
Progressive Tandem Learning for Pattern
Recognition With Deep Spiking Neural Networks

Jibin Wu , Chenglin Xu, Xiao Han, Daquan Zhou, Malu Zhang ,

Haizhou Li , Fellow, IEEE, and Kay Chen Tan , Fellow, IEEE

Abstract—Spiking neural networks (SNNs) have shown clear advantages over traditional artificial neural networks (ANNs) for low

latency and high computational efficiency, due to their event-driven nature and sparse communication. However, the training of deep

SNNs is not straightforward. In this paper, we propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and

efficient pattern recognition, which is referred to as progressive tandem learning. By studying the equivalence between ANNs and SNNs

in the discrete representation space, a primitive network conversionmethod is introduced that takes full advantage of spike count to

approximate the activation value of ANN neurons. To compensate for the approximation errors arising from the primitive network

conversion, we further introduce a layer-wise learningmethodwith an adaptive training scheduler to fine-tune the network weights. The

progressive tandem learning framework also allows hardware constraints, such as limited weight precision and fan-in connections, to be

progressively imposed during training. The SNNs thus trained have demonstrated remarkable classification and regression capabilities

on large-scale object recognition, image reconstruction, and speech separation tasks, while requiring at least an order of magnitude

reduced inference time and synaptic operations than other state-of-the-art SNN implementations. It, therefore, opens up amyriad of

opportunities for pervasivemobile and embedded deviceswith a limited power budget.

Index Terms—Deep spiking neural network, ANN-to-SNN conversion, spike-based learning, large-scale object recognition, speech

separation, efficient neuromorphic inference

Ç

1 INTRODUCTION

HUMAN brains, after evolving for many hundreds of mil-
lions of years, are incredibly efficient and capable of per-

forming complex pattern recognition tasks. In recent years,
the deep artificial neural networks (ANNs) that are inspired
by the hierarchically organized cortical networks have
become the dominant approach formany pattern recognition

tasks and achieved remarkable successes in a wide spectrum
of application domains, instances include speech processing
[1], [2], computer vision [3], [4], language understanding [5]
and robotics [6]. The deep ANNs, however, are notoriously
expensive to operate both in terms of computational cost and
memory usage. Therefore, they are prohibited from large-
scale deployments in pervasive mobile and Internet-of-
Things (IoT) devices.

In contrast, the adult’s brains only consume about 20
watts to perform complex perceptual and cognitive tasks
that are only equivalent to the power consumption of a dim
light bulb [7]. While many efforts are devoted to improving
the memory and computational efficiency of deep ANNs,
for example, network compression [8], network quantiza-
tion [9] and knowledge distillation [10], it is more interest-
ing to exploit the efficient computation paradigm inherent
to the biological neural systems that are fundamentally dif-
ferent from and potentially integratable with the aforemen-
tioned strategies.

The spiking neural networks (SNNs) are initially intro-
duced to study the functioning and organizing mechanisms
of biological brains. Recent studies have shown that deep
ANNs also benefit from biologically realistic implementa-
tion, such as event-driven computation and sparse commu-
nication [11], for computational efficiency. Neuromorphic
computing (NC), as an emerging non-von Neumann com-
puting paradigm, aims to mimic the biological neural sys-
tems with SNNs in silicon [12]. The novel neuromorphic
computing architectures, including Tianjic [13], TrueNorth
[14], and Loihi [15], have shown compelling throughput
and energy-efficiency in pattern recognition tasks, crediting
to their inherent event-driven computation and fine-grained

� Jibin Wu, Xiao Han, Daquan Zhou, and Malu Zhang are with the Depart-
ment of Electrical and Computer Engineering, National University of Sin-
gapore, Singapore 119077, Singapore. E-mail: {jibin.wu, e0269084,
daquan.zhou}@u.nus.edu, maluzhang@nus.edu.sg.

� Chenglin Xu is with the School of Computer Science and Engineering and
Temasek Laboratories @ NTU, Nanyang Technological University, Singa-
pore 639798, Singapore. E-mail: xuchenglin@ntu.edu.sg.

� Haizhou Li is with the Department of Electrical and Computer Engineer-
ing, National University of Singapore, Singapore 119077, Singapore, and
also with the School of Data Science, The Chinese University of Hong
Kong, Shenzhen 518172, China. E-mail: haizhou.li@nus.edu.sg.

� Kay Chen Tan is with the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong, Hong Kong. E-mail: kctan@polyu.
edu.hk.

Manuscript received 30 June 2020; revised 16 Aug. 2021; accepted 7 Sept. 2021.
Date of publication 21 Sept. 2021; date of current version 3 Oct. 2022.
This work was supported in part by A*STAR under RIE2020 Advanced
Manufacturing and Engineering Domain (AME) Programmatic under Grant
(A1687b0033, Project Title: Spiking Neural Networks), in part by the IAF,
A*STAR, SOITEC, NXP, and by the National University of Singapore under
FD-fAbrICS: Joint Lab for FD-SOI Always-on Intelligent & Connected Systems
under Grant I2001E0053. The work of Jibin Wu was supported by the Zhejiang
Lab under Grant 2019KC0AB02. The work of Malu Zhang was supported in
part by the China Postdoctoral Science Foundation under Grant 2020M680148
and in part by the Zhejiang Lab’s International Talent Found for Young
Professionals.
(Corresponding author: Malu Zhang.)
Recommended for acceptance by C. Wang.
Digital Object Identifier no. 10.1109/TPAMI.2021.3114196

7824 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0135-4188
https://orcid.org/0000-0003-0135-4188
https://orcid.org/0000-0003-0135-4188
https://orcid.org/0000-0003-0135-4188
https://orcid.org/0000-0003-0135-4188
https://orcid.org/0000-0002-2345-0974
https://orcid.org/0000-0002-2345-0974
https://orcid.org/0000-0002-2345-0974
https://orcid.org/0000-0002-2345-0974
https://orcid.org/0000-0002-2345-0974
https://orcid.org/0000-0001-9158-9401
https://orcid.org/0000-0001-9158-9401
https://orcid.org/0000-0001-9158-9401
https://orcid.org/0000-0001-9158-9401
https://orcid.org/0000-0001-9158-9401
https://orcid.org/0000-0002-6802-2463
https://orcid.org/0000-0002-6802-2463
https://orcid.org/0000-0002-6802-2463
https://orcid.org/0000-0002-6802-2463
https://orcid.org/0000-0002-6802-2463
mailto:jibin.wu@u.nus.edu
mailto:e0269084@u.nus.edu
mailto:daquan.zhou@u.nus.edu
mailto:maluzhang@nus.edu.sg
mailto:xuchenglin@ntu.edu.sg
mailto:haizhou.li@nus.edu.sg
mailto:kctan@polyu.edu.hk
mailto:kctan@polyu.edu.hk

parallelism of the computing units. Moreover, the co-
located memory and computation can effectively mitigate
the problem of low bandwidth between the computing
units and memory (i.e., von Neumann bottleneck) in data-
driven pattern recognition tasks.

While it remains a challenge to train large-scale spiking
neural networks that can be deployed onto these NC chips
for real-world pattern recognition tasks. Due to the discrete
and hence non-differentiable nature of spiking neuronal
function, the powerful back-propagation (BP) algorithm
that is widely used for deep ANN training is not directly
applicable to the SNN.

Recent studies suggest that the dynamical system formed
by spiking neurons can be formulated as a recurrent ANN
[16], whereby the subthreshold membrane potential dynam-
ics of these leaky integrators (i.e., spiking neurons) can be
effectively modeled. In addition, the discontinuity of the
spike generation function can be circumvented with surro-
gate gradients that provide an unbiased estimation of the
true gradients [17], [18], [19], [20], [21], [22]. In this way, the
canonical error back-propagation through time algorithm
(BPTT) can be applied to optimize the SNN. However, it is
both computation- and memory-inefficient to optimize the
SNN using the BPTT algorithm since spike trains are typi-
cally very sparse in both time and space. Therefore, the scal-
ability of the technique remains to be improved, for instance,
the size of SNNs is GPU memory bounded as demonstrated
in a gesture classification task [19]. Furthermore, the vanish-
ing and exploding gradient problem [23] of the BPTT algo-
rithm adversely affects the learning in face of input spike
trains of long temporal duration or low firing rate.

To address the aforementioned issues in surrogate gradi-
ent learning, a novel tandem learning framework [24] has
been proposed. This learning framework consists of an ANN
and an SNN coupled through weight sharing, wherein the
SNN is used to derive the exact neural representation, while
the ANN is designed to approximate the surrogate gradients
at the spike-train level. The SNNs thus trained have demon-
strated competitive classification and regression capabilities
on a number of frame- and event-based benchmarks, with
significantly reduced computational cost and memory
usage. Despite the promising learning performance demon-
strated by these spike-based learningmethods, their applica-
bility to deep SNNs with more than 10 hidden layers
remains elusive.

Following the idea of rate-coding, recent studies have
shown that SNNs can be effectively constructed from ANNs
by approximating the activation value of ANN neurons with
the firing rate of spiking neurons [25], [26], [27], [28], [29],
[30]. This approach not only simplifies the training proce-
dures of the aforementioned spike-based learning methods
but also enable SNNs to achieve the best-reported results on
a number of challenging tasks, including object recognition
on the ImageNet-12 dataset [27], [28] and object detection on
the PASCAL VOC andMS COCO datasets [29]. However, to
reach a reliable firing rate approximation, it requires a notori-
ously large encoding time window with at least a few hun-
dred time steps. Moreover, the total number of synaptic
operations required to perform one classification usually
increases with the size of the encoding time window, there-
fore, a large encoding time window will also adversely

impact the computational efficiency. An ideal SNN model
should not only perform pattern recognition tasks with high
accuracy but also obtained the results rapidly with as few
time steps as possible, and efficiently with a small number of
synaptic operations. In this work, we introduce a novel
ANN-to-SNN conversion and learning framework to pro-
gressively convert a pre-trained ANN into an SNN for accu-
rate, rapid, and efficient pattern recognition.

To improve the inference speed and energy efficiency,
we introduce a layer-wise threshold determination mecha-
nism to make good use of the encoding time window of
spiking neurons for information representation. To main-
tain a high pattern recognition accuracy, a layer-wise learn-
ing method with an adaptive training scheduler is further
applied to fine-tune the network weights after each primi-
tive layer conversion that compensates for the conversion
errors. The proposed layer-wise conversion and learning
framework also supports effective algorithm-hardware co-
design by progressively imposing hardware constraints
during the training process. To summarize, the main contri-
butions of this work are in four aspects:

� Rethinking ANN-to-SNN Conversion: We introduce a
new perspective to understand the neural discretiza-
tion process of spiking neurons by comparing it to the
activation quantization of ANN neurons, which
offers a new angle to understand and perform net-
work conversion. By making efficient use of the spike
count that is upper bounded by the encoding time
window size to represent the information of counter-
parts, the inference speed, and computational cost
can be significantly reduced over other conversion
methods grounded on a firing rate approximation.

