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Learning Asymmetric and Local Features in
Multi-Dimensional Data through Wavelets with

Recursive Partitioning
Meng Li and Li Ma

Abstract—Effective learning of asymmetric and local features in images and other data observed on multi-dimensional grids is a
challenging objective critical for a wide range of image processing applications involving biomedical and natural images. It requires
methods that are sensitive to local details while fast enough to handle massive numbers of images of ever increasing sizes. We
introduce a probabilistic model-based framework that achieves these objectives by incorporating adaptivity into discrete wavelet
transforms (DWT) through Bayesian hierarchical modeling, thereby allowing wavelet bases to adapt to the geometric structure of the
data while maintaining the high computational scalability of wavelet methods—linear in the sample size (e.g., the resolution of an
image). We derive a recursive representation of the Bayesian posterior model which leads to an exact message passing algorithm to
complete learning and inference. While our framework is applicable to a range of problems including multi-dimensional signal
processing, compression, and structural learning, we illustrate its work and evaluate its performance in the context of image
reconstruction using real images from the ImageNet database, two widely used benchmark datasets, and a dataset from retinal optical
coherence tomography and compare its performance to state-of-the-art methods based on basis transforms and deep learning.
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1 INTRODUCTION

E FFECTIVE learning of asymmetric and local features in
images and other data observed on multi-dimensional

grids plays a critical role in a wide range of applica-
tions. One such application is optical coherence tomography
(OCT). OCT is a non-invasive imaging modality widely
used in ophthalmology to visualize cross-sections of tissue
layers. These tissue layers—such as the inner nuclear layer
and outer nuclear layer—are often mostly homogeneous
horizontally while involving large vertical contrasts. These
contrasts across layers are key for ophthalmologists to make
a diagnosis based on the (algorithmically reconstructed)
image. Furthermore, local structures in such images can
indicate ocular diseases, and their proper quantitative as-
sessment is an important reference for monitoring the pro-
gression of the disease in clinical practice [1], [2], [3], [4], [5],
[6]. Many other applications of 2D and 3D image analyses in
biomedicine and beyond also involve asymmetric and local
features to various extents. The effective analysis of such
multi-dimensional observations can be greatly enhanced by
incorporating adaptivity into the algorithm or method to
take into account such features.

A further challenge in modern applications involving
multi-dimensional observations is the ever increasing size
of the datasets. For example, both the number of images
analyzed as well as the resolution—i.e., the total number of
pixels—of each image have been expanding rapidly. Many
traditional methods and models become computational im-
practical for modern data as they scale polynomially with
the resolution. Effective methods for analyzing such data
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must scale well with both the resolution of each image and
the number of images.

The primary aim of this work is to present a general-
purpose generative probabilistic model for data on multi-
dimensional grids that can be used to address these chal-
lenges in inference and learning—being able to effectively
adapt to the asymmetric and local nature of interesting
features, while achieving a highly efficient linear compu-
tational budget.

Our starting point is a well-known strategy for
representing functions—a multi-resolution representation
through the discrete wavelet transform (DWT). Wavelet
analysis is hardly a new topic [7], [8], [9] and it has played an
important role in the context of signal processing and image
analysis. Its linear computational scalability is well-suited
for analyzing massive data. However, traditional statistical
wavelet analyses have mostly been focusing on effective
modeling and inference on the wavelet coefficients given a
fixed wavelet transform of the original data [10], [11], [12],
[13], [14], [15]. A predetermined fixed wavelet transform,
however, cannot adapt to the structure of the data and
consequently suffers in its ability to effectively maintain
the local structures in the original observation. Also, clas-
sical wavelet transforms on multi-dimensional grids are
generally symmetric with respect to the dimensions, ren-
dering them ineffective for preserving asymmetric features.
No downstream statistical analyses can recover what has
already been lost at the upstream wavelet transform stage.

In this work, we show that it is possible to incorporate
the desired adaptivity into the wavelet transform stage
while maintaining the computational scalability of the sta-
tistical analysis through a very simple hierarchical modeling
strategy—starting the model “one level up”, that is, by
incorporating the wavelet transform itself as an unknown
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quantity of interest into the probabilistic model, and learn
it based on the data. Specifically, we consider latent (1D)
wavelet transforms that can “twist and turn” (or “warp”)
over the multi-dimensional grid, or the index space, and
adopt a Bayesian prior on the path of its twisting and
turning. In other words, we place a prior on the local
directionality of the 1D transform to allow the “warping” to
adapt to the geometric structure of the underlying function,
e.g., the true image, through the Bayesian machinery.

In designing an appropriate prior for the local direc-
tionality, we note that “warping” a 1D wavelet trans-
form through the grid points is equivalent to fixing the
1D wavelet transform while shuffling grid points in the
multivariate index space of the observation—i.e., through
applying a given 1D wavelet transform to a permuted
version of the observation. This connection implies that
probabilistic models on “warping” can be induced from
distributions on the space of permutations of the index
points or locations. Moreover, we draw a further connection
between permutations and recursive dyadic partitioning
on the index space to construct a prior on permutations
induced by random recursive partitioning over the index
space. This prior takes advantage of the fact that multi-
dimensional images tend to be piecewise smooth to strike
a balance between flexibility and computational tractability,
allowing us to complete exact Bayesian inference through a
recursive message passing algorithm with a computational
budget linear in the resolution and sample size.

Due to the connection to recursive partitioning, we shall
refer to our approach as WARP, or WAvelets with Recursive
Partitioning. Through extensive numerical studies involv-
ing a large number of natural images from the ImageNet
database, two additional benchmark data sets, and an OCT
data set, we show that WARP often outperforms the ex-
isting state-of-the-art approaches by a substantial margin
while maintaining the computational efficiency of classical
wavelet analyses with fixed wavelet transforms. While we
focus on 2D and 3D images in our motivation and numerical
examples, our framework is readily applicable to observa-
tions of more than three dimensions without modification.

The rest of the paper is organized as follows. Section 2
introduces the WARP framework. In Section 2.1 we re-
view the key components of Bayesian wavelet regression
models, introduce permutation of the index space as a
way to incorporate adaptivity into wavelet analysis, and
construct a class of priors on permutations induced by
recursive dyadic partitioning on the index space. We derive
the corresponding posterior model and provide computa-
tional recipes for exact Bayesian inference under the WARP
model with Haar wavelets in Section 2.2. In Section 3, we
carry out an extensive numerical study and compare our
method to existing state-of-the-art wavelet and non-wavelet
methods including a deep learning method on a variety
of real images. In Section 5 we carry out a case study by
applying WARP to analyze an OCT data set, and compares
its performance to a number of state-of-the-art approaches.
Section 6 concludes with some brief remarks. The C++
source code along with a Matlab toolbox and R package
to implement the proposed method is available online at
https://github.com/MaStatLab/WARP.

2 METHOD

2.1 A Bayesian hierarchical wavelet regression model
with recursive dyadic partitions
2.1.1 Background and overview
We use Ω to denote a space of indices or locations (e.g.,
pixels in images) where we obtain numerical measure-
ments (e.g., intensities of pixels). Throughout this work,
we assume Ω to be an m-dimensional rectangular tube
consisting of ni = 2Ji grid points in the ith dimension for
i = 1, 2, . . . ,m, that is, the function values are observed on
a multi-dimensional equidistant grid. To simplify notation,
we shall use [a, b] to represent the set {a, a + 1, . . . , b} for
two integers a and b with a ≤ b. Then the index space Ω is
of the form

Ω = [0, 2J1 − 1]× [0, 2J2 − 1]× · · · × [0, 2Jm − 1].

The locations in Ω can be placed into a vector of length
n = 2J . For example, we can map the location s =
(s1, s2, . . . , sm) ∈ Ω to the tth element in the vector, where
t = s1 +

∑m
l=2(

∏l−1
i=1 ni)sl. Correspondingly, any function

f : Ω→ R can be represented as a vector f of length n = 2J

whose tth element is f(s).
Now, we consider a regression model

y = f + ε with ε ∼ N(0,Σε), (1)

where y = (y0, y1, . . . , y2J−1)′ are the observations on Ω,
f = (f0, f1, . . . , f2J−1)′ the underlying unknown function
mean (or the signal), and ε = (ε0, ε1, . . . , ε2J−1)′ the noise.
For ease of illustration, we assume homogeneous white
noise, i.e., Σε = σ2In, though our model and inference
algorithms do not rely on this assumption at all and can
be readily apply to models with heterogeneous variance;
see Section 6 for further discussion.

One can apply a 1D discrete wavelet transform (DWT)
to the observation vector y through multiplying the corre-
sponding orthonormal matrix W to both sides of Eq. (1),
obtaining w = z + u where w = Wy is the vector of
empirical wavelet coefficients, z = Wf the mean vector
for wavelet coefficients and u = Wε the noise vector in the
wavelet domain. This model can be rewritten in a location-
scale form: wj,k = zj,k + uj,k for j = 0, 1, . . . , J − 1 and
k = 0, 1, . . . , 2j−1, where wj,k, zj,k, uj,k are the kth wavelet
coefficient, signal, and noise at the jth scale in the wavelet
(i.e., location-scale) domain, respectively.

It will generally be unreasonable to treat multi-
dimensional observations simply as a vector with an arbi-
trary ordering of the locations; see [16], [17], [18]. Such a
vectorization ignores the structure of the underlying func-
tion, and thus will result in less effective “energy concen-
tration”, i.e., producing a wavelet decomposition of f that
is not very sparse—with many non-zero zj,k’s of small to
moderate sizes, reducing the signal-to-noise ratio at those
(j, k) combinations.

