2020.

[88] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette,
and L. J. Guibas, “KPConv: Flexible and Deformable Convolution
for Point Clouds,” in Proc. IEEE Int. Conf. Comput. Vis., 2019.

[89] C. Xu, B. Wu, Z. Wang, W. Zhan, P. Vajda, K. Keutzer, and
M. Tomizuka, “SqueezeSegV3: Spatially-Adaptive Convolution
for Efficient Point-Cloud Segmentation,” in Proc. Eur. Conf. Comput.
Vis., 2020.

[90] I. Alonso, L. Riazuelo, L. Montesano, and A. C. Murillo, “3D-
MiniNet: Learning a 2D Representation from Point Clouds for Fast
and Efficient 3D LIDAR Semantic Segmentation,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robot. Syst., 2020.

[91] Y. Zhang, Z. Zhou, P. David, X. Yue, Z. Xi, B. Gong, and H. Foroosh,
“PolarNet: An Improved Grid Representation for Online LiDAR
Point Clouds Semantic Segmentation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2020.

[92] T. Cortinhal, G. Tzelepis, and E. E. Aksoy, “SalsaNext: Fast,
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds
for Autonomous Driving,” arXiv:2003.03653, 2020.

[93] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets Robotics:
The KITTI Dataset,” Int. J. Robot. Res., 2013.

[94] Y. Yan, Y. Mao, and B. Li, “SECOND: Sparsely Embedded Convolu-
tional Detection,” Sensors (Basel), 2018.

Zhijian Liu received the B.Eng. degree in com-
puter science from Shanghai Jiao Tong University,
China, in 2018, and the S.M. degree in electrical
engineering and computer science from MIT, in
2020. He is working toward the Ph.D. degree at
MIT, under the supervision of Prof. Song Han. His
research focuses on efficient deep learning and
its applications in computer vision and robotics.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 17

Haotian Tang is a first-year Ph.D. student at MIT
EECS, advised by Prof. Song Han. Previously, he
received his B.Eng. degree from Department of
Computer Science and Engineering, Shanghai
Jiao Tong University, China, in 2020. His research
interest is co-designing efficient machine learning
algorithms and systems.

Shengyu Zhao is an undergraduate student at
Institute for Interdisciplinary Information Sciences,
Tsinghua University. He was a visiting researcher
at MIT under the supervision of Prof. Song Han.
His research focuses on efficient deep learning,
autonomous driving, and generative models.

Kevin Shao is a second-year undergraduate
student at MIT EECS. He is an undergraduate
researcher working under Prof. Song Han, and
his research interest is computer vision for au-
tonomous vehicles.

Song Han is an assistant professor at MIT EECS
Department. Dr. Han received the Ph.D. degree
in Electrical Engineering from Stanford University
and B.S. degree in Electrical Engineering from
Tsinghua University. Dr. Han’s research focuses
on efficient deep learning computing at the inter-
section between machine learning and computer
architecture. He proposed “Deep Compression”
and the “Efficient Inference Engine” that impacted
the industry. He is a recipient of NSF CAREER
Award, MIT Technology Review Innovators Under

35, best paper awards at ICLR 2016 and FPGA 2017, Facebook Faculty
Award, SONY Faculty Award, AWS Machine Learning Research Award.

	1 Introduction
	2 Related Work
	2.1 3D Neural Networks
	2.2 Hardware-Efficient Deep Learning
	2.3 Neural Architecture Search

	3 Analysis of Efficiency Bottlenecks
	3.1 Voxel-Based Models: Large Memory Footprint
	3.2 Point-Based Models: Sparse Data Organization

	4 Designing Efficient 3D Primitives
	4.1 Point-Voxel Convolution (PVConv)
	4.1.1 Voxel-Based Feature Aggregation
	4.1.2 Point-Based Feature Transformation
	4.1.3 Analysis

	4.2 Sparse Point-Voxel Convolution (SPVConv)

	5 Searching Efficient 3D Architectures
	5.1 Design Space
	5.1.1 Primitive Selection
	5.1.2 Fine-Grained Channel Numbers
	5.1.3 Elastic Network Depth
	5.1.4 Small Kernel Matters

	5.2 Training Paradigm
	5.2.1 Uniform Sampling
	5.2.2 Weight Sharing
	5.2.3 Progressive Depth Shrinking

	5.3 Search Algorithm
	5.3.1 Resource Constraint
	5.3.2 Evolutionary Search

	6 Experiments
	6.1 3D Object Part Segmentation
	6.1.1 ShapeNet
	6.1.2 PartNet

	6.2 3D Indoor Scene Segmentation
	6.3 3D Outdoor Scene Segmentation
	6.3.1 SemanticKITTI
	6.3.2 nuScenes

	6.4 3D Outdoor Object Detection

	7 Applications
	8 Conclusion
	References
	Biographies
	Zhijian Liu
	Haotian Tang
	Shengyu Zhao
	Kevin Shao
	Song Han