� Progressive Tandem Learning Framework:We propose a
novel layer-wise ANN-to-SNN conversion and learn-
ing framework with an adaptive training scheduler
to support effortless and efficient conversion, which
allows fast, accurate, and efficient pattern recognition
with deep SNNs.1 The proposed conversion frame-
work also allows easy incorporation of hardware con-
straints into the training process, for instance, limited
weight precision and fan-in connections, such that
the optimal performance can be achieved when
deploying onto the actual neuromorphic chips.

� Rethinking Spike-based Learning Methods: We conduct
a comprehensive study on the scalability of both the
time-based surrogate gradient learning and the spike
count-based tandem learning methods, revealing
that the accumulated gradient approximation errors
may impede the training convergence in deep SNNs.

� Solving Cocktail Party Problem with SNN: To evaluate
the proposed learning framework, we apply deep
SNNs to separate high fidelity voices from a mixed
multiple-talker speech, which effectively mimics the
perceptual and cognitive ability of the human brain.
To the best of our knowledge, this is the first work
that successfully applied deep SNNs to solve the
challenging cocktail party problem.

1. The source codes of the PTL framework are public available at:
https://github.com/deepspike/progressive_tandem_learning

WU ETAL.: PROGRESSIVE TANDEM LEARNING FOR PATTERN RECOGNITION WITH DEEP SPIKING NEURAL NETWORKS 7825

https://github.com/deepspike/progressive_tandem_learning

The rest of the paper is organized as follows. In Section 2,
we first review the conventional ANN-to-SNN conversion
methods and discuss the trade-off between accuracy and
latency. In Section 3, we compare the neuronal functions
between the spiking neurons and ANN neurons, and their
discrete equivalents, which provide a new perspective to
perform network conversion. With this, we propose to use
the spike count of spiking neurons as the bridge between the
spiking neurons and their ANN counterparts for network
conversion. In Section 4, to minimize the conversion errors,
we propose a novel layer-wise learning method with an
adaptive training scheduler to fine-tune network weights. In
Sections 5 and 6, we validate the proposed network conver-
sion and learning framework, that is referred to as progressive
tandem learning (PTL), through a set of classification and
regression tasks, including the large-scale image classifica-
tion, time-domain speech separation and image reconstruc-
tion. Finally, we conclude the paper in Section 7.

2 RELATED WORK

Recently, many ANN-to-SNN conversion methods are pro-
posed. Nearly all of these methods follow the idea of rate-
coding, which approximates the activation value of ANN
neurons with the firing rate of spiking neurons. In what fol-
lows, we will review the development of ANN-to-SNN con-
version methods and highlight the issue of accuracy and
latency trade-off in these methods.

The earliest attempt for ANN-to-SNN conversion was
presented in [31], where P�erez-Carrasco et al. devised an
approximation method for leaky integrate-and-fire (LIF)
neurons using ANN neurons. The pre-trained weights of
ANN neurons are rescaled by considering the leaky rate
and other parameters of spiking neurons before copying
into the SNN. This conversion method was proposed to
handle event streams captured by the event-driven camera,
whereby promising recognition results were demonstrated
on the human silhouette orientation and poker card symbol
recognition tasks. While this conversion method requires a
large number of hyperparameters to be determined manu-
ally and the conversion process suffers from quantization
and other approximation errors.

There are recent studies onANN-to-SNN conversionwith
applications to accurate object recognition and detection on
frame-based images. Cao et al. [25] proposed a conversion
framework by using the rectified linear unit (ReLU) as the
activation function for ANN neurons and set the bias term to
zero. The activation value of ANN neurons can thus be well
approximated by the firing rate of integrate-and-fire (IF) neu-
rons. Furthermore, themax-pooling operation, which is hard
to determine in the temporal domain for a rate-based SNN,
is replaced with the average pooling. Diehl et al. [26] further
improved this conversion framework by analyzing the
causes of performance degradation, which reveals the poten-
tial problems of over- and under-activation of spiking neu-
rons. To address these problems, they proposed model- and
data-based weight normalization schemes to rescale the
SNN weights based on the maximum activation values of
ANN neurons. These normalization schemes prevent the
over- and under-activation of spiking neurons and strike a
good balance between the firing threshold and the model

weights. As a result, near-lossless classification accuracies
were reported on the MNIST dataset with fully connected
and convolutional spiking neural networks.

Rueckauer et al. [27] identified a quantization error caused
by the reset-to-zero scheme of IF neurons, where surplus
membrane potential over the firing threshold is discarded
after firing. This quantization error tends to accumulate over
layers and severely impacts the classification accuracy of
converted deep SNNs. To address this problem, they pro-
pose a reset-by-subtraction scheme to preserve the surplus
membrane potential after each firing. Moreover, a modified
data-based weight normalization scheme is introduced to
improve the robustness against outliers, which significantly
improves the firing rate of spiking neurons and hence the
inference speed of SNN. For the first time, they had demon-
strated competitive results to the ANN counterparts on the
challenging ImageNet-12 object recognition task.

In the same line of research, Hu et al. [30] provided a sys-
tematic approach to convert deep residual networks and
propose an error compensation scheme to address the accu-
mulated quantization errors. With these modifications, they
achieved near-lossless conversion for spiking residual net-
works up to 110 layers. Kim et al. [29] extended the conver-
sion framework by applying the weight normalization
channel-wise for convolutional neural networks and pro-
pose an effective strategy for converting ANN neurons with
both positive and negative activation values. The proposed
channel-wise normalization scheme boosted the firing rate
of neurons and hence improved the information transmis-
sion rate. Benefiting from these modifications, competitive
results are demonstrated in the challenging objection detec-
tion task where the precise coordinate of bounding boxes is
required to be predicted. Sengupta et al. [28] further opti-
mized the weight normalization scheme by taking into con-
sideration the behavior of spiking neurons at the run time,
which achieved the best-reported result on the ImageNet-12
dataset. To improve the applicability of the aforementioned
conversion methods to the pooling layer as well as to reduce
the overall computational overhead, Xu et al. [32] and Wang
et al. [33] proposed to normalize the firing threshold instead
of the weights.

In these earlier studies, methods are proposed for the fir-
ing threshold determination or weight normalization so as
to achieve a good firing rate approximation. Despite com-
petitive results achieved by these conversion methods, the
underlying firing-rate assumption has led to an inherent
trade-off between accuracy and latency, which requires a
few hundred to thousands of time steps to reach a stable fir-
ing rate. Rueckauer et al. [27] provided a theoretical analysis
of this issue by analyzing the firing rate deviation of these
ANN-to-SNN conversion methods. By assuming a constant
input current to spiking neurons at the first layer, the actual
firing rate of the first (Eq. (1)) and subsequent layers
(Eq. (2)) can be summarised as follows

r1i ðtÞ ¼ a1i rmax � V 1
i ðtÞ
t#

(1)

rliðtÞ ¼
XMl�1

j

wl
ijr

l�1
j ðtÞ þ blirmax � V l

i ðtÞ
t#

; (2)

7826 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

where rliðtÞ denotes the firing rate of neuron i at layer l and
rmax denotes the maximum firing rate that is determined by
the time step size. a1i is the activation value of ANN neuron i
at the first layer, V 1

i ðtÞ is themembrane potential of the corre-
sponding spiking neuron, and # is the neuronal firing thresh-
old. Ml�1 is the total number of neurons in layer l� 1 and bli
is the bias term of ANN neuron i at layer l. Ideally, the firing
rate of spiking neurons should be proportional to the activa-
tion value of their ANN counterparts as per the first term of
Eq. (1). While the surplus membrane potential that has not
been discharged by the end of simulation will cause an
approximation error as shown by the second term of Eq. (1),
which can be counteracted with a large firing threshold or a
large encoding time window. Since increasing the firing
threshold will inevitably prolong the evidence accumulation
time, a proper firing threshold that can prevent spiking neu-
rons from either under- or over-activating is usually pre-
ferred and the encoding time window is extended to
minimize such a firing rate approximation error.

Besides, this approximation error accumulates gradually
while propagating over layers as shown in Eq. (2), thereby a
further extension of the encoding time window is required
to compensate. As such, a few thousand time steps are typi-
cally required to achieve a competitive accuracy for deep
SNNs with more than 10 layers [28], [29]. From these formu-
lations, it is clear that to approximate the continuous input-
output representation of ANNs with the firing rate of spik-
ing neurons will inevitably lead to the accuracy and latency
trade-off. To overcome this issue, as will be introduced in
the following sections, we propose a novel conversion
method that is grounded on the discrete neural representa-
tion, whereby the spike count, upper bounded by the
encoding time window size, is taken to approximate the dis-
crete input-output representation of ANNs. To make effi-
cient use of the spike count for information representation,
we propose a novel firing threshold determination strategy
such that rapid and efficient pattern recognition can be
achieved with SNNs. To counteract the conversion errors
and hence ensure high accuracies in pattern recognition
tasks, a layer-wise learning method is further proposed to
fine-tune the network.

3 RETHINKING ANN-TO-SNN CONVERSION

Over the years, many spiking neuron models are developed
to describe the rich dynamical behavior of biological neurons.
Most of them, however, are too complex for real-world pat-
tern recognition tasks. As discussed in Section 2, for computa-
tional simplicity and ease of conversion, the IF neuron model
is commonly used in ANN-to-SNN conversion works [26],
[27], [28]. Although this simplified spiking neuron model
does not emulate the rich sub-threshold dynamics of biologi-
cal neurons, it preserves attractive properties of discrete and
sparse communication, therefore, allows for efficient hard-
ware implementation. In this section, we reinvestigate the
approximation of input-output representation between a
ReLUANNneuron and an integrate-and-fire spiking neuron.

3.1 Spiking Neuron Versus ANN Neuron

Let us consider a discrete-time simulation of spiking neu-
rons with an encoding time window of Ns that determines

the inference speed of an SNN. At each time step t, the
incoming spikes to the neuron i at layer l are transduced
into synaptic current zli½t� according to

zli½t� ¼
X
j

wl�1
ij sl�1

j ½t� þ bli; (3)

where sl�1
j ½t� indicates the occurrence of an input spike at

time step t, and wl�1
ij is the synaptic weight between the pre-

synaptic neuron j and the post-synaptic neuron i at layer l.
bli can be interpreted as a constant injecting current.

The synaptic current zli½t� is further integrated into the
membrane potential V l

i ½t� as per Eq. (4). Without loss of gen-
erality, a unitary membrane resistance is assumed in this
work. The membrane potential is reset by subtracting the
firing threshold after each firing as described by the last
term of Eq. (4).