For each specific data set at hand, however, there typi-
cally exists some orderings of the locations that effectively
reorganize the data so that the corresponding vectorization
of the data provides an efficient representation of the under-
lying function; see Figure 1 for an illustration. Adopting a
Bayesian modeling perspective, one can think of the under-
lying “good” vectorizations as latent structures of interest.



3

Also, one can view the wavelet regression model under
each given index permutation as a competing generative
model for the observed data given the latent structure.
This perspective inspires us to incorporate a prior on the
permutations, thereby allowing us to compute a posterior
on the space of competing wavelet regression models, and
then based on the goal of the analysis proceed with the
common devices for Bayesian inference. Two particular
useful tools are (i) Bayesian model selection [19]—learning
a good permutation for representing the image based on its
posterior probability; and (ii) Bayesian model averaging—
estimating the underlying function based on averaging over
the different permutations using their posterior probabili-
ties [20].

This Bayesian approach does incur a practical challenge
commonly arising in high-dimensional problems—the space
of all permutations is so massive that brute-force enumera-
tion over the space is computationally prohibitive. In the
current context, effective exploration of the model (i.e.,
permutation) space becomes possible, however, once we
realize that the vast majority of the permutations will lead
to wavelet regression models that ignore the spatial smooth-
ness of the underlying function—i.e., close locations in Ω
often correspond to similar values in f . In particular, we can
focus attention on a subclass of permutations that to various
extents preserve spatial smoothness, and design a model
space prior supported on this manageable subclass. To this
end, we appeal to a relationship between recursive dyadic
partitioning (RDP) and permutations, and shall consider the
collection of permutations induced by RDPs on Ω.

Next we introduce some basic notions regarding RDPs
on Ω, which are then used to construct a prior on permuta-
tions. In reading the next two subsections, the reader may
refer to Figure 1 for an illustration of the key notions and
notations.

2.1.2 Recursive dyadic partitioning on the location space
A partition of Ω is a collection of nonempty sets
{A1, A2, . . . , AH} such that Ω = ∪Hh=1Ah andAh1

∩Ah2
= ∅

for any h1 6= h2. Now let T 0, T 1, T 2, . . . , T j , . . . be a
sequence of partitions of Ω. We say that this sequence is a
recursive dyadic partition (RDP) if it satisfies the following
two conditions: (i) T j consists of 2j blocks: T j = {Aj,k :
k = 0, 1, . . . , 2j − 1}; (ii) T j+1 is obtained by dividing each
set in T j into two pieces, i.e., Aj,k = Aj+1,2k ∪ Aj+1,2k+1

for all j ≥ 0 and k = 0, 1, . . . , 2j − 1.
We call an RDP canonical if the sequence of partitions

satisfy two additional conditions: (iii) if the partition blocks
Aj,k are rectangles of the form

Aj,k = [a
(1)
j,k, b

(1)
j,k]× [a

(2)
j,k, b

(2)
j,k]× · · · × [a

(m)
j,k , b

(m)
j,k ].

and (iv) Aj+1,2k and Aj+1,2k+1 are produced by dividing
Aj,k into two halves at the middle of one of Aj,k’s divisible
dimensions.

A rectangular partition block Aj,k is divisible in dimen-
sion d if Aj,k is supported on at least two values in that
dimension, i.e., a(d)

j,k < b
(d)
j,k . In this case, if Aj,k is divided

in dimension d, then its children Aj+1,2k and Aj+1,2k+1 are
given by

[a
(d)
j+1,2k, b

(d)
j+1,2k] = [a

(d)
j,k , (a

(d)
j,k + b

(d)
j,k)/2]

and

[a
(d)
j+1,2k+1, b

(d)
j+1,2k+1] = [(a

(d)
j,k + b

(d)
j,k)/2 + 1, b

(d)
j,k ],

while

[a
(d′)
j+1,2k, b

(d′)
j+1,2k] = [a

(d′)
j+1,2k+1, b

(d′)
j+1,2k+1] = [a

(d′)
j,k , b

(d′)
j,k ]

for all d′ 6= d.
Any canonical RDP on Ω will have exactly J + 1 levels,

i.e., T 0, T 1, . . . , T J . The jth level partition T j consists of
2j rectangular pieces of equal size, each covering n/2j

locations in Ω. From now on, we simply use RDP to refer
to canonical ones when this causes no confusion.

2.1.3 RDPs and permutations
Each RDP can be represented by a J level bifurcating tree
with the partition blocks in T j forming the 2j nodes in the
jth level of the tree. As such, we can use T = ∪Jj=0T j to
represent the RDP. Each node in the J th level corresponds to
a unique location in Ω, and is called “atomic” as it contains
a single element. We shall interchangeably refer to an RDP
as a “tree”, and to the partition blocks as “nodes”.

Given the RDP T , each location s ∈ Ω falls into a unique
branch of T , that is, Ω = A0,0 ⊃ A1,k1(s) ⊃ A2,k2(s) ⊃
· · · ⊃ AJ,kJ (s) = {s}, with Aj,kj(s) being the node in
the jth level to which s belongs. Accordingly, the RDP T
induces a unique vectorization of the locations in Ω such
that s corresponds to the t(s)th element of the vector where
t(s) =

∑J
l=1 2J−l · el(s) with el = kl(s) mod 2, indicating

the branch of the tree s falls into at level l. As such, T
induces a permutation of the n locations, and we let πT
denote this permutation.

As an illustration, Figure 1 presents an RDP and the
induced permutation using a toy 4 × 4 image (so m = 2
and J1 = J2 = 2). We index pixels in the true image from
0 to 15. In addition, we assume that the underlying func-
tion takes only two values—1 and 2—on the 16 locations,
represented by the white and the red colors, respectively.
The demonstrated RDP corresponds well to the structure of
the underlying signal, which would result in an effective 1D
wavelet analysis on the vectorized observation.

We shall now utilize the relationship between RDPs and
permutations to construct a prior on the latter. Before that,
we shall simplify our notations a little. Note that while what
the (j, k)th node Aj,k is depends on the RDP T , different
RDPs can share common nodes—the (j, k)th node in one T
may be the same as the (j, k′)th node in another. (Note that
the level of the node must be the same in either RDP.) In
the following, we will need to specify quantities that only
depend on the node regardless of the RDP tree T it arises
from. A succinct way for expressing such quantities is to
write them as a mapping from A to R, where A denotes
the collection of all sets that could be nodes in some RDP,
or equivalently, A is the totality of nodes in all RDPs. (This
is to be distinguished from the collection of nodes in any
particular RDP, which is denoted by T .) It is worth noting
A is a finite set.

Now we may define ρj,k in such a way that its value
only depends on what the set Aj,k is, regardless of the RDP
T to which it belongs. In this case we can let ρj,k = ρ(Aj,k),
where ρ(·) is a mapping form A to [0, 1]. While a set A ∈ A
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A1,1 = [8, 15]

A2,2 = {8, 9, 10, 11}
A3,4 = {8, 9}

A4,8 = {8}
A4,9 = {9}

A3,5 = {10, 11}
A4,10 = {10}
A4,11 = {11}

A2,3 = {12, 13, 14, 15}
A3,6 = {12, 13}

A4,12 = {12}
A4,13 = {13}

A3,7 = {14, 15}
A4,14 = {14}
A4,15 = {15}

Permutation/vectorization induced by RDP

Fig. 1. Illustration of the correspondence between RDPs and permutations. In the tree representation, A2,0 = {0, 1, 4, 5} means the node A2,0

contains the (0, 1, 4, 5)th elements of Ω. The coloring code for the observations is red for 2 and white for 1. From level 0 to level 3, edges that are
thicker than others are the partitions of the current level; nodes at the last level are all atomic.

might be theAj,k in one RDP andAj,k′ in another, the corre-
sponding ρ(A) value will then be the same under this map-
ping based specification. The mapping-based notation such
as ρ(·) allows various parameters to be specified in a node-
specific (rather than RDP-specific) manner. This observation
has extremely important computational implications—as
we will show later, the space of nodes A for all canonical
RDPs is of a cardinality linear in the size of Ω, while that of
canonical RDPs is exponential in n. (See Proposition 1 in the
Supplementary Materials.) Therefore it is exactly the ability
to carrying out the computation for the posterior in a node-
specific manner that allows us to achieve linear complexity
in our inference algorithm. Moreover, this notation will also
help elucidate derivations on the posterior.

2.1.4 Priors on RDPs: random RDP

Our strategy of representing multi-dimensional functions
using vectors will only pay off if the vectorization of Ω can
result in an efficient characterization of the data, thereby
leading to stronger energy concentration under wavelet
transforms. For example, the RDP illustrated in Figure 1 will
lead to particularly efficient inference of the corresponding
function. In general, the true optimal vectorization—or the
corresponding RDP—is unknown, and one shall rely on the
data to learn the RDPs that induce “good” vectorizations.

We aim to achieve this in a hierarchical Bayesian ap-
proach by treating the RDP as a latent structure and placing
a prior on the RDP. We consider the following prior on the
RDP originally proposed in the context of density estima-
tion [21], [22], which is specified in a node-specific fashion
and leads to very efficient node-based posterior inference
algorithms that scale linearly in n, the size of Ω.

We describe the prior as a simple generative procedure
for an RDP in an inductive manner. First, T 0 = {Ω} by
definition. Now suppose we have generated T 0, T 1, · · · , T j
for some 0 ≤ j ≤ J − 1, then T j+1 is generated as follows.
For each Aj,k ∈ T j , let D(Aj,k) ⊂ {1, 2, . . . ,m} be the
collection of its divisible dimensions. We randomly draw
a dimension in D(Aj,k), and divide Aj,k in that dimension
to get Aj+1,2k and Aj+1,2k+1. In particular, we let λd(Aj,k)
be the probability for drawing the dth dimension, where∑m
d=1 λd(Aj,k) = 1 and λd(Aj,k) = 0 for d 6∈ D(Aj,k). In

many problems, a priori one has no reason to favor dividing
any particular dimension over another, and a default speci-
fication is to set

λd(Aj,k) = 1/|D(Aj,k)| · 1{d∈D(Aj,k)},

where 1E is the indicator function of whether E holds or
not. This completes the inductive generation of T j+1. The
procedure will terminate after T J is generated as all nodes
in T J are atomic with no divisible dimensions.