V l
i ½t� ¼ V l

i ½t� 1� þ zli½t� � #lsli½t� 1�: (4)

An output spike is generated whenever the V l
i ½t� rises

above the firing threshold #l (determined layer-wise) as
follows

sli½t� ¼ QðV l
i ½t� � #lÞ with QðxÞ ¼ 1; if x � 0

0; otherwise

�
:

(5)

The spike train sli and spike count cli for a time window of
Ns can thus be determined and represented as follows

sli ¼ fsli½1�; . . . ; sli½Ns�g

cli ¼
XNs

t¼1

sli½t�:
(6)

For non-spiking ANN neurons, let us describe the neuro-
nal function of neuron i at layer l as

ali ¼ f
X
j

wl�1
ij xl�1

j þ bli

 !
; (7)

which has wl�1
ij and bli as the weight and bias. xl�1

j and ali
denote the input and output of the ANN neuron. fð�Þ
denotes the activation function, which we use the ReLU in
this work. For ANN-to-SNN conversion, an ANN with the
ReLU neurons is first trained, that is called pre-training,
before the conversion.

3.2 Neural Discretization Versus Activation
Quantization

In the conventional ANN-to-SNN conversion studies, the
firing rate of spiking neurons is usually taken to approxi-
mate the continuous input-output representation of the pre-
trained ANN. As discussed in Section 2, a spiking neuron
takes a notoriously long time window to reliably approxi-
mate a continuous value. Recent studies, however, suggest
such a continuous neural representation may not be neces-
sary for ANNs [34]. In fact, there could be little impact on
the network performance when the activation value of
ANN neurons are properly quantized to a low-precision

WU ETAL.: PROGRESSIVE TANDEM LEARNING FOR PATTERN RECOGNITION WITH DEEP SPIKING NEURAL NETWORKS 7827

discrete representation [35], [36], which is known as activa-
tion quantization.

In ANNs, the activation quantization refers to the map-
ping of a floating-point activation value al;fi to a quantized
value al;qi . With a ReLU activaiton function, the activation
quantization can be formulated as follows

âl;fi ¼ minðmaxðal;fi ; 0Þ; aluÞ

’l ¼ alu
Nq

al;qi ¼ round
âl;fi
’l

 !
� ’l;

(8)

where alu refers to the upper bound of the quantization
range at layer l, whose values are usually determined from
the training data. Nq is the total number of quantization lev-
els and ’l is the quantization scale for layer l. With such a
discrete neural representation, the computation and storage
overheads during the training and inference of ANNs can
be significantly reduced. The success of activation quantiza-
tion can be explained by the fact that there is a high level of
redundancy in the continuous neural representation.

In SNNs, the information is inherently discretized into
spike trains according to the neuronal dynamics of spiking
neurons, which is referred to as the neural discretization
hereafter. It is worth noting that the size of the encoding
time window determines the discrete representation space
for SNNs. The activation quantization of ANNs leads to a
reduction in data storage, which takes place in the spatial
domain. By mapping the discrete neural representation of a
good performing ANN to an SNN, it is expected that we
translate the reduction of the data storage into the reduction
of the encoding time window size, thus allowing rapid and
efficient pattern recognition with SNNs.

The ANN neurons respond to the input stimuli instantly,
while spiking neurons respond to the input spike trains
through a temporal process within a time window. In order
to establish a correspondence between the activation quanti-
zation of ANN neurons and the neural discretization of
spiking neurons, we simplify the neural discretization pro-
cess by assuming the preceding layer’s spike trains and the
constant injecting current are integrated and discharged
instantly. The overall contributions from the preceding
layer’s spike trains and constant injecting current can be
summarized by the free aggregate membrane potential (no
firing) [24] defined as

V l
i ¼

X
j

wl�1
ij cl�1

j þ bliNs: (9)

By considering bliNs as the bias term and cl�1
j as the input to

ANN neurons that defined in Eq. (7), V l
i is exactly the same

as the pre-activation quantity of non-spiking ANN neurons.
By considering the spike count of spiking neurons as the
information carrier, the simplification of neural discretiza-
tion provides the basis for mapping the discrete inputs of
an ANN neuron to the discrete spike count inputs of a spik-
ing neuron.

Note that an IF neuron responds to the input spike trains
by firing zero or a positive number of output spikes. It

performs a non-linear transformation similar to that of the
ReLU activation function of an ANN neuron. As defined in
Eq. (8), the activation quantization discretizes the positive
activation value of ReLU neurons, by a fixed quantization
scale ’l, into an integer. Similarly, the neural discretization
of an IF neuron discretizes the positive-valued V l

i by a fixed
discretization scale, that is the firing threshold #l, into a dis-
crete spike count, that can be formulated as follows

V̂ l
i ¼ minðmaxðV l

i ; 0Þ; V l
uÞ

#l ¼ V l
u

Ns

V l;q
i ¼ round

V̂ l
i

#l

 !
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

�cl
i

�#l;

(10)

where V l
u refers to the free aggregated membrane potential

upper bound of layer l. The Eqs. (8) and (10) establish a corre-
spondence between the activation quantization of a ReLU
neuron and the discrete neural representation of an IF neu-
ron, thus provides the basis for mapping the discrete output
of an ANN neuron to the spike count output of a spiking
neuron. It is worth noting that the quantization scale ’l is
usually stored independently for ANNs and multiplied to
the fixed point number during operations. However, the dis-
cretization scale #l is only stored at the spiking neuron and
does not propagate together with output spike trains to the
next layer. This issue can be easily counteracted bymultiply-
ing #l to the weights of neurons in the subsequent layer lþ 1.

With the simplification of neural discretization, we show
that the discrete input-output representation of ANN neu-
rons can be well approximated with spiking neurons. Fol-
lowing this formulation, an SNN can be constructed from
the pre-trained ANN by directly copying its weights. The
constant injecting current to spiking neurons can be deter-
mined by dividing the bias term of the corresponding ANN
neuron over Ns. According to Eq. (10), the firing threshold
#l of spiking neurons at layer l can be determined by divid-
ing the upper bound V l

u over Ns. From Eqs. (7) and (9), it
clear that the upper bound V l

u is equivalent to and hence
can be directly taken from the maximum activation value alu
of the corresponding ANN layer.

However, two potential errors may arise from this formu-
lation: a quantization error affected by the encoding time
window size and a spike count approximation error arising
from the temporal structure of input spike trains that may
affect the actual discharging of V l

i . These conversion errors,
however, can be effectively mitigated by the threshold nor-
malization mechanism and the layer-wise training method
that will be introduced in the following sections.

3.3 Threshold LayerNorm

To better represent the quantization range of ANN neurons
using spiking neurons that have a pre-defined encoding
time window Ns, we introduce a novel threshold determi-
nation mechanism for spiking neurons. To properly define
the quantization range of ANN neurons in a layer, we need
to determine the activation value upper bound alu.

As shown in Fig. 1 and also highlighted in [27], the alu
tends to be biased by the outlier samples, for instance, the

7828 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

a1u of Conv1 layer is five times larger than the 99th percentile
(highlighted as the blue dotted line). To make efficient use
of the available discrete representation space and reduce
the quantization errors, we propose to use the 99th or 99.9th
percentile of all ali in a layer, determined from the training
data, as the upper bound alu such that the key information
can be well-preserved. Given the equivalence of alu and V l

u

established in the earlier section, the firing threshold #l of
spiking neurons at layer l can hence be determined by
dividing the value of alu over Ns. For percentiles larger than
99.9th, the calculated firing threshold is prone to be affected
by the outlier. On the other hand, a percentile below 99th
will result in some informative activation range not repre-
sented in the SNN. In practice, we observe these two per-
centiles remain relatively stable across data batches with a
sufficiently large batch size (e.g., 128 or 256). Therefore, the
alu can be effectively derived from a random training batch.

To further improve the numerical resolution for convolu-
tional neural networks, the firing threshold can be deter-
mined independently for each channel similar to that
proposed in [29]. While we did not notice significant
improvements in the classification or regression perfor-
mance in our experiments, probably due to the layer-wise
learning method that we have applied counteracts the per-
formance drop.

3.4 Neural Coding

A suitable neural encoding scheme is required to convert the
static input feature tensors or images into spike trains for
neural processing in SNNs. It was found that a direct discre-
tization of the inputs introduces significant distortions to the
underlying information. While discretizing the feature ten-
sors derived from the first network layer can effectively pre-
serve the information by leveraging the redundancies in the
high-dimensional feature representation [37]. Following this
approach, we interpret the activation value ali of ANN neu-
rons as the input current to the corresponding spiking neu-
rons and add it to Eq. (4) at the first time step. The spike
trains are generated by distributing this quantity over conse-
cutive time steps according to the dynamic of IF neurons; the

spiking output then starts from the first hidden layer. This
neural encoding scheme effectively discretizes the feature
tensor and represents it as spike counts.

The neural decoding determines the output class from
the synaptic activity of spiking neurons. Instead of using
the discrete spike counts, we suggest using the free aggre-
gate membrane potential of neurons in the final SNN layer
to determine the output class, which provides a much
smoother learning curve over the discrete spike count due
to the continuous error gradients derived at the output layer
[24]. Moreover, this continuous quantity can also be directly
considered as the outputs in regression tasks, such as image
reconstruction and speech separation that will be presented
later in this paper. As will be explained in the following sec-
tion, the neural encoding and decoding layers are added
into the hybrid network shown in Fig. 2B at the first and the
last network conversion stage, respectively.

4 PROGRESSIVE TANDEM LEARNING

The primitive ANN-to-SNN conversion method introduced
in the earlier section provides amore efficient way to approx-
imate the input-output representation of ANNs. However,
the conversion process inherently introduces quantization
and spike count approximation errors as discussed in Sec-
tion 3.2. Such errors tend to accumulate over layers and
cause significant performance degradation especially with a
small Ns. This therefore calls for a training scheme to fine-
tune the network weights after the primitive conversion, so
as to compensate for these conversion errors.

There have been spike-based learning schemes, such as
time-based surrogate gradient learning [16] and spike
count-based tandem learning methods [24], for SNN train-
ing in an end-to-end manner. However, they don’t work the
best for the required fine-tuning task. For example, the sur-
rogate gradients approximated from these methods tend to
be noisy for an extremely short encoding time window that
we would like to have. As will be seen in Section 5.2, gradi-
ent approximation errors accumulate over layers with these
end-to-end learning methods, which significantly degrade
the learning performance for an SNN of over 10 layers.

To address this issue, we propose a layer-wise learning
method, whereby ANN layers are converted into SNN
layers one layer at a time to prevent the gradient approxi-
mation errors from accumulating. We define the conversion
and weight fine-tuning of one SNN layer as one stage.
Therefore, for an ANN network of L layers, as shown in
Fig. 2A, it takes L stages to complete the entire conversion
and fine-tuning process.

The details of each training stage are illustrated in Fig. 2C.
All spiking neurons in the same SNN layer share the same
firing threshold, which is first determined according to the
proposed Threshold LayerNorm mechanism. Besides, the
constant injecting current to spiking neurons is determined
by dividing the corresponding bias term of ANN neurons
over Ns. Following the tandem learning approach [24], a
hybrid network is further constructed by coupling the con-
verted SNN layer to the pre-trained ANN layer through
weight sharing, thereafter the ANN layer becomes an auxil-
iary structure to facilitate the fine-tuning of the converted
SNN layer. At each training stage, the PTL scheme follows

Fig. 1. Distribution of the activation value ali of ReLU neurons in the pre-
trained ANN layers. Here, the horizontal axis represents the activation
values, while the vertical axis represents the number of neurons in a log
scale. The majority of neurons output low activation values and the num-
ber of neurons decreases rapidly as the activation value increases. The
dotted lines mark the 99th percentile of the number of neurons in each
layer.

WU ETAL.: PROGRESSIVE TANDEM LEARNING FOR PATTERN RECOGNITION WITH DEEP SPIKING NEURAL NETWORKS 7829

the tandem learning idea except that 1) we fix the weights of
the SNN layers in the previous stages; 2) we update only one
SNN layer togetherwith all ANN layers.

4.1 Tandem Learning

As shown in Fig. 2B, the spike trains, derived from the pre-
ceding SNN layer, and their equivalent spike counts are for-
ward propagated to the coupled layer. In the coupled layer,
the spiking neurons take spike trains as input and generate
spike counts as output, while the ANN neurons take spike
counts as input and generate an output quantity that
approximates the spike count of the coupled spiking neu-
rons. To allow for weight sharing between the ANN and the
SNN layers, we take the spike counts as the bridge. To this
end, let us express the non-linear transformation of a spik-
ing neuron as

cli ¼ gðsl�1;wl�1
i ; bli; #

lÞ; (11)

where gð�Þ denotes the effective transformation performed
by spiking neurons. Given the state-dependent nature of
spike generation, it is not feasible to directly determine an
analytical expression from sl�1 to cli. Here, we simplify the
spike generation process by assuming the resulting synaptic
currents from sl�1 are evenly distributed over time. We thus
obtain the interspike interval of the output spike train as

Dl
i ¼ r

#lNs

ðPj w
l�1
ij cl�1

j þ bliNsÞ

 !
; (12)

where rð�Þ denotes the ReLU non-linearity. The equivalent
output spike count can be further determined as

cli ¼
Ns

Dl
i

¼ 1

#l
r
X
j

wl�1
ij cl�1

j þ bliNs

 !
: (13)

In practice, to reuse the original ANN layer for the fine-
tuning purpose, we absorb the scaling factor 1=#l into the
learning rate. This configuration allows spike-train level
error gradients to be effectively approximated from the
ANN layer. It was shown that the ANN-SNN tandem learn-
ing method works more efficiently for rate-coded networks
than other spike-based learning methods that update the
weights for each time step [24].

In this paper, the tandem learning rule allows the spiking
synaptic filters to be fine-tuned after the primitive conver-
sion, which offers a good initialization for discrete neural
representation. Along with the weights fine-tuning of subse-
quent ANN layers, the conversion errors can be effectively
mitigated. Different from the end-to-end tandem learning
framework introduced in [24], the tandem learning here is
performed one layer at a time to prevent the gradient
approximation error from accumulating across layers. The
weights of the SNN layer are frozen after each training stage.

4.2 Scheduling of Progressive Tandem Learning

The PTL framework requires a schedule to be determined for
each training stage. Inspired from [36], we propose an adap-
tive training scheduler to automate the PTL process. As
shown in Fig. 2D, at the end of each training epochwe update
the patience counter t based on the current validation loss and
the best validation loss at the current training stage. The
patience counter is reset to zero when the current validation
loss improves, otherwise, the patience counter is increased by
one. The patience counter serves a similar purpose to the
patience parameter of an ANN learning rate scheduler. Dur-
ing ANN training, the patience parameter determines when
the learning rate decay should happen. While the patience
counter determines when the next layer should be converted.
Once the patience counter reaches the pre-defined patience
period Tp, the hybrid network parameters with the best vali-
dation loss are re-loaded to the network (i.e., the bestmodel at

Fig. 2. Illustration of the proposed PTL framework. (A) The whole training process is organized into separate stages. (B) Details of the hybrid network
at the training stage 2. Note that the SNN Layer 1 performs neural encoding following the process described in Section 3.4. (C) Details of the training
processes at stage 2. (D) Illustration of the adaptive training scheduler.

7830 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

the current training stage) before the weights of the trained
SNN layer are frozen. The training process terminates after
the last ANN layer is replaced by the SNN layer. The pseudo
codes of the proposed layer-wise ANN-to-SNN conversion
framework are presented inAlgorithm 1.

Algorithm 1. Pseudo Codes of the Progressive Tandem
Learning Framework

Input: input sample Xin, target label Y , pre-trained ANN
neta, encoding time window size Ns, patience period
Tp, number of network layersL

Output: converted SNN
// Network Initialization

net = neta
for layer l = 1 to L do
// Initialize the Training Scheduler

t = 1
loss best ¼ 1
// Determine the Firing Threshold of Layer l
#l ¼ Threshold LayerNormðnet;Ns;XinÞ
// Build Hybrid Network for Training Stage l
net ¼ Build Hybrid Networkðnet; #l; lÞ
while t < Tp do
// Layer-wise Training for 1 Epoch on the

Hybrid Network

½net; val loss� ¼ Layer Wise Trainingðnet;Ns;Xin; Y Þ
// Update the Training Scheduler

½t; loss best� ¼ Update Training Schedulerðval loss; loss bestÞ
// Freeze the Weights of SNN Layer l
net ¼ Freeze Layerðnet; lÞ

4.3 Optimizing for Other Hardware Constraints

The PTL framework also allows other hardware constraints,
such as the limited conductance states of non-volatile mem-
ory devices and limited fan-in connections in the neuromor-
phic architecture, to be incorporated easily during training.
It hence greatly facilitates hardware-algorithm co-design
and allows optimal performance to be achieved when
deploying the trained SNN models onto the actual neuro-
morphic hardware.

To elucidate on this prospect, we focus on the constraint
of limited conductance states that will lead to the limited
weight precision for SNNs. Specifically, we explored the
quantization-aware training [35] method whereby the low-
precision weights are imposed progressively during train-
ing. As illustrated in Fig. 3, following the similar procedures
that have been described for activation quantization in
Eq. (8), the network weights and bias terms are quantized to
a desirable precision before sharing to the SNN layer. While
their full-precision copies are kept in the ANN layer to con-
tinue the learning with high precision. The flexibility pro-
vided by the PTL framework allows the SNN model to
progressively navigate to a suitable parameter space to
accommodate various hardware constraints.

5 EXPERIMENTS ON PATTERN CLASSIFICATION

In this section, we first investigate the scalability of spike-
based learning methods, which motivates the proposal of a
layer-wise learning method in fine-tuning the converted

SNN. Second, we demonstrate the learning effectiveness and
scalability of the proposed PTL framework on large-scale
object recognition tasks. Third, we investigate the effective-
ness of the algorithm-hardware co-designmethodology, that
incorporates hardware constraints into the conversion pro-
cess, with an example on the quantization-aware training for
low precision neuromorphic hardware. Finally, we study the
training efficiency of the proposed conversion framework as
well as the improvements in the inference speed and energy
efficiency of the trained SNNmodels.

5.1 Experimental Setup

We perform all experiments with PyTorch library that sup-
ports accelerated and memory-efficient training on multi-
GPUmachines. Under a discrete-time simulation, we imple-
ment the customized linear layer and convolution layer in
Pytorch using IF neurons. We use the Adam optimizer [38]
for all the experiments. To improve the training efficiency,
we add batch normalization (BN) layer [39] after each con-
volution and linear layer. Following the approach intro-
duced in [27], we integrate the parameters of BN layers into
their preceding convolution or linear layers’ weights before
sharing them with the coupled SNN layers. We use this
setup consistently for both the pattern classification tasks of
this section and the signal reconstruction tasks that will be
presented in the next section unless otherwise stated.

Dataset. We perform the object recognition experiments
on the MNIST [40], Cifar-10 [41] and ImageNet-12 datasets
[42], which are widely used in machine learning and neuro-
morphic computing communities to benchmark different
learning algorithms. The MNIST handwritten digits dataset
consists of grayscaled digits of 28�28 pixels that split into
60,000 training and 10,000 testing samples. The Cifar-10 data-
set consists of 60,000 color images of size 32�32�3 from 10
classes, with a standard split of 50,000 and 10,000 for train
and test, respectively. The large-scale ImageNet-12 dataset
consists of over 1.2 million high-resolution images from
1,000 object categories. For Cifar-10 and MNIST datasets, we

Fig. 3. Illustration of the quantization-aware training that can be incorpo-
rated into the proposed PTL framework. The full precision weight and
bias terms of ANN neurons are quantized to the desired precision before
sharing with the coupled spiking neurons.

WU ETAL.: PROGRESSIVE TANDEM LEARNING FOR PATTERN RECOGNITION WITH DEEP SPIKING NEURAL NETWORKS 7831

randomly split the original train set into train and validation
sets with a split ratio of 9:1, which are fixed afterward for all
the experiments. For ImageNet-12 dataset, the standard data
split is followed for all experiments.

Network, Implementation and Evaluation Metric. Two classi-
cal CNN architectures are explored on the Cifar-10 dataset:
AlexNet [3] and VGG-11 [43]. For the ImageNet-12 dataset,
we performed experiments with AlexNet and VGG-16 [43]
architectures to facilitate comparison with other existing
ANN-to-SNN conversion works.

We also performed experiments with quantization-aware
training of different weight precisions on the MNIST and
Cifar-10 datasets. For MNIST dataset, the convolutional
neural network with the structure of 28�28-c16s1-c32s2-
c32s1-c64s2-800-10 is used, wherein the numbers after ‘c’
and ‘s’ refer to the number of convolution filters and the
stride of each convolution layer, respectively. The kernel
size of 3 is used consistently for all convolution layers. For
Cifar-10 dataset, we used AlexNet architecture.

For all experiments, the networks are trained for 100
epochs using the cross-entropy loss function. The patience
period Tp is fine-tuned by progressively increasing it to
match the number of available training epochs. The learning
rate is initialized at 10�3 and decayed to 10�4 at Epoch 50.
The 99th percentile of all ali in a randomly selected training
batch is used to determine the firing threshold. The best test
accuracy across 5 independent runs is reported for the
Cifar-10 dataset. While only a single run is performed for
the ImageNet-12 dataset.