The above generative mechanism forms a probability
distribution on the space of RDPs, which is called the
random recursive dyadic partition (RRDP) distribution, and it
is specified by the collection of selection probabilities λd(·)
defined on all potential nodes. We write

T ∼ RRDP(λ),

where {λ(A) : A ∈ A}, and λ(A) =
(λ1(A), λ2(A), . . . , λm(A))′, that is, λ is a mapping
from A to the (m− 1)-dimensional simplex.

It is worth noting that the RRDP is a restricted version
of the more general Bayesian classification and regression
tree (CART) prior [23], [24]. The main constraint in RRDP
compared to the general Bayesian CART is that the former
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is supported on canonical RDPs only—that is, each dyadic
partition must be an even split, occurring at the middle of
the range in one of the divisible dimensions. This additional
restriction ensures that the cardinality of A is linear in n,
thereby reducing the computational complexity required for
inference to O(n).

2.2 Recipes for Bayesian inference

In this section, we present recipes for deriving and sampling
from the posterior of our Bayesian model, and for evaluating
posterior summaries such as the posterior mean of f . We
note that the marginal posterior of the RDP T is the key
component for posterior inference, because once conditional
on T , our model reduces to a standard Bayesian wavelet
regression for which closed-form conditional posteriors are
readily available under common prior specifications.

Interestingly, when a Haar basis is adopted in the
wavelet regression model, the marginal posterior of T can
be calculated analytically in closed form through a recursive
algorithm that is operationally similar to Mallat’s pyra-
mid algorithm, achieving a linear computational complexity
O(n).

2.2.1 Exact Bayesian inference under Haar basis
The Haar wavelet basis is unique in that the (j, k)th wavelet
coefficient under the vectorization induced by any RDP T
is determined by only the locations inside the node Aj,k.
We call this property of the Haar basis node-autonomy and
say that inference under the Haar basis is node-autonomous.
Specifically, for all RDPs in which A is a node and is di-
vided in the dth direction, the corresponding Haar wavelet
coefficient associated with the node A is given by

wd(A) = 1/
√
|A| ·

 ∑
x∈A(d)

l

y(x)−
∑

x∈A(d)
r

y(x)


where A(d)

l and A
(d)
r represent the two children nodes if A

is divided in the dth dimension and |A| = 2J−j is the total
number of locations in A. In contrast, wavelet coefficients
from wavelet bases with longer support than Haar are not
node-autonomous—not only does the coefficient associated
with A depend on the observations within A but on those
in other (often but not always adjacent) nodes in T as well.

Node-autonomy enables the posterior to be computed
in a node-specific fashion, avoiding integration in the much
larger space of RDPs. Consequently, exact inference can be
completed in a computational complexity of the same scale
as the total number of all potential nodes in RDPs, which is
equal to

∏m
i=1(2ni − 1) = O(2mn).

Next we lay out the general strategy for inference. We
show through two theorems that the marginal posterior of
the RDP T is computable in analytically through a recur-
sive algorithm that resembles Mallat’s pyramid algorithm
for two very popular classes of Bayes wavelet regression
models—(i) those that model each wavelet coefficient inde-
pendently given T (Theorem 1); and (ii) those that induce
a hidden Markov model (HMM) for incorporating depen-
dency among the wavelet coefficients given T (Theorem 2).

Theorem 1. Suppose T ∼ RRDP(λ) and given the Haar DWT
under T , one models the wavelet coefficients independently, i.e.,
(wj,k, zj,k)

ind∼ pj,k(w, z |φ) for all (j, k), where φ represents
the hyperparameters of the Bayesian wavelet regression model.
Then the marginal posterior of T is still an RRDP. Specifically,
T |y ∼ RRDP(λ̃) where the posterior selection probability
mapping λ̃ is given as

λ̃d(A) = λd(A)Md(A)Φ(A
(d)
l )Φ(A(d)

r )/Φ(A)

for any non-atomic A ∈ A where Md(A) is the marginal
likelihood contribution from the wavelet coefficient on node A if
it is a node in T and divided in dimension d, i.e., Md(A) =∫
pj,k(wd(A), z |φ) dz and Φ : A → [0,∞) is a mapping

defined recursively (i.e., its value on A depends on its values on
A’s children) as

Φ(A) =
∑

d∈D(A)

λd(A)Md(A)Φ(A
(d)
l )Φ(A(d)

r )

if A is not atomic, and Φ(A) = 1 if A is atomic.

Remark: Φ(Ω) is the overall marginal likelihood. It is a
function of the hyperparameters φ, and can be used for
specifying the hyperparameters φ in an empirical Bayes
strategy using maximum marginal likelihood estimation
(MMLE).

Theorem 2. Suppose T ∼ RRDP(λ) and given T under
a Haar DWT, one models the wavelet coefficients conditionally
independently given a set of latent state variables S = {Sj,k :
j = 0, 1, 2 . . . , J, k = 0, 1, . . . , 2j − 1}

(wj,k, zj,k) |Sj,k = s
ind∼ p

(s)
j,k(w, z |φ) for all (j, k)

where Sj,k ∈ {1, 2, . . . ,K} is a latent state variable associated
with (j, k). Also, suppose the collection of all latent variables is
modeled as a top-down Markov tree (MT) with transition kernel
ρ, S ∼ MT(ρ), i.e.,

P(Sj,k = s′ |Sj−1,bk/2c = s) = ρj(s, s
′)

where ρj(·, ·) is the transition kernel of the Markov model which is
allowed to be different over j. Then the joint marginal posterior of
(T ,S) can be specified fully as the following sequential generative
process. Suppose T 0, T 1, . . . , T j and the latent variables up to
level j − 1 have been generated. (To begin, we have j = 0 and
T 0 = {Ω}.) Then the state variables in level j, are generated from
the following posterior transition probabilities

P(Sj,k = s′ |Sj−1,bk/2c = s, T (j),y)

= ρj(s, s
′)

∑
d∈D(A)

λd(A)M
(s′)
d (A)Φs′(A

(d)
l )Φs′(A

(d)
r )/Φs(A),

where A is the node Aj,k in T j . Given Sj,k = s′, suppose j < J ,
then T j+1 is generated by drawing Dj,k from a multinomial with
probabilities λ̃(A) such that

P(Dj,k = d |Sj,k = s′, T (j),y)

=
λd(A)M

(s′)
d (A)Φs′(A

(d)
l )Φs′(A

(d)
r )∑

d′∈D(A) λd′(A)M
(s′)
d′ (A)Φs′(A

(d′)
l )Φs′(A

(d′)
r )

,

where M
(s)
d (A) is the marginal likelihood contribution from

the wavelet coefficient on node A if it is a node in
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T , is divided in dimension d in T , and its latent
state is s. That is, M

(s)
d (A) =

∫
p

(s)
j,k(wd(A), z |φ) dz

and Φ = (Φ1,Φ2, . . . ,ΦK) : A → [0,∞)K is
a vector-valued mapping defined recursively as Φs(A) =∑
s′ ρj(s, s

′)
∑
d∈D(A) λd(A)M

(s′)
d (A)Φs′(A

(d)
l )Φs′(A

(d)
r ) if

A is not atomic, and Φs(A) = 1 if A is atomic, for all
s ∈ {1, 2, . . . ,K}, where j is the level of A.

Once the marginal posterior of T is computed through
Theorem 1 or Theorem 2, the full joint posterior is available
as the conditional posterior of the rest of our model given
T is available for common Bayesian wavelet regressions.
(More details are given in Section 2.2.2.) Then standard
Bayesian inference can proceed.

In particular, one can draw samples for (T ,S) from their
marginal posterior given in Theorem 2. Then given (T ,S),
one can further sample z from the conditional posterior
corresponding to the chosen wavelet regression model, and
Bayesian inference can proceed in the usual manner. For
example, one can obtain posterior samples of the underlying
function f by first drawing samples

(T (1),S(1), z(1)), (T (2),S(2), z(2)), . . . , (T (B),S(B), z(B)).

Then for the bth draw, we can compute the corresponding
function f (b) using the inverse DWT

f (b) = π−1
T (b)

(
W−1z(b)

)
,

where π−1
T denotes the inverse permutation corresponding

to an RDP T . Based on the posterior samples of f , we
can construct pointwise credible bands and estimate the
posterior mean E(f |y). We can apply Rao-Blackwellization
and obtain the following estimate for the posterior mean

E(f |y) ≈ 1

B

B∑
b=1

π−1
T (b)

(
W−1E(z(b)|T (b)

i ,y)
)
.

For several popular Bayesian wavelet regression models,
the posterior mean can actually be computed analytically
through message passing (MP) without posterior sampling
when the Haar basis is adopted. We next turn to briefly
reviewing these wavelet regression models in Section 2.2.2,
and defer the MP algorithm (Theorem 3) to Supplementary
Materials.

2.2.2 Examples of compatible Bayesian wavelet regression
models

So far we have kept the description of the Bayesian wavelet
regression model general, using generic notations such as
p(wj,k, zj,k |φ) and p(wj,k, zj,k |Sj,k,φ) without spelling
out the details. Next we describe some of the most popular
Bayesian wavelet regression models. They indeed take these
general forms and therefore our framework is applicable to
them.