To evaluate the energy efficiency of the converted SNN
models to their ANN counterparts, we follow the convention
of neuromorphic computing community by counting the
total synaptic operations [27]. For SNN, as defined below,
the total synaptic operations (SynOps, AC operations) corre-
late with the neurons’ firing rate, fan-out fout (number of out-
going connections to the subsequent layer), and time
window sizeNs.

SynOps ¼
XNs

t¼1

XL�1

l¼1

XQl

j¼1

fl
out;js

l
j½t�; (14)

where L is the total number of layers and Ql denotes the
total number of neurons in layer l.

In contrast, the total synaptic operations (MAC opera-
tions) that are required to classify one image in the ANN is
given as follows

SynOps ¼
XL
l¼1

fl
inQ

l; (15)

where fl
in denotes the number of incoming connections to

each neuron in layer l.

5.2 End-to-End Spike-Based Learning Leads to
Accumulated Gradient Approximation Errors

As discussed in Section 4, to compensate for the errors
arising from the primitive ANN-to-SNN conversion, a
training method is required to fine-tune the network
weights. Here, we take the object recognition task on the
Cifar-10 dataset as an example to study the scalability of
spike-based learning methods in training deep SNNs to
perform rapid pattern recognition. Specifically, we imple-
mented the surrogate gradient learning method and tandem
learning method proposed in [16] and [24], respectively. The
network structures employed in this study are taken from
the famous VGGNet [43].

With an encoding time window Ns of 8, the learning
curves for ANN and SNN models with different network
depths are presented in Fig. 4. As shown in Fig. 4A, the
training converges easily for all ANN models, despite
slight overfitting observed for the VGG13 and VGG16
models. In contrast, the training convergence is difficult
for the spiking counterparts that have a network depth of
over 10 layers as shown in Figs. 4B and 4C. This observa-
tion suggests the gradient approximation error tends to
accumulate over layers with the spike-based learning
methods and significantly degrades the learning perfor-
mance for deep SNNs over 10 layers. Therefore, these end-
to-end learning methods would not work well for the fine-
tuning task required after the primitive network conver-
sion. In the following sections, we will show that the pro-
posed PTL framework that performs fine-tuning one layer
at a time can effectively overcome the accumulated gradi-
ent approximation errors and scale up freely to deep
SNNs with 16 layers.

Fig. 4. Illustration of learning curves on the Cifar-10 dataset. (A) ANN models. (B) SNN models trained with spike count-based tandem learning [24].
(C) SNN models trained with time-based surrogate gradient learning [17]. It is worth noting that the jump of learning curves at Epoch 50 is due to the
learning rate decay.

7832 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

5.3 Object Recognition on Cifar-10 and ImageNet-12

As shown in Fig. 5, we plot the training progress of the
AlexNet and VGG-11 models on the Cifar-10 dataset, to
illustrate the effectiveness of the proposed PTL framework.
As expected, the validation accuracy drops mostly at the
beginning of each conversion stage due to the conversion
errors introduced. Notably, these errors are counteracted by
the proposed layer-wise learning method, whereby the test
and validation accuracies are restored quickly with only a
few training epochs. Overall, the validation and test accura-
cies remain relatively stable during the whole training prog-
ress and can even surpass those of the pre-trained ANNs
after training. It suggests that the proposed conversion
framework can significantly reduce the representation space
Ns by exploiting the redundancies that existed in the high-
dimensional feature representation of the ANN.

As reported in Table 1, the trained deep SNNs achieve
state-of-the-art classification accuracies over other existing
SNN implementations with similar network architecture,
with a test accuracy of 90.86% and 91.24% for AlexNet and
VGG-11 respectively on the Cifar-10 dataset. It is worth
mentioning that these SNN models even outperform their
pre-trained ANN baselines by 1.27% and 0.65%. In compari-
son with a recently introduced binary neural network train-
ing method for neuromorphic implementation [36], which
achieved a classification accuracy of 84.67%, the results sug-
gest that the larger encoding time window Ns ¼ 16 contrib-
utes to the higher accuracy.

To study the scalability of the proposed PTL framework
on more complex datasets and network architectures, we
conduct experiments on the challenging ImageNet-12 data-
set. Due to the high computational complexity of modeling
deep SNNs and the huge memory demand to store their
intermediate states, only a limited number of ANN-to-SNN
conversion methods have achieved some promising results
on this dataset.

As reported in Table 1, the spiking AlexNet and VGG-16
models trained with the proposed PTL framework achieve
promising results on the ImageNet-12 dataset. For the spik-
ing AlexNet, the top-1 (top-5) accuracy improves by 3.39%
(2.21%) over the early work that takes a constrain-then-train
approach [44]. Meanwhile, the total number of time steps

required is reduced by more than one order from 200 to 16.
For the spiking VGG-16, despite the total number of time
steps reduced by at least 25 times, our result is as competi-
tive as those achieved with the state-of-the-art ANN-to-
SNN conversion approaches [27], [28].

Nitin et al. [45] recently apply a spike-based learning
method to fine-tune the weights of the converted SNN end-
to-end, so as to speed up the model at run time. This method
successfully reduces the total time steps from 2,500 to 250,
with accuracy drops by about 3%on the ImageNet-12 dataset.
In contrast, the discrete neural representation proposed in
this work provides an improved network initialization that
allows for a more radical reduction in the encoding time win-
dow. Notably, the classification accuracy of our system is on
par with theirs, while requiring only a total of 16-time steps.
Although our SNN models drop from the pre-trained Alex-
Net and VGG-16 models by about 3% and 6% respectively, it
ismuch better than that obtained from theANN-to-SNN con-
version which is reported to have an accuracy drop of 16.6%
[46]. Moreover, it is expected that our accuracy drop could be
closed by providing a larger representation spaceNs.

5.4 Quantization-Aware Training for Low Precision
Neuromorphic Hardware

Table 2 provides the object recognition results with the
quantization-aware training. On the MNIST and Cifar-10
datasets, the low-precision SNN models perform exceed-
ingly well regardless of the reduced bit-width and the lim-
ited representation space (i.e., Ns ¼ 16). Specifically, when
the weights are quantized to 4-bit, the classification accu-
racy drops by only 0.03% and 0.85% on the MNIST and
Cifar-10 datasets, respectively. Therefore, the proposed PTL
framework offers immense opportunities for implementing
SNNs on the low-precision neuromorphic hardware, for
instance with emerging non-volatile memory devices that
suffering from limited conductance states.

5.5 Rapid and Efficient Classification With SNNs

When implemented on the neuromorphic chips, the SNNs
have great potential to improve the real-time performance
and energy efficiency over ANNs. However, the learning

Fig. 5. Illustration of the training progresses of the AlexNet and VGG-11 on the Cifar-10 dataset (Ns ¼ 16, Tp ¼ 6). The shaded regions correspond to
different training stages. After replacing each ANN layer with an equivalent SNN layer at the beginning of each training stage, the validation and test
accuracies can be quickly restored with the proposed PTL framework. In these experiments, to allow searching for a better SNN model, the early ter-
mination did not apply during the last conversion stage.

WU ETAL.: PROGRESSIVE TANDEM LEARNING FOR PATTERN RECOGNITION WITH DEEP SPIKING NEURAL NETWORKS 7833

methods grounded on the firing rate assumption require
long inference time, typically a few hundred to thousands
of time steps, to reach a stable network firing state. They
diminish the latency advantages that can be obtained from
the asynchronous operation of SNNs. In contrast, the pro-
posed conversion framework allows making efficient use of
the available time steps, such that rapid inference can be
performed with only 16 time steps on the ImageNet-12 data-
set. As shown in Fig. 6A, we notice a clear positive correla-
tion between the encoding time window size and the
classification accuracy on the Cifar-10 dataset. Notably, a
reliable prediction can still be made with only a single time
step when SNN is trained to utilize this limited amount of
information as in the scenario of binary neural networks,
while the performance can be further improved when larger
encoding time windows are provided.

To further study the energy efficiency of trained SNN
models, we follow the convention by counting the synaptic
operations per inference and calculating the ratio to the corre-
sponding ANNmodels [24], [27]. In general, the total synaptic
operations required by the ANN is a constant number
depending on the network architecture,while it positively cor-
relates with the encoding time window and the firing rate for
SNNs. As shown in Fig. 6B, under the iso-accuracy setting,
when the ANN and SNN models achieve an equal accuracy,
the SNN (Ns ¼ 8) consumes only around 0.315 times total syn-
aptic operations over the ANN counterpart. In contrast, the
state-of-the-art SNN implementations with the ANN-to-SNN
conversion and spike-based learning methods have reported
a SynOps ratio of 25.60 and 3.61 respectively on a similar
VGGNet-9 network [47]. It suggests our SNN implementation
is 81.27 and 11.46 timesmore efficient at run-time respectively.

It is worth noting that SNNs perform mostly accumulate
(AC) operations to integrate the membrane potential contri-
butions from incoming spikes. In contrast, multiply-accumu-
late (MAC) operations are used in ANN which is
significantly more expensive in terms of energy consump-
tion and chip area usage. For instance, the simulations in a
Global Foundry 28 nm process report the MAC operation is
14x costly than the AC operation and requires 21x chip area
[27]. Therefore, over 40 times cost savings can be received
from our SNN models by taking the sparse and cheap AC
operations over the ANN counterparts, and the cost savings
can be further boosted from efficient neuromorphic chip
architecture design and emerging ultra-low-power devices
implementation. It is worth mentioning that low precision
networks supported by the quantization-aware training
strategy proposed in Section 4.3 can further reduce the com-
puting cost andmemory footprint.

Figs. 6C and 6D present the classification results and the
required training epochs as a function of the patience period
in the adaptive training scheduler. As shown in Fig. 6C, a

TABLE 1
Comparison of Classification Accuracy of Different SNN Implementations on the Cifar-10 and ImageNet-12 Test Sets

Model Network Method Accuracy (%) Time Steps

Cifar-10

Wu et al. (2019) [17] AlexNet (SNN) Surrogate Gradient Learning 85.24 -
Hunsberger and Eliasmith (2016)[44] AlexNet (SNN) Constrain-then-Train 83.54 200
This work AlexNet (ANN) Error Back-propagation 89.59 16
This work AlexNet (SNN) Progressive Tandem Learning 90.86 16
Rueckauer et al. (2017)[27] VGG-like (SNN) ANN-to-SNN conversion 88.82 -
Severa, William, et al. (2019)[36] VGG-like (SNN) Binary Neural Network 84.67 1
Nitin et al. (2020)[45] VGG-16 (SNN) ANN-to-SNN conversion 90.20 100
Nitin et al. (2020)[45] VGG-16 (SNN) ANN-to-SNN conversion + STDB 91.13 100
This work VGG-11 (ANN) Error Back-propagation 90.59 16
This work VGG-11 (SNN) Progressive Tandem Learning 91.24 16

ImageNet

Hunsberger and Eliasmith (2016)[44] AlexNet (SNN) Constrain-then-Train 51.80 (76.20) 200
Wu et al. (2019)[24] AlexNet (SNN) Tandem Learning 50.22 (73.60) 10
This work AlexNet (ANN) Error Back-propagation 58.53 (81.07) 16
This work AlexNet (SNN) Progressive Tandem Learning 55.19 (78.41) 16
Rueckauer et al. (2017)[27] VGG-16 (SNN) ANN-to-SNN conversion 49.61 (81.63) 400
Sengupta et al. (2019)[28] VGG-16 (SNN) ANN-to-SNN conversion 69.96 (89.01) 2500
Nitin et al. (2020)[45] VGG-16 (SNN) ANN-to-SNN conversion 68.12 (-) 2500
Nitin et al. (2020)[45] VGG-16 (SNN) ANN-to-SNN conversion + STDB 65.19 (-) 250
Deng and Gu (2021) [46] VGG-16 (SNN) ANN-to-SNN conversion 55.80 (-) 16
This work VGG-16 (ANN) Error Back-propagation 71.65 (90.37) 16
This work VGG-16 (SNN) Progressive Tandem Learning 65.08 (85.25) 16

The numbers inside and outside the round bracket of the ‘Accuracy’ column refer to the top-1 and top-5 accuracy, respectively.

TABLE 2
Comparison of the Classification Results as a Function

of Weight Precision

Benchmark Bit Width Acc. (%) Change of Acc. (%)

MNIST

Float32 99.32 0
8-bit 99.32 0
7-bit 99.30 -0.02
6-bit 99.29 -0.03
5-bit 99.30 -0.02
4-bit 99.29 -0.03

Cifar-10

Float32 90.33 0
8-bit 90.11 -0.22
7-bit 90.06 -0.27
6-bit 90.07 -0.26
5-bit 90.04 -0.29
4-bit 89.48 -0.85

The result of SNN models is obtained through quantization-aware training.
The average results across 5 independent runs are reported.

7834 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

competitive classification accuracy that surpasses the pre-
trained ANN model can be achieved even with a patience
period of only 1, which requires an average epoch of only
18 as shown in Fig. 6D. The accuracy can be further
improved if a longer patience period is given.

6 EXPERIMENTS ON SIGNAL RECONSTRUCTION

In Section 5, we demonstrate superior learning capability
and scalability of the proposed PTL framework on pattern
classification tasks. The existing ANN-to-SNN conversion
works mainly focus on the pattern classification tasks, where
a high-precision output is not required. The regression tasks
like signal reconstruction however require the SNNmodel to
predict high precision outputs using spikes, which have not
been well explored. In this section, we further apply SNNs to
solve pattern regression tasks that are known to be challeng-
ing for SNNs. Specifically, we perform experiments on the
image reconstruction and speech separation tasks, both of
which require reconstructing high-fidelity signals.

6.1 Image Reconstruction With Autoencoder

An autoencoder is a type of neural network that learns to
decompose input signals into a compact latent representation,

and then use that representation to reconstruct the original
signals as closely as possible [48]. Typically an autoencoder
learns compact latent representations through a bottleneck
layer that has a reduced dimensionality over the input. In this
way, it ignores the variation, removes the noise, and disentan-
gles a mixture of information. Here, we investigate the com-
pact latent representation extraction and reconstruction for
static images using spike counts.

6.2 Time-Domain Speech Separation

Speech separation is one of the solutions for the cocktail
party problem, where one is expected to selectively listen
to a particular speaker in a multi-talker scenario [49].
Physiological studies reveal that selective auditory atten-
tion takes place both locally by transforming the receptive
field properties of individual neurons and globally
throughout the auditory cortex by rapid neural adapta-
tion, or plasticity, of the cortical circuits [50], [51]. How-
ever, machines have yet to achieve the same attention
ability as humans in segregating mixed stimuli into differ-
ent streams. Such auditory attention capability is highly
demanded in real-world applications, such as, hearing
aids [52], speech recognition [53], speaker verification [54],
and speaker diarization [55].

Fig. 6. (A) Classification accuracy as a function of the encoding time window on the Cifar-10 dataset. The horizontal dashed line refers to the accuracy of
the pre-trained ANN. (B) The ratio of total synaptic operations between SNN and ANN as a function of encoding time window on the Cifar-10 dataset. (C)
Classification accuracy as a function of the patience period defined in the adaptive scheduler. (D) Finishing epoch as a function of the patience period. All
experimental results are summarized over 5 independent runswith spiking AlexNet. The error bars represent one standard deviation across the 5 runs.

Fig. 7. (A) Illustration of the SNN-based speech separation approach to solving the cocktail party problem. (B) Illustration of the proposed SNN-based
speech separation network. It takes two speakers mixture as input and outputs two independent streams for each individual speaker. “1d-Conv” indicates
a 1-dimensional convolution. “1�1 Conv” is a convolution with a 1�1 kernel. “d-Conv” is a dilated convolution. “Deconv” is a deconvolution (also known as
transposed convolution). “ReLU” is a rectified linear unit function. “BN” represents batch normalization.	 refers to the element-wisemultiplication.

WU ETAL.: PROGRESSIVE TANDEM LEARNING FOR PATTERN RECOGNITION WITH DEEP SPIKING NEURAL NETWORKS 7835

Inspired by the recent progress in deep ANN
approaches to time-domain speech separation and extrac-
tion [56], [57], we propose and implement a deep SNN-
based solution for speech separation. As shown in Fig. 7,
the SNN takes the mixture speech as input and generates
individual speech into separate streams. With a stack of
dilated convolutional layers, the SNN captures the long-
range dependency of speech signals with a manageable
number of parameters. It is optimized to maximize a scale-
invariant signal-to-distortion ratio (SI-SDR) [58] loss for
high fidelity speech reconstruction.

The proposed SNN-based speech separation framework
consists of three components: an encoder, a separator, and a
decoder, as shown in Fig. 7. The encoder transforms the
time-domain mixture signal into a high-dimensional repre-
sentation, which is then taken as the input to the separator.
The separator estimates a mask for each speaker at each
time step. After that, a suitable representation for every
individual speaker is extracted by filtering the encoded
representation of the input mixture with the estimated
mask for that speaker. Finally, the time-domain signal of
each speaker is reconstructed using a decoder.

6.3 Experimental Setup

In the following, we will present the experiments designed
for image reconstruction and speech separation tasks. By
applying the PTL framework, the pre-trained ANNs are
converted into SNNs for high-fidelity signal reconstruction
in these tasks.

6.3.1 Image Reconstruction

6.3.1.1 Dataset. The MNIST dataset [40] is used for the
image reconstruction task, which consists of 60,000 training
and 10,000 test samples. These samples are directly used for
training and testing without applying any data pre-process-
ing steps.

6.3.1.2 Network, Implementation andEvaluationMetric.
We evaluate a fully-connected autoencoder that has an
architecture of 784-128-64-32-64-128-784, wherein the
numbers refer to the number of neurons at each layer
[36]. The sigmoid activation function is used in the out-
put layer to normalize the output so as to match to the
input range, while the rest of the layers use a ReLU acti-
vation function. Following the neural coding scheme
introduced in Section 3.4, instead of using the spike
count, the free aggregate membrane potential of spiking
neurons in the final SNN layer is considered as the pre-
activation quantity to the sigmoid activation function,
which provides a high-resolution reconstruction. The
networks are trained for 100 epochs using the mean
square error (MSE) loss function, and the patience period
Tp of the training scheduler is set to 6. We report the
peak signal-to-noise ratio (PSNR) and Structural Similar-
ity (SSIM) of reconstructed images on the MNIST test set
with different encoding time window size. The rest of
the training configurations follow those used in pattern
classification tasks as presented in Section 5.1.

6.3.2 Time-Domain Speech Separation

6.3.2.1 Dataset. We evaluated the methods on the two-
talker mixed WSJ0-2mix dataset2 [59] with a sampling rate
of 8 kHz, which was mixed by randomly choosing utteran-
ces of two speakers from the WSJ0 corpus [60]. The WSJ0-
2mix corpus consists of three sets: training set (20,000 utter-
ances � 30h), development set (5,000 utterances � 8h), and
test set (3,000 utterances � 5h). Specifically, the utterances
from 50 male and 51 female speakers in the WSJ0 training
set (si_tr_s) were randomly selected to generate the training
and development set in WSJ0-2mix at various signal-to-
noise (SNR) ratios that uniformly chosen between 0dB and
5dB. Similarly, the test set was created by randomly mixing
the utterances from 10 male and 8 female speakers in the
WSJ0 development set (si_dt_05) and evaluation set
(si_et_05). The test set was considered as the open condition
evaluation because the speakers in the test set were different
from those in the training and development sets. We used
the development set to tune parameters and considered it
as the closed condition evaluation because the speakers are
seen during training. The utterances in the training and
development set were broken into 4s segments.

6.3.2.2 Network and Implementation. Inspired by the
Conv-TasNet speech separation system [56], the proposed
SNN-based speech separation system first encodes the mix-
ture input xðtÞ 2 R1�T by a 1d-convolution with Nð¼ 512Þ
filters followed by the ReLU activation function. Each filter
has a window of Lð¼ 20Þ samples with a stride of L=2ð¼ 10Þ
samples. In the separator part, a mean and variance normali-
zation with trainable gain and bias parameters is applied to
the encoded representations A 2 RK�N on the channel
dimension, where K is equal to 2ðT � LÞ=Lþ 1. A 1�1 con-
volution togetherwith batch normalization andReLU activa-
tion is applied to the normalized encoded representations.
The dilated convolutions with 512 filters are repeated 10
times with dilations ratios of ½20; 21; . . . ; 29�. These dilated
convolution filters have a kernel size of 1� 3 and a stride of
1. The batch normalization and ReLU activation function are
also applied to the dilated convolutions layers. A mask (M1,
M2) for each speaker is then estimated by a 1�1 convolution
with a sigmoid activation function. Themodulated represen-
tation (S1; S2) for each speaker is obtained by filtering the
encoded representationAwith the estimatedmask (M1,M2).
Finally, the time-domain signal (s1; s2) for each speaker is
reconstructed by the decoder, which acts as the inverse pro-
cess of the encoder.

The ANN-based system is optimized with the learning
rate started from 0.001 and is halved when the loss
increased on the development set for at least 3 epochs.
Then, we take the pre-trained ANN model and convert the
separator into an SNN. It is worth mentioning that the
aggregate membrane potential is applied as the inputs to
the last 1�1 convolution layer where a float-point represen-
tation is required to generate high-resolution auditory
masks. The encoding time window Ns and patience period
Tp are set to 32 and 3 for SNNs, respectively. Both ANN and

2. Available at: http://www.merl.com/demos/deep-clustering.
The database used in this work is simulated with the released script
and configuration in [59].