A popular class of Bayesian wavelet regression models
for achieving adaptive shrinkage of z utilize the so-called
spike-and-slab prior, which introduces a latent binary ran-
dom variable Sj,k for each (j, k) such that

zj,k |Sj,k
ind∼ (1− Sj,k)δ0(zj,k) + Sj,kγ(zj,k|τj , σ)

where δ0(·) is a point mass at 0, and γ(·|τj , σ) is a fixed uni-
modal symmetric density that possibly depends on σ and
another scale parameter τj . A common choice of γ(·|τj , σ) is
the normal distribution with mean 0 and variance τjσ2, de-
noted by φ(·|0,√τjσ), while heavy-tailed priors including
the Laplace and quasi-Cauchy distributions [25] also enjoy
desirable theoretical properties. Specifically, the function
γ(x | τj , σ) is

γ(x | τj , σ) = a exp(−a|x/σ|)/(2σ)

for Laplace priors where a =
√

2/τj , and

γ(x | τj , σ) = (2π)−1/2{1− |x/σ| · Φ̃(|x/σ|)/φ(x/σ)}/σ

for quasi-Cauchy priors with Φ̃(x) =
∫∞
x φ(t | 0, 1)dt.

Many authors [12], [13], [15], [26] adopt independent
priors on the latent shrinkage state variable Sj,k

Sj,k
ind∼ Bern(ρj,k).

One way to specify ρ = {ρj,k, 0 ≤ k < 2j , 0 ≤ j ≤ J − 1}
that properly controls for multiplicity is ρj,k ∝ 2−j . The
specification of τ = {τj , 0 ≤ j ≤ J − 1} of course
depends on the choice of γ(·|τj , σ). For instance, if one
uses τj = 2−αjτ0 for the normal and Laplace prior, this
leads to the reduced parameter τ = (α, τ0). One can use
τj ≡ 1 for the quasi-Cauchy prior. Other authors [11],
[27] show that introducing Markov dependency into the
latent shrinkage states can substantially improve inference
by allowing effective borrowing of information across the
location and scale.

Carrying out inference under WARP requires the condi-
tional posterior of zj,k given (T ,S). For the above popular
models, this posterior is given by

zj,k |Sj,k,y
ind∼ (1− Sj,k)δ0(zj,k) + Sj,kf1(zj,k|wj,k, τj , σ),

where f1(zj,k | wj,k, τj , σ) ∝ φ(wj,k | zj,k, σ) ·γ(zj,k | τj , σ).
The function f1(zj,k | wj,k, τj , σ) is analytically available
if γ(· | τj , σ) is the density of normal, Laplace, or quasi-
Cauchy distributions. For the normal prior where γ(· |
τj , σ) = φ(· | 0,

√
τjσ), f1(· | wj,k, τj , σ) is the density of

N(wj,k/(1 + τ−1
j ), σ2/(1 + τ−1

j )). For Laplace and quasi-
Cauchy priors, analytical forms of f1(· | τj , σ) are available
in [25, Sec. 2.3]. As it is often the mean corresponding to
f1 that is needed for posterior estimation, we here give
the closed forms of the means by integrating out zj,k with
respect to its posterior distribution. Let the corresponding
mean function be µ1(wj,k, τj , σ), which is given by

wj,k/(1 + τ−1
j )

for normal priors,

wj,k−σ
a{e−awj,k/σΦ(wj,k/σ − a)− eawj,k/σΦ̃(wj,k/σ + a)}
e−awj,k/σΦ(wj,k/σ − a) + eawj,k/σΦ̃(wj,k/σ + a)

for Laplace priors, and

wj,k

{
1− exp

(
−
w2
j,k

2σ2

)}−1

− 2
(wj,k
σ

)−1

for quasi-Cauchy priors.
For these wavelet regression models that adopt the

spike-and-slab setup, by Theorem 2 we can derive a fully
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conjugate posterior that takes the same form as the prior.
In particular, for each A ∈ A, under the normal prior for
γ(· | τj , σ), applying Theorem 2 shows that

• The marginal likelihood contribution from the data
within node A if A is divided in dimension d is:

M
(s)
d (A) =

1√
2π(1 + sτj)σ2

exp

{
− wd(A)2

2σ2(1 + sτj)

}
for s = 0, 1.

• The posterior spike probability on A if A is divided
in dimension d is:

ρ̃d(A) = ρ(A)M
(1)
d (A)/Md(A),

where Md(A) = ρ(A)M
(1)
d (A) + (1−ρ(A))M

(0)
d (A).

In most practical problems, the variation in the function
value within each partition block will eventually become
negligible with respect to the noise level, and so further
division within such homogeneous blocks will not improve
statistical efficiency and could lead to overfitting. For ex-
ample, in Figure 1 the partition in the upper left block
(Level 3) along with its descendants is not necessary. Thus
it is also desirable to incorporate adaptivity in the depth
of the wavelet tree along each subbranch and allow it to
be terminated earlier than reaching level J depending on
how smooth the function is across the index space. This
consideration is closely related to the idea of adaptive block
shrinkage [28] in the frequentist wavelet regression analysis.
Once there is little evidence for any interesting structure
within a subset of the index space, then the function value
within that subset can be shrunk to a constant. That is, the
wavelet tree is “pruned” there. Remarkably, wavelet models
with such pruning are also compatible with our WARP
framework and can be readily achieved by introducing a
pruning indicator to accompany Sj,k. We refer interested
readers to Supplementary Materials for additional technical
details on how to incorporate pruning.

For the Haar basis, the posterior mean E(f |y) for the
above wavelet models can be evaluated analytically through
recursive message passing without any Monte Carlo sam-
pling for Bayesian wavelet regression models that adopt
the spike-and-slab setup along with optional pruning of the
wavelet tree, which contains the models without optional
pruning as special cases with zero pruning probabilities.
For completeness, we describe this strategy in the Supple-
mentary Materials and will use it to compute E(f |y) in our
numerical examples.

3 EXPERIMENTS

In this section, we conduct extensive experiments to eval-
uate the performance of our proposed framework in the
image reconstruction task in terms of both estimation ac-
curacy and computational scalability. Applications to other
image processing tasks are discussed in Section 4. We com-
pare WARP to a number of state-of-the-art wavelet, non-
wavelet, and deep neural network-based methods available
in the literature for denoising 2D images. We provide results
on denoising 3D images in the Supplementary Materials.

Throughout these experiments we apply WARP with inde-
pendent spike-and-slab Bayesian wavelet regression models
under the Haar basis along with optional pruning.

Our prior specification is as follows: ρ(A) =
min(1, 2−βjC) for A in the jth resolution (for j < J ),
τj = 2−αjτ0, and η(A) = η0 for all A; we set σ2 to an
estimate based on the finest scale wavelet coefficients [8];
all other parameters in φ = (α, β, σ2, τ, C, η0) are esti-
mated by maximizing the marginal likelihood (available in
a closed form as Φ(Ω) from our recursive message passing
algorithm) at a set of grid points. Supplementary Materials
contain a sensitivity analysis showing that WARP is gener-
ally robust to the values of its hyperparameters. Therefore
we recommend a grid search on a small set rather than a
full optimization as the default tuning method. Gaussian
noise with standard deviation σ is added to the true images
and we apply all methods to the noisy observations for
image reconstruction. For WARP, we use the posterior mean
as the reconstructed image, which is analytically attainable
through Theorem 3.

3.1 Image reconstruction using ImageNet data
We use 100 test images randomly chosen from the ImageNet
dataset [29] to evaluate selected methods in reconstructing
images of various structures. ImageNet is originally used for
large-scale visual recognition in the community of computer
vision, and we here use its Fall 2011 release (consisting
of 14,197,122 urls). We compare our method with eight
existing wavelet and non-wavelet approaches with available
software: 1-dimensional Haar denoising operated on vector-
ized observation [25] or 1D-Haar, translation-invariant 2D
Haar estimation [14] or TI-2D-Haar, shape-adaptive Haar
wavelets [30] or SHAH, adaptive weights smoothing [31]
or AWS, Bayesian smoothing method using the Chinese
restaurant process [32] or CRP, coarse-to-fine wedgelet [33]
or Wedgelet, nonparametric Bayesian dictionary learning
proposed by [34] or BPFA, and the conventional running
median method or RM. We apply the cycle spinning tech-
nique to remove visual artifacts in image reconstruction [35],
[36] for the methods of WARP, 1D-Haar, SHAH, AWS, CRP,
Wedgelet and RM, by averaging 121 local shifts (a step
size up to 5 pixels in each direction). TI-2D-Haar is trans-
lation invariant and BPFA includes cycle spinning based on
patches, and thus no additional cycle spinning is needed
for these two methods. For each method, we calculate the
mean squared error (MSE) and mean absolute error (MAE)
to measure its accuracy, and time each method based on
one replication ran on MacBook Pro with 2.7 GHz Intel core
i7 CPU and 16GB RAM. We implement the methods using
publicly available code, either in R (1D-Haar, SHAH, and
AWS) or Matlab (TI-2D-Haar, CRP, Wedgelet, BPFA, and
RM). WARP is available in both R and Matlab, and we use
the R version to time it.

Figure 2 presents the average MSEs and MAEs of all
methods where σ varies from 0.1 to 0.7. We can first see
that the proposed hierarchical adaptive partition improved
the basic wavelet regression significantly (compare 1D-Haar
vs. WARP) for all scenarios. In fact, WARP is uniformly the
best method under both metrics for all scenarios, with the
performance lead over other methods widening as the noise
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Fig. 2. Comparison of various methods based on 100 randomly selected
512 × 512 images from ImageNet. The method of running median is
off the chart (not plotted here). The maximum standard errors at each
σ among all methods are (0.001, 0.042, 0.071, 0.058) × 10−3 for MSE,
(0.002, 0.062, 0.065, 0.058) × 10−2 for MAE, respectively. The running
time of each method in seconds is 7.2 (WARP), 76.9 (SHAH), 7.9
(AWS), 10.7 (CRP), 8.7 (Wedgelet), 2.1 × 103 (BPFA), and less than
1 (1D-Haar, TI-2D-Haar, RM), based on one test image without cycle
spinning at σ = 0.3 including both tuning and estimation steps.

level increases. The sensitivity analysis in the Supplemen-

tary Materials indicates that the method of WARP is robust
to hyperparameters and choices of γ.