7836 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

http://www.merl.com/demos/deep-clustering

SNN models are trained for 100 epochs, and an early stop-
ping scheme is applied when the loss does not improve on
the development set for 10 epochs.

6.3.2.3 Training Objective and Evaluation Metric. The
speech separation system is optimized by maximizing the
scale-invariant signal-to-distortion ratio (SI-SDR) [58], that
is defined as

SI-SDR ¼ 10log 10

jj hŝ;sihs;si sjj2

jj hŝ;sihs;si s� ŝjj2

0
@

1
A; (16)

where ŝ and s are separated and target clean signals, respec-
tively. h�; �i denotes the inner product. To ensure scale invari-
ance, the signals ŝ and s are normalized to zero-mean prior to
the SI-SDR calculation. Since we don’t know which speaker
the separated stream belongs to (permutation problem), we
adopt permutation invariant training to find the best permu-
tation by maximizing the SI-SDR performance among all the
permutations. The SI-SDR is used as the evaluation metric to
compare the performances of the original ANN-based and
the converted SNN-based speech separation systems. We
also evaluate the systems with Perceptual Evaluation of
Speech Quality (PESQ) [61], [62], which is recommended as
the ITU-T P.862 standard to automatically assess the speech
quality instead of the subjective Mean Opinion Score (MOS).
During the evaluation, the permutation problem between the
separated streams and the corresponding target clean signals

are decided following the permutation invariant training
during the training phase.

6.4 Experimental Results

6.4.1 Image Reconstruction With Autoencoder

Table 3 provides the image reconstructions results. As
expected, a clear positive correlation between the encoding
time window size Ns and the image reconstruction quality
has been observed. Notably, with an encoding time window
of 32, the spiking autoencoder achieves a comparable per-
formance to the pre-trained ANN, in terms of the PSNR and
SSIM metrics. As also shown in Fig. 8, this spiking autoen-
coder (Ns ¼ 32) can effectively reconstruct images with
high quality. In contrast to the object recognition results
shown in Fig. 6 A, the results on the image reconstruction
suggest regression tasks may require a larger discrete repre-
sentation space or encoding time window to match the per-
formance of the pre-trained ANN.

6.4.2 Time-Domain Speech Separation

Table 4 summarizes the comparative study between the
original ANN-based and the converted SNN-based speech
separation systems. The ANN- and SNN-based systems
achieve an SI-SDR of 12.8 dB and 12.2 dB under the open
condition evaluation, respectively. In terms of the percep-
tual quality, we observe that the ANN and SNN have a
very close PESQ score of 2.94 and 2.85, respectively. The
open condition evaluation results suggest that the SNN can
achieve comparable performance to the ANN in this chal-
lenging speech separation task, while the SNN can take
additional benefits of rapid inference and energy efficiency
at test time. The same conclusion could also be drawn for
the closed condition evaluation.

By listening to the separated examples generated by both
ANN and SNN, we observe that the separated examples by
SNN are very similar to those generated by ANN with
high-fidelity. We publish some examples from the testing
set (open condition) online to demonstrate our system per-
formance.3 We randomly select a speech sample under the
male-male mixture condition from the test set and show

TABLE 3
Comparison of the Image Reconstruction Results as
a Function of the Encoding Time Window SizeNs

Model Ns PSNR SSIM

ANN - 21.24 0.84

SNN 32 20.76 0.84
16 18.00 0.76
8 16.63 0.67
4 15.93 0.60
2 15.26 0.53
1 14.06 0.41

The average results across 5 independent runs are reported.

Fig. 8. Illustration of the reconstructed images from spiking autoencoder
(Ns ¼ 32) on the MNIST dataset. For each pair of digits, the left side is
the original image and the right side is the reconstruction by SNN.

TABLE 4
Comparative Study Between ANN and SNN on Speech

Separation Tasks Under Both Closed and Open Condition

Cond. Methods SI-SDR (dB) PESQ

Diff. Same Overall Diff. Same Overall

Closed ANN 15.2 11.7 13.5 3.12 2.83 2.97
SNN 14.5 11.0 12.8 3.03 2.75 2.89

Open ANN 14.9 10.4 12.8 3.11 2.74 2.94
SNN 14.2 9.8 12.2 3.02 2.66 2.85

The closed condition is on the development set, where the speakers are seen dur-
ing training. The open condition is on the test set, where the speakers are
unseen during training. “Diff.” refers to the different gender mixture. “Same”
refers to the same gender mixture. “Overall” refers to the combination of both
different and same gender mixtures.

3. More listening examples are available at https://xuchenglin28.
github.io/files/iccbc2019/index.html

WU ETAL.: PROGRESSIVE TANDEM LEARNING FOR PATTERN RECOGNITION WITH DEEP SPIKING NEURAL NETWORKS 7837

their magnitude spectra in Fig. 9. We observe that the SNN
obtains a similar spectrum as the ground truth clean spec-
trum even under the challenging condition of the same gen-
der, where the multi-talkers have similar acoustic
characteristics, i.e., pitch, hence less information is available
to discriminate them from each other.

7 CONCLUSION

In this work, we reinvestigate the conventional ANN-to-
SNN conversion approach and identify the accuracy and
latency trade-off with the adopted firing rate assumption.
Taking inspiration from the activation quantization works,
we further propose a novel network conversion method,
whereby spike count is utilized to represent the activation
space of ANN neurons. This configuration allows better
exploitation of the limited representation space and
improves the inference speed. Furthermore, we introduce a
layer-wise learning method to counteract the errors resulted
from the primitive network conversion. The proposed con-
version and learning framework, that is called progressive
tandem learning (PTL), is highly automated with the pro-
posed adaptive training scheduler, which supports flexible
and efficient training. Benefiting from the proposed PTL
framework, the algorithm-hardware co-design can also be
effectively accomplished by imposing the hardware con-
straints progressively during training.

The SNNs thus trained have demonstrated competitive
classification and regression capabilities on the challenging
ImageNet-12 object recognition, image reconstruction, and
speech separation tasks. Moreover, the proposed PTL
framework allows making efficient use of the available
encoding time window, such that rapid and efficient pattern
recognition can be achieved with deep SNNs. Taking the
quantization-aware training as an example, we illustrate
how the hardware constraint, limited weight precision, can
be effectively introduced during training, such that the

optimal performance can be achieved on the actual neuro-
morphic hardware. By integrating the algorithmic power of
deep SNNs and energy-efficient neuromorphic computing
architecture, it opens up a myriad of opportunities for rapid
and efficient inference on the pervasive low-power devices.

ACKNOWLEDGMENTS

Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not reflect the views of the supporting institutions
and companies.

REFERENCES

[1] W. Xiong et al., “Toward human parity in conversational speech
recognition,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. 25,
no. 12, pp. 2410–2423, Dec. 2017.

[2] A. Van Den Oord et al., “Wavenet: A generative model for raw
audio,” 2016, arXiv:1609.03499.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Proc. 25th Int.
Conf. Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[5] J. Hirschberg and C. D. Manning, “Advances in natural language
processing,” Science, vol. 349, no. 6245, pp. 261–266, 2015.

[6] D. Silver et al., “Mastering the game of go without human knowl-
edge,”Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[7] S. B. Laughlin and T. J. Sejnowski, “Communication in neuronal
networks,” Science, vol. 301, no. 5641, pp. 1870–1874, 2003.

[8] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and
huffman coding,” 2015, arXiv:1510.00149.

[9] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or �1,” 2016,
arXiv:1602.02830.

[10] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” 2015, arXiv:1503.02531.

[11] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons:
Opportunities & challenges,” Front. Neurosci., vol. 12, 2018,
Art. no. 774.

Fig. 9. The example of male-male mixture speech separated by SNN-based speech separation network.

7838 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

[12] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine
intelligence with neuromorphic computing,” Nature, vol. 575,
no. 7784, pp. 607–617, 2019.

[13] J. Pei et al., “Towards artificial general intelligence with hybrid
Tianjic chip architecture,” Nature, vol. 572, no. 7767, pp. 106–111,
2019.

[14] P. A. Merolla et al., “A million spiking-neuron integrated circuit
with a scalable communication network and interface,” Science,
vol. 345, no. 6197, pp. 668–673, 2014.

[15] M. Davies et al., “Loihi: A neuromorphic manycore processor with
on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan./Feb.
2018.

[16] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learn-
ing in spiking neural networks: Bringing the power of gradient-
based optimization to spiking neural networks,” IEEE Signal Pro-
cess. Mag., vol. 36, no. 6, pp. 51–63, Nov. 2019.

[17] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Direct training
for spiking neural networks: Faster, larger, better,” in Proc. AAAI
Conf. Artif. Intell., 2019, pp. 1311–1318.

[18] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal back-
propagation for training high-performance spiking neural
networks,” Front. Neurosci., vol. 12, 2018, Art. no. 331.

[19] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassign-
ment in time,” in Proc. Neural Inf. Process. Syst., S. Bengio et al.
Eds., 2018, pp. 1412–1421.

[20] F. Zenke and S. Ganguli, “Superspike: Supervised learning in
multilayer spiking neural networks,” Neural Comput., vol. 30, no. 6,
pp. 1514–1541, 2018.

[21] P. Gu, R. Xiao, G. Pan, and H. Tang, “STCA: Spatio-temporal
credit assignment with delayed feedback in deep spiking neu-
ral networks,” in Proc. 28th Int. Joint Conf. Artif. Intell., 2019,
pp. 1366–1372.

[22] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass,
“Long short-term memory and learning-to-learn in networks of
spiking neurons,” in Proc. Neural Inf. Process. Syst., 2018, pp. 795–805.

[23] S. Hochreiter, “The vanishing gradient problem during learning
recurrent neural nets and problem solutions,” Int. J. Uncertainty
Fuzziness Knowl. Based Syst., vol. 6, no. 02, pp. 107–116, 1998.

[24] J. Wu, Y. Chua, M. Zhang, G. Li, H. Li, and K. C. Tan, “A tandem
learning rule for effective training and rapid inference of deep
spiking neural networks,” IEEE Trans. Neural Netw. Learn. Syst.,
early access, Jul. 21, 2021, doi: 10.1109/TNNLS.2021.3095724.

[25] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neu-
ral networks for energy-efficient object recognition,” Int. J. Com-
put. Vis., vol. 113, no. 1, pp. 54–66, 2015.

[26] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu, and M. Pfeiffer,
“Fast-classifying, high-accuracy spiking deep networks through
weight and threshold balancing,” in Proc. Int. Joint Conf. Neural
Netw., 2015, pp. 1–8.

[27] B. Rueckauer, I. A. Lungu, Y. Hu, M. Pfeiffer, and S. C. Liu,
“Conversion of continuous-valued deep networks to efficient
event-driven networks for image classification,” Front. Neurosci.,
vol. 11, 2017, Art. no. 682.

[28] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: Vgg and residual architectures,” Front.
Neurosci., vol. 13, 2019, Art. no. 95.

[29] S. Kim, S. Park, B. Na, and S. Yoon, “Spiking-YOLO: Spiking neu-
ral network for real-time object detection,” 2019, arXiv:1903.06530.

[30] Y. Hu, H. Tang, Y. Wang, and G. Pan, “Spiking deep residual
network,” 2018, arXiv:1805.01352.

[31] J. A. P�erez-Carrasco et al., “Mapping from frame-driven to frame-
free event-driven vision systems by low-rate rate coding and coin-
cidence processing–application to feedforward convnets,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2706–2719,
Nov. 2013.

[32] Y. Xu, H. Tang, J. Xing, and H. Li, “Spike trains encoding and
threshold rescaling method for deep spiking neural networks,” in
Proc. IEEE Symp. Ser. Comput. Intell., 2017, pp. 1–6.

[33] Y. Wang, Y. Xu, R. Yan, and H. Tang, “Deep spiking neural net-
works with binary weights for object recognition,” IEEE Trans.
Cogn. Develop. Syst., 2020.

[34] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural dis-
crete representation learning,” in Proc. 31st Int. Conf. Neural Inf.
Process. Syst., 2017, pp. 6306–6315.

[35] B. Jacob et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 2704–2713.

[36] W. Severa, C. M. Vineyard, R. Dellana, S. J. Verzi, and J. B.
Aimone, “Training deep neural networks for binary communi-
cation with the whetstone method,” Nat. Mach. Intell., vol. 1,
no. 2, pp. 86–94, 2019.

[37] A. G. Anderson and C. P. Berg, “The high-dimensional geometry
of binary neural networks,” 2017, arXiv:1705.07199.

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” 2014, arXiv:1412.6980.

[39] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” 2015,
arXiv:1502.03167.

[40] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278–2324,Nov. 1998.

[41] A. Krizhevsky and G. E. Hinton, “Learning multiple layers of fea-
tures from tiny images,” Comput., Sci. Dept., Univ. Toronto, Tor-
onto, ON, Canada, Tech. Rep., Apr. 2009. [Online]. Available:
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[42] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” 2014, arXiv:1409.1556.

[44] E. Hunsberger and C. Eliasmith, “Training spiking deep networks
for neuromorphic hardware,” 2016, arXiv:1611.05141.

[45] N. Rathi, G. Srinivasan, P. Panda, and K. Roy, “Enabling deep
spiking neural networks with hybrid conversion and spike timing
dependent backpropagation,” 2020, arXiv:2005.01807.

[46] S. Deng and S. Gu, “Optimal conversion of conventional artificial
neural networks to spiking neural networks,” in Proc. Int. Conf.
Learn. Representations, 2021.

[47] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy,
“Enabling spike-based backpropagation for training deep neural
network architectures,” Front. Neurosci., vol. 14, 2020, Art. no. 119.

[48] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016.

[49] N. Mesgarani and E. Chang, “Selective cortical representation of
attended speaker in multi-talker speech perception,” Nature,
vol. 485, pp. 233–236, 2012.

[50] T. Isomura, K. Kotani, and Y. Jimbo, “Cultured cortical neurons can
perform blind source separation according to the free-energy
principle,” PloSComput. Biol., vol. 11, no. 12, 2015, Art. no. e1004643.

[51] E. Kaya and M. Elhilali, “Modelling auditory attention,” Philos.
Trans. Roy. Soc. B Biol. Sci., vol. 372, 2017, Art. No. 20160101.

[52] D. Wang, “Deep learning reinvents the hearing aid,” IEEE Spectr.,
vol. 54, no. 3, pp. 32–37, Mar. 2017.

[53] J. Li, L. Deng, R. Haeb-Umbach, and Y. Gong, Robust Automatic
Speech Recognition: A Bridge to Practical Applications. Amsterdam,
The Netherlands: Academic Press, 2015.

[54] W. Rao, C. Xu, E. S. Chng, and H. Li, “Target speaker extraction
for multi-talker speaker verification,” in Proc. Interspeech, 2019,
pp. 1273–1277.

[55] G. Sell et al., “Diarization is hard: Some experiences and lessons
learned for the JHU team in the inaugural DIHARD challenge,” in
Proc. Interspeech, 2018, pp. 2808–2812.

[56] Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing ideal time–fre-
quencymagnitudemasking for speech separation,” IEEE/ACMTrans.
Audio Speech Lang. Process., vol. 27, no. 8, pp. 1256–1266, Aug. 2019.

[57] C. Xu, W. Rao, E. Chng, and H. Li, “SpEX: Multi-scale time domain
speaker extraction network,” IEEE/ACMTrans. Audio Speech Lang. Pro-
cess., vol. 28, pp. 1370–1384, 2020, doi: 10.1109/TASLP.2020.2987429.

[58] J. Le Roux , S. Wisdom, H. Erdogan, and J. R. Hershey, “SDR–
Half-baked or well done?,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., 2019, pp. 626–630.

[59] J. R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe, “Deep cluster-
ing: Discriminative embeddings for segmentation and separation,”
in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2016, pp. 31–35.

[60] J. Garofolo, D. Graff, D. Paul, and D. Pallett, “Csr-i (wsj0) com-
plete,”: Linguistic Data Consortium, Philadelphia, PA, USA, 1993.
[Online]. Available: https://doi.org/10.35111/ewkm-cg47

[61] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra,
“Perceptual evaluation of speech quality (PESQ)-a newmethod for
speech quality assessment of telephone networks and codecs,” in
Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2001, pp. 749–752.

[62] Y. Hu and P. C. Loizou, “Evaluation of objective quality measures
for speech enhancement,” IEEE Trans. Audio Speech Lang. Process.,
vol. 16, no. 1, pp. 229–238, Jan. 2008.

WU ETAL.: PROGRESSIVE TANDEM LEARNING FOR PATTERN RECOGNITION WITH DEEP SPIKING NEURAL NETWORKS 7839

http://dx.doi.org/10.1109/TNNLS.2021.3095724
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://dx.doi.org/10.1109/TASLP.2020.2987429
https://doi.org/10.35111/ewkm-cg47

Jibin Wu received the BE and PhD degrees in
electrical engineering from the National University
of Singapore, Singapore, in 2016 and 2020,
respectively. He is currently a research fellow with
HLT Lab, Department of Electrical and Computer
Engineering, National University of Singapore. His
research interests include spiking neural network,
neuromorphic computing, auditory modelling, and
automatic speech recognition.

Chenglin Xu received the BEng and MSc degrees
fromNorthwestern Polytechnical University, China,
in 2012and 2015, respectively, and thePhDdegree
fromNanyang Technological University, Singapore,
in 2020. He is currently a research fellow with HLT
lab, Department of Electrical and Computer Engi-
neering, National University of Singapore. His
research interests include speech extraction,
speech enhancement, source separation, multi-
talker speaker verification, and robust speech
recognition.

Xiao Han received the BEng and MSc degrees
from the National University of Singapore. Her
research interests include neuromorphic comput-
ing and brain-inspired computing.

Daquan Zhou is currently working toward the
PhD degree with the Institute of Data Science,
National University of Singapore, under the
supervision of professor Jiashi Feng. His
research interests include deep learning, neural
network compression, neural network structure
design, and AutoML.

Malu Zhang received the PhD degree in com-
puter science from the University of Electronic
Science and Technology of China, Chengdu,
China, in 2019. He is currently a research fellow
with HLT Lab, Department of Electrical and Com-
puter Engineering, National University of Singa-
pore. His research interests include spiking
neural networks, neural spike encoding, and the
neuromorphic applications of speech recognition
and sound source localization. He is a guest
associate editor for the Frontiers in Neuroscience

(Neuromorphic Engineering) and a reviewer for several international
journals, including the IEEE Transactions on Pattern Analysis and
Machine Intelligence, IEEE Transactions on Neural Networks and Learn-
ing Systems, and IEEE Transactions on Cybernetics.

Haizhou Li (Fellow, IEEE) received the BSc,
MSc, and PhD degrees in electrical and elec-
tronic engineering from the South China Univer-
sity of Technology, Guangzhou, China, in 1984,
1987, and 1990, respectively. He is currently a
professor with the Department of Electrical and
Computer Engineering, National University of
Singapore and a presidential chair professor with
the School of Data Science, The Chinese Univer-
sity of Hong Kong, Shenzhen. He was teaching
with the University of Hong Kong from 1988 to

1990 and the South China University of Technology from 1990 to 1994.
He was a visiting professor with CRIN, France, from 1994 to 1995, a
research manager with Apple-ISS Research Centre from 1996 to 1998,
the research director with Lernout and Hauspie Asia Pacific from 1999
to 2001, the vice president with InfoTalk Corp. Ltd. from 2001 to 2003,
and the principal scientist and the department head of human language
technology with the Institute for Infocomm Research, Singapore from
2003 to 2016. His research interests include automatic speech recogni-
tion, speaker and language recognition, natural language processing,
and neuromorphic computing. He was the editor-in-chief of the IEEE/
ACM Transactions on Audio, Speech and Language Processing from
2015 to 2018, has been a member of the editorial board of Computer
Speech and Language since 2012, a member of IEEE Speech and Lan-
guage Processing Technical Committee from 2013 to 2015, the presi-
dent of the International Speech Communication Association from 2015
to 2017, the president of Asia Pacific Signal and Information Processing
Association from 2015 to 2016, and the president of Asian Federation of
Natural Language Processing from 2017 to 2018. He was the general
chair of ACL 2012, INTERSPEECH 2014, and ASRU 2019. He was the
recipient of the National Infocomm Award 2002 and the President’s
Technology Award 2013 in Singapore. He was named Nokia visiting pro-
fessor in 2009 by the Nokia Foundation and U Bremen Excellence chair
professor in 2019 by the University of Bremen, Germany. He is a fellow
of the ISCA.

Kay Chen Tan (Fellow, IEEE) received the BEng
degree (First Class Hons.) and the PhD degree
from the University of Glasgow, U.K., in 1994 and
1997, respectively. He is currently a chair profes-
sor of computational intelligence with the Depart-
ment of Computing, The Hong Kong Polytechnic
University. He has authored or coauthored more
than 300 refereed articles and seven books. He
is currently the vice-president (Publications) of
the IEEE Computational Intelligence Society,
USA. He was the editor-in-chief of the IEEE

Computational Intelligence Magazine from 2010 to 2013 and the IEEE
Transactions on Evolutionary Computation from 2015 to 2020. He is cur-
rently the editorial board member for more than ten journals. He is also
an IEEE Distinguished Lecturer Program (DLP) speaker and the chief
co-editor of the Springer Book Series on Machine Learning: Founda-
tions, Methodologies, and Applications.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

7840 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