WARP is computationally efficient, benefiting from the
conjugacy of random recursive partition and closed form
expression in Theorem 3. WARP is the fastest adaptive
approach among SHAH, AWS, CRP, Wedgelet, and BPFA.
(The computing times are given in the caption of Figure 2.)
Section 3.2 further compares the scalability of selected meth-
ods using images of various sizes.
3.2 Scalability
Next we verify the linear complexity of the WARP frame-
work using both 2D and 3D images. Usually there are
various ways to tune each method, and we focus on the
estimation step given tuning parameters for all methods
to make a fair comparison. For WARP, one actually may
choose the tuning parameters from a smaller image by
downsampling without loss of much accuracy, in view of
its insensitivity to hyperparameters (Section D in the Sup-
plementary Materials).

Figure 4 (a) compares the scalability of selected methods

(a) true (b) WARP vs 1D-DWT (c) WARP vs 2D-DWT

Fig. 3. Comparison of energy concentration for three methods—WARP,1D Haar, and 2D Haar—on ImageNet images. Column (a) plots the true
image, Column (b) compares WARP versus 1D DWT, and Column (c) compares WARP versus 2D DWT. In Columns (b) and (c), the red and blue
lines correspond to the right y axis, plotting the number of coefficients to attain a specific energy level (x axis) by deterministic DWT and WARP,
respectively. The black curve corresponds to the left y axis and is 100% less the ratio of the blue and red curves, indicating the percentage reduction
in the number of wavelet coefficients to achieve the same sum of squares by WARP.
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TABLE 1
MSE (×10−3) of WARP and DnCNN on 12 widely used test images and BSD68.

σ 12 widely used test images BSD68
1 2 3 4 5 6 7 8 9 10 11 12

0.2
WARP 2.89 1.42 2.49 4.07 3.65 3.39 3.17 1.69 4.33 2.55 2.50 2.59 3.75

DnCNN 2.77 1.65 2.55 3.37 2.90 3.49 2.88 1.73 3.98 2.44 2.33 2.68 3.35

0.4
WARP 5.69 3.15 5.57 7.97 8.21 6.01 6.64 3.15 6.38 4.46 4.16 4.67 6.10

DnCNN 15.64 14.14 15.39 15.93 15.85 16.56 15.53 13.28 15.37 14.57 13.49 14.69 14.90

0.6
WARP 8.23 4.31 8.12 10.86 12.26 8.36 9.57 4.40 7.96 6.06 5.66 6.22 7.88

DnCNN 75.83 71.12 73.34 73.49 71.73 77.06 75.16 70.31 71.31 72.75 69.96 71.46 71.65

0 0.5 1 1.5

·107
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500
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(a) 2D images (b) 3D images

Fig. 4. Scalability of various methods using 2D and 3D images. Each
line is the running time taken by the estimation step (y-axis) using the
corresponding method versus the number of locations in the image (x-
axis).

in Figure 2; we exclude 1D-Haar and RM as their reconstruc-
tions are highly inaccurate, and BPFA as it scales poorly
even at 512 × 512 images. We can see that the empirical
running time approximately follows a linear function of the
number of locations. In fact, WARP takes only about 2 min-
utes for a large image of 4096×4096 that contains 17 million
pixels, and 5.3 seconds for an image of 1024 by 1024. Figure 4
suggests that Wedgelet and SHAH take quadratic time or
even more, while TI-2D-Haar, AWS, and CRP takes linear
time, but their performances are substantially inferior to that
of WARP as shown in Figure 2. CRP seems to have a smaller
slope than WARP, but it requires considerably longer tuning
time than WARP according to the total running time with
the tuning step included in the caption of Figure 2, at least
based on its latest version of implementation to date.

It is worth noting that while many state-of-the-art meth-
ods designed for 2D images such as Wedgelet, TI-2D-Haar,
and BPFA require substantial modifications for a new di-
mensional setting, such as 3D images, the proposed WARP
framework is directly applicable to m-dimensional data
without modification, with the same linear scalability as
suggested by Figure 4 (b).

3.3 Comparison with deep neural networks
In this section, we compare the proposed method WARP
with convolutional neural networks. In particular, we apply
WARP and the denoising convolutional neural networks
(DnCNN) proposed in [37] to two popular benchmark
datasets: the twelve widely used test images (Figure 7 in
Supplementary Materials) and the BSD68 data [38] which
contains 68 natural images from the Berkeley segmentation
dataset. DnCNNs have been reported to achieve the state-
of-the-art performance in various image processing tasks

[37]. We adopt a pre-trained model available in Matlab for
DnCNN.

Table 1 reports the MSEs of WARP and DnCNN on the
12 widely used test images and BSD68 (averaged) at three
noise levels when σ = 0.2, 0.4, 0.6. We can see that for
light noise when σ = 0.2, WARP leads to smaller MSEs
in five out of twelve images (i.e., Image 2, 3, 6, 8, 12)
and gives comparable performance in other images. WARP
gives uniformly smaller MSEs when σ = 0.4 (intermediate
noise) and constantly outperforms DnCNN by one order of
magnitude when σ = 0.6 (large noise), which is consistent
with our observations in the ImageNet experiment. Besides
the excellent performance of WARP, it is worth mention-
ing that unlike DnCNN which requires substantially more
extensive pre-training and tuning, WARP does not require
pre-training at all, and its small amount of tuning can be
completely automated without user intervention. We do ac-
knowledge that the performance of the pre-trained DnCNN
might be improved with more extensive training.

4 ENHANCED ENERGY CONCENTRATION AND BE-
YOND 2D IMAGE RECONSTRUCTION

The excellent performance of WARP in image reconstruction
suggests that the model is capable of identifying efficient
representation of the underlying structure in a variety of
real images as it is designed to achieve. This also suggests
that extracting the underlying representation can potentially
benefit a variety of other downstream processing tasks. In
this section we first use a concept of “energy concentration”
to examine how such efficiency is achieved and then discuss
the potential applicability in other image processing tasks
such as compression.

Energy (or information) concentration under wavelet
transforms can be quantified by the number of wavelet
coefficients needed to retain a given proportion of the sum
of squares of the underlying function. An efficient wavelet
representation will only need a small number of coefficients
to capture most of the information contained in the function
(as measured in terms of its sum of squares). Such a rep-
resentation leads to high signal-to-noise ratios on a small
number of coefficients that will facilitate all downstream
processing tasks.

Next we compare energy concentration under WARP to
that under classical 1D and 2D wavelet representations to
quantify the improvement in energy concentration WARP
achieves through adaptively identifying good permutations.
To this end, we use the same ImageNet data as used in Sec-
tion 3. For each image, we draw a sample from the posterior
distribution of partition trees produced by WARP, and com-
pute the number of coefficients required to attain a range
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of energy levels (i.e., the total sum of squares) on a noisy
observation at σ = 0.1 and compare them to those required
under standard 1D and 2D wavelet transforms. Figure 3
presents the numbers of wavelet coefficients required over
the proportion of the sum of squares for three representative
images.

Focusing on the proportion of the sum of squares from
0.85 to 0.95, we can see that the adaptive representation
achieved by WARP requires substantially fewer numbers of
wavelet coefficients (the red solid lines with scales on the
right of each plot) to attain the same energy level than tra-
ditional 1D and 2D Haar DWT (the blue dashed lines with
scales on the right of each plot). In Figure 3, we also plotted
the percentage reduction in the number of coefficients (the
black line with scales on the left of each plot) at each energy
level. The largest coefficient saving of WARP is (80%, 70%,
70%) compared to 2D DWT, and this saving becomes (97%,
99%, 90%) when compared to 1D DWT. Enhanced energy
concentration of WARP is observed in a wide range of test
images in the database, and the extent of improvement in
energy concentration varies according to the abundance of
asymmetric structures present in the underlying image.

The improved energy concentration of WARP is ex-
pected to benefit a variety of downstream processing tasks
beyond image denoising. For example, efficient image com-
pression can be achieved using the posterior mode of the
WARP model, which provides a sparse coding of the image.
Coupling this idea with a pair of encoder and decoder,
we introduce an algorithm for efficient image and video
compression in a follow-up paper [39]. Interested readers
may refer to that paper for additional numerical experi-
ments involving a variety of datasets, including 2D Im-
ageNet, 3D medical image, real-life YouTube videos, and
surveillance videos, in which WARP-based compression
substantially outperforms several state-of-the-art compres-
sion approaches.

5 APPLICATION TO RETINAL OPTICAL COHERENCE
TOMOGRAPHY

We apply the proposed method to a dataset of optical co-
herence tomography (OCT) volumes. OCT provides a non-
invasive imaging modality to visualize cross-sections of tis-
sue layers at micrometer resolution, and thus is instrumental
in various medical applications especially for the diagnosis
and monitoring of patients with ocular diseases [40], [41],
[42], [43]. The accurate interpretation of OCT images may
require the involvement of both retina specialists and com-
prehensive ophthalmologists, and this task is compounded
by heavily noised observations at a low signal-to-noise ratio
due to sample-based speckle and detector noise [44], [45],
[46]. Therefore, reconstruction of OCT images is necessary to
improve both manual and automated OCT image analysis,
and is increasingly important when OCT images are used
to extract objective and quantitative assessment in ophthal-
mology which is touted as one advantage of OCT in clinical
practice [42].

We use the OCT data available at http://people.duke.
edu/∼sf59/Fang TMI 2013.htm, acquired by a Bioptigen
SDOCT system (Durham, NC, USA) at an axial resolution
of ∼ 4.5 µm. We apply the methods of TI-2D-Haar, SHAH,

TABLE 2
Mean PSNR for 18 foveal images reconstructed by BRFOE, K-SVD,

PGPD, BM3D, MSBTD, SSR, and WARP. Results for the methods other
than WARP are from [46].

BRFOE K-SVD PGPD BM3D MSBTD SSR WARP
25.32 27.03 27.01 27.04 27.08 28.10 28.18

AWS, CRP, Wedgelet, BPFA, and WARP, to two noisy slices
(plotted as “Obs.” in Figure 5). We also have access to a
registered and averaged image by averaging 40 repeatedly
sampled scans [46], which is referred to as the “noiseless”
reference image and is used to compare the quality of re-
constructed images. From the results in Figure 5, we clearly
see that WARP gives the best global qualitative metric using
MSE and MAE among all methods in comparison.

Visual comparison provides a detailed assessment of re-
constructed images on local features that might be clinically
relevant. For the first observation in Figure 5, we can see
WARP distinguishes all layers well (the boxed region in
the noiseless image), especially compared to TI-2D-Haar
and AWS whose reconstructions are blurred across layers.
For the second observation, we observe a separation of
the posterior cortical vitreous from the internal limiting
membrane in the noiseless image, which shows the potential
to progress to vitreomacular traction (VMT) [47]. This sep-
aration becomes less clear if using TI-2D-Haar (especially
the left proportion), although TI-2D-Haar gives MSE and
MAE that are closer to WARP than the other methods. For
both observations, there is still substantial noise left in the
denoised images by SHAH, and AWS gives a reconstruction
exhibiting undesirable patches. This study confirms that
WARP is capable to denoise images while keeping impor-
tant features present in the image, due to its ability to adapt
to the geometry of the underlying structures.

We further compare WARP with a study conducted
in [46], which considers another six method: BRFOE [48], K-
SVD [49], PGPD [50], BM3D [51], MSBTD [52], and SSR [46].
These six methods have been applied to 18 foveal images
from 18 subjects, using four slices nearby the original obser-
vation at various stages of their implementation. Although
WARP does not require nearby information and can even
process a 3D volume if such data exist, we apply WARP
to the observation that averages the original observation
and the four nearby slices only to make a fair comparison.
In Table 2, we adopt the mean of peak signal-to-noise
ratio (PSNR) for all methods to align with [46], which is
calculated as −10 log10(MSE) (noting that we rescale all
observations and noiseless gray-scale images by 255). We
can see that WARP gives the largest mean of PSNR, thus
achieves excellent performances compared to a wide range
of existing methods in this application setting. We choose
the two subjects considered in Figure 5, and plot the recon-
structed images by WARP utilizing the nearby four slices
in Figure 6. It suggests that WARP even has an enhanced
display compared to the “noiseless” image, especially in the
lower half of the image.
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6 DISCUSSION

We have introduced the WARP framework that uses random
recursive partitioning to induce a prior on the permutations
of the index space, thereby achieving efficient inference on
multi-dimensional functions by converting it into a Bayesian
model choice problem involving one-dimensional competi-
tive generative models. While our approach is Bayesian, one
may consider other methods such as frequentist adaptive
partitioning and shrinkage methods that incorporate the
same idea. We do find satisfying the fully principled proba-
bilistic inferential recipes that arise under our approach.

The proposed framework WARP can be applied along
with a wider range of Bayes wavelet regression models,
including those that allow heterogeneous noise levels. If the
error ε in Model (1) has general covariance matrix Σε, it
often still makes sense to assume that the covariance of the
error u in the wavelet domain, i.e. WΣεW

′, is diagonal, due
to the so-called whitening property of wavelet transforms
discussed in [53]. In this case, let σ2

j = Var(uj,k) for each
j. Then one may estimate σ2

j using a robust estimator
of the scale based on {wj,k, 0 ≤ k ≤ 2j − 1} given a
tree, for example, using the median absolute deviation of
{wj,k, 0 ≤ k ≤ 2j − 1} rescaled by 0.6745. Alternatively,
one can adopt a hyperprior on location-based unknown
variance σ2

j ∼ IG(ν + 1, νσ2
0), which is an inverse gamma

prior with shape ν + 1 and scale νσ2
0 (thus the prior mean

is σ2
0). The hyperparameters (ν, σ2

0) are either specified by
users or estimated using data, for instance, we may estimate
σ2

0 by the median estimate based on the finest scale wavelet
coefficients [8] .

Finally, while we introduce the WARP framework in the
context of image denoising, we believe that the adaptive
wavelet representation is applicable to a wide range of other
tasks involving multi-dimensional signal processing.
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Fig. 5. Two retinal OCT datasets (titled “Obs.”) and reconstructed images using TI-2D-Haar, SHAH, AWS, CRP, Wedgelet, BPFA, and WARP. The
two metrics following each method are the MSE (×10−4) and MAE (×10−2) respectively. The “noiseless” reference is an registered and averaged
image.

Obs. (152.4, 9.9) TI-2D-Haar (7.3, 2.0) SHAH (15.7, 2.7)

AWS (9.4, 2.2) CRP (7.4, 2.1) Wedgelet (7.7, 2.1)

BPFA (7.8, 2.2) WARP (6.5, 1.9) “noiseless”

Obs. (159.4, 10.1) TI-2D-Haar (10.9, 2.4) SHAH (18.4, 3.0)

AWS (12.9, 2.5) CRP (11.5, 2.5) Wedgelet (11.1, 2.4)

BPFA (11.7, 2.6) WARP (10.2, 2.3) “noiseless”
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Fig. 6. Reconstructed images using WARP based on the noisy observation and its four nearby slices. The two metrics following each method are
the MSE (×10−4) and MAE (×10−2) respectively. The “noiseless” reference is an registered and averaged image.

WARP (6.6, 2.0) “noiseless”

WARP (10.0, 2.3) “noiseless”
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Supplementary Materials for “Learning
Asymmetric and Local Features in
Multi-Dimensional Data through

Wavelets with Recursive Partitioning”
Supplementary materials contain (A) Proposition 1 and

its proof, (B) descriptions of WARP with local block shrink-
age, (C) details of the recursive message passing algorithm,
(D) proofs of all theorems, (E) a sensitivity analysis for
the proposed framework, (F) plots of the 12 widely used
test images used in Section 3.3, and (G) comparison of
WARP and selected methods using experiments of 3D image
reconstruction.

A CARDINALITY OF THE SPACE OF RDPS

Proposition 1. The log cardinality of the tree space induced by
RDPs is O(n) when m = 2.

Proof of Proposition 1. Let c(a, b) be the cardinality of the tree
space induced by RDPs for an 2a by 2b image. We can obtain
the following recursive formula

c(a, b) =

{
c2(a− 1, b) + c2(a, b− 1), if a, b ≥ 1

1 if a = 0 or b = 0.

We assert that there exist two constants (k1, k2) such that
k2 ≥ k1 > 1 and

c(a, b) ∈
[

1

2
k2a+b

1 ,
1

2
k2a+b

2

]
,

for any a ≥ 1 and b ≥ 1.
First consider a = 1 and b ≥ 1. We have c(1, b) =

c2(1, b− 1) + 1 when b ≥ 1 and c(1, 0) = 1 when b = 0. The
quantity c(1, b) is actually the number of “strongly” binary
trees of height ≤ b, which possesses an analytical form

c(1, b) = bk2b

c,

according to [54], where

k = exp


∞∑
j=0

2−j−1 log(1 + c−2(1, j))

 ≈ 1.503.

Letting k1 =
√
k and k2 = k and noting k2b ≥ 2 for all

b ≥ 1, we obtain that

1

2
k21+b

1 =
1

2
k2b

≤ k2b

− 1 ≤ bk2b

c ≤ k2b

≤ 1

2
k21+b

,

for all b ≥ 1. Therefore, the assertion holds for all a = 1 and
b ≥ 1. Since c(a, b) = c(b, a), the assertion also holds for all
a ≥ 1 and b = 1.

For any a ≥ 1 and b ≥ 1, it is easy to verify that if the
assertion holds for (a, b− 1) and (a− 1, b), then it holds for
(a, b). We then complete the proof by induction.

B WARP WITH LOCAL BLOCK SHRINKAGE

Traditional wavelet analysis is done by fixing the maximum
depth of the wavelet tree at J . That is, one partitions the
index space all the way down to the finest level of “atomic”
blocks. In most practical problems, once the blocks are small
enough, the function value within the block becomes essen-
tially constant with respect to the noise level, and so further
division within such homogeneous blocks will be wasteful
and will reduce statistical efficiency. For example, in Figure 1
the partition in the upper left block (Level 3) along with
its descendants is not necessary. Thus it is often desirable
to incorporate adaptivity in the depth of the wavelet tree
and allow it to be terminated earlier than reaching level J .
In practice the optimal maximum depth varies across Ω.
For example, some parts of an image may contain many
interesting details, while the rest do not—e.g., an image of
a painting hung on a gray wall. A high resolution will be
needed to capture the details in the painting, but would
be unnecessary and introduce additional variability in the
estimation for the wall.

This consideration is closely related to the idea of adap-
tive block shrinkage [28] in the frequentist wavelet regres-
sion analysis. Once there is little evidence for any interesting
structure within a subset of the index space, then the func-
tion value within that subset can be shrunk to a constant.
That is, the wavelet tree is “pruned” there. Next we show
that such pruning can be achieved in a hierarchical model-
ing manner, and the resulting Bayesian wavelet regression
model is again compatible with our WARP framework.

To achieve such pruning, we introduce another set of
latent variables R = {Rj,k : j = 0, 1, . . . , J − 1, k =
0, 1, . . . , 2j − 1}, where Rj,k = 1 indicates that the tree is
pruned at node (j, k). Next we describe a generative prior
on R that will blend well with the WARP framework. To
start, let R0,0

ind∼ Bern(η0,0) and for all j ≥ 1, and

Rj,k |Rj−1,bk/2c
ind∼
{

Bern(ηj,k) if Rj−1,bk/2c = 0

Bern(1) if Rj−1,bk/2c = 1.

That is, if a node’s parent has been pruned, then its children
are also pruned by construction. From now on, we shall
refer to this prior model on R as an optional pruning (OP)
model [22], which is specified by a set of pruning probabilities
ηj,k ∈ [0, 1]. We write R ∼ OP(η).

Given R, we can modify our prior on S to reflect the
effect of pruning. For example, instead of an independent
prior on S, we can now generate them as follows

Sj,k |R
ind∼
{

Bern(ρj,k) if Rj,k = 0

Bern(0) if Rj,k = 1.

That is, if the node has not been pruned, then we generate
Sj,k from the independent Bernoulli as in the standard
spike-and-slab setup, but if the node has been pruned, then
by construction, we must have Sj,k = 0 due to pruning.

It is often reasonable to specify the prior shrinkage and
pruning probabilities as functions of the level in the RDP.
That is, ρj,k = ρj and ηj,k = ηj for all k. In the node-specific
notation, ρ(A) = ρj and η(A) = ηj for all jth node A ∈ A.
In this case, one can show that this joint model on (S,R) is
equivalent to a Markov tree model with three states defined
in terms of the combinations of (Sj,k, Rj,k) = (1, 0) , (0,0),
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or (0,1), and with the corresponding transition matrix for
Sj,k given by

ρj =

ρj(1− ηj) (1− ρj)(1− ηj) ηj
ρj(1− ηj) (1− ρj)(1− ηj) ηj

0 0 1

 .
This allows us to derive the posterior from Theorem 2, and
carry out inference accordingly. Specifically, for each A ∈ A,
let p0(A) be the marginal likelihood contributed from the
wavelet coefficients in A and its descendants if A is pruned,
i.e.,

p0(A) =
1

(
√

2πσ2)|A|−1
exp

{
−
∑
x∈A(y(x)− ȳ(A))2

2σ2

}
,

where ȳ(A) =
∑
x∈A y(x)/|A|. IfA ∈ T , the following maps

are directly available from Theorem 2:

• The marginal likelihood contribution from the data
within node A if A is divided in dimension d:

Md(A) = ρ(A)M
(1)
d (A) + (1− ρ(A))M

(0)
d (A);

• The posterior spike probability ρ̃d ofA ifA is divided
in dimension d:

ρ̃d(A) = ρ(A)M
(1)
d (A)/Md(A);

• The marginal likelihood from data on
A and its descendants: Ψ(A) = (1 −
η(A))

∑
d∈D(A) λd(A)Md(A)Ψ(A

(d)
l )Ψ(A

(d)
r ) +

η(A)p0(A) if A is non-atomic; Ψ(A) = 1
if A is atomic.

• The posterior probability of pruning A:

η̃(A) = η(A)p0(A)/Ψ(A);

• The posterior probability for A to be divided in
dimension d given A is not pruned:

λ̃d(A) = (1− η(A))
λd(A)Md(A)Ψ(A

(d)
l )Ψ(A

(d)
r )

Ψ(A)− η(A)p0(A)
.

C RECURSIVE MESSAGE PASSING ALGORITHM

For the Haar basis, the posterior mean E(f |y) can be
evaluated analytically through recursive message passing
without any Monte Carlo sampling for Bayesian wavelet
regression models that adopt the spike-and-slab setup along
with optional pruning of the wavelet tree, which contains
the models without optional pruning as special cases with
zero pruning probabilities. We describe the strategy next
and will use it to compute E(f |y) in our numerical exam-
ples.

For each A ∈ A, let c(A) be the scale (father wavelet) co-
efficient on A if A ∈ T , and let ϕ(A) = E(c(A)1{A∈T } |y).
Note that E(f |y) is given by ϕ(A) for all atomic A. To
compute the mapping ϕ, we introduce two auxiliary map-
pings ψ0(A) = P(A ∈ T , R(A) = 0 |y) and ϕ0(A) =
E(c(A)1{A∈T ,R(A)=0} |y). Let Ā(d) denote the parent of A
in T if A is a child node after dividing its parent in the dth
dimension, and let P(A) ⊂ {1, 2, . . . ,m} be the collection of
dimensions ofA that do not have full support [0, 2Ji−1], i.e.,
those that have been partitioned at least once in previous
levels. uting the tri-variate mapping (φ0, ϕ0, ϕ) : A → R3.

Theorem 3. To initiate the recursion, for A = Ω, we let
ψ0(A) = 1 − η̃(A), ϕ0(A) = (1 − η̃(A))|A|/

√
n, and

ϕ(A) = |A|/
√
n. Suppose we have evaluated these mappings

up to level j − 1, for level j = 1, . . . , J , we have

ψ0(A) =
∑

d∈P(A)

ψ0(Ā(d))λ̃d(Ā
(d))(1− η̃(A));

ϕ0(A) = (1− η̃(A)) ·
∑

d∈P(A)

λ̃d(Ā
(d))√
2

[
ϕ0(Ā(d))−

ρ̃d(Ā
(d))µ1(wd(Ā

(d)))ψ0(Ā(d))(−1)1(A is the left child of Ā(d))

]
;

ϕ(A) =
ϕ0(A)

1− η̃(A)
+

1√
2

∑
d∈P(A)

{ϕ(Ā(d))− ϕ0(Ā(d))}λd(Ā(d)).

Remark: Note that this recursion is top-down (from low to
high resolutions), whereas that for computing Φ is bottom-
up (from high to low resolutions). The two-directional re-
cursion shares the spirit of the forward-backward algorithm
for HMMs.

Once we have computed the mapping (ϕ0, ψ0, ϕ) : A →
R3, the posterior mean E(f |y) is then given by ϕ applied
on the atomic nodes. Note that this theorem applies to the
special case with no pruning as well.

D PROOFS OF THEOREMS

Proof of Theorem 1. Because Theorem 1 can be considered a
special case with a single latent state, its proof follows imme-
diately from the latter theorem, which we prove below.

Proof of Theorem 2. First we verify that the mapping Φs(A)
is the marginal likelihood contributed from data with loca-
tions inA, given thatA ∈ T and that the latent state variable
associated with the parent of A in T is s. We show this by
induction. First note that if A is atomic, then

Φs(A) = P(y(A) |A ∈ T , S(Ap) = s) = 1

by design as there are no wavelet coefficients associated
with atomic nodes. Now, suppose we have shown that
Φs(A) = P(y(A) |A ∈ T , S(Ap) = s) for all A with level
higher than j. Then if A is of level j, it follows that

P(y(A) |A ∈ T , S(Ap) = s)

=
∑
s′

∑
d

P(y(A) |A ∈ T , S(A) = s′, S(Ap) = s,D(A) = d)

× P(S(A) = s′ |A ∈ T , S(Ap) = s)

× P(D(A) = d |A ∈ T , S(Ap) = s)

=
∑
s′

ρj(s, s
′)

∑
d∈D(A)

λdM
(s′)
d (A)Ψs′(A

d
l )Ψs′(A

(d)
r ),

which leads to the definition of Φs(A) in Theorem 2.
Next let us derive the joint marginal posterior of (T ,S).

Note that

P(Sj,k = s′ |Sj−1,bk/2c = s, T (j),y)

=
P(Sj,k = s′, Sj−1,bk/2c = s,y(A) | T (j))

P(Sj−1,bk/2c = s,y(A) | T (j))
.
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Now we have

P(Sj,k = s′, Dj,k = d,y(A) | T (j), Sj−1,bk/2c = s)

=ρj(s, s
′)λd(A)M

(s′)
d (A)Φs′(A

(d)
l )Φs′(A

(d)
r ),

which leads to

P(Sj,k = s′,y(A) | T (j), Sj−1,bk/2c = s)

=ρj(s, s
′)
∑
d

λd(A)M
(s′)
d (A)Φs′(A

(d)
l )Φs′(A

(d)
r )

and furthermore,

P(Sj,k = s′ |Sj−1,bk/2c = s, T (j),y)

=
ρj(s, s

′)
∑
d λd(A)M

(s′)
d (A)Φs′(A

(d)
l )Φs′(A

(d)
r )∑

s′′ ρj(s, s
′′)
∑
d λd(A)M

(s′′)
d (A)Φs′′(A

(d)
l )Φs′′(A

(d)
r )

,

where the denominator is just Φs(A).
Finally,

P(Dj,k = d |Sj,k = s′, T (j),y)

=
P(Dj,k = d,y(A) |Sj,k = s′, T (j))

P(y(A) |Sj,k = s′, T (j))

=
λd(A)M

(s′)
d (A)Φs′(A

(d)
l )Φs′(A

(d)
r )∑

d′ λd′(A)M
(s′)
d′ (A)Φs′(A

(d′)
l )Φs′(A

(d)
r )

.

This completes the proof.

Proof of Theorem 3. We first obtain the recursive recipe for
computing the maps (ψ0, ϕ0) following Theorem 1:

ψ0(A)

=
∑

d∈P(A)

P(Ā(d) ∈ T , R(Ā(d)) = 0 |y)λ̃d(Ā
(d))(1− η̃(A))

=
∑

d∈P(A)

ψ0(Ā(d))λ̃d(Ā
(d))(1− η̃(A)),

and

ϕ0(A) = E
(
c(A)1{A∈T ,R(A)=0} |y

)
=

∑
d∈P(A)

E
(
c(A)1{Ā(d)∈T ,D(Ā(d))=d,R(A)=0} |y

)
=

∑
d∈P(A)

E
(
c(A) | Ā(d) ∈ T , D(Ā(d)) = d,R(A) = 0,y

)
× P

(
Ā(d) ∈ T , D(Ā(d)) = d,R(A) = 0 |y

)
=(1− η̃(A))

∑
d∈P(A)

λ̃d(Ā
(d))√
2

[
ϕ0(Ā(d))−

ρ̃d(Ā
(d))µ1(wd(Ā

(d)))ψ0(Ā(d)) · (−1)1(A is the left child of Ā(d))

]
.

(2)

We next derive the recursive formula for ϕ(A). Let
ϕ1(A) = E(c(A)1{A∈T ,R(A)=1} |y), then we have ϕ(A) =
E(c(A)1{A∈T } |y) = ϕ0(A) + ϕ1(A). Note that

ϕ(A) =
∑

d∈P(A)

E
(
c(A)1{Ā(d)∈T ,D(Ā(d))=d} |y

)
, (3)

and for each d ∈ P(A), we have

E
(
c(A)1{Ā(d)∈T ,D(Ā(d))=d} |y

)
=
∑
r=0,1

E
(
c(A)1{Ā(d)∈T ,D(Ā(d))=d,R(Ā(d))=r} |y

)
=
∑
r=0,1

E
(
c(A) | Ā(d) ∈ T , D(Ā(d)) = d,R(Ā(d)) = r,y

)
× P(Ā(d) ∈ T , D(Ā(d)) = d,R(Ā(d)) = r |y). (4)

For the second term in (4), we have

P(Ā(d) ∈ T , D(Ā(d)) = d,R(Ā(d)) = r |y)

=P(D(Ā(d)) = d | Ā(d) ∈ T , R(Ā(d)) = r,y)

× P(Ā(d) ∈ T , R(Ā(d)) = r |y)

=λ̃d(Ā
(d))1−rλd(Ā

(d))rψr(Ā
(d)).

For the first term in (4), it is easy to check that

E
(
c(A) | Ā(d) ∈ T , D(Ā(d)) = d,R(Ā(d)) = r,y

)

=


1√
2

[
ϕ0(Ā(d))
ψ0(Ā(d))

− ρ̃d(Ā(d))µ1(wd(Ā
(d)))

×(−1)1(A is the left child of Ā(d))

]
if r = 0

1√
2
ϕ1(Ā(d))/ψ1(Ā(d)) if r = 1,

where we use the independence between c(A) and D(A)
given A ∈ T . Plugging the two terms into (4) , we obtain
that

E
(
c(A)1{Ā(d)∈T ,D(Ā(d))=d} |y

)
=

1√
2

[
ϕ0(Ā(d))− ρ̃d(Ā(d))wd(Ā

(d))/(1 + τ−1
j−1)

× (−1)1(A is the left child of Ā(d)) · ψ0(Ā(d))

]
λ̃d(Ā

(d))

+
1√
2
ϕ1(Ā(d))λd(Ā

(d)). (5)

Combining the result in (3) and (5), and comparing it
with ϕ0(A) in (2), we obtain that

ϕ(A) = ϕ0(A)/(1− η̃(A)) +
1√
2

∑
d∈P(A)

ϕ1(Ā(d))λd(Ā
(d)),

which concludes the proof by plugging in ϕ1(·) = ϕ(·) −
ϕ0(·).

E SENSITIVITY ANALYSIS

In this section, we conduct a sensitivity analysis for the
proposed WARP framework at various choices of hyperpa-
rameters.

We first implement the method of “WARP-full” which
chooses φ by a full optimization of the marginal likeli-
hood using two simulated images (f1, f2) explicitly given
in Section G. Recall that the row of WARP selects φ at a
limited set of grid points. Table 3 shows that the MSEs
of WARP-full are almost identical to the row of WARP.
This observation is consistent across many scenarios we
have tested. Therefore, the method of WARP seems robust
in terms of hyperparameters, and we shall recommend a
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TABLE 3
Average MSEs (×10−2) of WARP-full and WARP based on 100 replications under the setting of Table 5.

n = 64 n = 128

Method f = f1 f = f2 f = f1 f = f2

σ = 0.1 0.2 σ = 0.1 0.2 σ = 0.1 0.2 σ = 0.1 0.2
WARP-full 0.02 0.04 0.04 0.12 0.01 0.02 0.02 0.05
WARP 0.02 0.04 0.04 0.11 0.01 0.02 0.02 0.05

TABLE 4
Sensitivity analysis of WARP when hyperparameters are selected

differently using the Shepp-Logan phantom test image (256× 256) in
Matlab at various σ. The average MSEs (×10−2) are reported based

on 5 replications.

τ η 0.1 0.3 0.5 0.7

function constant 0.03 0.27 0.57 0.89
function mix 0.03 0.27 0.58 0.88
function full 0.03 0.27 0.57 0.87
mix constant 0.03 0.26 0.57 0.94
mix mix 0.03 0.26 0.57 0.91
mix full 0.03 0.27 0.57 0.91
full constant 0.03 0.27 0.58 0.86
full mix 0.03 0.27 0.56 0.87
full full 0.03 0.27 0.57 0.88

maximization over a small set of grid points as default.
In addition, we investigate the performances of WARP at
various choices of γ in B0 including Laplace and quasi-
Cauchy priors. We find out these B0 lead to almost exactly
the same MSEs as normal priors (results not shown here).

We further investigate the sensitivity of WARP by con-
sidering the following ways to select hyperparameters τ and
η:

• τ : “function” (we use τj = 2−αjτ0 as in Section 3);
“mix” (we use separate τj only for the last two levels
and a constant for other levels, therefore we have
three free parameters for τ ); “full” (we use separate
τj ’s for all levels j )

• η: “constant” (we use η(A) = η0 for all A as in Sec-
tion 3);“mix” (we use ηj for the last two levels and a
constant for other levels, therefore we have three free
parameters for η); “full” (we use separate ηj ’s for all
levels j).

Table 4 shows that the MSEs only exhibit minimal differ-
ences across various combinations of tuning approaches.
This confirms the previous findings that the proposed
framework is not sensitive to hyperparameters.

F 12 WIDELY USED TEST IMAGES

The 12 widely used test images used in Section 3.3 are ploted
in Figure 7.

G 3D IMAGES

Unlike WARP which is directly applicable tom-dimensional
data for m > 2, other methods compared in 3.1 such as
Wedgelet, TI-2D-Haar, and BPFA may require substantial
modifications for a new dimensional setting. SHAH is con-
ceptually applicable for 3D data, but the existing software
takes hours to days in the tuning step for 3D images of

Fig. 7. The widely used 12 test images.

intermediate size while its performance in 2D settings is
not among top two. Therefore, we compare WARP with
RM and a collection of other approaches, including a 3D
image denoising method via local smoothing and non-
parametric regression (LSNR) proposed by [55], anisotropic
diffusion (AD) method [56], total variation minimization
(TV) method [57] and optimized non-local means (ONLM)
method [58]. The TV method is modified by [55] by min-
imizing a 3D-version of the TV criterion. We adopt simu-
lation settings in [55], which uses two artificial 3D images
with the following true intensity functions:

f1(x, y, z) = −(x− 1

2
)2 − (y − 1

2
)2 − (z − 1

2
)2

+ 1{(x,y,z)∈R1∪R2},

where R1 = {(x, y, z) : |x− 1
2 | ≤

1
4 , |y −

1
2 | ≤

1
4 , |z −

1
2 | ≤

1
4} andR2 = {(x, y, z) : (x− 1

2 )2+(y− 1
2 )2 ≤ 0.152, |z− 1

2 | ≤
0.35};

f2(x, y, z) =
1

4
sin(2π(x+ y + z) + 1) +

1

4
+ 1{(x,y,z)∈S1∪S2},

where S1 = {(x, y, z) : (x− 1
2 )2+(y− 1

2 )2 ≤ 1
4 (z− 1

2 )2, 0.2 ≤
z ≤ 0.5} and S2 = {(x, y, z) : 0.22 ≤ (x− 1

2 )2 + (y − 1
2 )2 +

(z − 1
2 )2 ≤ 0.42, z < 0.45}.

Table 5 shows the comparison of various methods using
MSE. It is worth mentioning that the numerical records for
the other five methods to estimate f1 and f2 are from [55]
as the code is not immediately available and the running
time for some method such as LSNR can take hours to days
(including the tuning step). WARP is uniformly the best
approach among all the selected methods at least under the
simulation setting.
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TABLE 5
3D denoising for two images f1, f2 in terms of MSE (×10−2). WARP uses 5× 5× 5 local shifts and are based on 100 replications. The mean of

100 MSEs is reported, and the maximum standard error is 0.00.

Method
n = 64 n = 128

f = f1 f = f2 f = f1 f = f2

σ = 0.1 0.2 σ = 0.1 0.2 σ = 0.1 0.2 σ = 0.1 0.2

WARP 0.02 0.04 0.04 0.11 0.01 0.02 0.02 0.05
LSNR 0.03 0.08 0.06 0.13 0.01 0.03 0.02 0.06
TV 0.03 0.09 0.06 0.15 0.01 0.04 0.03 0.06
AD 0.06 0.35 0.07 0.38 0.03 0.20 0.04 0.22
ONLM 0.03 0.12 0.06 0.14 0.01 0.06 0.03 0.06
RM 0.22 0.33 0.11 0.26 0.08 0.19 0.06 0.14


